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Constrained smoothing and interpolating spline
surfaces using normalized uniform B-splines

Hiroyuki Fujioka, Hiroyuki Kano, and Clyde F. Martin

We consider the problem of constructing optimal smoothing and
interpolating spline surfaces with equality and/or inequality con-
straints. By using normalized uniform B-splines as the basis func-
tions, the problem of constructing optimal surfaces is to determine
the so-called control points optimally. In particular, following a
similar approach as in the case of curves, we formulate various
types of equality and inequality constraints as linear functions of
the control points. Included are constraints on the value at isolated
points, those over intervals or over regions, or on integral value on
a region, and their combinations. Concise expressions are derived
for these constraints and it is shown that they can be incorpo-
rated easily to smoothing and interpolating spline problems. The
splines can be of arbitrary degree, and the problem is reduced to
convex quadratic programming (QP) problem. Some efficient algo-
rithms are available for solving the QP problems numerically, thus
the proposed method is useful for many applications. The perfor-
mance is examined by numerical examples of interpolating func-
tion with boundary constraints, approximating probability density
functions, and of smoothing digital image data.

Keywords and phrases: B-splines, optimal smoothing splines, optimal
interpolating splines, equality/inequality constraint, convex quadratic
programming.

1. Introduction

The goal of constructing smooth approximations is central to many applica-
tions. In statistics much of the credit for the field must go to Grace Wahba
and her seminal construction of smoothing splines. Her work has set the
stage for many if not most of the advancements that have taken place in
the last decade. Recently there has been work in engineering that has re-
discovered some of her techniques and has pushed the science further in
complimentary directions. The work in engineering has had a different goal
than the primary work in statistics. The work as described in [6] is aimed
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more at path planning than in data analysis. The work by H. Kano and
his group has been directed at obtaining realistic depictions of curves and
surfaces using a few data points. The original work of C. Martin and his
collaborators was motivated by the question of how many points must be
stored to reproduce typographical fonts. However as the work of Kano and
Martin developed it became clear that it was necessary to understand the
relations with the existing statistical literature.

A natural problem common to both the engineering and statistical work
was the construction of shape preserving approximations. The authors in
[16] showed a method of dealing with this problem on spline curves using
the method of B-splines. Other work in this direction is contained in [3, 22]
and a chapter on monotone smoothing splines in [6]. It would be remiss
not to mention the new book of Yuedong Wang, [30]. It is an up to date
summary of what is known in the statistical literature.

On the other hand, the problem of constructing curves and surfaces from
a given set of discrete observational data arises in many other fields – such as
numerical analysis, computer aided design (CAD), computer graphics (CG),
computer vision, robotics, and image processing, etc. Thus, the spline func-
tions have been studied and used extensively (e.g. [2, 29, 32]). Moreover,
in addition to traditional approximating or interpolating splines, there are
a large class of problems where we need to impose various constraints on
splines. For example, when the observational data is considerably corrupted
by some noises, we may have difficulties to maintain the shape properties
of the underlying functions by splines without imposing any constraints.
In addition, if such observational data is sparsely distributed in some in-
terval or domain of interest, the difficulties may increase more and more.
Thus, many researchers have recently dealt with the issues of constrained
splines. Monotone and convex splines form important class of shape preserv-
ing splines, where the first and second derivatives are kept e.g. nonnegative
over a given interval respectively. Examples of other constraints are as fol-
lows: Boundary conditions as initial and terminal conditions are usually
specified as equalities at the boundaries of interval, the so-called interval
interpolation is specified as inequality at given points, probability density
function is approximated by splines under unit area constraint, etc.

Specifically, Egerstedt and Martin in [21] have developed the method of
constructing smoothing spline curves with inequality constraints at isolated
points by employing the control theoretic approach. An advantage of this
approach is that, by an appropriate choice of the system matrix, various
types of functions can be used for splines – such as exponential functions,
trigonometric functions, polynomial functions and their combinations. This
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method is used for monotone splines [5], but in general, such a problem with
constraints over interval leads to an infinite dimensional problem and not be
easily solved. Thus, they formulated and solved the monotone spline problem
as a dynamic programming problem but the method is specific to the cubic
splines. Meyer in [23] has not only constructed monotone splines by using
M-splines [26] but also extended the construction to the case of convex con-
straints. Elfving and Anderson in [7], treated a combination of monotonicity
and convexity constraints simultaneously. Both constructions in [23] and
[7] are however limited to the cubic splines. Employing B-spline approach,
Kano et al. in [15, 16] have developed a method for designing smoothing
spline curves with various types of equality and/or inequality constraints in
a unified framework. The constraints can be imposed on function value or
its derivatives at isolated point or over interval, and on integral values, and
moreover they can be imposed in combinations. Shape preserving splines as
monotone or convex splines are easily incorporated into this framework by
imposing the sign of first and second derivatives e.g. nonnegative over an
interval. Also note that the splines are treated as of arbitrary degree.

While the above work is for spline curves, similar problems for the spline
surface have been studied by various authors. Beatson and Ziegler in [1] have
developed an algorithm for constructing monotone surfaces for a given set
of data on some domain. It is particularly worth noting that the necessary
and sufficient conditions for the spline surface to be monotone have been
analyzed and derived, but it is also limited to the case of quadratic splines.
Although we find a lot of similar works (see e.g. [8, 11, 12, 13, 17]), they are
also specific to the cubic case or lower. From the viewpoints of constrained
splines, the types of constraints are restricted to monotonicity and convexity
in these studies. As for the control theoretic splines with constraints, Maad
et al. in [19] developed a method of fitting spline surfaces with boundary
conditions which arise in the problem of toxicology and testing drugs. On
the other hand, some applications using the constrained spline surfaces of-
ten arise in various problems – such as estimation of density functions which
arises from bivariate histograms (see e.g. [4]), and skinning method which is
frequently used in CAD and CG modeling (see e.g. [31, 24]). These surfaces
have generally been constructed by employing B-spline interpolating meth-
ods. When the data is corrupted by noises, the smoothing counterpart of
this method will be desirable. Also, inequality constraints at a finite number
of isolated points are considered in [28]. To the authors’ knowledge, how-
ever, there has been no study that deals with smoothing spline surfaces of
arbitrary degree providing a framework where various types of constraints
can be incorporated as they are required. Possible constraints types are on
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points, over lines (as boundary conditions), or over region (as monotonic-
ity, convexity, or integral values), and moreover they may better be used in
combination either as equalities or inequalities. This gives a motivation for
the present study. It is an extension of our results on curves [15] to surfaces
and moreover with an intension of extending further as trivariate splines
and n-variate splines in general.

Specifically, in this study, we develop a systematic method for construct-
ing optimal smoothing and interpolating spline surfaces with equality and/or
inequality constraints. The splines are constructed by using normalized uni-
form B-splines as the basis functions. Then, various types of constraints are
formulated as linear function of the so-called control points, and the prob-
lems are reduced to convex quadratic programming problem. Following the
line of approach given in [15], the central issues here are firstly the derivation
of basic formula e.g. of partial derivatives of arbitrary degree, secondly how
to formulate various constraints in terms of control point vector originally
given as matrix, and after all to develop an algorithm in the form where the
QP problem solver as the function ‘quadprog’ in MATLAB can be readily
applied. The performance is examined by numerical examples of interpo-
lating given function with boundary conditions, approximating probability
density functions, and of smoothing operation for digital image data.

