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Asymptotic behavior of minima and mountain pass
solutions for a class of Allen-Cahn models

Jaeyoung Byeon and Paul H. Rabinowitz

In an earlier paper, the authors studied a class of Allen-Cahn mod-
els for which the solution was near 1 on a prescribed set, T +[0, 1]n

where T ⊂ Z
n, and near 0 on its complement. In this note, when

T is finite and consists of two widely spaced subsets, T1 and l+T2

with l ∈ Z
n, we study the asymptotic behavior of two special fam-

ilies of solutions as l → ∞.

1. Introduction

In two recent papers [9], [10], the authors studied an Allen-Cahn model

problem having the form

(1.1) −Δu+Aε(x)G
′(u) = 0, x ∈ R

n

where G(u) = u2(1 − u)2 is a double well potential, ε > 0, and Aε(x) =

1+A(x)/ε with 0 ≤ A ∈ C1(Rn), 1−periodic in x1, · · · , xn, Ω is the support

of A|[0,1]n and has a smooth boundary, and Ω ⊂ (0, 1)n. A main result of [9]

is that there is an ε0 > 0 such that for any finite set T ⊂ Z
n and ε ∈ (0, ε0],

(1.1) has a solution, Uε,T with 0 < Uε,T < 1, Uε,T is near 1 on AT ≡ T +Ω

and near 0 on BT ≡ (Zn\T )+Ω. Moreover as ε → 0, Uε,T → 1 uniformly on

AT and Uε,T → 0 uniformly on BT . When T is finite, Uε,T is characterized

as the minimizer of a constrained variational problem associated with (1.1).

Although Uε,T may not be unique, the set of such minimizers, Mε(T ), is

ordered. The setting of [9] was further treated in [10] where it was shown

that for each finite T , there is an ε1(T ) > 0 such that for ε ∈ (0, ε1(T )),

(1.1) has a solution, Vε,T of mountain pass type with 0 < Vε,T < Uε,T .

The main goal of this note is to study the setting of when T is finite and

consists of two widely separated subsets, that is, T = T1 ∪ (l + T2) ≡ Tl for

T1, T2 ⊂ Z
n, l ∈ Z

n and large |l| > 0. In particular we are interested in the

asymptotic behavior as l → ∞ of the minimizers, Uε,Tl
, and the mountain

pass solutions, as well as the corresponding critical values. To describe our
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results, let

Jε(u) =

∫
Rn

1

2
|∇u|2 +Aε(x)G(u) dx,

the functional associated with (1.1). Set

cε(Tl) = Jε(Uε,Tl
).

A more precise characterization of cε,Tl
will be given later. We will prove

Theorem 1.2. Suppose T ⊂ Z
n is finite. Let Aε and G be as above. Then

for any ε ∈ (0, ε0], as l → ∞,

1o cε(Tl) → cε(T1) + cε(T2);
2o There is a Uε,T1

∈ Mε(T1) such that Uε,Tl
→ Uε,T1

along a subsequence
in C2

loc(R
n);

3o There is a Uε,T2
∈ Mε(T2) such that Uε,Tl

(· + l) → Uε,T2
along a

subsequence in C2
loc(R

n).

Thus, roughly speaking, the minimizer for the Tl problem is obtained
by gluing translates of the minimizers for the T1 and T2 problems. These
results will be carried out in §2. Then in §3, we will give sharper results
for the setting of [10] on mountain pass solutions. In particular for large l
and small ε, it will be shown that there are two critical values of mountain
pass type. One of the associated critical points of Jε corresponds to gluing a
minimum, Uε,T1

of Jε to a mountain pass solution, Vε,l+T2
= Vε,T2

(·− l), and
the other to gluing a Vε,T1

to a Uε,l+T2
= Uε,T2

(· − l). Moreover as l → ∞,
the corresponding critical values converge to the sum of cε(T1) and Jε(Vε,T2

),
and the sum of Jε(Vε,T1

) and cε(T2), respectively. Some final remarks will
be made in §4.

