Asymptotic behavior of minima and mountain pass solutions for a class of Allen-Cahn models

JAEYOUNG BYEON AND PAUL H. RABINOWITZ

In an earlier paper, the authors studied a class of Allen-Cahn models for which the solution was near 1 on a prescribed set, $T + [0, 1]^n$ where $T \subset \mathbb{Z}^n$, and near 0 on its complement. In this note, when T is finite and consists of two widely spaced subsets, T_1 and $l + T_2$ with $l \in \mathbb{Z}^n$, we study the asymptotic behavior of two special families of solutions as $l \to \infty$.

1. Introduction

In two recent papers [9], [10], the authors studied an Allen-Cahn model problem having the form

$$(1.1) -\Delta u + A_{\varepsilon}(x)G'(u) = 0, \quad x \in \mathbb{R}^n$$

where $G(u) = u^2(1-u)^2$ is a double well potential, $\varepsilon > 0$, and $A_{\varepsilon}(x) = 1 + A(x)/\varepsilon$ with $0 \le A \in C^1(\mathbb{R}^n)$, 1-periodic in x_1, \dots, x_n , Ω is the support of $A|_{[0,1]^n}$ and has a smooth boundary, and $\overline{\Omega} \subset (0,1)^n$. A main result of [9] is that there is an $\varepsilon_0 > 0$ such that for any finite set $T \subset \mathbb{Z}^n$ and $\varepsilon \in (0,\varepsilon_0]$, (1.1) has a solution, $U_{\varepsilon,T}$ with $0 < U_{\varepsilon,T} < 1$, $U_{\varepsilon,T}$ is near 1 on $A^T \equiv T + \overline{\Omega}$ and near 0 on $B^T \equiv (\mathbb{Z}^n \setminus T) + \overline{\Omega}$. Moreover as $\varepsilon \to 0$, $U_{\varepsilon,T} \to 1$ uniformly on A^T and $U_{\varepsilon,T} \to 0$ uniformly on B^T . When T is finite, $U_{\varepsilon,T}$ is characterized as the minimizer of a constrained variational problem associated with (1.1). Although $U_{\varepsilon,T}$ may not be unique, the set of such minimizers, $\mathcal{M}_{\varepsilon}(T)$, is ordered. The setting of [9] was further treated in [10] where it was shown that for each finite T, there is an $\varepsilon_1(T) > 0$ such that for $\varepsilon \in (0, \varepsilon_1(T))$, (1.1) has a solution, $V_{\varepsilon,T}$ of mountain pass type with $0 < V_{\varepsilon,T} < U_{\varepsilon,T}$.

The main goal of this note is to study the setting of when T is finite and consists of two widely separated subsets, that is, $T = T_1 \cup (l + T_2) \equiv T_l$ for $T_1, T_2 \subset \mathbb{Z}^n, l \in \mathbb{Z}^n$ and large |l| > 0. In particular we are interested in the asymptotic behavior as $l \to \infty$ of the minimizers, U_{ε,T_l} , and the mountain pass solutions, as well as the corresponding critical values. To describe our

results, let

$$J_{\varepsilon}(u) = \int_{\mathbb{R}^n} \frac{1}{2} |\nabla u|^2 + A_{\varepsilon}(x) G(u) \ dx,$$

the functional associated with (1.1). Set

$$c_{\varepsilon}(T_l) = J_{\varepsilon}(U_{\varepsilon,T_l}).$$

A more precise characterization of c_{ε,T_l} will be given later. We will prove

Theorem 1.2. Suppose $T \subset \mathbb{Z}^n$ is finite. Let A_{ε} and G be as above. Then for any $\varepsilon \in (0, \varepsilon_0]$, as $l \to \infty$,

- $1^o \ c_{\varepsilon}(T_l) \to c_{\varepsilon}(T_1) + c_{\varepsilon}(T_2);$
- 2° There is a $U_{\varepsilon,T_1} \in \mathcal{M}_{\varepsilon}(T_1)$ such that $U_{\varepsilon,T_l} \to U_{\varepsilon,T_1}$ along a subsequence in $C^2_{loc}(\mathbb{R}^n)$;
- 3° There is a $U_{\varepsilon,T_2} \in \mathcal{M}_{\varepsilon}(T_2)$ such that $U_{\varepsilon,T_l}(\cdot + l) \to U_{\varepsilon,T_2}$ along a subsequence in $C^2_{loc}(\mathbb{R}^n)$.

Thus, roughly speaking, the minimizer for the T_l problem is obtained by gluing translates of the minimizers for the T_1 and T_2 problems. These results will be carried out in §2. Then in §3, we will give sharper results for the setting of [10] on mountain pass solutions. In particular for large l and small ε , it will be shown that there are two critical values of mountain pass type. One of the associated critical points of J_{ε} corresponds to gluing a minimum, U_{ε,T_1} of J_{ε} to a mountain pass solution, $V_{\varepsilon,l+T_2} = V_{\varepsilon,T_2}(\cdot - l)$, and the other to gluing a V_{ε,T_1} to a $U_{\varepsilon,l+T_2} = U_{\varepsilon,T_2}(\cdot - l)$. Moreover as $l \to \infty$, the corresponding critical values converge to the sum of $c_{\varepsilon}(T_1)$ and $J_{\varepsilon}(V_{\varepsilon,T_2})$, and the sum of $J_{\varepsilon}(V_{\varepsilon,T_1})$ and $J_{\varepsilon}(V_{\varepsilon,T_2})$, respectively. Some final remarks will be made in §4.

There has been a considerable amount of additional work on solutions of heteroclinic or homoclinic type of Allen-Cahn model equations. See [1]–[4], [12], [16]–[19]. The models involve forcing terms that are periodic in one or all spatial variables with the exception of [4] where there is almost periodic forcing. Aside from [16], minimization arguments are used to obtain solutions of the model equations that are in $C^2(\mathbb{R} \times \mathbb{T}^{n-1})$ or in $C^2(\mathbb{R}^2 \times \mathbb{T}^{n-2})$. In the first case of $C^2(\mathbb{R} \times \mathbb{T}^{n-1})$, the solutions treated in [12], [17]–[19] are heteroclinic or homoclinic in one direction, say the x_1 –direction, and are periodic in the remaining variables. Moreover the asymptotic states in the x_1 direction are spatially periodic minimizers of an associated functional. The second case of solutions in $C^2(\mathbb{R}^2 \times \mathbb{T}^{n-2})$ is studied in [1]–[4] and [17]–[19]. Here the solutions are heteroclinic in x_2 between between a pair of x_1 heteroclinics

as obtained in the previous case. Solutions of mountain pass type have also been considered in [12]. Although it uses different kinds of arguments based on sub- and supersolutions and comparison arguments, [16] is the only paper aside from [9]–[10] and the current one, which treat solutions other than the heteroclinics or homoclinics in one direction mentioned above.