For designing surfaces x(s, t), we employ normalized, uniform B-spline
function Bk(t) of degree k as the basis functions,

(1) x(s, t) =

m1−1∑
i=−k

m2−1∑
j=−k

τi,jBk(α(s− si))Bk(β(t− tj))

on a domain D = [s0, sm1
] × [t0, tm2

] ⊂ R2. Here, τi,j are the weighting
coefficients called control points, α, β(> 0) are constants, m1, m2(> 2) are
integers, and si’s, tj ’s are equally spaced knot points with

(2) si+1 − si =
1

α
, tj+1 − tj =

1

β
.

Remark 1. We define the spline surface x(s, t) on D = [s0, sm1
]× [t0, tm2

],
not on [s−k, sm1+k] × [t−k, tm2+k] where x(s, t) takes nonzero values, since
the spline x(s, t) of degree k is constituted from k B-spline bases only on the
smaller region D. This difference arises since we are using uniform B-splines
as the basis.

We summarize some of the symbols that will be used throughout the
paper: ∇2 = ∂2

∂s2 +
∂2

∂t2 denotes the Laplacian operator, and ⊗ the Kronecker
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product. Moreover, ‘vec’ denotes the vec-function, i.e. for a matrix A =
[a1 a2 · · · an] ∈ Rm×n with ai ∈ Rm, vec A = [aT1 aT2 · · · aTn ]

T ∈ Rmn (see
e.g. [18]).

2. Optimal spline surfaces

As preliminaries, we briefly review B-splines and design method of optimal
smoothing spline surfaces using the B-splines as basis function [9].

2.1. Normalized uniform B-splines

Normalized uniform B-spline Bk(t) of degree k is defined by

(3) Bk(t) =

{
Nk−j,k(t− j) j ≤ t < j + 1, j = 0, 1, · · · , k
0 t < 0 or t ≥ k + 1,

and the basis elements Nj,k(t) (j = 0, 1, · · · , k), 0 ≤ t ≤ 1 are obtained
recursively by the following algorithm:

Algorithm 1. Let N0,0(t) ≡ 1 and, for i = 1, 2, · · · , k, compute

(4)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N0,i(t) = 1−t
i N0,i−1(t)

Nj,i(t) = i−j+t
i Nj−1,i−1(t) +

1+j−t
i Nj,i−1(t),

j = 1, · · · , i− 1

Ni,i(t) = t
iNi−1,i−1(t).

Thus, Bk(t) is a piecewise polynomial of degree k with integer knot
points and is k − 1 times continuously differentiable. It is noted that Bk(t)
for k = 0, 1, 2, · · · is normalized in the following sense

(5)

k∑
j=0

Nj,k(t) = 1, 0 ≤ t ≤ 1.

Using Algorithm 1, the basis elements Nj,k(t) can readily be computed, as
shown in Table 1 for the case of k = 0, 1, · · · , 5.

For the sake of later reference, we introduce (k+1)-dimensional vectors
Nk(t) and hk(t) as

Nk(t) =
[
N0,k(t) N1,k(t) · · · Nk,k(t)

]T
(6)

hk(t) =
[
tk tk−1 · · · 1

]T
.(7)
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Table 1: The basis elements Nj,k(t) (j = 0, 1, · · · , k) for k = 0, 1, · · · , 5
Nj,0(t) Nj,1(t) (2!)×Nj,2(t) (3!)×Nj,3(t)

j = 0 1 1− t (1− t)2 (1− t)3

j = 1 t 1 + 2t− 2t2 4− 6t2 + 3t3

j = 2 t2 1 + 3t+ 3t2 − 3t3

j = 3 t3

(4!)×Nj,4(t) (5!)×Nj,5(t)

j = 0 (1− t)4 (1− t)5

j = 1 11− 12t− 6t2 + 12t3 − 4t4 26− 50t+ 20t2 + 20t3 − 20t4 + 5t5

j = 2 11 + 12t− 6t2 − 12t3 + 6t4 66− 60t2 + 30t4 − 10t5

j = 3 1 + 4t+ 6t2 + 4t3 − 4t4 26 + 50t+ 20t2 − 20t3 − 20t4 + 10t5

j = 4 t4 1 + 5t+ 10t2 + 10t3 + 5t4 − 5t5

j = 5 t5

Then Nk(t) is written as

(8) Nk(t) = Skhk(t),

where Sk ∈ R(k+1)×(k+1) is a matrix whose i-th row consists of the coeffi-

cients of the polynomial Ni−1,k(t). When k = 3, for example, we obtain the

matrix S3 from Table 1 as

(9) S3 =
1

3!

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 0 4
−3 3 3 1
1 0 0 0

⎤
⎥⎥⎦ .

Differentiating hk(t) in (7), we get

(10) h
(1)
k (t) = Ckhk−1(t), h

(2)
k (t) = CkCk−1hk−2(t), · · ·

where Ck ∈ R(k+1)×k is defined by

(11) Ck =

⎡
⎢⎢⎢⎢⎢⎣

k
k − 1

. . .

1
0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦ .
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In (11), empty spaces denote zero entries. We write the i-th derivative h
(i)
k (t)

as

(12) h
(i)
k (t) = Ck,ihk−i(t), i = 1, 2, · · · , k,

where Ck,i ∈ R(k+1)×(k−(i−1)) is defined by

(13) Ck,i = CkCk−1 · · ·Ck−(i−1).

2.2. Optimal smoothing and interpolating surfaces

The control points τi,j in (1) may be determined by the theory of smoothing
splines. Here we briefly describe the cost functions for the optimal design.

Suppose that we are given a set of data {dij} at points (ui, vj) ∈ D as

{(ui, vj ; dij) : ui ∈ [s0, sm1
], vj ∈ [t0, tm2

], dij ∈ R,

i = 1, 2, · · · , N1, j = 1, 2, · · · , N2}(14)

and let τ ∈ RM1×M2 be the control point matrix defined by

(15) τ =

⎡
⎢⎢⎢⎣

τ−k,−k τ−k,−k+1 · · · τ−k,m2−1

τ−k+1,−k τ−k+1,−k+1 · · · τ−k+1,m2−1
...

... · · ·
...

τm1−1,−k τm1−1,−k+1 · · · τm1−1,m2−1

⎤
⎥⎥⎥⎦

with M1 = m1 + k and M2 = m2 + k. Then, given the data set in (14), a
standard smoothing spline problem is to find such a spline x(s, t) in (1) or
the associated matrix τ in (15) minimizing the following cost function

(16) J(τ) = λ

∫ sm1

s0

∫ tm2

t0

(
∇2x(s, t)

)2
dsdt+

N1∑
i=1

N2∑
j=1

wij(x(ui, vj)− dij)
2,

where ∇2 is the Laplacian, λ(> 0) is a smoothing parameter, and wij (0 ≤
wij ≤ 1) are the weights for approximation errors.

