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Viscous and inviscid models in fluid-particle
interaction

JosHUA BALLEW* AND KONSTANTINA TRIVISAT

Some recent developments in the study of fluid-particle interaction
models are reviewed. A viscous model governed by the Navier-
Stokes-Smoluchowski system and an inviscid model governed by
the Euler-Smoluchowski system are presented and analyzed. For
the viscous model, results on global existence, asymptotic behavior,
singular limits and weak-strong uniqueness are discussed, whereas
the analysis on the inviscid model deals with the issue of existence
of smooth solutions.
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1. Introduction

Fluid-particle interaction is of great significance in sedimentation analysis
of disperse suspensions of particles in fluids, one of the issues being the sep-
aration of the solid grains from the fluid by external forces: gravity settling
processes or centrifugal forces. These procedures occur in many practical
applications in biotechnology, medicine, waste-water recycling and mineral
processing [9], as well as atmospheric science on issues related to pollution
[41], and combustion dealing with reactive gases formed by fuel droplets
[1, 2, 42, 43]. Aerosols and sprays can be modeled by fluid-particle-type
interactions in which bubbles of suspended substances are seen as solid par-
ticles.

The coupling between the kinetic and the fluid equations is obtained
through the friction forces that the fluid and the particles exert mutually.
The friction force is assumed to follow Stokes law and thus is proportional
to the relative velocity vector, i.e., is proportional to the fluctuations of the
microscopic velocity € € R? around the fluid velocity field u. More precisely,
the cloud of particles is described by its distribution function f(t,z,v) on
phase space, which is the solution to the dimensionless Vlasov-Fokker-Planck
equation

(VFP) 8tfe + % (U : va:fe -V, ®- vae) = % diVU((U - \/Eue)f + vae)-
Here, ¢ > 0 is a dimensionless parameter, whereas the drag force is inde-
pendent of the fluid density o, but proportional to the relative velocity of
the fluid and the particles given by v — uc(t, ). The right hand-side of the
moment equation in the Navier-Stokes system takes into account the action
of the cloud of particles on the fluid through the forcing term

F. = /]R (% - ug(t,x)> F(t,z,v) do.

The density of the particles 7.(t, x) is related to the probability distribution
function fe(¢,x,v) through the relation

Tle(t, x) = fg(t,x,v) dv.
R3
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There are two different scaling limits for this model, the so-called: bub-
bling and flowing regimes. They correspond to the diffusive approximation
of the kinetic equation, bubbling regime, written in (VFP) and the strong
drag force and strong Brownian motion for the flowing regime.

In this work we consider two prototype models for fluid particle interac-
tion.

e A viscous model governed by the Navier-Stokes system for the evolu-
tion of a viscous, compressible fluid coupled with the so-called Smolu-
chowski equation used to monitor the evolution of particles within the
fluid.

e An inviscid model governed by the Euler system for the evolution of an
inviscid, compressible fluid coupled with the Smoluchowski equation
for the evolution of particles dispersed in the fluid.

The governing equations for the viscous model express the conservation
of mass, the balance of momentum, and the balance of particle densities
often referred as the Smoluchowski equation:

(1.1) 0r0 + divg(ou) =0

(1.2)

Ot(ou) +divy(ou@u)+Vy(pr(0)+n) —uAzu— AV divyu = —(n+80)V,®
(1.3) o + divg(n(u — V,®)) — Azn = 0.

In the present context, the macroscopic variables are given by the den-
sity g, the velocity field u and the particle density 7. Here, pr denotes the
pressure pp(g) = ap”’, a > 0, v > 1, § # 0, and ® denotes the external
potential (typically incorporating gravity and boyancy).

In this work, we consider potentials that satisfy a suitable confinement
condition (HC) (see Section 2). The total pressure P = P(p,n) in the mix-
ture depends on the density of the particles and the density of the fluid and
is given as a superposition of two parts

P(o,m) = pr(0) + 1.

The spatial domain Q C R? is C?" for some v > 0 and can be bounded or
unbounded. The viscosity parameters u > 0 and A+ % w1 > 0 are nonnegative
constants, while g > 0 if 2 is unbounded.

We impose the no-slip boundary condition for the velocity vector lead-
ing to no-flux for the fluid density through the boundaries and the no-flux
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condition for the particle density
(1.4) ulpn =Ven-n+nV,®-n=0 on (0,7) x 09,

with n denoting the outer normal vector to the boundary 0f2.
Our problem is supplemented with the initial data {op, mg, 70} such that

0(0,x) = oo € L7(Q) N L (),
(1.5) (ou)(0,z) = mg € L3 (Q) N L*(Q),
n(0,x) =no € L*(Q) N LL(Q).

System (1.1)—(1.3) is obtained as e — 0, by the standard Hilbert-expan-
sion procedure, through the scaling limit in

Ot $: (v Vate = Va® - Vot = Ldive (v = Veu) f + Vol
(16) ath + divx(geue) =0,
815(96”6) + divx(geue & ué) + vzpF(Qe) - /LAU + B0V, ® = F..

In this regime the particles are supposed to have negligible density with
respect to the fluid, and thus, due to buoyancy effects, will typically move
upwards in a system under gravity. From this phenomenon the regime bears
the name of bubbling.

Two notions of weak solutions to system (1.1)—(1.3) are presented in the
sequel (cf. Section 2); the concept of free energy solutions and the notion
of weakly dissipative solutions. Analytical results on the global existence of
free energy solutions to (1.1)—(1.3) have been established by Carrillo, Karper
and Trivisa in [15]. This work presents a new approximating scheme for the
construction of global solutions based on time-discretization.

Results on the global existence of weakly dissipative solutions to (1.1)—
(1.3) have been established by Ballew and Trivisa in [6]. The notion of
weakly dissipative solutions in the context of compressible fluids relies on
the construction of an approximate scheme based on an approximate relative
entropy inequality. The introduction of this alternative notion of solutions
arises from the desire to establish global solutions with greater regularity
as well as weak-strong uniqueness results for models of compressible fluids
exhibiting fluid-particle interaction.

The main ingredients of our approach can be summarized as follows:

(a) The introduction of an intrinsic definition of weakly dissipative solu-
tions (known also as suitable weak solutions) to the Navier-Stokes-
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Smolukowski system, satisfying a relative entropy-type inequality. The
form of this inequality is closely related to the energy of system.