There has been a considerable amount of additional work on solutions of
heteroclinic or homoclinic type of Allen-Cahn model equations. See [1]–[4],
[12], [16]–[19]. The models involve forcing terms that are periodic in one or all
spatial variables with the exception of [4] where there is almost periodic forc-
ing. Aside from [16], minimization arguments are used to obtain solutions of
the model equations that are in C2(R×T

n−1) or in C2(R2×T
n−2). In the first

case of C2(R×T
n−1), the solutions treated in [12], [17]–[19] are heteroclinic

or homoclinic in one direction, say the x1−direction, and are periodic in the
remaining variables. Moreover the asymptotic states in the x1 direction are
spatially periodic minimizers of an associated functional. The second case
of solutions in C2(R2 × T

n−2) is studied in [1]–[4] and [17]–[19]. Here the
solutions are heteroclinic in x2 between between a pair of x1 heteroclinics
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as obtained in the previous case. Solutions of mountain pass type have also
been considered in [12]. Although it uses different kinds of arguments based
on sub- and supersolutions and comparison arguments, [16] is the only paper
aside from [9]–[10] and the current one, which treat solutions other than the
heteroclinics or homoclinics in one direction mentioned above.

Using a trick involving the Maximum Principle, see [20], most of the
papers mentioned above can be viewed as special cases of a more general
class of quasilinear elliptic partial differential equations introduced by Moser
in [15]. It’s simplest semilinear form is:

(1.3) −Δu+ Fu(x, u) = 0

where F ∈ C2(Tn+1,R). Some papers which study (1.3) in the spirit of the
research cited for (1.1) are [5]–[7], [11], [13], [15], [20].

2. The Proof of Theorem 1.2

In order to prove Theorem 1.2, some results from [9] must be recalled. In
particular, the minimization characterization of cε(T ) for finite T is required
as well as some decay estimates for Uε,T . Thus let W denote the closure of
C∞
0 (Rn) functions under the norm

‖u‖ ≡
(∫

Rn

|∇u|2dx+

∫
[−1,1]n

u2dx
)1/2

.

Let d∗ = 1
2 |∂Ω− ∂[0, 1]n| and choose any small d ∈ (0, d∗) so that if

Ωd ≡ {x ∈ Ω | |x− ∂Ω| > d},

then ∂Ωd is diffeomorphic to ∂Ω. For T ⊂ Z
n, set AT = T + Ωd and BT =

(Zn \ T ) + Ωd. Choosing constants a and b so that 0 < b < 1
2 < a < 1 and

setting

Γ(T ) = {u ∈ W | u ≥ a on AT and u ≤ b on BT },

define

(2.1) cε(T ) = inf
u∈Γ(T )

Jε(u).

Let χS denote the characteristic function of the set S. Then, as was shown
in [9],
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Theorem 2.2. Let Aε and G be as above. Then there exists an ε0 > 0 such
that for each ε ∈ (0, ε0] and each finite T ⊂ Z

n,

1o Mε(T ) ≡ {u ∈ Γ(T ) | Jε(u) = cε(T )} �= ∅.
2o Any U ∈ Mε(T ) satisfies 0 < U < 1 and is a classical solution of

(1.1).
3o Mε(T ) is an ordered set: U, V ∈ Mε(T ) implies U < V, U > V , or

U ≡ V .
4o If T ⊂ S ⊂ Z

n, Uε,T ≤ Uε,S with strict inequality if T �= S.
5o There exist constants C, c > 0, independent of T and of ε ∈ (0, ε0],

satisfying

|Uε,T (x)− χT+[0,1]n(x)| ≤ C exp(−cd(x, T )), x ∈ R
n

where d(x, T ) ≡ dist(x, ∂(T + [0, 1]n)).

Now with the aid of these preliminaries, we can give the

Proof of Theorem 1.2: There is a positive integerm such that Ti+[0, 1]n ⊂
[−m,m]n for i = 1, 2. For each l ∈ Z

n, let ψl ∈ C∞
0 (Rn) such that ψl(x) = 1

for |x| ≤ |l|/4, ψl(x) = 0 for |x| ≥ |l|/3, 0 ≤ ψ(x) ≤ 1, and |∇ψl(x)| ≤ 20/|l|
for any x ∈ R

n. Note that for any Uε,Tl
∈ M(Tl),

(2.3) 0 ≤ Uε,Tl
= ψlUε,Tl

+ ψl(· − l)Uε,Tl
+ (1− ψl − ψl(· − l))Uε,Tl

.

By 5o of Theorem 2.2 and (2.3), there exist constants C1, c > 0 such that
for all large |l|,

(2.4) Jε(Uε,Tl
) ≥ Jε(ψlUε,Tl

) + Jε(ψl(· − l)Uε,Tl
)− C1 exp(−c|l|).