Remark 2. In (16), the smoothing parameter λ can be determined by a
method as generalized cross validation method [29], yielding a proper balance
between the smoothness of function and goodness of fit. Moreover although
a similar method was developed for the case with inequality constraint [28],
we need careful examination on applying the method to the present case
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with various types of constraints and hence is not used here. A guideline
for determining wij is, for example, based on an observation that larger wij

yields better approximation of data dij, or putting larger wij for more reliable
data dij when it contains noise, e.g. by taking wij inverse proportionally of
noise magnitude for dij.

The above problem can be solved as follows (see e.g. [9] for details): Let
b1(s) ∈ RM1 and b2(t) ∈ RM2 be

b1(s) = [Bk(α(s− s−k)) Bk(α(s− s−k+1)) · · ·
· · · Bk(α(s− sm1−1)]

T ,(17)

b2(t) = [Bk(β(t− t−k)) Bk(β(t− t−k+1)) · · ·
· · · Bk(β(t− tm2−1))]

T .(18)

Then, letting τ̂ ∈ RM1M2 be a vector defined using the vec function (cf. the
last paragraph in Section 1) as

(19) τ̂ = vec τ,

the spline function x(s, t) in (1) is expressed as

(20) x(s, t) = (b2(t)⊗ b1(s))
T τ̂ .

Using the expression in (20), the cost function J(τ) in (16) can be rewrit-
ten as a quadratic function of τ̂ ,

(21) J(τ̂) = τ̂TGτ̂ − 2τ̂T g + dTWd.

Here, the matrix G ∈ RM1M2×M1M2 and the vector g ∈ RM1M2 are given by

G = λQ+ ΓWΓT(22)

g = ΓWd,(23)

where Q ∈ RM1M2×M1M2 is a Gram matrix defined by

(24) Q =

∫ sm1

s0

∫ tm2

t0

(
∇2(b2(t)⊗ b1(s))

) (
∇2(b2(t)⊗ b1(s))

)T
dsdt.

This Gram matrix can be computed easily as shown in [9] once the rel-
evant parameters k, α, β,m1,m2 are given. Moreover, in (22), the matrix
Γ ∈ RM1M2×N1N2 is defined

(25) Γ = B̄2 ⊗ B̄1
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with matrices B̄1 ∈ RM1×N1 and B̄2 ∈ RM2×N2 defined by

B̄1 =
[
b1(u1) b1(u2) · · · b1(uN1

)
]
,

B̄2 =
[
b2(v1) b2(v2) · · · b2(vN2

)
]
.(26)

Also, W ∈ RN1N2×N1N2 and d ∈ RN1N2 are given by

W = diag{w11, w21, · · · , wN11, · · · ,
w1N2

, w2N2
, · · · , wN1N2

}
d = [ d11, d21, · · · , dN11, · · · ,

d1N2
, d2N2

, · · · , dN1N2
]T .(27)

Notice here that G ≥ 0 (i.e. positive-semidefinite) in (21) since λ >
0, Q ≥ 0 and W ≥ 0, and hence the cost J(τ̂) is a convex function. Thus,
if we design the smoothing surfaces without imposing any constraints, the
optimal solution τ̂ minimizing the cost function in (16) is given as a solution
of

(28) Gτ̂ = g.

For convenience, we summarize an algorithm for constructing optimal
smoothing spline surface x(s, t) described above.

Algorithm 2. (Smoothing spline surface without constraints) Suppose that
we are given a set of data in (14). Then, x(s, t) is constructed in the following
steps (S1)–(S6).

(S1) Set k, α, β,m1 and m2 in (1), and let M1 = m1+k and M2 = m2+k.
(S2) Set λ and wij in (16).
(S3) Compute the matrices Q in (24), Γ in (25), W in (27) and the vector

d in (27).
(S4) Compute the matrix G in (22) and the vector g in (23).
(S5) Solve (28) in terms of the control point vector τ̂ .
(S6) Compute the spline x(s, t) in (1).

On the other hand, when we are given a function f(s, t), s ∈ [s0, sm1
],

t ∈ [t0, tm2
] instead of the discrete data in (14), it can be approximated by

smoothing splines x(s, t), e.g. by using the cost function given by

J(τ) = λ

∫ sm1

s0

∫ tm2

t0

(
∇2x(s, t)

)2
dsdt

+

∫ sm1

s0

∫ tm2

t0

(x(s, t)− f(s, t))2dsdt.(29)
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Similarly as above, this cost function is rewritten as

(30) J(τ̂) = τ̂TGτ̂ − 2τ̂T g + f0,

where

G = λQ+Q0(31)

g =

∫ sm1

s0

∫ tm2

t0

f(s, t) (b2(t)⊗ b1(s)) dsdt(32)

f0 =

∫ sm1

s0

∫ tm2

t0

f2(s, t)dsdt(33)

with

Q0 =

∫ sm1

s0

∫ tm2

t0

(b2(t)⊗ b1(s)) (b2(t)⊗ b1(s))
T dsdt.(34)

It holds thatG > 0 (positive-definite) in (30) sinceQ0 > 0 (see [9]), hence the
cost J(τ̂) in (30) is strictly convex in τ̂ , yielding a unique optimal minimizer.
The corresponding smoothing spline x(s, t) is computed by following the
similar steps as in Algorithm 2.

In the case of interpolation, the problem of constructing optimal splines
is treated as that of minimizing the cost function

(35) J(τ) =

∫ sm1

s0

∫ tm2

t0

(
∇2x(s, t)

)2
dsdt

subject to the equality constraints x(ui, vj) = dij , i = 1, 2, · · · , N1, j =
1, 2, · · · , N2. The cost function becomes

(36) J(τ̂) = τ̂TQτ̂

and the constraints are written as

(37) Γτ̂ = d

with Γ and d given in (25) and (27) respectively. Obviously, the cost J(τ̂)
in (36) is also convex since Q ≥ 0.

Note that this is a special class of interpolation problems since we require
the function x(s, t) to be smooth by minimizing the cost (35) in addition to
the constraint (37) for conventional interpolation problem. Thus, this can be
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Table 2: Physical meaning of constraints, where D = [s0, sm1
] × [t0, tm2

] ⊂
R2

constraint type physical meaning example

pointwise constraint
(Sec. 3.2)

constraint on function
and its derivative value
at given point (s, t) ∈
D

x(s0, t0) = 0,
∂2

∂s∂tx(s0, t0) ≥ 0.

constraints over knot
point interval (Sec.
3.3)

constraint on function
value over an interval
as [sκ, sκ′ ] for s

x(s, t0) = s, ∀s ∈ [s0, sm1 ].

constraints over knot
point region (Sec. 3.4)

constraint on function
value over some region
[sκ, sκ′ ]× [tμ, tμ′ ] ⊂ D

x(s, t) ≥ 0, ∀(s, t) ∈ D.

constraints on integral
value (Sec. 3.5)

constraint on value of
surface volume over
domain D

∫ sm1

s0

∫ tm2

t0
x(s, t)dsdt = 1.

regarded also as a problem of smoothing spline surfaces x(s, t), and treated
in particular as the one with pointwise equality constraints as described in
the next section.