(b) The construction of an explicit approximation scheme and the estab-
lishment of the existence of global in time suitable weak solutions for
any finite energy initial data.

(c) The investigation of properties of suitable weak solutions, such as the
problem of weak-strong uniqueness and conditional regularity issues.

A review of these results are presented in Section 2.

The analysis covers both bounded and unbounded domains in the three-
dimensional space R3. In the latter case, some delicate estimates are required
for the establishment of the appropriate compactness of the approximate
solutions. In that context, a confinement hypothesis on the domain {2 and
potential ® plays a crucial role in providing control of the negative con-
tribution of the physical entropy in the free energy bounds for unbounded
domains.

In addition, we show (cf. Carrillo, Karper and Trivisa [15]) that the
total masses are conserved also in the large-time limit, which allows the
unique determination of the long time asymptotics. A review of asymptotic
analysis of weak solutions as well as results on singular limits are presented
in Section 3.

The governing equations for the inviscid model express the conservation
of mass, balance of momentum and balance of particle density

(1.7) dyo + diva(ou) =0,
(1.8) O (ou) + divz(eu® u) + Va(pr(e) + 1) = —(n + B0)Va®,
(1.9) on + divg(n(u — V,@)) — An = 0.

The total pressure P = P(p,n) in the mixture depends on the density of the
particles and the density of the fluid and is given by

P(o,n) = pr(0) +n,
with
pr(0) :=ap”, with a > 0 and v > 1.

The external potential

d:0 > RT

represents the effects of gravity and buoyancy and g in (1.2) is taken to be
positive.  is the spatial domain under consideration, which in the present
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context is the entire space R3. In this work we investigate the Cauchy prob-
lem for (1.1)—(1.3) with the initial conditions

(110) (‘Qa u)T/)|t=O = (QO,UOaUO)'

The Euler-Smoluchowski system (1.7)—(1.9) is derived formally as ¢ — 0 in
[13] by the standard Hilbert expansion procedure, through the scaling limit

mn

(1.11)
Of: + 0z (€ Vafe = Vo - Vefe) = Ldive (€ — vEue) f + Vefe),

ath + divx(gsu) =0,
6t(Q€us) + diVx(Qus b2y us) + vapF(Qs) + Sign(a)gsvmq) = (JE - 775116)'

with
1
n= [ Baod Lo = [ Zenagd

The aim of this work is to investigate the effect of the friction forces, exerted
mutually by the fluid and the particles, on the regularity and large time
behavior of smooth solutions to (1.7)—(1.9).

The local existence of smooth solution is presented via an iterative
method in Section 4. More precisely, we show that if the initial data are
small in an appropriate norm, then the presence of friction forces which in-
duce weak dissipation, can prevent the development of singularities and the
Cauchy problem has a unique global smooth solution which decays in time
at a rate.

Results on the global existence of smooth solutions near the constant
state in Sobolev norms are established by the energy method. Decay rates
of the LP-norm of these solutions to the constant state are established when
the L%-norm of the perturbation is bounded. The details of this analysis is
presented in [7].

The main strategy of our approach can be summarized as follows: We
reformulate the Cauchy problem for (1.7)—(1.9) in such a way so that it
is represented by the coupling of a symmetric hyperbolic system with a
parabolic partial differential equation. The local existence of solutions to
the symmetric hyperbolic system is obtained using the approach presented
by Majda [35]. Next, an iterative method is presented for the construc-
tion of a sequence of approximate solutions for the Euler-Smoluchowski
system. The local existence and finite propagation speed is presented in
Section 4.
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The global existence of smooth solutions is established in [7] for the a
class of forces which induce weak dissipation in the sense of Dafermos [22].

2. Viscous model: global existence results

We present in the sequel two notions of weak solutions to the Navier-Stokes-
Smoluchowski system (1.1)—(1.3).

2.1. Notions of weak solutions

The following definition will be of use in the sequel.

Definition 2.1 (Confinement Hypotheses). Given a domain Q € C?¥, v >
0, Q C R3, and given a bounded-below external potential ® : Q — R,
the pair (€2, ®) verifies the confinement hypotheses for the two-phase flow
system (1.1)—(1.3) coupled with no-flux boundary conditions (1.4) whenever
® is bounded and Lipschitz continuous in © and the sub-level sets {® < k}
are connected in 2 for any £ > 0. If Q2 is unbounded, we assume that
S I/V;COO(Q), B > 0, the sub-level sets [® < k| are connected in §2 for any
k>0,

(2.1) e 2 e LY(),
and
(2.2) |AD(z)| < 1|V ®(2)| < c2®(z), |z| > R,

for some large R > 0.
Let us now define a free-energy solution to the NSS system (1.1)—(1.3).

Definition 2.2 (Free-Energy Solution). Assume that (€2, ®) satisfy the con-
finement hypotheses (HC). We say that {o,u,n} is a free-energy solution of
problem (1.1)—(1.3) supplemented with boundary data satisfying (1.4) and
initial data {eg, Mo, no} satisfying (1.5) provided that the following hold:

e 0> 0in L*>(0,T;L7(R2)) represents a renormalized solution of (1.1)
on (0,00) x €, i.e., for any test function ¢ € D([0,7) x Q),T > 0 and
any b, B such that

be L>*NC[0,00), B(p) := B(1) —|—/Q &?dz,
1z
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the renormalized continuity equation

/ / 0)0dp+B(0)u-V,0—b(p)pdiv, u de dt = —/QB(QO)qb(O, ) dz

holds.
e The balance of momentum (1.2) holds in the sense of distributions,
i.e., for any w € D([0,T); D(Q; R?)),

(2.4) //gu‘ﬁtw+gu®u:wa+(p(g)+77)divxwdx dt
0Jo

= / / uVzuV,w + Adivyudivy, w — (Bo + 1)V, ® - w dz dt
0JQ

_/QmO'W(O

All quantities are required to be integrable, so in particular, u €
L2(0,T; W12(Q; R?)), thus the velocity field can be required to vanish
on 0f in the sense of traces.
e 7 >0 is a weak solution of (1.3), i.e.,
(2.5)
o0

/ / OGN V3 &V 5=V o V) da dt — / 106(0, ) da
0JOQ Q

Again, terms in this equation must be integrable on (0,7") x , so in
particular ) € L2(0,T; L3(€2)) N LY(0, T; W2 (Q)).
e The energy of the system

1 a
Flown(r) = [ Sof+ (Bo+n)® da(7)

is finite and bounded by the initial energy. Also

/ / p|Veu 24N divy u> 4+ |2V /n+/n V@ dz dt < F(oo, ug, 10)-
0 JQ

The following definition will be of use in the sequel.