For large |l|, we see that

(2.5) ψlUε,Tl
∈ Γ(T1) and ψl(· − l)Uε,Tl

∈ Γ(l + T2).

Thus (2.4)–(2.5) imply that for large |l|,

(2.6) cε(Tl) ≥ cε(T1) + cε(T2)− C1 exp(−c|l|).

Now to get 1o of Theorem 1.2, take Uε,Ti
∈ Mε(Ti) for each i = 1, 2. Then

for large |l|,

uε,Tl
≡ ψlUε,T1

+ ψl(· − l)Uε,T2
(· − l) ∈ Γ(Tl).
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Then, again by 5o of Theorem 2.2, there exist constants C2, c > 0 such that
for large |l|,

cε(Tl) ≤ Jε(uε,Tl
)

≤ Jε(ψlUε,T1
) + Jε(ψl(· − l)Uε,T2

(· − l)) + C2 exp(−c|l|)
= Jε(ψlUε,T1

) + Jε(ψlUε,T2
) + C2 exp(−c|l|)

≤ Jε(Uε,T1
) + Jε(Uε,T2

) + 2C2 exp(−c|l|)
= cε(T1) + cε(T2) + 2C2 exp(−c|l|).(2.7)

Combining (2.6) and (2.7), we get

(2.8) lim
|l|→∞

cε(Tl) = cε(T1) + cε(T2).

To complete the proof of Theorem 1.2, note that if Uε,Tl
∈ Mε(Tl), for

large |l|, ψlUε,Tl
∈ Γ(T1) and ψl(· − l)Uε,Tl

∈ Γ(l + T2). Then arguing as in
(2.7), we get

(2.9) lim
|l|→∞

Jε(ψlUε,Tl
) = cε(T1)

and

(2.10) lim
|l|→∞

Jε(ψl(· − l)Uε,Tl
) = lim

|i|→∞
Jε(ψlUε,Tl

(·+ l)) = cε(T2).

Lastly, (2.9)–(2.10), the unform boundedness of {||Uε,Tl
||C2,α(Rn)} for any

fixed α ∈ (0, 1), and the decay property 5o of Theorem 2.2 yield 2o, 3o of
Theorem 1.2.

3. Mountain pass results

In [10], for each finite T ⊂ Zn and each small ε > 0, the existence of
a solution, Vε,T , of (1.1) of mountain pass type was proved. This solution
satisfies 0 < Vε,T < Uε,T where Uε,T ∈ Mε(T ). In this section, we will obtain
a refinement of that result which provides two mountain pass solutions when
T = Tl with l large. To begin, we recall some results from §3 of [10].

Let S ⊂ T ⊂ Z
n with T finite and S �= T . Define the family of homo-

topies

Gε(S, T ) ≡ {g ∈ C([0, 1],W 1,2(Rn)) | Uε,S ≤ g(θ) ≤ Uε,T

and g(0) = Uε,S , g(1) = Uε,T }
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and define

bε(S, T ) = inf
g∈Gε(S,T )

max
θ∈[0,1]

Jε(g(θ)).

Then by Propositions 3.1–3.2 of [10], we have

Proposition 3.1. There are constants, 0 < β < β < ∞ such that

β ≤ lim inf
ε→0

√
εbε(S, T ) ≤ lim sup

ε→0

√
εbε(S, T ) < β.

With the aid of these propositions, it was proved in [10] that:

Theorem 3.2. Let S and T be as above. Then there is an ε2 = ε2(S, T ) > 0
such that for any ε ∈ (0, ε2), there is a solution, Vε,S,T of (1.1) with Uε,S <
Vε,S,T < Uε,T and Jε(Vε,S,T ) = bε(S, T ).

Remark 3.3. Taking S = T1 and T = Tl yields an ε2(T1, Tl) and a solution,
Vε,T1,Tl

of (1.1) with Uε,T1
< Vε,T1,Tl

< Uε,Tl
for ε ∈ (0, ε2(T1, Tl)). Similarly

taking S = l+T2 and T = Tl yields an ε2(l+T2, Tl) and a solution, Vε,(l+T2),Tl

of (1.1) with Uε,l+T2
< Vε,T1,Tl

< Uε,Tl
for ε ∈ (0, ε2(l + T2, Tl)).

