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Switched systems as models for dynamic
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The goal of the paper is to make a case for the use of switched
systems as a model for the simulation of dynamic clinical trials.
Dynamic clinical trials are characterized by the use of different
treatments based on the response of a patient to the current treat-
ment. We show that switched systems are, in fact, a suitable model
for these trials.
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1. Introduction

The choice of a treatment level and its type is one of the most important,
yet difficult decisions made by a researcher in a clinical study. Dynamic
treatment regimes that provide treatment to patients only if and when the
treatment is needed and adjust the level of treatment to the patient’s need
become the most relevant for this purpose. These regimes are based on
decision rules that input patient outcomes collected during treatment and
output recommended changes in assignment of the type and level of treat-
ment. To execute this correctly a researcher needs to consistently monitor a
patient’s reaction to the treatments and adjust the treatment level and type
accordingly.

The idea behind dynamic clinical trials is based on the standard treat-
ments of difficult diseases. Drug A is given to the patient and if the patient
responds to the treatment then no further action is needed. However if the
patient fails to respond in totality to drug A then the treatment will be
switched to Drug B. In contrast to classical trials in which every subject
is assigned to a fixed treatment, dynamic trials are designed to allow the
treatment to be switched between types on the basis of patient response.
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Decision rules for how dosage level and type should vary with time are spec-
ified prior to the beginning the trial. The set of decision rules comprises the
treatment regime, [16].

There can be many rationales for switching between drug regimes. The
patient may not be responding optimally to a treatment and therefore
the treatment is changed in order to gain an improved outcome. In HIV
treatment, along with many other treatment regimes, there are toxic side
effects associated with the long term treatment, [1l 20], and the treatment
is switched in order to minimize side effects.

Dynamic treatment regimes are currently being used in designed clinical
trials. One example is the Elderly Program randomized trial [3, [5]. In this
trial patients were assigned to a dynamic treatment regime that had a goal of
minimizing the dosage of treatment needed to maintain a patient’s systolic
blood pressure (SBP) at or below a predetermined level. At the beginning
of the trial all patients were given equal dosages of antihypertensive medica-
tion. After 8 weeks, patients whose SBP was higher than the predetermined
level had their dosage doubled. After 16 weeks of trial, patients whose SBP
was still higher than the predetermined level had a second antihypertensive
medication added. After 24 weeks, patients whose SBP continued to exceed
the predetermined level had their dose of the second antihypertensive med-
ication doubled. Here the switches are made to change the dosage level or
to add a new drug.

A dynamic treatment regime was also employed in the Fast Track Pre-
vention Program, [2| [I5]. The Fast Track Prevention Program was a ran-
domized trial of a complex preventive intervention wing versus a control
wing. The intervention was designed both to prevent the occurrence of drug
use and behavior disorders in children and reduce the level of drug use and
behavior disorders if they already existed in children. A dynamic treatment
regime was used as a part of this intervention program designed to improve
family functioning. This regime was implemented as follows. At the end of
each semester, the family counsellor filled out a home visiting process mea-
sure (HVPM) consisting of six statements, which described the quality of
family functioning. Home visiting assignments for the next semester were
determined based on the total score of the HVPM. If the total score of the
HVPM was less than or equal to 8, then the family received 16 home visits
during the following semester. If the total score was in between 9 and 16,
then the the family received 8 home visits the next semester. A total score of
17 or higher resulted in an assignment of 4 home visits during the following
semester. Here the switching is based on changing the level of interaction.
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In [2I] a dynamic treatment regime for a trial involving advanced pros-
trate cancer is analyzed. In that trial there are four treatments and each
subject is randomly assigned to a treatment. Based on the response of the
subject to the assigned treatment one of the remaining three treatments was
randomly assigned. The analysis in that paper is exceptionally complete. It
sets a standard for the statistical analysis of such trials.