3. Optimal spline surfaces with constraints

There are various types of constraints that we need to take into account for
constructing spline surfaces. Included are pointwise constraints on x(s, t)
and its derivatives, interval constraints on x(s, t) in D, and constraints on
x(s, t) and its integral values over some domains in D, all as either equality
or inequality. Using B-splines approach, we here show that such constraints
are formulated as linear functions of the control points. In the sequel, we first
develop basic formula in Section 3.1. Then in Sections 3.2–3.5, we show that
the basic formula yield expressions for some typical constraints as shown
in Table 2 with the physical meanings and examples. These constraints can
be mixed as desired and used in wide range of applications. Based on such
developments, it is shown that the formulation for optimal spline surfaces
with constraints is very suitable for numerical solutions as convex quadratic
programming problems in Section 3.6.

3.1. Basic formula

We develop basic formula for expressing the constraints. Noting that x(s, t)
is constructed as a product of two piecewise polynomials, we examine the
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polynomial in each knot point region Dκ,μ = [sκ, sκ+1) × [tμ, tμ+1) for κ =
0, 1, · · · ,m1 − 1 and μ = 0, 1, · · · ,m2 − 1. For Dκ,μ, the function x(s, t) in
(1) is written as

(38) x(s, t) =

κ∑
i=−k+κ

μ∑
j=−k+μ

τi,jBk(α(s− si))Bk(β(t− tj)),

and, by (3), we get

(39) x(s, t) =

k∑
i=0

k∑
j=0

τκ−k+i,μ−k+jNi,k(α(s− sκ))Nj,k(β(t− tμ)).

Then, by introducing new variables u and v defined by

(40) u = α(s− sκ), v = β(t− tμ),

the region Dκ,μ is normalized to the unit region E = [0, 1)× [0, 1) for (u, v).
Now x(s, t) is expressed in terms of (u, v) as x(s, t) = x̂(u, v) with

(41) x̂(u, v) =

k∑
i=0

k∑
j=0

τκ−k+i,μ−k+jNi,k(u)Nj,k(v).

Now let Tκμ ∈ R(k+1)×(k+1) be the submatrix of τ in (15) as

(42) Tκμ =

⎡
⎢⎢⎢⎣

τκ−k,μ−k τκ−k,μ−(k−1) · · · τκ−k,μ

τκ−(k−1),μ−k τκ−(k−1),μ−(k−1) · · · τκ−(k−1),μ
...

...
...

τκ,μ−k τκ,μ−(k−1) · · · τκ,μ

⎤
⎥⎥⎥⎦ ,

then x̂(u, v) in (41) is expressed as

(43) x̂(u, v) = NT
k (u)TκμNk(v) = (Nk(v)⊗Nk(u))

T T̂κμ

with

(44) T̂κμ = vec Tκμ.

Here we used the formula vec(AXB) = (BT ⊗ A)vecX and (A ⊗ B)T =
AT ⊗ BT for Kronecker product. Moreover, by introducing the matrices



Constrained smoothing and interpolating spline surfaces 35

Eκ ∈ R(k+1)×M1 and Eμ ∈ R(k+1)×M2 as
(45)
Eκ =

[
0k+1,κ Ik+1 0k+1,M1−κ−(k+1)

]
, Eμ =

[
0k+1,μ Ik+1 0k+1,M2−μ−(k+1)

]
,

we rewrite Tκμ in terms of τ as

(46) Tκμ = EκτE
T
μ .

Then, the vector T̂κμ is written in terms of τ̂ as

(47) T̂κμ = vec(EκτE
T
μ ) = (Eμ ⊗ Eκ)τ̂

Thus, by (43), we have the following equation for x̂(u, v), and hence x(s, t)
expressed in terms of τ̂ .

(48) x(s, t) = x̂(u, v) =
[(
ET

μNk(v)
)
⊗
(
ET

κ Nk(u)
)]T

τ̂

Next, letting x(l1,l2)(s, t) be the derivatives of x(s, t) as

(49) x(l1,l2)(s, t) =
∂l1+l2

∂sl1∂tl2
x(s, t),

and x̂(l1,l2)(u, v) be defined similarly, they are related by

(50) x(l1,l2)(s, t) = αl1βl2 x̂(l1,l2)(u, v), l1, l2 = 0, 1, · · · .

Then, by (43), we have the following general expression of the derivatives
x(l1,l2)(s, t) for (s, t) ∈ Dκ,μ

(51) x(l1,l2)(s, t) = αl1βl2
(
N

(l2)
k (v)⊗N

(l1)
k (u)

)T
T̂κμ,

with u, v given as (40). Using (47), equation (48) is generalized as

(52) x(l1,l2)(s, t) = αl1βl2
[(

ET
μN

(l2)
k (v)

)
⊗
(
ET

κ N
(l1)
k (u)

)]T
τ̂ .

Note that the derivatives of Nk(t) in the above expression can be evaluated
from (8) as

(53) N
(l)
k (t) = SkCk,lhk−l(t),

where Ck,l ∈ R(k+1)×(k−(l−1)) is defined by (11).
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We are now in the position to derive various types of constraints on the
surface x(s, t).

3.2. Pointwise constraints

We consider to impose constraints on the value of x(l1,l2)(s, t) for given
point (s, t) ∈ D and l1, l2 (0 ≤ l1, l2 ≤ k). Examples of the constraint
are x(l1,l2)(s, t) = c, x(l1,l2)(s, t) ≥ c, etc.

First let (s, t) ∈ Dκ,μ for some κ (0 ≤ κ < m1) and μ (0 ≤ μ < m2),
and let u, v be defined as in (40). Then we see from (52) that any linear
constraints on the value of x(l1,l2)(s, t) is specified as a linear constraint of
the vector τ̂ . Specifically, x(l1,l2)(s, t) is written as

(54) x(l1,l2)(s, t) = aT τ̂ ,

where a ∈ RM1M2 is defined by

(55) a = αl1βl2 (a2 ⊗ a1)

and a1 ∈ RM1 and a2 ∈ RM2 are obtained from (52) as

a1 = ET
κN

(l1)
k (u) =

[
0Tκ N

(l1)
k (u)T 0TM1−κ−(k+1)

]T
,(56)

a2 = ET
μN

(l2)
k (v) =

[
0Tμ N

(l2)
k (v)T 0TM2−μ−(k+1)

]T
.(57)

The only points in D = [s0, sm1
]× [t0, tm2

] that are not covered by Dκ,μ

for any choice of κ, μ are those on the boundary (s, t) with either s = sm1
or

t = tm2
. It is obvious, however, that the function x(l1,l2)(s, t) is continuous

on D for l1, l2 = 0, 1, · · · , k−1, and the values at the boundary are obtained
readily by setting, for instance, κ = m1 − 1 and u = 1 for the boundary
s = sm1

. In this case, we only need to replace the vector a1 in (56) by

(58) a1 =
[
0TM1−(k+1) N

(l1)
k (1)T

]T
.

If we need to constrain the k-th partial derivative, e.g. x(k,l2)(s, t) at the
boundary s = sm1

, which is piecewise constant in s and discontinuous at
the knot points s = si, we regard that x(k,l2)(sm1

, t) = lims→sm1
x(k,l2)(s, t).