We seek to show that for large l these two solutions are distinct and
then to study their asymptotic behavior as |l| → ∞. This cannot be done
directly from Theorem 3.2 since for T = Tl and S as above, it gives an ε2
which depends on l. Therefore ε2 may go to 0 as |l| → ∞. Hence sharper
estimates are needed. The proof of Theorem 3.2 requires that

bε(S, T ) > max(cε(S), cε(T )).

Thus for our special choices of S and T = Tl, it suffices to show there is an
ε∗ > 0 such that

(3.4) bε(S, Tl) > max(cε(S), cε(Tl))

holds for all ε ∈ (0, ε∗) and all large l. Note that by (2.6), for large l,

(3.5) cε(Tl) = max(cε(S), cε(Tl))

where S = T1 or l+T2. Hence to obtain (3.4), it suffices to find a constant βε
which is independent of l for l sufficiently large such that for all ε ∈ (0, ε∗),

(3.6) bε(S, Tl) > βε > cε(Tl).

The following result is useful for that purpose. Let σ > 0 be such that
G′′(s) > 0 for s ∈ [0, σ].
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Proposition 3.7. Let D ⊂ R
n be an open set with a piece-wise smooth

boundary and suppose u ∈ W 1,2(Rn) with 0 ≤ u ≤ σ on ∂D. Set

F(u;D) ≡ {ϕ ∈ W 1,2(Rn) | ϕ = u in R
n \ D}.

Then there exists a unique w = uD ∈ F(u;D) with 0 < w < σ in D such

that

(3.8) ID(w) ≡
∫
D
Lε(w) dx = inf

ϕ∈F(u;D)

∫
D
Lε(ϕ) dx.

Moreover w is a solution of (1.1) in D.

Proof: Let (uk) be a minimizing sequence for ID. Then (‖∇uk‖L2(D))

is bounded. Moreover replacing uk by ζk = min(max(uk, 0), 1) for which

ID(ζk) ≤ ID(uk), it can be assumed that 0 ≤ uk ≤ 1. Hence (uk) is bounded

in W 1,2
loc (D) and the local weak lower semicontinuity of ID implies that there

is a w ∈ F(u;D) such that along a subsequence, uk → w weakly in W 1,2
loc (D)

and (3.8) holds. To see that 0 < w < σ in D and therefore by standard ellip-

tic regularity arguments in the calculus of variations, w = uD is a solution

of (1.1) in D, we modify an argument from the proof of Theorem 3.1 of [9].

Since G is even about 1/2, setting q(uk)(x) = uk(x) if uk(x) ∈ [0, 1/2] and

q(uk)(x) = 1−uk(x) if uk(x) ∈ [1/2, 1] shows ID(q(uk)) ≤ ID(uk). Therefore
replacing uk by q(uk) if need be, it can be assumed that 0 ≤ uk ≤ 1/2 and

w satisfies the same inequalities. Next set p(uk) = min(uk, σ). Then since

G(p(uk)) ≤ G(uk) and ∇p(uk) = 0 if uk > σ, ID(p(uk)) ≤ ID(uk) so it can

be assumed that 0 ≤ uk ≤ σ and likewise for w. To get the uniqueness, note

that if w and ŵ are minimizers,

0 =

∫
D
(−Δ(w − ŵ) +Aε(G

′(w)−G′(ŵ)))(w − ŵ) dx

=

∫
D
|∇w − ŵ|2 +AεG

′′(z)(w − ŵ)2 dx,

where z lies between w and ŵ. Then, since G′′(s) > 0 for s ∈ [0, σ], we get

w ≡ ŵ in D.

Now to find βε, let g ∈ Gε(S, Tl). Since the argument is the same for

either choice of S, let S = T1. Choose a σ > 0 for which Proposition 3.7 is

valid. Let Nr(Q) denote an open r neighborhood of Q. By 5o of Theorem 2.2,

for all |l| = |l(σ)| sufficiently large, |g(θ)(x)| ≤ σ for x ∈ R
n \N|l|/5(Tl) and
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each θ ∈ [0, 1]. Using the existence result of Proposition 3.7, we define

ĝ(θ)(x) =

{
g(θ)Rn\N|l|/5(Tl)(x) for x ∈ R

n \N|l|/5(Tl)

g(θ)(x) for x ∈ N|l|/5(Tl).