As we can see from these given examples, dynamic treatment regimes
are being successfully used in practice. This paper was motivated by a series
of papers by S. A. Murphy, [I6H18], on dynamic treatment regimes and is
based on the theory of switched linear systems that has received considerable
attention in the systems theory literature. Considering the knowledge of
both theories the main idea of dynamic treatments through the switched
linear systems can be seen as the process of switching between two or more
treatments types in order to improve the effect of such a treatment regime
as compared with the effect of any single treatment. In this paper we are
interested in showing that the theory of switching systems is a natural model
for dynamic clinical trials.

2. Models

We assume that when a drug is administered to a subject, the subject’s
response is measured over time. The response can be modelled as the output
of a differential equation of the form

where y is the response and x is the underlying state of the subject. Alter-
natively the response, if discrete in nature, may be modelled as

Tn4+1 = g(l“n, )\)7 Yn = h(xn)

In both cases the vector A is a vector of parameters for the particular subject.
In a simple two drug regime, a suitable model is given by

i = 6(8) Ful@(t), \) + (1= () Fala(t), Ao)

Tnt+1 = 5ngl($n<t)v /\1) + (1 - 5n)92(xn(t)7 )‘2)'

There is an extensive literature on such nonlinear systems. See for example
the papers and the references therein, [8, [13] 14].
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There are two distinct approaches to these systems in the systems lit-
erature. One approach is to treat the switching sequence, or in the case of
the stochastic models, the rate of the jump process as controls and select
the controls to optimize some criteria. The other approach is to consider
them as coming from some class and studying the properties of the system
in terms of the class as is done in [§]. In this paper we concentrate on the
latter and determine various statistical properties of the system. A major
difference between the systems theory development and what is needed for
clinical trials is that in the systems theory we are interested in the long term
behavior of the systems. In clinical trials we almost never have the privi-
lege of more than a very small number of switches and the theory must be
developed as to what can be done in a finite horizon.

In this section we provide descriptions of two possible models for dynamic
treatment regimes. For purposes of clarity and with some thought towards
application we will concentrate on systems that are formed from linear sub-
systems. The state of the system represents some physiological aspect of
interest in the trial. It is usual to impose two bounds on some measure of
the state and if either bound is violated the experiment ends, i.e. the bounds
form absorbing boundaries for the system. In systems theory we are most
often interested in the stability of the system. That is, we want the state
of the system to approach zero in some sufficiently fast manner. For appli-
cations in clinical trials the situation may, in fact, be different. We may
consider the state of zero to represent death or failure and the upper bound
to represent the absence of disease or success. In either case the stability
analysis is critical.

We consider three basic systems that cover many of the dynamic treat-
ment schedules and physiology where switching occurs.

2.1. Continuous time with Poisson switching

In this section we consider the stochastic version of the switched linear
system

(2.1) = ((t)A+ (1 —46(t))B)x
where
i(t) € {0,1}

for all t. This deterministic system was studied by Dayawansa and Martin,
[8], and they proved that the system is stable for all switching sequences
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0(t) if and only if the two systems
t=Ax and &= Bx

have a common Lyapunov function.

We focus on switching sequences generated by a Poisson process. The
control for this system is the rate of switching. The resulting system is given
by

dx = ((z(t)A+ (1 — 2(t))B)dx + Cdw

(2.2) dz = (1 — 22(t))dNy

where N, is a Poisson process of rate A and dw is a standard Brownian

motion. The Brownian motion process is added for robustness of the mod-

elling process. Note that the process dz takes on only the value of 0 or 1.
We have the following theorem from [10] which is based on [4].

Theorem 2.1. Consider the system

de = (zA+ (1 — z)B)xdt
dz = (1—-2z)dN

where N is a Poisson process with rate \. The expected value of x, Ex(t)
goes to zero for all X if and only if the matrix

B — I A
A A—-)I
has all of its eigenvalues in the open left half plane.

Again this is an asymptotic result. This model would represent the unco-
ordinated switching between treatment types.