Using a trick involving the Maximum Principle, see [20], most of the papers mentioned above can be viewed as special cases of a more general class of quasilinear elliptic partial differential equations introduced by Moser in [15]. It's simplest semilinear form is:

$$(1.3) -\Delta u + F_u(x, u) = 0$$

where $F \in C^2(\mathbb{T}^{n+1}, \mathbb{R})$. Some papers which study (1.3) in the spirit of the research cited for (1.1) are [5]–[7], [11], [13], [15], [20].

2. The Proof of Theorem 1.2

In order to prove Theorem 1.2, some results from [9] must be recalled. In particular, the minimization characterization of $c_{\varepsilon}(T)$ for finite T is required as well as some decay estimates for $U_{\varepsilon,T}$. Thus let \mathcal{W} denote the closure of $C_0^{\infty}(\mathbb{R}^n)$ functions under the norm

$$||u|| \equiv \left(\int_{\mathbb{R}^n} |\nabla u|^2 dx + \int_{[-1,1]^n} u^2 dx\right)^{1/2}.$$

Let $d^* = \frac{1}{2} |\partial \Omega - \partial [0,1]^n|$ and choose any small $d \in (0,d^*)$ so that if

$$\Omega_d \equiv \{x \in \Omega \mid |x - \partial \Omega| > d\},\$$

then $\partial \Omega_d$ is diffeomorphic to $\partial \Omega$. For $T \subset \mathbb{Z}^n$, set $A_T = T + \Omega_d$ and $B_T = (\mathbb{Z}^n \setminus T) + \Omega_d$. Choosing constants a and b so that $0 < b < \frac{1}{2} < a < 1$ and setting

$$\Gamma(T) = \{ u \in \mathcal{W} \mid u \geq a \text{ on } A_T \text{ and } u \leq b \text{ on } B_T \},$$

define

(2.1)
$$c_{\varepsilon}(T) = \inf_{u \in \Gamma(T)} J_{\varepsilon}(u).$$

Let χ_S denote the characteristic function of the set S. Then, as was shown in [9],

Theorem 2.2. Let A_{ε} and G be as above. Then there exists an $\varepsilon_0 > 0$ such that for each $\varepsilon \in (0, \varepsilon_0]$ and each finite $T \subset \mathbb{Z}^n$,

- 1° $\mathcal{M}_{\varepsilon}(T) \equiv \{u \in \Gamma(T) \mid J_{\varepsilon}(u) = c_{\varepsilon}(T)\} \neq \emptyset$.
- 2^o Any $U \in \mathcal{M}_{\varepsilon}(T)$ satisfies 0 < U < 1 and is a classical solution of (1.1).
- $3^o \mathcal{M}_{\varepsilon}(T)$ is an ordered set: $U, V \in \mathcal{M}_{\varepsilon}(T)$ implies U < V, U > V, or $U \equiv V$.
- 4^{o} If $T \subset S \subset \mathbb{Z}^{n}$, $U_{\varepsilon,T} \leq U_{\varepsilon,S}$ with strict inequality if $T \neq S$.
- 5° There exist constants C, c > 0, independent of T and of $\varepsilon \in (0, \varepsilon_0]$, satisfying

$$|U_{\varepsilon,T}(x) - \chi_{T+[0,1]^n}(x)| \le C \exp(-cd(x,T)), \quad x \in \mathbb{R}^n$$

where
$$d(x,T) \equiv dist(x, \partial (T + [0,1]^n))$$
.

Now with the aid of these preliminaries, we can give the

Proof of Theorem 1.2: There is a positive integer m such that $T_i + [0, 1]^n \subset [-m, m]^n$ for i = 1, 2. For each $l \in \mathbb{Z}^n$, let $\psi_l \in C_0^{\infty}(\mathbb{R}^n)$ such that $\psi_l(x) = 1$ for $|x| \leq |l|/4$, $\psi_l(x) = 0$ for $|x| \geq |l|/3$, $0 \leq \psi(x) \leq 1$, and $|\nabla \psi_l(x)| \leq 20/|l|$ for any $x \in \mathbb{R}^n$. Note that for any $U_{\varepsilon,T_l} \in \mathcal{M}(T_l)$,

$$(2.3) 0 \le U_{\varepsilon,T_l} = \psi_l U_{\varepsilon,T_l} + \psi_l (\cdot - l) U_{\varepsilon,T_l} + (1 - \psi_l - \psi_l (\cdot - l)) U_{\varepsilon,T_l}.$$

By 5° of Theorem 2.2 and (2.3), there exist constants $C_1, c > 0$ such that for all large |l|,

$$(2.4) J_{\varepsilon}(U_{\varepsilon,T_l}) \ge J_{\varepsilon}(\psi_l U_{\varepsilon,T_l}) + J_{\varepsilon}(\psi_l(\cdot - l)U_{\varepsilon,T_l}) - C_1 \exp(-c|l|).$$

For large |l|, we see that

(2.5)
$$\psi_l U_{\varepsilon,T_l} \in \Gamma(T_1) \text{ and } \psi_l(\cdot - l) U_{\varepsilon,T_l} \in \Gamma(l + T_2).$$

Thus (2.4)–(2.5) imply that for large |l|,

$$(2.6) c_{\varepsilon}(T_l) \ge c_{\varepsilon}(T_1) + c_{\varepsilon}(T_2) - C_1 \exp(-c|l|).$$

Now to get 1° of Theorem 1.2, take $U_{\varepsilon,T_i} \in \mathcal{M}_{\varepsilon}(T_i)$ for each i = 1, 2. Then for large |l|,

$$u_{\varepsilon,T_l} \equiv \psi_l U_{\varepsilon,T_1} + \psi_l (\cdot - l) U_{\varepsilon,T_2} (\cdot - l) \in \Gamma(T_l).$$

Then, again by 5^{o} of Theorem 2.2, there exist constants $C_{2}, c > 0$ such that for large |l|,

$$c_{\varepsilon}(T_{l}) \leq J_{\varepsilon}(u_{\varepsilon,T_{l}})$$

$$\leq J_{\varepsilon}(\psi_{l}U_{\varepsilon,T_{1}}) + J_{\varepsilon}(\psi_{l}(\cdot - l)U_{\varepsilon,T_{2}}(\cdot - l)) + C_{2}\exp(-c|l|)$$

$$= J_{\varepsilon}(\psi_{l}U_{\varepsilon,T_{1}}) + J_{\varepsilon}(\psi_{l}U_{\varepsilon,T_{2}}) + C_{2}\exp(-c|l|)$$

$$\leq J_{\varepsilon}(U_{\varepsilon,T_{1}}) + J_{\varepsilon}(U_{\varepsilon,T_{2}}) + 2C_{2}\exp(-c|l|)$$

$$= c_{\varepsilon}(T_{1}) + c_{\varepsilon}(T_{2}) + 2C_{2}\exp(-c|l|).$$

Combining (2.6) and (2.7), we get

(2.8)
$$\lim_{|l| \to \infty} c_{\varepsilon}(T_l) = c_{\varepsilon}(T_1) + c_{\varepsilon}(T_2).$$