Then the above result based on (58) holds also for l1 = k.
Thus for any point (s, t) ∈ D, the point constraint x(l1,l2)(s, t) = c,

x(l1,l2)(s, t) ≥ c, or c ≤ x(l1,l2)(s, t) ≤ c′ for example is specified in terms of
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τ̂ as aT τ̂ = c, aT τ̂ ≥ c, or c ≤ aT τ̂ ≤ c′ respectively where the vector a

is given by (55). Typical cases of imposing pointwise constraints are at the

knot points (sκ, tμ), yielding u = 0 and v = 0. We then need the vector of the

form N
(l)
k (0) in (56) and (57), which is computed from (53). For instance,

N
(l)
k (0) for k = 3, i.e. N

(l)
3 (0), is obtained as

(59) N
(l)
3 (0)T =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
6

[
1 4 1 0

]
l = 0

1
2

[
−1 0 1 0

]
l = 1[

1 −2 1 0
]

l = 2[
−1 3 −3 1

]
l = 3.

In addition, if we impose constraints at (s0, t0) as x(s0, t0) = x0,

x(1,1)(s0, t0) = x
(11)
0 and x(2,2)(s0, t0) = x

(22)
0 , we simply write the condi-

tion as Aτ̂ = p. For the case of k = 3, the matrix A ∈ R3×M1M2 is derived

from (56) and (57) with κ, μ = 0 and (59) as

A =

⎡
⎢⎢⎢⎢⎢⎣

[
N3(0)

T 0TM2−4

]
⊗
[
N3(0)

T 0TM1−4

]
αβ
[
N

(1)
3 (0)T 0TM2−4

]
⊗
[
N

(1)
3 (0)T 0TM1−4

]
α2β2

[
N

(2)
3 (0)T 0TM2−4

]
⊗
[
N

(2)
3 (0)T 0TM1−4

]

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

[
1
6

4
6

1
6 0 · · · 0

]
⊗
[
1
6

4
6

1
6 0 · · · 0

]
αβ
[
−1

2 0 − 1
2 0 · · · 0

]
⊗
[
−1

2 0 − 1
2 0 · · · 0

]
α2β2[1 − 2 1 0 · · · 0]⊗ [1 − 2 1 0 · · · 0]

⎤
⎥⎥⎥⎦(60)

and p ∈ R3 is defined by

(61) p =
[
x0 x

(11)
0 x

(22)
0

]T
.

3.3. Constraints over knot point interval

We consider constraints on x(s, t) over a knot point interval of s or t. Such

a constraint can be used, e.g. to specify boundary conditions. Let a function

f(s) be given for s ∈ [sκ, sκ+1], and moreover let it be described using B-



38 Hiroyuki Fujioka et al.

splines as

(62) f(s) =

m1−1∑
i=−k

ciBk(α(s− si)), s ∈ [sκ, sκ+1].

Then our problem is to find the condition on τ̂ such that the spline x(s, t)
satisfies, e.g. in the case of equality constraint,

(63) x(s, tμ) = f(s) ∀s ∈ [sκ, sκ+1]

for given integer μ (0 ≤ μ ≤ m2). Thus t is taken as a knot point tμ.
For example, the cases of μ = 0 and μ = m2 may be used to specify the
boundary conditions of x(s, t) at the two boundaries of t = t0 and t = tm2

of the domain D.

Now, by (1), (40) and (41), the function x(s, tμ) is given as

x(s, tμ) = x̂(u, 0)

=

k∑
i=0

k∑
j=0

τκ−k+i,μ−k+jNi,k(u)Nj,k(0).(64)

Similarly, the function f(s), s ∈ [sκ, sκ+1] in (62) is expressed by

(65) f(s) = f̂(u) =

k∑
i=0

cκ−k+iNi,k(u).

Here if we let

(66) τi,μ−k = τi,μ−k+1 = · · · = τi,μ = ci i = κ− k, κ− k + 1, · · · , κ,

then, we have

x(s, tμ) = x̂(u, 0) =

k∑
i=0

cκ−k+iNi,k(u)

k∑
j=0

Nj,k(0)

= f̂(u) = f(s)(67)

by (5) and (65).

Thus the constraint (63) is realized by the condition (66), which is ex-
pressed in terms of τ̂ as follows. Using the matrix Tκ,μ in (42), the condition
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(66) is written as

(68) Tκ,μ = C

where C = [

k+1︷ ︸︸ ︷
c c · · · c ] and c = [ cκ−k cκ−k+1 · · · cκ ]T . Applying ‘vec’

function and using (44) and (47), this condition is expressed in terms of τ̂
as

(69) Eκμτ̂ = ĉ,

where Eκμ ∈ R(k+1)2×M1M2 is defined by

(70) Eκμ = Eμ ⊗ Eκ

and ĉ ∈ R(k+1)2 by ĉ = vec C, i.e. ĉ = 1k+1 ⊗ c with 1k+1 = [1 1 · · · 1]T ∈
Rk+1. Thus the constraint (63) is realized by the condition (69). Note that,
when the other constraint as x(s, tμ) ≥ f(s) or f(s) ≤ x(s, tμ) ≤ f ′(s) is
required instead of the equality x(s, tμ) = f(s) in (63), we only need to

replace (69) by Eκμτ̂ ≥ ĉ or ĉ ≤ Eκμτ̂ ≤ ĉ′ respectively, where the vector ĉ′

is defined similarly as ĉ.
The above arguments for one knot point interval [sκ, sκ+1] are easily

generalized to larger knot point interval, say [sκ, sζ ] for arbitrary ζ(> κ),
for a constraint as

(71) x(s, tμ) = f(s) ∀s ∈ [sκ, sζ ].

Similarly as (66), this constraint is realized by the condition τi,μ−k =
τi,μ−k+1 = · · · = τi,μ = ci i = κ− k, κ− k+1, · · · , ζ − 1. Equation (68) now

becomes T ′
κ,μ = C ′, where T ′

κ,μ = [τij ]
ζ−1,μ
i=κ−k,j=μ−k (the matrix consisting of

τij for κ− k ≤ i ≤ ζ − 1 and μ− k ≤ j ≤ μ) and C ′ = [

k+1︷ ︸︸ ︷
c′ c′ · · · c′ ] with

c′ = [ cκ−k cκ−k+1 · · · cζ−1 ]T . Here note that the matrix T ′
κ,μ is written

as a submatrix of τ in (15) as T ′
κ,μ = E′

κτEμ, where E′
κ ∈ R(k+ζ−κ)×M1 is

defined by

(72) E′
κ = [0ζ−κ+k,κ Iζ−κ+k 0ζ−κ+k,M1−ζ−k] .

Then, by vec T ′
κ,μ = vec C ′, the condition (69) is generalized to

(73) E′
κμτ̂ = ĉ′,
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where,

(74) E′
κμ = Eμ ⊗ E′

κ

and ĉ′ = vec C ′ = 1k+1 ⊗ c′.
The constraints along t axis such as x(sκ, t) = f̂(t), t ∈ [tμ, tη] (η > μ),

can be treated similarly. When f̂(t) is given by f̂(t) =
∑m2−1

i=−k ciBk(β(t−ti)),
the constraints are realized by the condition on control points as E′′

κμτ̂ = ĉ′′,

where E′′
κμ = E′

μ ⊗ Eκ with E′
μ ∈ R(k+η−μ)×M2 defined by

(75) E′
μ = [0η−μ+k,μ Iη−μ+k 0η−μ+k,M2−η−k] .