Definition 2.3. In the spirit of Dafermos [19], given an entropy £(U), the
relative entropy is defined as

(2.6) HU|T) := E(U) — E(U) — DET) - (U —T)
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where D stands for the total differentiation operator with respect to g, m,
and 7).

In the present context,
U=|m:=pu|, U= |m:=rU

where U can be considered to be a smooth solution and

m|?
=+

(2.7) EWU): 20 T -1

o' +nlnn+ (Bo+n)®.

Thus, from the definition, the relative entropy is

— m|? a
(2.8) H(U|U) = % + ﬁgﬂ —i—nlnn—i— (/BQ‘FH)(I)
mP e
— — —slns — P
o 7_17“ slns — (Br+s)
- U - lou—rU
Ins+1+ @ n—s
ul? a
:Q‘2| —i—m@—i—nlnn—i—ﬂgfb—%n@
U2
—%— alr“’—slns—ﬁﬂﬁ—sq)
v —
U? U|?
+Q| | 7T| ’ _ a‘fy 7"7_1@4’ a/}/ T’Y*BQ¢+ﬁT®
2 2 v—1 v—1

—ou-U47r|U?-nlns+slns—n+s—nd + sd
After some basic calculations, the relative entropy is calculated to be

7 _ @ 2 a ay  4-1
2.9 UD) =u—Up+ 2 (o7 =) = (-
29)  HOD) =Ehu- U+ () - T o
+nlnn—slns—(Ins+ 1)(n — s),

or equivalently,

H(UIT) = Slu— UP + Er(o,r) + Ep(n, 5),



54 Joshua Ballew and Konstantina Trivisa

where

Pr(9) := Hp(o !

)=
v—1
Hp(o) — Hp(r)(o —7) — Hp(r)

o'
EF(Q? T)
Hp(n) :=nlnn
Pp(n) := Hp(n) =nn+1
Ep(n,s) = Hp(n) — Hp(s)(n — s) — Hp(s)
Remark 2.4. The integrals of the quantities Hr and Hp over {2 represent

the physical quantities of the entropy of the fluid and the entropy of the
particles, respectively.

Note that the relative entropy does not contain any information regard-
ing the external potential ®. This is expected, as the relative entropy reflects
information about quadratic terms, but not linear terms. Next, weakly dis-
sipative solutions are defined using the ideas of relative entropy. The key
addition to the definition of weak solutions is the requirement that the so-
called relative entropy inequality is satisfied. Letting

r=r(tx), U=U(tx), s=s(tz)
be smooth functions on [0, 7] x Q with r,s > 0 on [0, 7] x Q and
Ulga =0,
it is shown in [6] that for smooth {p,u,n},
(2.10)
/'Mu—UF+Em@>+Eﬂm@daﬂ

/ / S(V,U)] : Vy(u—U) de dt
< / §Q0|u0 —Uo|* + Er(00,70) + Ep(n0, s0) da +/ R(o,u,n,r,U,s) dt
Q 0

where
(2.11) R(o,u,n,7,U,s)

- /Q divy(S(V,U)) - (U — u) dz
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—/QQ(BtU—i—u-VmU)-(u—U) dz

- /Q diPp(r)(o — 1) + Vo Pp(r) - (ou — rU) dz
~ | [e(Pr(o) = Pe(r) = Brle.r))div, U da
- /Q Pp(5)(n — 5) + VaPp(s) - (qu — sU) da
= | 0Polo) = Pr(s) = Ern, )] div, U da

_ /va(PP(n) - Pp(s)) . (Vxn + nvxq)) dz

- [Gornver- @-v)de- [

Q S

nVyzs

(u—TU) dz.
Definition 2.5. We say that {o,u,n} is a weakly dissipative solution of
(1.1)-(1.3) with initial data {go, ug,n0} if and only if

e {o,u,n} is a free-energy solution on (0,7) for some 7" > 0 and that
the energy inequality holds true

1
(2.12) / —olul® + o7+ nlnn +nd dz(7)
+/ / S(Vzu) : Vou + 2V /1 + 0V, @ do dt
0 JQ

1 a
< / §Qo!uo|2 + ——0f +nolnny + ne® dz
Q v—1

—5/ /gu-quDdxdtforO<T§T.
0 JQ

e {o,u,n} obeys inequality (2.10) for any suitably smooth functions
{r, U, s}.

From the work of [15], we have the following existence theorem for free-
energy solutions.

Theorem 2.6 (Global Existence of Free Energy Solutions). Assume that
(Q, ®) satisfy the confinement hypotheses. Then, the problem (1.1)—(1.3)
supplemented with boundary conditions (1.4) and initial data satisfying (1.5)
admits a weak solution {o, u,n} on (0,00) x Q2 in the sense of Definition 2.2.
In addition,
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i) the total fluid mass and particle mass given by

respectively, are constants of motion.

i1) the density satisfies the higher integrability result

0 € LTO((0,T) x Q),

where © = min{ £~y —1,%}.

Proof. The main ingredients in the proof of this result can be formulated as
follows:

e A suitable weak formulation of the underlying physical principles is

introduced. Physically grounded hypotheses are imposed on the system
as follows. The mixture occupies the physical space @ C R3. The
boundary conditions are chosen in such a way that the dissipation of
energy is guaranteed.

A priori estimates are established, based solely on the boundedness of
the initial energy and entropy of the system.