To complete the proof of Theorem 1.2, note that if $U_{\varepsilon,T_l} \in \mathcal{M}_{\varepsilon}(T_l)$, for large |l|, $\psi_l U_{\varepsilon,T_l} \in \Gamma(T_1)$ and $\psi_l(\cdot - l)U_{\varepsilon,T_l} \in \Gamma(l+T_2)$. Then arguing as in (2.7), we get

(2.9)
$$\lim_{|l| \to \infty} J_{\varepsilon}(\psi_l U_{\varepsilon, T_l}) = c_{\varepsilon}(T_1)$$

and

(2.10)
$$\lim_{|l| \to \infty} J_{\varepsilon}(\psi_l(\cdot - l)U_{\varepsilon, T_l}) = \lim_{|l| \to \infty} J_{\varepsilon}(\psi_l U_{\varepsilon, T_l}(\cdot + l)) = c_{\varepsilon}(T_2).$$

Lastly, (2.9)–(2.10), the unform boundedness of $\{||U_{\varepsilon,T_t}||_{C^{2,\alpha}(\mathbb{R}^n)}\}$ for any fixed $\alpha \in (0,1)$, and the decay property 5^o of Theorem 2.2 yield 2^o , 3^o of Theorem 1.2.

3. Mountain pass results

In [10], for each finite $T \subset Z^n$ and each small $\varepsilon > 0$, the existence of a solution, $V_{\varepsilon,T}$, of (1.1) of mountain pass type was proved. This solution satisfies $0 < V_{\varepsilon,T} < U_{\varepsilon,T}$ where $U_{\varepsilon,T} \in \mathcal{M}_{\varepsilon}(T)$. In this section, we will obtain a refinement of that result which provides two mountain pass solutions when $T = T_l$ with l large. To begin, we recall some results from §3 of [10].

Let $S \subset T \subset \mathbb{Z}^n$ with T finite and $S \neq T$. Define the family of homotopies

$$\mathcal{G}_{\varepsilon}(S,T) \equiv \{g \in C([0,1], W^{1,2}(\mathbb{R}^n)) \mid U_{\varepsilon,S} \leq g(\theta) \leq U_{\varepsilon,T} \}$$

$$and \quad g(0) = U_{\varepsilon,S}, \quad g(1) = U_{\varepsilon,T} \}$$

and define

$$b_{\varepsilon}(S,T) = \inf_{g \in \mathcal{G}_{\varepsilon}(S,T)} \max_{\theta \in [0,1]} J_{\varepsilon}(g(\theta)).$$

Then by Propositions 3.1-3.2 of [10], we have

Proposition 3.1. There are constants, $0 < \beta < \overline{\beta} < \infty$ such that

$$\underline{\beta} \leq \liminf_{\varepsilon \to 0} \sqrt{\varepsilon} b_{\varepsilon}(S, T) \leq \limsup_{\varepsilon \to 0} \sqrt{\varepsilon} b_{\varepsilon}(S, T) < \overline{\beta}.$$

With the aid of these propositions, it was proved in [10] that:

Theorem 3.2. Let S and T be as above. Then there is an $\varepsilon_2 = \varepsilon_2(S,T) > 0$ such that for any $\varepsilon \in (0, \varepsilon_2)$, there is a solution, $V_{\varepsilon,S,T}$ of (1.1) with $U_{\varepsilon,S} < V_{\varepsilon,S,T} < U_{\varepsilon,T}$ and $J_{\varepsilon}(V_{\varepsilon,S,T}) = b_{\varepsilon}(S,T)$.

Remark 3.3. Taking $S = T_1$ and $T = T_l$ yields an $\varepsilon_2(T_1, T_l)$ and a solution, $V_{\varepsilon, T_1, T_l}$ of (1.1) with $U_{\varepsilon, T_1} < V_{\varepsilon, T_1, T_l} < U_{\varepsilon, T_l}$ for $\varepsilon \in (0, \varepsilon_2(T_1, T_l))$. Similarly taking $S = l + T_2$ and $T = T_l$ yields an $\varepsilon_2(l + T_2, T_l)$ and a solution, $V_{\varepsilon, (l + T_2), T_l}$ of (1.1) with $U_{\varepsilon, l + T_2} < V_{\varepsilon, T_1, T_l} < U_{\varepsilon, T_l}$ for $\varepsilon \in (0, \varepsilon_2(l + T_2, T_l))$.

We seek to show that for large l these two solutions are distinct and then to study their asymptotic behavior as $|l| \to \infty$. This cannot be done directly from Theorem 3.2 since for $T = T_l$ and S as above, it gives an ε_2 which depends on l. Therefore ε_2 may go to 0 as $|l| \to \infty$. Hence sharper estimates are needed. The proof of Theorem 3.2 requires that

$$b_{\varepsilon}(S,T) > \max(c_{\varepsilon}(S), c_{\varepsilon}(T)).$$

Thus for our special choices of S and $T = T_l$, it suffices to show there is an $\varepsilon^* > 0$ such that

(3.4)
$$b_{\varepsilon}(S, T_l) > \max(c_{\varepsilon}(S), c_{\varepsilon}(T_l))$$

holds for all $\varepsilon \in (0, \varepsilon^*)$ and all large l. Note that by (2.6), for large l,

(3.5)
$$c_{\varepsilon}(T_l) = \max(c_{\varepsilon}(S), c_{\varepsilon}(T_l))$$

where $S = T_1$ or $l + T_2$. Hence to obtain (3.4), it suffices to find a constant β_{ε} which is independent of l for l sufficiently large such that for all $\varepsilon \in (0, \varepsilon^*)$,

$$(3.6) b_{\varepsilon}(S, T_l) > \beta_{\varepsilon} > c_{\varepsilon}(T_l).$$

The following result is useful for that purpose. Let $\sigma > 0$ be such that G''(s) > 0 for $s \in [0, \sigma]$.

Proposition 3.7. Let $\mathcal{D} \subset \mathbb{R}^n$ be an open set with a piece-wise smooth boundary and suppose $u \in W^{1,2}(\mathbb{R}^n)$ with $0 \le u \le \sigma$ on $\partial \mathcal{D}$. Set

$$\mathcal{F}(u;\mathcal{D}) \equiv \{ \varphi \in W^{1,2}(\mathbb{R}^n) \mid \varphi = u \text{ in } \mathbb{R}^n \setminus \mathcal{D} \}.$$

Then there exists a unique $w = u_{\mathcal{D}} \in \mathcal{F}(u; \mathcal{D})$ with $0 < w < \sigma$ in \mathcal{D} such that

(3.8)
$$I_{\mathcal{D}}(w) \equiv \int_{\mathcal{D}} L_{\varepsilon}(w) \ dx = \inf_{\varphi \in \mathcal{F}(u;\mathcal{D})} \int_{\mathcal{D}} L_{\varepsilon}(\varphi) \ dx.$$

Moreover w is a solution of (1.1) in \mathcal{D} .