Due to the uniqueness result of Proposition 3.7, ĝ ∈ Gε(T1, Tl), and because

of its definition, Jε(ĝ(θ)) ≤ Jε(g(θ)). Choose a function φl ∈ C∞(Rn; [0, 1])

such that φl(x) = 1 for x ∈ N|l|/2(l+T2), φl(x) = 0 for x /∈ N3|l|/4(l+T2) and

|∇φl| ≤ 10/|l|. Then define g̃(θ) ≡ ĝ(θ)φl. We see from the decay property

5o of Theorem 2.2 that there exist constants D, d > 0 such that for any

x ∈ R
n \N|l|/5(Tl), ĝ(θ)(x) ≤ D exp(−d|l|). Since

−Δĝ(θ) +Aε(x)G
′(ĝ(θ)) = 0 in R

n \N|l|/5(Tl),

by standard local elliptic estimates [14], there exist constants C ′, c′ > 0 such

that for any x ∈ N3|l|/4(l + T2) \N|l|/2(l + T2), |∇ĝ(θ)(x)| ≤ C ′ exp(−c′|l|).
Thus, there are constants, c, C > 0, independent of large |l| and g ∈ Gε(T1, Tl)

such that

(3.9) Jε(g(θ)) ≥
∫
N3|l|/4(l+T2)

Lε(ĝ(θ)) dx ≥ Jε(g̃(θ))− C exp(−c|l|).

Now we define h ∈ C([0, 1],W 1,2(Rn)) by

h(θ)(x) =

⎧⎪⎨
⎪⎩

3θmin{g̃(0)(x), Uε,l+T2
(x)} for θ ∈ [0, 1/3]

min{g̃(3θ − 1)(x), Uε,l+T2
(x)} for θ ∈ [1/3, 2/3]

(3θ − 2)Uε,l+T2
(x) + (3− 3θ)h(2/3)(x) for θ ∈ (2/3, 1].

Hence h ∈ Gε(∅, l + T2). Since Uε,l+T2
(x) = Uε,T2

(x − l) and {Jε(Uε,T2
)} is

uniformly bounded for small ε > 0, taking |l| large shows there is a constant,

C1 > 0, independent of small ε > 0 and large |l| > 0, such that

(3.10) max
θ∈[0,1]\[1/3,2/3]

Jε(h(θ)) ≤ C1,

and

(3.11) max
θ∈[1/3,2/3]

Jε(h(θ)) ≤ max
θ∈[0,1]

Jε(g̃(θ)) + C1.
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Consequently by the form of h, (3.9)–(3.11), and Proposition 3.1, there is a

constant C2 > 0, independent of small ε and large l such that

max
θ∈[0,1]

Jε(g̃(θ)) ≥ max
θ∈[0,1]

Jε(h(θ))− C2 ≥ bε(∅, l + T2)− C2

= bε(∅, T2)− C2 ≥ β/
√
ε− C2.

Since {cε(Tl) | l ∈ Z
n} is bounded, taking βε = β/

√
ε−C2 − 1, we conclude

that for large l > 0,

(3.12) bε(T1, Tl) = inf
g∈Gε(T1,Tl)

max
θ∈[0,1]

Jε(g(θ)) ≥ βε − 1 > cε(Tl).

As a consequence of the above observations, we have:

Corollary 3.13. There is an r0 > 0 and ε∗ = ε∗(T1, T2) > 0 such that for

|l| ≥ r0, ε ∈ (0, ε∗), and S = T1 or S = l+ T2, bε(S, Tl) is a critical value of

Jε defined on Gε(S, Tl).

Next the asymptotic behavior as l → ∞ of bε(S, Tl) and the correspond-

ing critical points of Jε will be studied.

Theorem 3.14. Let Aε and G be as above. Let Uε,T1
, Uε,T2

be respectively

the largest members of Mε(T1),Mε(T2) and Uε,Tl
be the smallest member

of Mε(Tl). Then there is an ε2 = ε2(T1, T2) ∈ (0, ε∗) such that for any

ε ∈ (0, ε2), as l → ∞,

1o bε(T1, Tl) → cε(T1) + bε(T2),

2o Vε,T1,Tl
→ Uε,T1

and there is a solution, Vε,2, of (1.1) with Jε(Vε,2) =

bε(T2) such that Vε,T1,Tl
(· − l) → Vε,2, convergence being along a sub-

sequence in C2
loc.

3o bε(l + T2, Tl) → bε(T1) + cε(T2).

4o There is a solution, Vε,1, of (1.1) with Jε(Vε,1) = bε(T1) such that

Vε,l+T2,Tl
→ Vε,1 and Vε,Tl

(· − l) → Uε,T2
, convergence being along a

subsequence in C2
loc.