A suitable approximating scheme is introduced for the construction
of the solution based on a two-level approximating procedure: the
first level involves an artificial pressure approximation, whereas the
second-level approximation employs a time-discretization scheme. The
sequence of approximate solutions is constructed with the aid of a fixed
point argument coupling the time discretized compressible isentropic
Navier—Stokes equations to a discretization in time of the equation for

7.
Physically grounded hypotheses are imposed on the domain 2 and the
external potential ® (confinement hypotheses (HC)). The analysis in
the present article treats both the case of a bounded physical domain
and the case of an unbounded domain. We remark that the confinement
hypothesis (HC) on (2, ®) plays a crucial role in providing control of
the negative contribution of the physical entropy nlnn in the free
energy bounds for unbounded domains For details, the reader may
consult the work in [15]. O

Theorem 2.7 (Global Existence of Weakly Dissipative Solutions). Assume
that (Q, ®) satisfy the confinement hypotheses with Q C R® a bounded do-
main of class C%V,v > 0. Suppose the initial data {oo, ug, M0} satisfy

00 not identically zero, ooluo|® € L' (Q), and nolnng € L*(Q)
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in addition to the conditions on the initial data specified in (1.5). Then the
Navier-Stokes-Smoluchowski system in (1.1)=(1.3) has a weakly dissipative
solution.

Proof. An inherent definition of weakly dissipative solutions to the Navier-
Stokes Smoluchowski system (1.1)-(1.3) is introduced satisfying a relative
entropy inequality with respect to any hypothetical strong solution to the
problem. The global existence of weakly dissipative solutions is established
by the construction of a suitable approximating scheme. Convergence argu-
ments are employed to show that the solutions to the actual system obey a
relative entropy inequality. For the details of the analysis we refer the reader
to [6]. O

2.2. Weak-strong uniqueness result

First, we assume that we have a smooth solution {r, U, s} such that

r € Creai (0. T L7(9))

U € Cyonc (0.7 L2771 (5 RP))

V.U € L*(0,T; L*(; R¥3)), Ulpg =0

5 € Ceak (10, 1 L)) N LY(0,T; LO773(2))

9, U e LY(0,T; L2/~ 1(Q; R*)) n L2(0,T; L9/ =6(Q; R?))

V2U e LY(0,T; L27/7+1(Q;R3x3><3)) N L2(0,T; L67/57—6(Q;R3><3><3))

A Pp(r) € LY0,T; LV/7~1(Q))

V. Pp(r) € L'(0,T; L*/ 71 R?)) N L2(0, T; L5/~ (Q; R?))

d;Pp(s) € L*(0,T; L>(Q)) N L>=(0,T; L¥%(Q))

V.Pp(s) € L=(0,T; L3(Q;R?))

Vs € L=(0,T; L*(; R?)) N L2(0, T; LS/57+3(Q; R?)).
The quantity {r, U, s} is taken to be a solution of (1.1)—(1.4) with the regu-
larity stated above and r and s are taken to be bounded above and bounded
below by some positive constant. Also, U is taken to be bounded above in
magnitude and the following conditions are imposed:
(2.13) V.r € L*(0,T; LY(Q;R?))
(2.14) V2U € L*(0,T; LI(; R3*3%3))
(2.15) o = V,s+ sV, € L*(0,T; LY(Q;R?))
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()
q > max< 3, —— ;.
v—1

Thus, by embeddings, U € L2(0,T; W5 (;R?)) since v > %, q > 55—16.
Now the weak-strong uniqueness result is stated:

where

Theorem 2.8 (Weak-Strong Uniqueness). Assume {o, u,n} is a weakly dis-
sipative solution of (1.1)—(1.4). Assume that {r, U, s} is a smooth solution
of (1.1)~(1.4) with the regularity stated above and obeying the hypotheses
(2.13)(2.15). Then {0, u,n} is identically {r, U, s}.

Proof. The proof of this theorem is provided by Ballew and Trivisa in [6].
The method employed in this work is somewhat reminiscent of the relative
entropy method of Dafermos [19], DiPerna [21]. We refer the reader to the
articles by Berthelin and Vasseur [11], Mellet and Vasseur [36], where this
method was employed in different settings. O

Remark 2.9. This result can be extended to unbounded domains by consid-
ering a collection of bounded subsets and taking the limit using the confine-
ment hypotheses. See [6] for details.

Remark 2.10. This theorem does not show the existence of smooth solutions
{r, U, s}. For such a regularity result, the reader may consult [3].

3. Viscous model: asymptotic analysis

In this section, we present some results on asymptotic behavior of solutions
to the NSS system. First, we show formally that free-energy solutions con-
verge to solutions to the stationary NSS system as ¢ — oco. Next, we show
formal results for low Mach number limits to the NSS system and state the
main theorems proven in [5].

3.0.1. Convergence to a stationary solution In this section we see
what happens if we let ¢ — oo in the free-energy solutions of the NSS system.
Formally, we can consider the total energy F to be a Lyapunov functional
satisfying

dF

CRVR

+ [ p|Vou)? + N div, u? 4+ 2V./7 + V@[ dz < 0.
Q

From (3.1), we see formaly that as t — oo then u — 0. Thus, (1.2) becomes

(3.2) Va(pr(e) +1) = —(Be+ 1)V, ®.
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But writing the energy estimate as
g 2 2
33)  F(T) +/0 Vo) |72 upexsy + All dive u(t)[|7z ) dt

T
+/ / 12V /1 + 1V ®|? dz dt < F(0)
0 Q
we get

(3.4) 12V ,\/1 + V2 ®|* = 0.

So, defining

On ‘= Q(t + T, )
M = 77(t + Tn, )

where {7,} is a sequence such that 7, — oco, we have g, — 05 and 7, — 7
where

(35) vpr(Qs) = _6stwq)
(3'6) Vins = —nsVaP.

Indeed, we have the following theorem which is proven rigorously in Section 4
of [15].