Proof: Let (u_k) be a minimizing sequence for $I_{\mathcal{D}}$. Then $(\|\nabla u_k\|_{L^2(\mathcal{D})})$ is bounded. Moreover replacing u_k by $\zeta_k = \min(\max(u_k, 0), 1)$ for which $I_{\mathcal{D}}(\zeta_k) \leq I_{\mathcal{D}}(u_k)$, it can be assumed that $0 \leq u_k \leq 1$. Hence (u_k) is bounded in $W_{loc}^{1,2}(\mathcal{D})$ and the local weak lower semicontinuity of $I_{\mathcal{D}}$ implies that there is a $w \in \mathcal{F}(u; \mathcal{D})$ such that along a subsequence, $u_k \to w$ weakly in $W_{loc}^{1,2}(\mathcal{D})$ and (3.8) holds. To see that $0 < w < \sigma$ in \mathcal{D} and therefore by standard elliptic regularity arguments in the calculus of variations, $w = u_{\mathcal{D}}$ is a solution of (1.1) in \mathcal{D} , we modify an argument from the proof of Theorem 3.1 of [9]. Since G is even about 1/2, setting $q(u_k)(x) = u_k(x)$ if $u_k(x) \in [0, 1/2]$ and $q(u_k)(x) = 1 - u_k(x)$ if $u_k(x) \in [1/2, 1]$ shows $I_{\mathcal{D}}(q(u_k)) \leq I_{\mathcal{D}}(u_k)$. Therefore replacing u_k by $q(u_k)$ if need be, it can be assumed that $0 \leq u_k \leq 1/2$ and w satisfies the same inequalities. Next set $p(u_k) = \min(u_k, \sigma)$. Then since $G(p(u_k)) \leq G(u_k)$ and $\nabla p(u_k) = 0$ if $u_k > \sigma$, $I_{\mathcal{D}}(p(u_k)) \leq I_{\mathcal{D}}(u_k)$ so it can be assumed that $0 \leq u_k \leq \sigma$ and likewise for w. To get the uniqueness, note that if w and \hat{w} are minimizers,

$$0 = \int_{\mathcal{D}} (-\Delta(w - \hat{w}) + A_{\varepsilon}(G'(w) - G'(\hat{w})))(w - \hat{w}) dx$$
$$= \int_{\mathcal{D}} |\nabla w - \hat{w}|^2 + A_{\varepsilon}G''(z)(w - \hat{w})^2 dx,$$

where z lies between w and \hat{w} . Then, since G''(s) > 0 for $s \in [0, \sigma]$, we get $w \equiv \hat{w}$ in \mathcal{D} .

Now to find β_{ε} , let $g \in \mathcal{G}_{\varepsilon}(S, T_l)$. Since the argument is the same for either choice of S, let $S = T_1$. Choose a $\sigma > 0$ for which Proposition 3.7 is valid. Let $N_r(Q)$ denote an open r neighborhood of Q. By 5^o of Theorem 2.2, for all $|l| = |l(\sigma)|$ sufficiently large, $|g(\theta)(x)| \leq \sigma$ for $x \in \mathbb{R}^n \setminus N_{|l|/5}(T_l)$ and

each $\theta \in [0,1]$. Using the existence result of Proposition 3.7, we define

$$\hat{g}(\theta)(x) = \begin{cases} g(\theta)_{\mathbb{R}^n \setminus N_{|l|/5}(T_l)}(x) \text{ for } x \in \mathbb{R}^n \setminus N_{|l|/5}(T_l) \\ g(\theta)(x) \text{ for } x \in N_{|l|/5}(T_l). \end{cases}$$

Due to the uniqueness result of Proposition 3.7, $\hat{g} \in \mathcal{G}_{\varepsilon}(T_1, T_l)$, and because of its definition, $J_{\varepsilon}(\hat{g}(\theta)) \leq J_{\varepsilon}(g(\theta))$. Choose a function $\phi_l \in C^{\infty}(\mathbb{R}^n; [0, 1])$ such that $\phi_l(x) = 1$ for $x \in N_{|l|/2}(l+T_2)$, $\phi_l(x) = 0$ for $x \notin N_{3|l|/4}(l+T_2)$ and $|\nabla \phi_l| \leq 10/|l|$. Then define $\tilde{g}(\theta) \equiv \hat{g}(\theta)\phi_l$. We see from the decay property 5° of Theorem 2.2 that there exist constants D, d > 0 such that for any $x \in \mathbb{R}^n \setminus N_{|l|/5}(T_l)$, $\hat{g}(\theta)(x) \leq D \exp(-d|l|)$. Since

$$-\Delta \hat{g}(\theta) + A_{\varepsilon}(x)G'(\hat{g}(\theta)) = 0 \text{ in } \mathbb{R}^n \setminus N_{|l|/5}(T_l),$$

by standard local elliptic estimates [14], there exist constants C', c' > 0 such that for any $x \in N_{3|l|/4}(l+T_2) \setminus N_{|l|/2}(l+T_2)$, $|\nabla \hat{g}(\theta)(x)| \leq C' \exp(-c'|l|)$. Thus, there are constants, c, C > 0, independent of large |l| and $g \in \mathcal{G}_{\varepsilon}(T_1, T_l)$ such that

$$(3.9) J_{\varepsilon}(g(\theta)) \ge \int_{N_{3|l|/4}(l+T_2)} L_{\varepsilon}(\hat{g}(\theta)) dx \ge J_{\varepsilon}(\tilde{g}(\theta)) - C \exp(-c|l|).$$

Now we define $h \in C([0,1], W^{1,2}(\mathbb{R}^n))$ by

$$h(\theta)(x) = \begin{cases} 3\theta \min\{\tilde{g}(0)(x), U_{\varepsilon, l+T_2}(x)\} \text{ for } \theta \in [0, 1/3] \\ \min\{\tilde{g}(3\theta - 1)(x), U_{\varepsilon, l+T_2}(x)\} \text{ for } \theta \in [1/3, 2/3] \\ (3\theta - 2)U_{\varepsilon, l+T_2}(x) + (3 - 3\theta)h(2/3)(x) \text{ for } \theta \in (2/3, 1]. \end{cases}$$

Hence $h \in \mathcal{G}_{\varepsilon}(\emptyset, l+T_2)$. Since $U_{\varepsilon,l+T_2}(x) = U_{\varepsilon,T_2}(x-l)$ and $\{J_{\varepsilon}(U_{\varepsilon,T_2})\}$ is uniformly bounded for small $\varepsilon > 0$, taking |l| large shows there is a constant, $C_1 > 0$, independent of small $\varepsilon > 0$ and large |l| > 0, such that