In particular, by 1o–4o, Vε,T1,Tl
�= Vε,l+T2,Tl

for large l.

Remark 3.15. By 1o–4o, Vε,T1,Tl
�= Vε,l+T2,Tl

for large l, i.e. we have two

distinct solutions of (1.1) of mountain pass type.

Proof of Theorem 3.14: We will prove 1o–2o. The remaining items are

proved in the same way. Set p(θ) = θUε,Tl
+ (1 − θ)Uε,T1

for θ ∈ [0, 1] so
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p ∈ Gε(T1, Tl). Then there is a constant M = M(ε) which is independent of
large l such that

(3.16) Jε(p(θ)) ≤ M(ε)

for θ ∈ [0, 1]. Hence by (3.16),

(3.17) bε(T1, Tl) ≤ M(ε).

Now we argue somewhat as in the proof of (3.6). Choose any σ for which
Proposition 3.7 is valid. For any gl ∈ Gε(T1, Tl), we see that if |l| > 0 is large,
|gl(θ)(x)| ≤ σ for x ∈ R

n \N|l|/10(Tl) and each θ ∈ [0, 1]. Using the existence
result of Proposition 3.7, define

ĝl(θ)(x) =

{
gl(θ)Rn\N|l|/10(Tl)(x) for x ∈ R

n \N|l|/10(Tl)

gl(θ)(x) for x ∈ N|l|/10(Tl).

The uniqueness result of Proposition 3.7 implies that ĝl ∈ Gε(T1, Tl). Choose
a function ψl ∈ C∞(Rn; [0, 1]) such that ψl(x) = 1 for x ∈ N|l|/8(Tl), ψl(x) =
0 for x /∈ N|l|/4(Tl) and |∇ψl| ≤ 10/|l| and define g̃l(θ) ≡ ĝl(θ)ψl. As in (3.9),
we find constants, c, C > 0, independent of large |l| > 0 such that

(3.18) Jε(gl(θ)) ≥ Jε(ĝl(θ)) ≥ Jε(g̃l(θ))− C exp(−c|l|).

With χS denoting the characteristic function of S as in §2, define

g̃l,1(θ) ≡ g̃l(θ)χN|l|/2(T1), g̃l,2(θ) ≡ g̃l(θ)χN|l|/2(l+T2),

Then, by (3.18),

(3.19) Jε(gl(θ)) ≥ Jε(g̃l,1(θ)) + Jε(g̃l,2(θ))− C exp(−c|l|).

Next define hl as follows:

hl(θ)(x) =

⎧⎪⎨
⎪⎩

3θmin{g̃l,2(0)(x), Uε,l+T2
(x)} for θ ∈ [0, 1/3]

min{g̃l,2(3θ − 1)(x), Uε,l+T2
(x)} for θ ∈ [1/3, 2/3]

(3θ − 2)Uε,l+T2
(x) + (3− 3θ)hl(2/3)(x) for θ ∈ (2/3, 1].

Since hl ∈ Gε(∅, l + T2), Proposition 3.1 shows that

(3.20) max
θ∈[0,1]

Jε(hl(θ)) ≥ bε(∅, l + T2) = bε(∅, T2) ≥ β/
√
ε.
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Theorem 1.2 and the form of hl show that for some constant C1 > 0, inde-
pendent of small ε > 0 and large |l| > 0,

max
θ∈[0,1]\(1/3,2/3)

Jε(hl)(θ)) ≤ C1

and this implies that for small ε > 0 and large l,

(3.21) max
θ∈[0,1]

Jε(hl(θ)) = max
θ∈[1/3,2/3]

Jε(hl)(θ)).

By Theorem 1.2 and the decay property 5o of Theorem 2.2, for any x ∈ R
n,

g̃l,2(3θ − 1)(x) ≤ Uε,Tl
(x) and

lim
|l|→∞

‖Uε,Tl
− Uε,T2

(· − l)‖C1(supp(g̃l,2)) = 0.

Therefore

(3.22) lim
|l|→∞

max
θ∈[1/3,2/3]

Jε(hl(θ)) = lim
|l|→∞

max
θ∈[0,1]

Jε(g̃l,2(θ)).

Thus, by (3.20)–(3.22),

(3.23) lim
|l|→∞

max
θ∈[0,1]

Jε(g̃l,2(θ)) ≥ bε(∅, T2).