Theorem 3.1 (Large-time Asymptotics). Let us assume that (2, ®) satisfy
the confinement hypotheses. Then, for any free-energy solution (o, u,n) of
the problem (1.1)—(1.3), there exist universal stationary states os = 0s(z),
ns = ns(x), such that

o(t) — os strongly in L7(2),
ess sup/ o(T)|u(r)|? dz — 0,
>t JQ

n(t) — ns strongly in LP*>(Q) for po > 1,

as t — oo, where (ns, 0s) are characterized as the unique free-energy solution
of the stationary state problem:

(37) vpr(Qs) = —BosV,®
Vans = —nsVa®,
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Proof. The key ingredient in the proof of this result is the establishment of
the appropriate compactness which allows us to take the limit 7,, — oo in
the sequences:

On ‘= Q(t + Tn, )

M =0t + Tn, )
to establish that o, — o5 and 1, = ns. The strong convergence of the density
sequences {o,} is obtained by showing the weak continuity of the effective

viscous pressure. The strong convergence of the particle density sequence
{nn} is obtained using the Lions-Aubin Lemma. O

3.1. Low stratification low mach number limit

Before we get to the formal calculations for the low stratification limit,
we present the scaling of the NSS system. We start by adding the values D,
describing the dispersion of the particles in the fluid, and (, a drag coefficient,
to ensure consistency of the physical units in the equations. Specifically, the
pressure term in the momentum equation becomes

D
Va (ady + —n) ,
¢
the Smoluchowski equation becomes
on + divg(nu) — div,(¢n®) — DALn = 0,

and the energy inequality becomes

| gelul? + —507+ Lo+ (5o + ) da()

D 2
/ /mvmuy + A div, ul? + xT\/ﬁ—l—\/Can‘I) dz dt

D
c —noInng + (Boo + 1) P de.

To begin the scaling of the Navier-Stokes-Smoluchowski model, the quanti-
ties

< Qou0+—0+
/Q ol + — 0}

u?n?C)D7pF7pP7¢7/’L7 a’nd )\7

where pp(n) := %n, as well as the time and length scales, must be made non-
dimensional. This is done by defining for each quantity A a reference value
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Acr which also reflects the physical unit of measurement for that quantity,
such as meter, second, meter per second, et cetera. Then, the dimensionless
value A’ is defined as

A
Aref .
After applying the chain rule and some straight-forward algebra, the for-

mal dimensionless Navier-Stokes-Smoluchowski system becomes (omitting
the primes for the sake of notational simplicity)

A=

(3.8) Sro,e + divz(ou) =0
. 1 D
(3.9) Srd;(ou) + dive(ou®u) + —5V, (a@ﬂ + Pc—n)
Ma ¢
1 1

(3.10) Sron + divy(nu) — Zadiv, ((nV,P) — DaDA;n =0

The total energy inequality for the scaled system takes the form.

d [ Ma? Dn Ma?
3.11) Sr— [ ——plu* + o7 +Pc211 Dcn)® d
1) s [ Sl g+ P g+ T (B + Do) do

/—SVu Vu dx

/ PcDaD? 2211 Va
Q ¢n

Here, the non-dimensional parameters used in (3.8)—(3.11) are defined
as follows:

7a 2
n” +2ZaDV,n -V, @ + —CnIV ®|? dz < 0.

Table 3.1: Definitions of the Dimensionless Parameters

Srm Ll \pa— _VWref  po. @refUrefLres
ureftref pF'r‘e‘f/Qref Href
Frm —2ef g Setfrer po Drer
Lyeg fref Uref LrefUres
Pc:= pPLf Dc:= nr_ef.
pFref Qref

where the quantities

Lrefa urefytrefapFref; Orefs Hrefs fref7 CrefyDrefamefa and Niref
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represent the reference values for the length, velocity, time, fluid pressure,
fluid density, viscosity coefficient, force (equal to V,®), drag coefficient,
diffusivity coefficient, particle pressure, and particle density, respectively.
The compatibility conditions piref = Aey and pr,., = Oref€r,.;» PP, =
Nref€p,., are also imposed to obtained the scaling, the second and third of
which follow naturally from Maxwell’s relation. Note also that Ma represents
the Mach number, Sr the Strouhal number, Re the Reynolds number, and Fr
the Froude number. Since existence of solutions to the scaled system follows
from [6] and [15] for any choices of positive values of the dimensionless
parameters, various singular limits can be explored. The current section
considers a low-Mach-number limit, with Ma taken to be a small parameter
g, Za scaled as Ma, and Fr=y/c.

(3.12) dy0e + divy(g-u) =0
(313)  2[dh(oou) + div (oo © )]+ V, (agg T %7)
= 2(uAgu. + AV, divy u.) — (Bo. + 1) Vo @
(3.14) One + divy(neue) — edivy ((nV,®) — DA =0
319 [ Soult o+ 2l (5o, ) da(r)

—I—/ / e2(pu|Voue)? 4+ A divy ue|? dz dt
0 Q

e’} D 2
+/ /‘Z—Vx\/%—i-s\/@vx@ dz dt
o Jal VC

2

g a D 0

S/ —Qo\u0’2+—98+—77 Inng + e(Boo + no)® dx
Q 2 y—1 ¢

The formal approach is to expand ., u., and 7. as
oo
0- =0+ ) &'
i=1
o0
u. =1u-+ Z clu®
i=1

[e.e]
ne =1+ et
=1
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plug these expansions into (3.12)—(3.15), and equate terms of equal orders of
e. In doing so, it becomes clear that since the right side of (3.15) is bounded
uniformly in €, as it is just the initial energy, it must be true that

V./7 = 0.

Thus, 7 is constant on € for each time ¢t and

_ 1 /
n= 15 [ nodx
12| Jo

in the formal limit. Moving to the momentum equation (3.13) and equating
terms of order one, the formal equation becomes

D
Vo (o + Zn) =0

Since 7 is constant, it follows formally that

: /
0= — oodzx.
Q] Ja

Using this fact in the continuity equation (3.12) and equating terms of order
one yields the incompressibility condition for the limit velocity

div,u=0.

Returning to (3.15) and equating terms of order £2, it is easy to show for-
mally that

olopa + divy,(u®@u)| + VI = pAa— (Br +60)V,®

where r, 0 are related to the limit quantities by
D L
Ve <a7“7 + 29> = —(Bo+n)V.?,

which is found by equating terms of order ¢ in (3.13) and relabeling oM and
n). Thus, the formal low stratification low Mach number limit for the
Navier-Stokes-Smoluchowski system becomes

_—L r) dx
316) 7= [ mi)d
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1
3.17 0= —/ oo(x) dx
(3.17) o [ @)
(3.18) div,a=0
(3.19) 20T + div,(@®@W)] + VI = pAa — (Br + 0)V,®

where r, 6 satisfy
D -
(3.20) Vg (mﬁ + Z9> =—(Bo+M)V.®

and II is a function incorporating the terms for which a gradient is taken.
We now introduce a geometric condition on €2 which plays a crucial
role in the study of propagation of the acoustic waves. Let us consider the
following problem:
. 0¢
(3.21) —Ap=XAp in Q, ——=0 on 09,
on
where ¢ is constant on 9€2. We call a solution of the problem (3.21) trivial
if A=0 and ¢ is constant.