(3.10)
$$\max_{\theta \in [0,1] \setminus [1/3,2/3]} J_{\varepsilon}(h(\theta)) \le C_1,$$

and

(3.11)
$$\max_{\theta \in [1/3, 2/3]} J_{\varepsilon}(h(\theta)) \le \max_{\theta \in [0, 1]} J_{\varepsilon}(\tilde{g}(\theta)) + C_1.$$

Consequently by the form of h, (3.9)–(3.11), and Proposition 3.1, there is a constant $C_2 > 0$, independent of small ε and large l such that

$$\max_{\theta \in [0,1]} J_{\varepsilon}(\tilde{g}(\theta)) \geq \max_{\theta \in [0,1]} J_{\varepsilon}(h(\theta)) - C_2 \geq b_{\varepsilon}(\emptyset, l + T_2) - C_2$$
$$= b_{\varepsilon}(\emptyset, T_2) - C_2 \geq \beta / \sqrt{\varepsilon} - C_2.$$

Since $\{c_{\varepsilon}(T_l) \mid l \in \mathbb{Z}^n\}$ is bounded, taking $\beta_{\varepsilon} = \underline{\beta}/\sqrt{\varepsilon} - C_2 - 1$, we conclude that for large l > 0,

(3.12)
$$b_{\varepsilon}(T_1, T_l) = \inf_{g \in \mathcal{G}_{\varepsilon}(T_1, T_l)} \max_{\theta \in [0, 1]} J_{\varepsilon}(g(\theta)) \ge \beta_{\varepsilon} - 1 > c_{\varepsilon}(T_l).$$

As a consequence of the above observations, we have:

Corollary 3.13. There is an $r_0 > 0$ and $\varepsilon^* = \varepsilon^*(T_1, T_2) > 0$ such that for $|l| \ge r_0, \varepsilon \in (0, \varepsilon^*)$, and $S = T_1$ or $S = l + T_2$, $b_{\varepsilon}(S, T_l)$ is a critical value of J_{ε} defined on $\mathcal{G}_{\varepsilon}(S, T_l)$.

Next the asymptotic behavior as $l \to \infty$ of $b_{\varepsilon}(S, T_l)$ and the corresponding critical points of J_{ε} will be studied.

Theorem 3.14. Let A_{ε} and G be as above. Let $U_{\varepsilon,T_1}, U_{\varepsilon,T_2}$ be respectively the largest members of $\mathcal{M}_{\varepsilon}(T_1), \mathcal{M}_{\varepsilon}(T_2)$ and U_{ε,T_l} be the smallest member of $\mathcal{M}_{\varepsilon}(T_l)$. Then there is an $\varepsilon_2 = \varepsilon_2(T_1, T_2) \in (0, \varepsilon^*)$ such that for any $\varepsilon \in (0, \varepsilon_2)$, as $l \to \infty$,

- $1^o b_{\varepsilon}(T_1, T_l) \to c_{\varepsilon}(T_1) + b_{\varepsilon}(T_2),$
- 2^{o} $V_{\varepsilon,T_{1},T_{l}} \to U_{\varepsilon,T_{1}}$ and there is a solution, $V_{\varepsilon,2}$, of (1.1) with $J_{\varepsilon}(V_{\varepsilon,2}) = b_{\varepsilon}(T_{2})$ such that $V_{\varepsilon,T_{1},T_{l}}(\cdot l) \to V_{\varepsilon,2}$, convergence being along a subsequence in C_{loc}^{2} .
- $3^o \ b_{\varepsilon}(l+T_2,T_l) \to b_{\varepsilon}(T_1) + c_{\varepsilon}(T_2).$
- 4° There is a solution, $V_{\varepsilon,1}$, of (1.1) with $J_{\varepsilon}(V_{\varepsilon,1}) = b_{\varepsilon}(T_1)$ such that $V_{\varepsilon,l+T_2,T_l} \to V_{\varepsilon,1}$ and $V_{\varepsilon,T_l}(\cdot l) \to U_{\varepsilon,T_2}$, convergence being along a subsequence in C_{loc}^2 .

In particular, by 1^o-4^o , $V_{\varepsilon,T_1,T_l} \neq V_{\varepsilon,l+T_2,T_l}$ for large l.

Remark 3.15. By 1^o-4^o , $V_{\varepsilon,T_1,T_l} \neq V_{\varepsilon,l+T_2,T_l}$ for large l, i.e. we have two distinct solutions of (1.1) of mountain pass type.

Proof of Theorem 3.14: We will prove 1^o-2^o . The remaining items are proved in the same way. Set $p(\theta) = \theta U_{\varepsilon,T_l} + (1-\theta)U_{\varepsilon,T_1}$ for $\theta \in [0,1]$ so

 $p \in \mathcal{G}_{\varepsilon}(T_1, T_l)$. Then there is a constant $M = M(\varepsilon)$ which is independent of large l such that

$$(3.16) J_{\varepsilon}(p(\theta)) \le M(\varepsilon)$$

for $\theta \in [0, 1]$. Hence by (3.16),

$$(3.17) b_{\varepsilon}(T_1, T_l) \le M(\varepsilon).$$

Now we argue somewhat as in the proof of (3.6). Choose any σ for which Proposition 3.7 is valid. For any $g_l \in \mathcal{G}_{\varepsilon}(T_1, T_l)$, we see that if |l| > 0 is large, $|g_l(\theta)(x)| \leq \sigma$ for $x \in \mathbb{R}^n \setminus N_{|l|/10}(T_l)$ and each $\theta \in [0, 1]$. Using the existence result of Proposition 3.7, define

$$\hat{g}_l(\theta)(x) = \begin{cases} g_l(\theta)_{\mathbb{R}^n \setminus N_{|l|/10}(T_l)}(x) \text{ for } x \in \mathbb{R}^n \setminus N_{|l|/10}(T_l) \\ g_l(\theta)(x) \text{ for } x \in N_{|l|/10}(T_l). \end{cases}$$

The uniqueness result of Proposition 3.7 implies that $\hat{g}_l \in \mathcal{G}_{\varepsilon}(T_1, T_l)$. Choose a function $\psi_l \in C^{\infty}(\mathbb{R}^n; [0, 1])$ such that $\psi_l(x) = 1$ for $x \in N_{|l|/8}(T_l)$, $\psi_l(x) = 0$ for $x \notin N_{|l|/4}(T_l)$ and $|\nabla \psi_l| \le 10/|l|$ and define $\tilde{g}_l(\theta) \equiv \hat{g}_l(\theta)\psi_l$. As in (3.9), we find constants, c, C > 0, independent of large |l| > 0 such that

$$(3.18) J_{\varepsilon}(g_l(\theta)) \ge J_{\varepsilon}(\hat{g}_l(\theta)) \ge J_{\varepsilon}(\tilde{g}_l(\theta)) - C \exp(-c|l|).$$