Remark 3. If we impose the constraint x(s, tμ) = f(s) on the entire interval
[s0, sm1

], then setting κ = 0, ζ = m1 yields E′
κ = IM1

in (72). Hence, the
condition is expressed as E′

κμτ̂ = ĉ′, where E′
κμ = Eμ ⊗ IM1

and ĉ′ =

1k+1⊗c′ with c′ = [c−k c−k+1 · · · cm1−1]
T . A boundary condition x(s, t0) =

c(constant) ∀s ∈ [s0, sm1
], for example, is realized by E′

κμτ̂ = ĉ′ with E′
κμ =

[I(k+1)M1
0(k+1)M1,(M2−k−1)M1

] since μ = 1 and ĉ′ = c1(k+1)M1
since ci =

c ∀i.

3.4. Constraints over knot point region

We next consider constraints over knot point region. Specifically, first we
consider an equality constraint on a basic knot point region as follows,

(76) x(s, t) = f(s, t) ∀(s, t) ∈ Dκ,μ = [sκ, sκ+1)× [tμ, tμ+1),

where we assume that f(s, t) is expressed in the same form as x(s, t) as

(77) f(s, t) =

m1−1∑
i=−k

m2−1∑
j=−k

ci,jBk(α(s− si))Bk(β(t− tj)).

The cases of x(s, t) ≥ f(s, t), x(s, t) ≤ f(s, t), etc. follow similarly. Such
a constraint may be realized by imposing the condition τi,j = ci,j for i =
κ−k, κ−k+1, · · · , κ and j = μ−k, μ−k+1, · · · , μ, which may be written
as

(78) Tκμ = Cκμ,

where Tκμ is given by (42), and Cκμ is defined similarly as Cκμ =
[ci,j ]

κ,μ
i=κ−k,j=μ−k (the matrix consisting of ci,j with κ − k ≤ i ≤ κ, μ − k ≤

j ≤ μ).
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The condition (78) guarantees that the constraint (76) be satisfied, since
for (s, t) in Dκ,μ it holds that

x(s, t) = x̂(u, v) =

k∑
i=0

k∑
j=0

τκ−k+i,μ−k+jNi,k(u)Nj,k(v)

=

k∑
i=0

k∑
j=0

cκ−k+i,μ−k+jNi,k(u)Nj,k(v)

=

m1−1∑
i=−k

m2−1∑
j=−k

ci,jBk(α(s− si))Bk(β(t− tj))

= f(s, t).(79)

We readily see that the condition (78) is expressed in terms of τ̂ analogously
as (69),

(80) Eκμτ̂ = ĉ,

with the only difference in the definition of ĉ ∈ R(k+1)2 as ĉ = vec Cκμ.
The special case of f(s, t) in the constraint (76) is that it is constant,

namely

(81) x(s, t) = c ∀(s, t) ∈ Dκ,μ.

We can realize f(s, t) = c ∀(s, t) ∈ Dκ,μ in (77) by setting τi,j = ci,j for
i = κ− k, κ− k + 1, · · · , κ and j = μ− k, μ− k + 1, · · · , μ. This is because,
for (s, t) ∈ Dκ,μ, it holds that

f(s, t) = f̂(u, v) =

k∑
i=0

k∑
j=0

cκ−k+i,μ−k+jNi,k(u)Nj,k(v)

=

k∑
i=0

k∑
j=0

cNi,k(u)Nj,k(v) = c

(
k∑

i=0

Ni,k(u)

)⎛⎝ k∑
j=0

Nj,k(v)

⎞
⎠

= c.(82)

In this case, the vector ĉ in the condition (80) becomes ĉ = c(k+1)2 , where

we introduced the notation ci = [c c · · · c]T ∈ Ri.
The above results on Dκ,μ = [sκ, sκ+1) × [tμ, tμ+1) may readily be ex-

tended to broader region [sκ, sζ)× [tμ, tη) for arbitrary ζ(> κ) and η(> μ).
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That is, the constraint

(83) x(s, t) = f(s, t) ∀(s, t) ∈ [sκ, sζ)× [tμ, tη)

is satisfied by the condition τi,j = ci,j for i = κ− k, κ− k+1, · · · , ζ − 1 and
j = μ− k, μ− k+1, · · · , η− 1. The constraint corresponding to (80) is then
derived as

(84) E′
κμτ̂ = ĉ′,

where E′
κμ ∈ R(ζ−κ+k)(η−μ+k)×M1M2 is defined by E′

κμ = E′
μ ⊗E′

κ with (72)

and (75), and ĉ′ = vec C ′
κμ with C ′

κμ = [ci,j ]
ζ−1,η−1
i=κ−k,j=μ−k.

Remark 4. As noted earlier, if an inequality constraint like x(s, t) ≥ f(s, t)
is required instead of equality constraint x(s, t) = f(s, t) in above, then we
simply replace the condition on τ̂ accordingly, e.g. replace (84) by E′

κμτ̂ ≥ ĉ′

in the case of (83). Moreover if we impose the constraint on the entire region
D = [s0, sm1

] × [t0, tm2
], then setting κ = μ = 0, ζ = m1, η = m2 yields

E′
κ = IM1

and E′
μ = IM2

in (72) and (75), and hence E′
κμ = IM1M2

in (84).
Thus x(s, t) ≥ f(s, t) ∀(s, t) ∈ D for example is realized by the condition
τ̂ ≥ ĉ′, and in particular ĉ′ = cM1M2

if f(s, t) = c (constant).

3.5. Constraints on integral value

We consider equality or inequality constraints on the integral value

(85) S =

∫ sm1

s0

∫ tm2

t0

x(s, t)dsdt,

such as S ≥ c, S = c, etc. The value S is expressed as a linear function of τ̂
as we show in below.

Recalling the expression (20), we can evaluate the integral value as

S =

∫ sm1

s0

∫ tm2

t0

(b2(t)⊗ b1(s))
T τ̂ dsdt

=

(∫ tm2

t0

b2(t)dt⊗
∫ sm1

s0

b1(s)ds

)T

τ̂(86)

or simply

(87) S = aT τ̂ .
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Here the vector a ∈ RM1M2 is defined by

(88) a = a2 ⊗ a1

with a1 ∈ RM1 and a2 ∈ RM2 given by

(89) a1 =

∫ sm1

s0

b1(s)ds, a2 =

∫ tm2

t0

b2(t)dt.

Thus the constraint on the integral value as S = c, S ≥ c, or c ≤ S ≤ c′ is
realized respectively by aT τ̂ = c, aT τ̂ ≥ c or c ≤ aT τ̂ ≤ c′.

The computations of a1 and a2 are simplified by changing the integration
variables in (89) as s′ = s− s0 and t′ = t− t0, and they are given by

(90) a1 =
1

α

∫ m1

0
b̂1(s)ds, a2 =

1

β

∫ m2

0
b̂2(t)dt,

where b̂1(s) and b̂2(t) are the non-scaled version of b1(s) and b2(t) in (17)
and (18) respectively,

b̂1(s) = [Bk(s− (−k)) Bk(s− (−k + 1)) · · · Bk(s− (m1 − 1)]T ,(91)

b̂2(t) = [Bk(t− (−k)) Bk(t− (−k + 1)) · · · Bk(t− (m2 − 1))]T .(92)

By the definition of Bk(s) in (3), the integral e.g. for a1 in (90) is expressed
as
(93)∫ m1

0
b̂1(s)ds =

[
0∑

i=0

Ii,k

1∑
i=0

Ii,k · · ·
k∑

i=0

Ii,k · · ·
k∑

i=0

Ii,k

k∑
i=1

Ii,k · · ·
k∑

i=k

Ii,k

]T
,

where Ii,k =
∫ 1
0 Ni,k(s)ds.