Definition 3.2. We say that Q verifies assumption (H) if all solutions of
the problem (3.21) are trivial.

Remark 3.3. Notice that Schiffer’s conjecture shows that every () satisfies
(H) except the ball and Feireisl, Novotny, Petzeltova [27] gives an example
of domain 2 which is trivial. In two dimensional space, it is proven that
every bounded, simply connected open domain €2 C R? whose boundary id
Lipschitz but not real analytic satisfies (H).

This formal analysis leads to the following theorem, which is proven
rigorously in [5].

Theorem 3.4 (Low stratification limit). Let Q C R® be a bounded domain
with a boundary of class C*T, v > 0 verifying the geometric condition (H).
Let (Q, ®) satisfy the confinement hypothesis and assume Za = Ma = ¢,
Fr = /e and {0z, uc, e 0 s a family of free-energy solutions to the scaled
Navier-Stokes Smoluchowski system with the boundary conditions

u|pa = (ENVoP + Vune) - njsgq = 0.

Assume the initial condition as follows.

_ 1 _ 1
(322)  0:(0,-) = 0e0 = 3+ 0y, u:(0,-) = ucp, 1(0,) = 7j+enly
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where
(3.23) o=t / do, 7= — / d
. = — 5 - T ‘/'U’
Y |Q| 0 O¢,0 n ‘Q| 0 TNe,0
and
(324) 0¢,0 — Q(()l)y us,O - u((]l)a Tle,0 - 77(()1),

as € tends to 0 using weak—+ convergence in L (). Then, up to subse-
quences,

0c =0 in C([0,T);L}(Q)) N L=(0,T; L3 (),
(3.25) ne — 7 in L*(0,T; WY2(Q)),
ue — @ strongly in L%(0,T; L?(Q;R?)),
and
o) = C N o) weakly — % in L>®(0,T; L(Q)),, ¢ = min{2,~}

(3.26) € -

Uél) _ e 5_ N 17(1) weakly in L?(0,T; L*(9)),

where {a,r = oM, 0 = n} solve the target system (3.16)—(3.20) weakly
with the boundary condition u|spq = 0 and the initial data

(3.27) w(0) = Hlug),
where the Helmholtz’s projection H is defined by
(3.28) H=I1-H" H =V,A!div,.

Proof. Our strategy can be summarized as follows. First, using the free
energy inequality, uniform bounds in € are obtained. Using these bounds
convergence results on some relevant quantities are established. In order
to establish rigorously the limits of the sequence of solution {o., uc, 7 }e>0
we need to show that the divergence of the term pu ® U — pu ® u con-
verges weakly to a gradient. This can be established by employing the stan-
dard Helmholtz decomposition in order to decompose this quantity into
a divergence-free and a gradient part. For the details we refer the reader
to [5]. O
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3.2. Strong stratification and low mach number limit

The next limit considered here is a strong stratification limit. In this case,
the Froude number is scaled the same as the Mach number limit, and the
values are scaled as stated below:

Ma is taken to be a small parameter € > 0.

Za, Da are taken to be e~1.

Fr is taken to be e.

Other parameters are taken to be of order 1.

The external potential takes the form ® = gxs where g is a constant
(gravity /buoyancy).

Thus, the scaled NSS system becomes
(3.29) 0i0c + divy(0eus) =0

‘ D
(330) 62[81&(@6“8) + dlvz(geua ® us)] + Vm <ag’€)/ + ?775>

= 2(pAgu. + AV, div, u.) — (Boe + 1:) Vi ®
(3'31) € [8?5778 + divx(naua)] - diVx(CUan‘P) - DA$77£ =0

d g2 a D
(332) Ea/ EQ5|UE|2+ﬁQz+%hl”a‘f’(ﬁ@a"‘na)q) dzx
Q _

Ve
+e [ €2S(Vuu) : Veu da:—l—/ ‘D +/(nV,®
/Q ( s) € 0 Tns Ne

Now, assuming {o-, u., 7.} have the following expansions

2
dz <0.

(0.9}

0 =0+ ol
i=1

e . .

Ne =1+ Z 5277?)
i=1

o . .

u. =u+ Z gul?)
i=1

substition into (3.29)—(3.32) formally yields the target system
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(3:34) o) = g0
(3.35) div,(s0) =0
(3.36)

50,1 + dive (50 ® &) + VoIl = pA, i + AV, divg @t — (/39<2> n 77<2)> V,®.

These formal analysis above suggest the following theorem which is proven
rigorously in [4].

Theorem 3.5 (Strong stratification limit). Let (Q, ®) satisfy the confine-
ment hypothesis and for each € > 0, {0z, us, N} solves (3.29)~(3.32) in the
sense of the definition of the scaled strong stratification system. Assume the
initial data can be expressed as follows:

~ 1 ~ 1
0:(0,) = 00 = 6+ 0Ly, ue(0,) = ue, and 1(0,-) = neg = i+ enly,

where §,7 are the densities. Assume also that as € — 0,

1 1 _ 1 1
ol = ot ueo = o, iy =

weakly-+ in L>=(Q) or L>®(;R3) as the case may be. Then up to a subse-
quence and letting q := min{~, 2},

0= — 0 in C([0,T]; L*(€2)) N L>(0, T; L(2))
ne — i in L*(0, T; L*(2))
u. — @ weakly in L*(0, T; WH2(Q; R?))
where {0, w,n} solve the target system (3.33)—(3.36) weakly.
4. Inviscid models: main results
4.1. Reformulation of the problem
In this section we provide a reformulation of the Cauchy problem for (1.7)-
(1.9) with the initial condition (1.10). The objective is to transform the
original system into a system which includes a symmetric system. In the

spirit of [40] we introduce the sound speed

a(0) = v1'(0),
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and set @ = o(p) corresponding to the sound speed at a background density
0 > 0. Define

2
Then the system (1.7)—(1.9) are transformed into the following system for
C! solutions:

(4.1) ow+odivyu=—u-V,w— 7?_111) div, u
-1
(4.2) ou+aoVzw+ Ve = —u-V,u— ’YTwaw
— f(w)(Van +nV.®)
(4.3) om +ndivyu —divy(nVe®) = —u- Vun + Ay

where f(w) = o7 1.