With χ_S denoting the characteristic function of S as in §2, define

$$\tilde{g}_{l,1}(\theta) \equiv \tilde{g}_l(\theta) \chi_{N_{|l|/2}(T_1)}, \quad \tilde{g}_{l,2}(\theta) \equiv \tilde{g}_l(\theta) \chi_{N_{|l|/2}(l+T_2)},$$

Then, by (3.18),

$$(3.19) J_{\varepsilon}(g_{l}(\theta)) \ge J_{\varepsilon}(\tilde{g}_{l,1}(\theta)) + J_{\varepsilon}(\tilde{g}_{l,2}(\theta)) - C \exp(-c|l|).$$

Next define h_l as follows:

$$h_l(\theta)(x) = \begin{cases} 3\theta \min\{\tilde{g}_{l,2}(0)(x), U_{\varepsilon, l+T_2}(x)\} \text{ for } \theta \in [0, 1/3] \\ \min\{\tilde{g}_{l,2}(3\theta - 1)(x), U_{\varepsilon, l+T_2}(x)\} \text{ for } \theta \in [1/3, 2/3] \\ (3\theta - 2)U_{\varepsilon, l+T_2}(x) + (3 - 3\theta)h_l(2/3)(x) \text{ for } \theta \in (2/3, 1]. \end{cases}$$

Since $h_l \in \mathcal{G}_{\varepsilon}(\emptyset, l + T_2)$, Proposition 3.1 shows that

(3.20)
$$\max_{\theta \in [0,1]} J_{\varepsilon}(h_l(\theta)) \ge b_{\varepsilon}(\emptyset, l + T_2) = b_{\varepsilon}(\emptyset, T_2) \ge \underline{\beta}/\sqrt{\varepsilon}.$$

Theorem 1.2 and the form of h_l show that for some constant $C_1 > 0$, independent of small $\varepsilon > 0$ and large |l| > 0,

$$\max_{\theta \in [0,1] \setminus (1/3,2/3)} J_{\varepsilon}(h_l)(\theta)) \le C_1$$

and this implies that for small $\varepsilon > 0$ and large l,

(3.21)
$$\max_{\theta \in [0,1]} J_{\varepsilon}(h_l(\theta)) = \max_{\theta \in [1/3,2/3]} J_{\varepsilon}(h_l)(\theta).$$

By Theorem 1.2 and the decay property 5^o of Theorem 2.2, for any $x \in \mathbb{R}^n$, $\tilde{g}_{l,2}(3\theta-1)(x) \leq U_{\varepsilon,T_l}(x)$ and

$$\lim_{|l|\to\infty} \|U_{\varepsilon,T_l} - U_{\varepsilon,T_2}(\cdot - l)\|_{C^1(\text{supp}(\tilde{g}_{l,2}))} = 0.$$

Therefore

(3.22)
$$\lim_{|l| \to \infty} \max_{\theta \in [1/3, 2/3]} J_{\varepsilon}(h_l(\theta)) = \lim_{|l| \to \infty} \max_{\theta \in [0, 1]} J_{\varepsilon}(\tilde{g}_{l, 2}(\theta)).$$

Thus, by (3.20)-(3.22),

(3.23)
$$\lim_{|l| \to \infty} \max_{\theta \in [0,1]} J_{\varepsilon}(\tilde{g}_{l,2}(\theta)) \ge b_{\varepsilon}(\emptyset, T_2).$$

Note that for each $\theta \in [0,1], \ \tilde{g}_l^1(\theta) \in \Gamma(T_1)$ so

(3.24)
$$J_{\varepsilon}(\tilde{g}_{l}^{1}(\theta)) \geq c_{\varepsilon}(T_{1}).$$

Thus, combining (3.24) with (3.19) and (3.23), gives

(3.25)
$$\liminf_{l \to \infty} b_{\varepsilon}(T_1, T_l) \ge c_{\varepsilon}(T_1) + b_{\varepsilon}(T_2).$$

To get an upper bound for $b_{\varepsilon}(T_1, T_l)$, a gluing argument will be used. Let p be as in (3.16). Note that by the 5^o of Theorem 2.2 and the fact that U_{ε,T_l} and U_{ε,T_l} are solutions of (1.1), there are constants, C, c > 0 such that

(3.26)
$$|p(x)| + |\nabla p(x)| \le C \exp(-cd(x, T_l)).$$

Let $\delta > 0$ and choose $h \in \mathcal{G}_{\varepsilon}(\emptyset, l + T_2)$ such that

(3.27)
$$\max_{\theta \in [0,1]} J_{\varepsilon}(h(\theta)) \le b_{\varepsilon}(T_2) + \delta.$$

Roughly speaking, we would like to glue p restricted to a neighborhood of T_1 to h restricted to a neighborhood of $l+T_2$ and use the resulting function to get the upper bound for $b_{\varepsilon}(T_1, T_l)$. However there are some technical problems in doing so because h need not have good enough decay properties and $p(0) = U_{\varepsilon,T_1} \neq h(0)$. To get around these difficulties, using Proposition 3.7, set

$$\hat{h}(\theta)(x) = \begin{cases} h_{\mathbb{R}^n \setminus N_{|l|/4}(l+T_2)}(\theta)(x) \text{ for } x \in \mathbb{R}^n \setminus N_{|l|/4}(l+T_2) \\ h(\theta)(x) \text{ for } x \in N_{|l|/4}(l+T_2) \end{cases}$$

Then due to the properties of $h_{\mathbb{R}^n \setminus N_{|l|/4}(l+T_2)}$, by (3.27),

(3.28)
$$\max_{\theta \in [0,1]} J_{\varepsilon}(\hat{h}(\theta)) \le b_{\varepsilon}(T_2) + \delta.$$

Set $h^*(\theta)(x) = \max(\hat{h}(\theta)(x), U_{\varepsilon,T_1}(x))$ so $h^*(0) = U_{\varepsilon,T_1}$ and for l large, by (3.28),

(3.29)
$$\max_{\theta \in [0,1]} \int_{N_{t|/2}(l+T_2)} L_{\varepsilon}(h^*(\theta)) \le b_{\varepsilon}(T_2) + 2\delta.$$

Choose $r \in (0, |l|)$ with r large enough so that $g|_{\partial N_r(T_1)} < \sigma$ where σ is as in Proposition 3.7. Define $f \in \mathcal{G}_{\varepsilon}(T_1, T_l)$ by

$$f(\theta)(x) = \begin{cases} p(\theta)(x) \text{ for } x \in N_{2r}(T_1) \\ q(\theta)(x) \text{ for } x \in \mathbb{R}^n \setminus N_{2r}(T_1) \cup N_{|l|/2}(l+T_2) \\ h^*(\theta)(x) \text{ for } x \in N_{|l|/2}(l+T_2). \end{cases}$$

where $q(\theta)$, as given by Proposition 3.7, extends the function whose restriction to $N_{2r}(T_1)$ is $p(\theta)$ and whose restriction to $N_{|l|/2}(l+T_2)$ is $h^*(\theta)$. Then as earlier, for some constants, C^* , $c^* > 0$, (3.30)

$$J_{\varepsilon}(f(\theta)) \le \int_{N_{2r}(T_1)} L_{\varepsilon}(p(\theta)) \ dx + \int_{N_{\frac{|L|}{\varepsilon}}(l+T_2)} L_{\varepsilon}(h^*(\theta)) \ dx + C^* \exp\left(-c^*r\right)$$