Note that for each θ ∈ [0, 1], g̃1l (θ) ∈ Γ(T1) so

(3.24) Jε(g̃
1
l (θ)) ≥ cε(T1).

Thus, combining (3.24) with (3.19) and (3.23), gives

(3.25) lim inf
l→∞

bε(T1, Tl) ≥ cε(T1) + bε(T2).

To get an upper bound for bε(T1, Tl), a gluing argument will be used.
Let p be as in (3.16). Note that by the 5o of Theorem 2.2 and the fact that
Uε,Tl

and Uε,T1
are solutions of (1.1), there are constants, C, c > 0 such that

(3.26) |p(x)|+ |∇p(x)| ≤ C exp(−cd(x, Tl)).

Let δ > 0 and choose h ∈ Gε(∅, l + T2) such that

(3.27) max
θ∈[0,1]

Jε(h(θ)) ≤ bε(T2) + δ.
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Roughly speaking, we would like to glue p restricted to a neighborhood of T1

to h restricted to a neighborhood of l+T2 and use the resulting function to

get the upper bound for bε(T1, Tl). However there are some technical prob-

lems in doing so because h need not have good enough decay properties and

p(0) = Uε,T1
�= h(0). To get around these difficulties, using Proposition 3.7,

set

ĥ(θ)(x) =

{
hRn\N|l|/4(l+T2)(θ)(x) for x ∈ R

n \N|l|/4(l + T2)

h(θ)(x) for x ∈ N|l|/4(l + T2)

Then due to the properties of hRn\N|l|/4(l+T2), by (3.27),

(3.28) max
θ∈[0,1]

Jε(ĥ(θ)) ≤ bε(T2) + δ.

Set h∗(θ)(x) = max(ĥ(θ)(x), Uε,T1
(x)) so h∗(0) = Uε,T1

and for l large,

by (3.28),

(3.29) max
θ∈[0,1]

∫
Nl|/2(l+T2)

Lε(h
∗(θ)) ≤ bε(T2) + 2δ.

Choose r ∈ (0, |l|) with r large enough so that g|∂Nr(T1) < σ where σ is as

in Proposition 3.7. Define f ∈ Gε(T1, Tl) by

f(θ)(x) =

⎧⎪⎨
⎪⎩

p(θ)(x) for x ∈ N2r(T1)

q(θ)(x) for x ∈ R
n \N2r(T1) ∪N|l|/2(l + T2)

h∗(θ)(x) for x ∈ N|l|/2(l + T2).

where q(θ), as given by Proposition 3.7, extends the function whose restric-

tion to N2r(T1) is p(θ) and whose restriction to N|l|/2(l+ T2) is h
∗(θ). Then

as earlier, for some constants, C∗, c∗ > 0,

(3.30)

Jε(f(θ)) ≤
∫
N2r(T1)

Lε(p(θ)) dx+

∫
N |l|

2

(l+T2)
Lε(h

∗(θ)) dx+ C∗ exp (−c∗r)

Observe that for fixed r, as |l| → ∞,

(3.31)

∫
Nr(T1)

Lε(p(θ)) dx →
∫
Nr(T1)

Lε(Uε,T1
) dx ≤ cε(T1)
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uniformly in θ ∈ [0, 1]. Therefore by (3.29) and (3.31), for large l,

(3.32) Jε(f(θ)) ≤
∫
N2r(T1)

Lε(Uε,T1
) dx+ bε(T2) + C∗ exp (−c∗r) + 2δ,

so by (3.31)–(3.32),

(3.33) lim sup
l→∞

bε(T1, Tl) ≤ cε(T1) + bε(T2) + C∗ exp (−c∗r) + 2δ.

Letting r → ∞, and then δ → 0, and combining the result with (3.25) yields
1o of Theorem 3.14.

To prove 2o of the Theorem, note first that by Theorem 1.2, as l →
∞, Uε,Tl

→ U ∈ Mε(T1) in C2
loc(R

n), where U ≥ Uε,T1
. The choice of Uε,T1

as the largest member of Mε(T1) implies U = Uε,T1
. Since Uε,T1

< Vε,T1,Tl
<

Uε,Tl
and Vε,T1,Tl

is a solution of (1.1), the first assertion of 2o follows. The
second requires more work. The uniform bounds for Vε,T1,Tl

in C2,α(Rn),
Theorem 1.2, and the choice of Uε,T2

imply there is a solution, V , of (1.1)

such that Vε,T1,Tl
(· − l) → V in C2,α

loc (R
n) along a subsequence as l → ∞.