When k = 3, for example, a1 and a2 in (90) are obtained as

a1 =
1

24α
[1 12 23 24 · · · 24 23 12 1]T ,(94)

a2 =
1

24β
[1 12 23 24 · · · 24 23 12 1]T ,(95)

using the integral values in
∫ 1
0 N3(s)ds computed from (9) as follows.

(96)

∫ 1

0
N3(s)ds = [I0,3 I1,3 I2,3 I3,3]

T = S3

∫ 1

0
h3(s)ds =

1

24
[1 11 11 1]T .
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3.6. Constrained spline surfaces

We examined various types of constraints on x(s, t) in the form that can be
incorporated to optimal spline problems in Section 2. The optimal smoothing
or interpolating spline surfaces without constraints are obtained by minimiz-
ing the convex quadratic cost J(τ̂) in (21), (30) and (36), whereas various
types of constraints on the splines are developed in Sections 3.2–3.5 as linear
constraints on the vector τ̂ , either equality or inequality or both. Then, a
general form of problems can be written as convex quadratic programming
problems as follows:
(QP1)

(97) min
τ̂∈RM1M2

J(τ) =
1

2
τ̂TGτ̂ + gT τ̂

subject to the constraints of the form

(98) Aτ̂ = p, f1 ≤ Eτ̂ ≤ f2, h1 ≤ τ̂ ≤ h2,

for some matrices and vectors of appropriate dimensions.
Here are some remarks for setting up the constraints in (98). If we impose

an equality constraint x(s0, t0) = 1 at point (s0, t0) for example, we simply
introduce the condition aT τ̂ = 1 for the vector a computed by (55) with
l1 = l2 = 0, and similarly aT τ̂ ≥ 1 for inequality constraint x(s0, t0) ≥
1. Repeating such a process for all the required constraints based on the
formula in Sections 3.2–3.5 yields combination of conditions of the forms
Aiτ̂ = pi, Eiτ̂ ≥ fi, Ej τ̂ ≤ f ′

j , τ̂ ≥ hi, and τ̂ ≤ hj , which may be integrated
as the three types of conditions given in (98). Note here that we set the
constraints (98) so that the inconsistency in (98) is not caused among such
constraints.

A very efficient numerical algorithm, such as active set method and
interior point method, etc. is available for solving the problem (QP1) (see
e.g. [20] and [25]). We use a function ‘quadprog’ of Matlab optimization
toolbox for this purpose. When the constraints in (98) are inconsistent, this
function gives some warning that solution is infeasible.

For convenience, we summarize an algorithm of constructing constrained
smoothing spline surfaces as follows.

Algorithm 3. (Smoothing spline surface with constraints) Suppose that we
are given a set of data in (14), and constraints as described in Sections 3.2–
3.5. Then, x(s, t) with required constraints is constructed in the following
steps (S1’)–(S5’).
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(S1’) Compute the matrix G in (22) and the vector g in (23) following the
steps (S1)-(S4) in Algorithm 2.

(S2’) Set up all the equality constraints Aiτ̂ = pi in one form as Aτ̂ = p,
and similarly inequality constraints as f1 ≤ Eτ̂ ≤ f2.

(S3’) For inequality constraints on the vector τ̂ itself (e.g. Remark 4), if any,
set them up as h1 ≤ τ̂ ≤ h2.

(S4’) Solve convex QP problem (QP1) in terms of τ̂ .
(S5’) Compute x(s, t) in (1).

On the other hand, if only equality constraints are imposed on the spline
as summarized as Aτ̂ = p, we can proceed further by using Lagrange func-
tion,

(99) L(τ̂ , μ) = J(τ̂) + μT (Aτ̂ − p).

By the standard procedure, we get a system of equations in τ̂ and the La-
grange multipliers μ,

(100)

[
G AT

A 0

] [
τ̂
μ

]
=

[
−g
p

]
.

Such a case arises when we specify the boundary conditions x(s, tμ) = f(s)
as described in Section 3.3 as the equality constraint (69). Periodic spline
surfaces can also be treated in this settings [10]. For example, if the first k
columns and the last k columns are the same in the control point matrix
τ , then we get the relation x(0,l2)(s, t0) = x(0,l2)(s, tm2

) ∀s ∈ [s0, sm1
] for

l2 = 0, 1, · · · , k − 1, hence the periodicity in t when [t0, tm2
] is extended to

entire real line. Such a condition on τ is described as τĒT
1 = τĒT

2 with

(101) Ē1 = [Ik 0k,M2−k] , Ē2 = [0k,M2−k Ik] ,

or τ(Ē1− Ē2)
T = 0, which is rewritten in terms of τ̂ as the equality Eτ̂ = 0k

with E = (Ē1 − Ē2)⊗ IM1
.

4. Numerical examples

We examine the design method presented in the previous sections numeri-
cally. In all the cases, optimal smoothing splines by (16) or (35) and cubic
splines, i.e. k = 3, are used. The types of constraints used in the following
three Sections 4.1–4.3 are constraints on points (Section 3.2) and over lines
(Section 3.3) both as equalities in Section 4.1, those over region (Section 3.4)
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as inequality and integral value (Section 3.5) as equality in Section 4.2, and
finally two constraints over region (Section 3.4) both as inequalities in Sec-
tion 4.3.

4.1. Interpolation of function with boundary conditions

We construct optimal smoothing spline surfaces x(s, t) with boundary con-
ditions as an approximation of the following function f(s, t),

(102) f(s, t) = 2 + 5 exp

{
−|(s− 5)(t− 5)|

10

}
+ sin(s) cos(2t)

for (s, t) ∈ D = [s0, sm1
] × [t0, tm2

] = [0, 10] × [0, 10]. With N1 = N2 = 10,
the set of 100(= N1N2) data dij in (14) are generated by sampling the
function f(s, t) as dij = f(ui, vj), i, j = 1, 2, · · · , 10, where both ui and vj
are equally spaced in [1, 9]. The design parameters are set as α = β = 1
and m1 = m2 = 13 in (1). On designing the surface x(s, t), we impose the
pointwise constraints in Section 3.2

(103) x(ui, vj) = dij , i, j = 1, 2, · · · , 10.

Thus the surface x(s, t) exactly passes through the given set of data points,
and this is a smooth interpolation problem based on the cost given in (35).
The constraint (103) is realized by the condition of the form A0τ̂ = p0, and
moreover here we impose the following boundary conditions. Namely, at the
two boundary points of variable t (i.e. t = 0 and t = 10), we impose on the
surface x(s, t) the equality constraints over the interval [s0, sm1

](= [0, 10])
(cf. Section 3.3) as

(104) x(s, 0) = f̄1(s), x(s, 10) = f̄2(s), ∀s ∈ [0, 10].