Observe that for fixed r, as $|l| \to \infty$,

(3.31)
$$\int_{N_r(T_1)} L_{\varepsilon}(p(\theta)) dx \to \int_{N_r(T_1)} L_{\varepsilon}(U_{\varepsilon,T_1}) dx \le c_{\varepsilon}(T_1)$$

uniformly in $\theta \in [0, 1]$. Therefore by (3.29) and (3.31), for large l,

$$(3.32) J_{\varepsilon}(f(\theta)) \leq \int_{N_{2r}(T_1)} L_{\varepsilon}(U_{\varepsilon,T_1}) dx + b_{\varepsilon}(T_2) + C^* \exp(-c^*r) + 2\delta,$$

so by (3.31)-(3.32),

(3.33)
$$\limsup_{l \to \infty} b_{\varepsilon}(T_1, T_l) \le c_{\varepsilon}(T_1) + b_{\varepsilon}(T_2) + C^* \exp(-c^* r) + 2\delta.$$

Letting $r \to \infty$, and then $\delta \to 0$, and combining the result with (3.25) yields 1° of Theorem 3.14.

To prove 2^o of the Theorem, note first that by Theorem 1.2, as $l \to \infty$, $U_{\varepsilon,T_l} \to U \in \mathcal{M}_{\varepsilon}(T_1)$ in $C^2_{loc}(\mathbb{R}^n)$, where $U \geq U_{\varepsilon,T_1}$. The choice of U_{ε,T_1} as the largest member of $\mathcal{M}_{\varepsilon}(T_1)$ implies $U = U_{\varepsilon,T_1}$. Since $U_{\varepsilon,T_1} < V_{\varepsilon,T_1,T_l} < U_{\varepsilon,T_l}$ and V_{ε,T_1,T_l} is a solution of (1.1), the first assertion of 2^o follows. The second requires more work. The uniform bounds for V_{ε,T_1,T_l} in $C^{2,\alpha}(\mathbb{R}^n)$, Theorem 1.2, and the choice of U_{ε,T_2} imply there is a solution, V, of (1.1) such that $V_{\varepsilon,T_1,T_l}(\cdot -l) \to V$ in $C^{2,\alpha}_{loc}(\mathbb{R}^n)$ along a subsequence as $l \to \infty$. Therefore with 1 << r < |l|/2, estimating as earlier,

$$(3.34) \left| J_{\varepsilon}(V_{\varepsilon,T_{1},T_{l}}) - \int_{N_{r}(T_{1})} L_{\varepsilon}(V_{\varepsilon,T_{1},T_{l}}) dx - \int_{N_{r}(T_{2})} L_{\varepsilon}(V_{\varepsilon,T_{1},T_{l}}(\cdot - l)) dx \right|$$

$$\leq C_{3} \exp(-r).$$

Hence letting l and then $r \to \infty$, (3.34) and 1^o of this theorem give

$$(3.35) c_{\varepsilon}(T_1) + b_{\varepsilon}(T_2) = J_{\varepsilon}(U_{\varepsilon,T_1}) + J_{\varepsilon}(V_{\varepsilon,2})$$

so

$$b_{\varepsilon}(T_2) = J_{\varepsilon}(V_{\varepsilon,2})$$

and Theorem 3.14 is proved.

4. Some concluding remarks

Remark 4.1. In §2–§3, we have shown that there are solutions of (1.1) when $T = T_l$ corresponding to gluing minima for T_1 and $l + T_2$ and gluing minima for T_1 to mountain pass solutions for $l + T_2$ (as well as the other way around). It is therefore natural to ask whether one can find additional solutions of (1.1) by gluing a mountain pass solution for T_1 to one for $l + T_2$.

We believe this to be the case. Indeed such solutions were obtained in a related situation in [8] although the question of asymptotic behavior there also remains open.

Remark 4.2. If T_1, T_2, \dots, T_k are subsets of \mathbb{Z}^n , one can use the arguments of this note to find solutions of (1.1) corresponding to minima for $T_1, l_2 + T_2, \dots, l_k + T_k$ provided that the sets $T_1, l_2 + T_2, \dots, l_k + T_k$ are widely spaced. Similarly one can glue one mountain pass solution to k-1 widely separated minima. We expect that there are higher order analogues of these results in the spirit of Remark 4.1.

Remark 4.3. If in Theorem 1.2, T_1 or T_2 and hence T_l is an infinite set, $c_{\varepsilon}(T_l)$ is infinite. Therefore 1^o of Theorem 1.2 is not meaningful. However most of 2^o – 3^o of the theorem can be preserved if the distance between T_1 and $l+T_2$, $dist(T_1, l+T_2) \to \infty$ as $l \to \infty$ for some unbounded set of l's. To be more precise, recall that from Theorem 1.1 of [9], if $S \subset \mathbb{Z}^n$ is infinite, there is still a solution, $\mathcal{U}_{\varepsilon,S}$, of (1.1) in $\Gamma(S)$. Moreover $\mathcal{U}_{\varepsilon,T}$ is a minimal solution, i.e. for all smooth φ having compact support,

(4.4)
$$\int_{\mathbb{R}^n} (L_{\varepsilon}(\mathcal{U}_{\varepsilon,S} + \varphi) - L_{\varepsilon}(\mathcal{U}_{\varepsilon,S})) \, dx \ge 0.$$

As was the case in Theorem 2.2, $\mathcal{U}_{\varepsilon,S}$ need not be unique. Returning to the current setting, suppose that $S = T_l = T_1 \cup (l + T_2)$ and assume

$$(l^*)$$
 $\mathcal{I} \equiv \{l \in \mathbb{Z}^n \mid dist(T_1, l + T_2) > 0\}$ is unbounded.

As a simple example, suppose that T_1 and T_2 are infinite subsets of $\mathbb{R}^{n-1} \times \{0\}$. Then we can take $\mathcal{I} = \{l_n e_n \mid l_n \in \mathbb{N}\}$.