Therefore with 1 << r < |l|/2, estimating as earlier,

∣∣∣Jε(Vε,T1,Tl
)−

∫
Nr(T1)

Lε(Vε,T1,Tl
) dx−

∫
Nr(T2)

Lε(Vε,T1,Tl
(· − l)) dx

∣∣∣(3.34)

≤ C3 exp (−r).

Hence letting l and then r → ∞, (3.34) and 1o of this theorem give

(3.35) cε(T1) + bε(T2) = Jε(Uε,T1
) + Jε(Vε,2)

so

bε(T2) = Jε(Vε,2)

and Theorem 3.14 is proved.

4. Some concluding remarks

Remark 4.1. In §2–§3, we have shown that there are solutions of (1.1)
when T = Tl corresponding to gluing minima for T1 and l + T2 and gluing
minima for T1 to mountain pass solutions for l + T2 (as well as the other
way around). It is therefore natural to ask whether one can find additional
solutions of (1.1) by gluing a mountain pass solution for T1 to one for l+T2.
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We believe this to be the case. Indeed such solutions were obtained in a
related situation in [8] although the question of asymptotic behavior there
also remains open.

Remark 4.2. If T1, T2, · · · , Tk are subsets of Zn, one can use the arguments
of this note to find solutions of (1.1) corresponding to minima for T1, l2 +
T2, · · · , lk + Tk provided that the sets T1, l2 + T2, · · · , lk + Tk are widely
spaced. Similarly one can glue one mountain pass solution to k − 1 widely
separated minima. We expect that there are higher order analogues of these
results in the spirit of Remark 4.1.

Remark 4.3. If in Theorem 1.2, T1 or T2 and hence Tl is an infinite set,
cε(Tl) is infinite. Therefore 1o of Theorem 1.2 is not meaningful. However
most of 2o–3o of the theorem can be preserved if the distance between T1

and l + T2, dist(T1, l + T2) → ∞ as l → ∞ for some unbounded set of l′s.
To be more precise, recall that from Theorem 1.1 of [9], if S ⊂ Z

n is infinite,
there is still a solution, Uε,S , of (1.1) in Γ(S). Moreover Uε,T is a minimal
solution, i.e. for all smooth ϕ having compact support,

(4.4)

∫
Rn

(Lε(Uε,S + ϕ)− Lε(Uε,S)) dx ≥ 0.

As was the case in Theorem 2.2, Uε,S need not be unique. Returning to the
current setting, suppose that S = Tl = T1 ∪ (l + T2) and assume

(l∗) I ≡ {l ∈ Z
n | dist(T1, l + T2) > 0} is unbounded.

As a simple example, suppose that T1 and T2 are infinite subsets of Rn−1 ×
{0}. Then we can take I = {lnen | ln ∈ N}.

Now we have:

Theorem 4.5. Suppose that (l∗) holds. Then for each ε ∈ (0, ε0),

(1o) there is a minimal solution, Uε,T1
of (1.1) with Uε,T1

∈ Γ(T1) such that
along a sequence of (lp) ⊂ I with lp → ∞ as p → ∞, Uε,Tlp

→ Uε,T1
in

C2
loc(R

n);
(2o) there is a minimal solution, Uε,T2

of (1.1) with Uε,T2
∈ Γ(T2) such that

along a sequence of (mp) ⊂ I with mp → ∞ as p → ∞, Uε,Tmp
(· +

mp) → Uε,T2
in C2

loc(R
n).

Proof: Since ‖Uε,Tl
‖L∞(Rn) ≤ 1 for all l ∈ I, using the local W k,p and

Schauder estimates, as e.g. in [9], shows for any α ∈ (0, 1), there is a constant,
K = K(α) such that

(4.6) ‖Uε,Tl
‖C2,α(Rn) ≤ K(α)
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independently of l ∈ I. Therefore the Arzela-Ascoli Theorem and (1.1) imply

the existence of the solution, Uε,T1
, as a limit of Uε,Tlp

. That Uε,Tlp
∈ Γ(Tlp)

for all p ∈ I implies Uε,T1
∈ Γ(T1). Moreover, as the C2

loc limit of minimal

solutions of (1.1), (4.4) shows Uε,T1
is minimal. A similar argument estab-

lishes 2o.
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