Here, the boundary functions f̄1(s) and f̄2(s) are determined in the form
of (62) by approximating the original function f(s, t) at t = 0 and t = 10
respectively using the method in [9]. The constraints in (104) are realized
as A1τ̂ = p1 and A2τ̂ = p2, which together with A0τ̂ = p0 for (103) are put
in the form Aτ̂ = p.

Figure 1 shows the function f(s, t) in (102) (top) and the results for
constrained (middle) and unconstrained (bottom) spline surfaces with data
points (*). Here the constrained spline indicates that both (103) and (104)
are imposed, whereas none of them is used in the unconstrained case. Note
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Figure 1: Data points (*), f(s, t) in (102) (top), constrained (middle) and
unconstrained (bottom) smoothing splines.
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Figure 2: Histogram of 100 Gaussian random numbers with zero means and
1 variance.

that, for the unconstrained case, the optimal spline x(s, t) is computed us-
ing the parameters λ = 10−8 and wi = 1/N1N2 ∀i in (16). We confirm
that constrained spline not only recovers the original function f(s, t) fairly
precisely but also satisfies all the constraints in (103) and (104) unlike the
unconstrained case.

4.2. Approximation of probability density functions

Next we approximate a probability density function f(s, t) from the his-
togram of random samples. In Figure 2, we plot the histogram of 100 Gaus-
sian random numbers with zero mean and variance 1. The density function
is obtained in the region D = [s0, sm1

]× [t0, tm2
] = [−5,+5]× [−5,+5]. Then

we are given data (ui, vj ; dij), i = 1, 2, · · · , N1, j = 1, 2, · · · , N2 in (14) as
follows: First, the center of each bin in the histogram is set as data point,
i.e. (ui, vj) = (i − 6, j − 6), and hence N1 = N2 = 11. Let Hij be the value
of histogram at (ui, vj), i, j = 1, 2, · · · , 11. Then the data dij is obtained
by rescaling Hij , so that the volume covered by the histogram over D is
normalized to one, i.e. dij = Hij/100, i, j = 1, 2, · · · , 11.

Based on the cost function (16), we construct an optimal smoothing
spline surface x(s, t) with α = β = 1 and m1 = m2 = 10. The parameters λ



Constrained smoothing and interpolating spline surfaces 49

and wi are set as λ = 10−6 and wi = 1/N1N2. Also, since we are constructing
spline surface x(s, t) as approximation of 2D probability density function of
random variable taking the values only in D = [s0, sm1

] × [t0, tm2
], it is

natural that we impose the equality and inequality constraints as

(105)

∫ sm1

s0

∫ tm2

t0

x(s, t)dsdt = 1, x(s, t) ≥ 0 ∀(s, t) ∈ D,

yielding the expression of linear constraints in τ̂ by Section 3.4 and 3.5.
Specifically the first equality constraint is written in the form of aT τ̂ = 1, and
the second inequality is given simply as τ̂ ≥ 0 (see Remark 4 in Section 3.4).

Figure 3 shows the results for constrained (Figure 3 (a)) and uncon-
strained (Figure 3 (b)) smoothing spline surfaces with data points (*). We
confirmed that the surface x(s, t) in (a) approximates the original Gaussian
surface quite well while maintaining the constraints (105), which is not the
case in (b). In fact, we computed the integral values S in (85) using (87),
and the results were S = 1 for (a) as we expect and S = 1.2106 for (b).
Also, by increasing the numbers of samples, bins and basis functions, i.e.
N1, N2, α, β, we confirmed that the above approximation was improved.

4.3. Smoothing of digital image

As a practical use of smoothing surfaces with inequality constraints, we
consider a smoothing problem for digital image corrupted by noise.

Assume that we are given an image f(i, j), i = 1, 2, · · · , N1, j =
1, 2, · · · , N2, with f(i, j) denoting the gray level of the ij-th pixel. Then,
letting the noisy data (ui, vj ; dij) be given as (ui, vj) = (i, j), dij = f(i, j)
for i = 1, 2, · · · ,m1, j = 1, 2, · · · ,m2, we construct optimal spline surfaces
x(s, t) with m1 = N1 and m2 = N2.

The test image f(i, j) shown in Figure 4 (a) is taken from [27], where it
is of size 50 × 50 [pixel], i.e. N1 = N2 = 50, with the gray levels in [0,255].
Figure 4 (b) is the noisy test image, where Gaussian white noise with mean
zero and standard deviation 30 was added to f(i, j) to generate the data dij .

For constructing optimal spline surface x(s, t) for smoothing this noisy
image, we introduce the following inequality constraint over the entire do-
main.

(106) 51 ≤ x(s, t) ≤ 153 ∀(s, t) ∈ [0, 50]× [0, 50],

Note that, in actual smoothing, the constraint should be 0 ≤ x(s, t) ≤ 255,
but we restricted the levels in [51,153] for the sake of comparison between
the surfaces designed with and without such constraints. The constraints
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Figure 3: Data points (*), constrained (top) and unconstrained (bottom)
smoothing splines for histogram generated from Gaussian probability density
function f(s, t).
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Figure 4: (a) test image (bony nuclear medicine image used for analyzing a
patient), (b) test image with noises, (c) the smoothing image by constrained
smoothing spline surface, and (d) the smoothing image by unconstrained
smoothing spline surface.

in (106) are realized by the inequality 51 × 1 ≤ τ̂ ≤ 153 × 1, where 1 =
[1 1 · · · 1]T ∈ RM1M2 . The design parameters are set as λ = 10−4, α =
β = 1, wi = 1/N1N2, and an optimal smoothing spline surface x(s, t) is
constructed based on the cost function (16).

Figure 4 (c) and (d) show the results of the smoothing operation, where
(c) is the case of constrained spline surface x(s, t) with the inequality con-
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straints (106), and (d) is the case without constraints. From these results, we
observe that the present method works quite well in the presence of noises.
In particular, noises remaining in Figure 4 (d) by only the smoothing op-
eration are considerably suppressed by introducing the constraint as we see
in (c).

5. Concluding remarks

We considered the problem of designing optimal smoothing and interpolat-
ing spline surface with equality and/or inequality constraints. The splines
are constructed by using normalized uniform B-splines as the basis functions.
Then we formulated various types of equality and inequality constraints in-
cluding those at isolated point (s, t), those over knot point interval as [sκ, sζ ]
for fixed t = tμ, and those over region [sκ, sζ ] × [tμ, tη]. These constraints
are expressed as linear functions of the control points, and the problem is
reduced to quadratic programming problem. We examined performance by
numerical examples of smooth interpolation of given function with bound-
ary constraints and of approximating two dimensional probability density
function from the underlying histogram, and smoothing of noisy digital im-
age data. In all the cases, the significance of introducing the constraints was
confirmed.

Future work includes further extension of this result to higher dimen-
sional case, in particular to the treatment of splines with arbitrary number of
variables or n-variate splines for general n. In this case, important issues will
be not only the derivation of the algorithms for optimal smoothing splines
with constraints, but also a derivation of practical numerical algorithms. In
particular, since the n-variate case requires in principle to find control points
formed as an n-dimensional array, it will require more detailed studies to
obtain practical and efficient algorithm for the numerical computation.
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