Now we have:

Theorem 4.5. Suppose that (l^*) holds. Then for each $\varepsilon \in (0, \varepsilon_0)$,

- (1°) there is a minimal solution, $\mathcal{U}_{\varepsilon,T_1}$ of (1.1) with $\mathcal{U}_{\varepsilon,T_1} \in \Gamma(T_1)$ such that along a sequence of $(l_p) \subset \mathcal{I}$ with $l_p \to \infty$ as $p \to \infty$, $\mathcal{U}_{\varepsilon,T_{l_p}} \to \mathcal{U}_{\varepsilon,T_1}$ in $C^2_{loc}(\mathbb{R}^n)$;
- (2°) there is a minimal solution, $\mathcal{U}_{\varepsilon,T_2}$ of (1.1) with $\mathcal{U}_{\varepsilon,T_2} \in \Gamma(T_2)$ such that along a sequence of $(m_p) \subset \mathcal{I}$ with $m_p \to \infty$ as $p \to \infty$, $\mathcal{U}_{\varepsilon,T_{m_p}}(\cdot + m_p) \to \mathcal{U}_{\varepsilon,T_2}$ in $C^2_{loc}(\mathbb{R}^n)$.

Proof: Since $\|\mathcal{U}_{\varepsilon,T_l}\|_{L^{\infty}(\mathbb{R}^n)} \leq 1$ for all $l \in \mathcal{I}$, using the local $W^{k,p}$ and Schauder estimates, as e.g. in [9], shows for any $\alpha \in (0,1)$, there is a constant, $K = K(\alpha)$ such that

(4.6)
$$\|\mathcal{U}_{\varepsilon,T_l}\|_{C^{2,\alpha}(\mathbb{R}^n)} \le K(\alpha)$$

independently of $l \in \mathcal{I}$. Therefore the Arzela-Ascoli Theorem and (1.1) imply the existence of the solution, $\mathcal{U}_{\varepsilon,T_1}$, as a limit of $\mathcal{U}_{\varepsilon,T_{l_p}}$. That $\mathcal{U}_{\varepsilon,T_{l_p}} \in \Gamma(T_{l_p})$ for all $p \in \mathcal{I}$ implies $\mathcal{U}_{\varepsilon,T_1} \in \Gamma(T_1)$. Moreover, as the C^2_{loc} limit of minimal solutions of (1.1), (4.4) shows $\mathcal{U}_{\varepsilon,T_1}$ is minimal. A similar argument establishes 2^o .

Acknowledgements

This research of the first author was supported by Mid-career Researcher Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Plannig (No. NRF-2013R1A2A2A05006371).

References

- [1] Francesca Alessio, Louis Jeanjean and Piero Montecchiari, Stationary layered solutions in \mathbb{R}^2 for a class of non autonomous Allen-Cahn equations, Calc. Var. Partial Differential Equations, **11** (2000), 177–2021. MR1782992
- [2] Francesca Alessio, Louis Jeanjean and Piero Montecchiari, Existence of infinitely many stationary layered solutions in ℝ² for a class of periodic Allen-Cahn equations, Comm. Partial Differential Equations, 27 (2002), 1537–1574. MR1924477
- [3] Francesca Alessio and Piero Montecchiari, Entire solutions in \mathbb{R}^2 for a class of Allen-Cahn equations, ESAIM Control Optim. Calc. Var., **11** (2005), 633–672. MR2167878
- [4] Francesca Alessio and Piero Montecchiari, Multiplicity of entire solutions for a class of almost periodic Allen-Cahn type equations, Adv. Nonlinear Stud., 5 (2005), 515–549. MR2180581
- [5] Victor Bangert, On minimal laminations of the torus, Ann. Inst. Poincare Anal. Non Lineaire, 6 (1989), 95–138. MR0991874
- [6] Ugo Bessi, Many solutions of elliptic problems on \mathbb{R}^n of irrational slope, Comm. Partial Differential Equations, **30** (2005), 1773–1804. MR2182311
- [7] Ugo Bessi, Slope-changing solutions of elliptic problems on \mathbb{R}^n , Nonlinear Anal., **68** (2008), 3923–3947. MR2416096

- [8] Sergey Bolotin and Paul H. Rabinowitz, Hybrid mountain pass homoclinic solutions of a class of semilinear elliptic PDEs, to appear Ann. Inst. Poincare Anal. Non Lineaire. MR3165281
- [9] Jaeyoung Byeon and Paul H. Rabinowitz, On a phase transition model, Calc. Var. Partial Differential Equations, 47 (2013), 1–23. MR3044129
- [10] Jaeyoung Byeon and Paul H. Rabinowitz, A note on mountain pass solutions for a class of Allen-Cahn models, to appear in RIMS Koyuroku.
- [11] Luis A. Caffarelli and Rafael de la Llave, Planelike minimizers in periodic media. Comm. Pure Appl. Math., 54 (2001), 1403–1441. MR1852978
- [12] Rafael de la Llave and Enrico Valdinoci, Multiplicity results for interfaces of Ginzburg-Landau Allen-Cahn equations in periodic media, Adv. Math., 215 (2007), 379–426. MR2354993
- [13] Rafael de la Llave and Enrico Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations, Ann. Inst. H. Poincare Anal. Non Lineaire, 26 (2009), 1309–1344. MR2542727
- [14] David Gilbarg and Neil S. Trudinger, Elliptic Partial Differential Equations of Second Order, Berlin, Heidelberg, New York and Tokyo, Springer (1983). MR0737190
- [15] Jurgen Moser, Minimal solutions of a variational problems on a torus, Ann. Inst. Poincare Anal. Non Lineaire, 3 (1986), 229–272. MR0847308
- [16] Matteo Novaga and Enrico Valdinoci, Bump solutions for the mesoscopic Allen-Cahn equation in periodic media. Calc. Var. Partial Differential Equations, 40 (2011), no. 1–2, 37–49. MR2745195
- [17] Paul H. Rabinowitz and Ed Stredulinsky, Mixed states for an Allen-Cahn type equation, Comm. Pure Appl. Math., 56 (2003), 1078–1134. MR1989227
- [18] Paul H. Rabinowitz and Ed Stredulinsky, Mixed states for an Allen-Cahn type equation. II, Calc. Var. Partial Differential Equations, 21 (2004), 157–207. MR2085301
- [19] Paul H. Rabinowitz and Ed Stredulinsky, On a class of infinite transition solutions for an Allen-Cahn model equation, Discrete Contin. Dyn. Syst., 21 (2008), 319–332. MR2379469

- [20] Paul H. Rabinowitz and Ed Stredulinsky, Extensions of Moser-Bangert Theory: Locally Minimal Solutions, Progress in Nonlinear Differential Equations and Their Applications, 81, Birkhauser, Boston (2011). MR2809349
- [21] Enrico Valdinoci, Plane-like minimizers in periodic media: jet flows and Ginzburg-Landau-type functionals, J. Reine Angew. Math., **574** (2004), 147–185. MR2099113

Jaeyoung Byeon Department of Mathematical Sciences, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 Republic of Korea E-mail address: byeon@kaist.ac.kr

PAUL H. RABINOWITZ
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WISCONSIN-MADISON
MADISON, WISCONSIN, 53706
USA

E-mail address: rabinowi@math.wisc.edu

Received August 19, 2013