After this transformation is done, it is clear that if {p, u,n} solve (1.7)—
(1.9), then the corresponding {w,u,n} through the transformation above
solve (4.1), and vice versa, which is highlighted in the following lemmas.

Lemma 4.1. For any T > 0, if {o, u} € CY(R3x[0,T)) is a solution of (1.7)
with o > 0, then {w,u} € C1(R3 x [0,T)) is a solution of (4.1)~(4.3) with
72;111)—1—5 > 0. Conversely, if {w,u} € CY(R? x [0,T)) is a solution of (4.1)
with 7T_lw +7>0and p = 0_1(77_1@0 +7), then {o,u} € C*(R3 x [0,T])
is a solution of the continuity equation (1.7) with ¢ > 0.

The continuity of the density is a consequence of the positivity of the
initial density.

Lemma 4.2. If {o,u,n} € CY(R3 x[0,T] is a uniformly bounded solution of
(1.1) with o(x,0) > 0, then o(x,t) > 0 on R3 x [0,T]. If {w,u} € C}(R3 x
0, 7)) is a uniformly bounded solution of (4.1) with 5 w(x,0) +F > 0,
then 'YT_lw(ac,t) +7 >0 onR®x[0,7].

4.2. Tterative method and local existence

Equations (4.1)—(4.2) form a symmetric hyperbolic system in the unknowns
w and u. Indeed, if we consider 1 to be given, we can rewrite (4.1)—(4.2) as

3
(4.4) OV +> Bid,,V + By
=1
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where
w
vVi=| M
: w |
us
[ w o+ Stw 0]
B | OF = u; 0 0
0 0 u 0 ’
0 0 0 wu |
[ us 0 o+ 77_110 0 ]
B 0 us 0 0
2 T+ %w 0 us 0 |’
0 0 0 uy |
[ us 0 0 o+ 7Tflw i
_ 0 us 0 0
By := 0 0 us 0 ’
| T+ w 0 0 u;
and
0
By | (B F0))0.,8 + F(w)dy
(B + f(w)n)0z, @ + f(w)r,n
(B4 f(w)n)0z, @ + f(w)0r,n
k
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Below a sequence {w®,u* n*} of approximate solutions to (4.1)-(4.3) is

constructed.

An approximate solution n! is found by using a solution to a heat equa-
tion. Then, ' will be substituted into (4.1)—(4.3) to obtain u! and w'. Then,
u! will be substituted into (4.3) to solve for n2, which will be plugged into
(4.1)(4.3) to obtain w? and u?, and so on, continuing inductively. To begin,

consider the Cauchy problem

(4.5) ov—A,v=0
v(z,0) = up.

In order to be able to use the theorem for local existence of the symmetric
hyperbolic system (4.1)—(4.2), assume the following regularity on the initial

data wg and ug:

wy € W32(Q)
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uy € WH2(Q;R3).

Assume also that the support of wy and ug is within a compact subset of €.
By the Sobolev embedding theorems, it is clear that

wy € CH/2(Q)
ug € CH2(Q;R?).

Because of this, if u® solves (4.5), then u® € C°°(2; R?) from basic properties
of the Cauchy problem of the heat equation (see, for example, Chapter 2.3 in
[23]). If @ € C?(R), thus making the coefficients in (4.3) continuous (using
u’ for u), the results in Chapter 7.1 of [23] yield a solution

(4.6) '€ CH([0,T]; C*()).
Consider the approximation of the system (4.1)—(4.3):

/-y_

1 .
Lk div, u”

4.7)  dw* +7div,u’ = —uF - Vo -

(4.8)  9pu* + 5V, " + [B+ fF(W)NFIVL® + f(w)Ven

-1
= —(u* V,)u* - %wkvxwk

(4.9)  omF + nf divy(ub ! = V@) + (uF =V, @) - Voif — AnF = 0.
Next, adapting Theorem 2.1 from [35] used also in [34] and [40] on the

existence of smooth solutions for local time of symmetric hyperbolic systems
to this problem we get the following theorem.

Theorem 4.3 (Solutions for Symmetric Hyperbolic Systems). Let wy €
W32(Q) and uy € W32(Q;R3) with the support of wo and ug contained in
some compact subset K of Q. Assume also that n* € C1([0,T]; C%(Q2)). Then
there is a time interval [0, T] with T > 0 such that there is a unique classical
solution

(4.10) wk e C([0,T); W32(Q)) N CL([0, T); WH2(Q))
u* e C([0,T); W2(Q; R3)) n CL([0, T); WH2(Q; R?)).

Furthermore, T depends only on wq, uy and K.

Proof. The proof of the local existence of solutions proceeds via a classi-
cal iteration scheme in the spirit of Majda [35]. It relies on the elementary
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linear existence theory for symmetric hyperbolic systems with smooth co-
efficients (Courant-Hilbert [18]. We refer the reader also to the article by
Sideris et al. [40] where the local existence result for a related system is
presented. ]

Remark 4.4. Due to the Sobolev embedding theorems,

wh e C1([0,T); C%V2(Q)) N C([0,T); CH12(Q))
u® e C([0,T]; GOV (4 R?) N C([0, T); CH1/2 (O R?))

Note that Theorem 4.3 implies that the maximal time of existence will
be the same positive number T for each k in the sequence. Thus when taking
the limit, there is no worry about the limiting maximal time of existence
being zero. Now, the regularity of u®, can be used in (4.9) to obtain n*+! ¢

C*([0,T]; C%(2)), which is then used with Theorem 4.3 to obtain w**! and
u**1, giving one of the main theorem of this section:

Theorem 4.5 (Existence of Approximate Smooth Solutions). Let

wy € W32(Q)
ug € W32(Q; R3)
no € W32(Q)

all with support contained in some compact subset K of Q). Let
u’ € C([0,T];C%())

solve (4.5). Then there exists some T > 0 such that for all k € N, there exist
solutions {w*, u¥ n*} of (4.7)~(4.9) such that

wh € C([0, T, W32(Q)) N CH ([0, T]; W**(Q)

ut € C([0, T W29 R)) 0 CH([0, T); W2 R?))

0t € CH([0, T]; C*(%)).

Furthermore, T depends only on wg, uy and K.

Proof. The result follows from Theorem 4.3, the discussion on the existence
of u’ and n', and the induction argument outlined above. O

Now, we take k — oo to obtain a solution to (4.1)-(4.3). By using an
iteration technique, we show that the approximate solutions converge and
we obtain the local existence of smooth solutions to (4.1)—(4.3)
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Theorem 4.6 (Local Existence of Smooth Solutions). Let

wy € W2(Q)
ug € W32(Q; R?)
m € WH2(Q)

all with support contained in some compact subset K of Q. Then for some
T > 0, there exist solutions {o, u,n} of (4.1)—(4.3) such that

0 € C([0,T]); W2(Q)) N C*([0,T]; W**(Q))
u e C([0,T); WH*(Q; R?) n C* ([0, T); W>*(Q2; R?))
n e CY([0,T];C*(2)).

5. Finite propagation speed
Consider the nonlinear balance law

where U = U(z,t) € R" and G(U) : R" — R". We remark, that the inviscid
system (1.7)—(1.8) can be written in this form, with

U=(o,u)" eR*, GU)=(0,—(n+Bo)V.®)" € R%

Here, and in what follows, we require that the Euler system (1.7)—(1.8) is
weakly dissipative in the sense of Dafermos [22], which requires that

(w-d) (G(U),U) <0, UecR™.
In the case, of the inviscid system (1.7)—(1.8),

The assumption (w-d) essentially imposes an additional requirement on
the class of potentials ®, which are now chosen so that to induce weak
dissipation for the Euler system (1.7)—(1.8) in the sense of Dafermos [22],
namely

(5:2) —(n+B0)Vs®-u<0.
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This assumption on the potential ® will be of use in the sequel and in
fact crucial for the establishment of the global existence of smooth solutions.
Let us denote now,

U(z,t) = (w(x,t),u(z,t),n(z,t))

with Up(x) = U(z,0) the initial data. We will say that U(-,t) € H3 if
w(-,t) € W32(R3), u(-,t) € W32(R3;R3), and n(-,t) € C?(R?). Similarly,
we will say that U(-,t) € H? if w(-,t) € W22(R3), u(-,t) € W22(R3;R?),
and (-, t) € C?(R?).

The property of the finite speed of propagation of the solution now
follows.

Lemma 5.1. Suppose that Uy € H? and U € C([0,T], H3) N CY([0, T, H?)
is a solution to the Cauchy problem (4.1)- (4.3) for any given T > 0. If
suppUp C {|z| < R}, for some R > 0, then suppU(-,t) C {|z| < R + &t},
foro<t<T.

Proof. Multiplying (4.1) by w, (4.2) by w and (4.3) by n and adding the
resulting relations together we get

1 1 1
(5.3) §8tw2 + §8t\u\2 + §8t772 + 7 divy(wu)

1
+35 (u- V([u]* +w® +7?) + (v — Dwdivy(wu)) + 7 div, u

=nV,® - -V,n—Pu-V, @ —nf(w)u-V,® — f(w)u-Vyn+nlAgn

For a given (x,t) € R3 x (0,T], take any 7 € [0,t), and define the truncated
cone

Cr=A{(y,s): ly—z| <a(t—s),0<s <7}

Integrating (5.3) over C we arrive at

(5.4)

1 1

5/ (w?+ [ul* +7*)(y, 7) dy—§/ (w? +[ul*+7?)(y,0) dy
ly—z|<&(t—T) ly—z|<ot

Y

] it
4+ —(w* 4 Jul*+n°) + -owu | dS, ds
72 +1Jo ly—z|=5(t—7) 2 |y - ‘T| !

— T
x

WV +7V,n) —‘z —p 45 ds

_ / /C T <—%(u-V(w2+!u\2)+(’y—1)WdiVa:(wu))> dy ds

E T
- Vo2 + 1 »/0 /y—x|:ﬁ(t—s)(
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+// NV ®-Ven—Bu-V,®—nf(w)u- V@ — fw)yu-Vyn—|Ven|? dy ds
C-

The third integral in the left hand side of (5.4) is nonnegative in account of

< E(w2 + ]u\2).

Using integration by parts, the inequality |wu| < 2(w? 4 |u|?) and Cauchy-
Schwarz inequality we get

1 1
—/ w2+!ul2+n2dy——/ w? + |u? +7* dy
2 Jly—a|<z(t—1) 2 Jjy—sl<ot

T 1 _
—i—E/ / —(w2+\u|2+n2)+wu-ud5’y ds
0 Jly—a|=5(t—s) ly — |

g ! 2 Yy—x
- *V® +nV,n) - ——— dS, ds
Vot +1 /o /yx|=o(ts>( ly =z 7
T 1
< / / -V, ® - Vo —n?div,u — fu -V, @ dy ds
0 Jly—o|<a(t-s) 2

- / / nf(w)yu-Ve® + f(w)u- Ven+ f(w)nu -V, ® dy ds
0 Jy—z|<o(t—s)

T -1 —1
- / / qu -Vw + sz div, u dy ds
0 Jly—a|<a(i—s) 2

—/ / u-(u-Vzu)+nu-Vyn dy ds.
0 Jly—z|<F(t-s)

Thus, if the background density g is chosen such that 2[|V,®| fqrs) <
7, if o=! is bounded in L'(0,T; L>=(2)) and the weak dissipation relation
—(Bo+1n)Vz® - u < 0 holds, Gronwall’s Lemma allows us to conclude the
finite propagation of the transformed system.

Therefore, if U(z,0) =0 for |z — x| < Tt, then U(z,7) =0 for |z — x| <
o(t —7) and any 7 € [0,¢). This implies that if U(z,0) = 0 for |z| > R then
U(z,t) =0 for |z| > R+ at. O

The global existence of smooth solutions is now obtained after deriving
appropriate energy estimates. The details of the analysis as well as results
on the decay of solutions are presented in [7].
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