2.2. Discrete time with random switching
Here we consider the system
(2.3) Tnt1 = (U1 A1 + -+ upAg)xn

where the u;’s are random variables with u; € {0, 1}, Z,’f:l u; = land P(u; =
1) = 1 and each 4; € GL(n, R). We note that it is not necessary for the
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probabilities to be uniformly distributed as % but it simplifies the notation
and the uniform distribution is the most commonly used distribution. This
system has been extensively studied both as a switching system and as a
model for simple dynamic clinical trials. See the papers, [9 11| 19l 22] 23]
and the references therein.

2.2.1. Stability of system. In this section we will state the following
theorem. The proof is found in [11].This theorem provides an easily checkable
criterion for almost sure convergence. Other results along these same lines
can be found in [0, [7].

Theorem 2.2. If the system
Tm+1 = (617mA1 + 62,mA2 + -+ 6k,mAk)xm

is stable for all choices of the 6;m € {0,1} and )", 8;m =1, then

are both stable.

3. Simulation

In this section we consider a continuous time system. We assume that this
represents the underlying physiology of the subject when subjected to treat-
ments A and B. In practice we would actually be sampling this system to
obtain data that would be used to determine when to switch treatments.
We consider two stable systems and our goal is to drive them away from
the origin for a few time points. This would be a fair representation of what
might be seen in the treatment of a stage 4 oncology patient. That is, we
would see initial improvement but would be unable to control the disease for
a long time period. However there are diseases in which long term survival
is possible by a series of treatment adjustments. Type II Diabetes has long
term survival and almost always involves a series of treatment adjustments.
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We will examine the behavior of the system

d

(3.1) Za(t) = (A + (1 - 5(t) Bla(?)

where

e e Olcos(t)  0.5e O sin(t)
T —2e%sin(t) e Oltcos(t)

B e~ 01 cos(t) 201t gin(t)
T | —0.5e7%gin(t) e Olcos(t) |

These systems are both stable and have the same spectra. Our goal is to
keep it as far from 0 as possible for as long as possible by switching between
the two systems & = Az and & = Bzx. We are going to consider these two
separate systems.

3.1. System 1

With 6, =0, the combined system 2z (t) = [§(t)A+ (1 — 6(t))Blz(t) will
change to the system $x(t) = Bz(t). We assume the initial condition o =
[1,0]'. Also, we are going to graph this system in order to describe the
behavior of System 1.

Then, for the System I

where
e Ol cos(t)  2e Ogin(t)

B= —.5e O gin(t) e O1tcos(t)

The graph is as in Figure 1 and is represented by the dotted line.
Based on the above we find that it starts at the point (1,0), and will
converge to the origin as e !, Therefore, the convergence is relatively fast.

3.2. System 11

Next, we will talk about the second system. For System II, we let §(t) = 1.
Then the system will be

d
%x(t) = Ax(t)
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Figure 1: The trajectories of the two systems

where
e %lcos(t)  .Be Olsin(t)
—2e %Lsin(t) e Olcos(t)

In the graph of this system in Figure 1 the initial data is the same as
for the previous system. This graph is represented by the solid line.

From the graph, we find that even though the plot will converge to the
origin at the same rate as before, e~'*. From the graph we can calculate the
switching point that will be used for the combined system.

A=

3.3. Combined system

According to the previous two systems, we would like to combine two systems
together in order to obtain a model that could be as far from 0 as possible
for a short time. Since both systems are stable and there is no common
Lyapunov function it is possible to drive the system to infinity. We do not
do that here but choose one switching point to get a short term excursion
from the origin.

Then we will introduce the strategy to combine the two systems. First
of all, we will switch to the System II. We choose to make the switch at the
point where the first system crosses the x-axis. We see that the distance from
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the origin decreases for a while and then increases until it crosses the axis
and then begins decreasing trajectory. This is not atypical of what would
be seen in an oncology patient. We switch at this point and there is an
immediate increase in distance from the origin and then when it crosses the
y-axis the combined system begins a steady decline to the origin. So this
trajectory represents one switch. With a terminal oncology patient there
might be one or possibly two more such switches. In this example the switch
occurs at the time t = .
The graph is as in Figure 2.

Figure 2: The trajectory of the switched system

It would be more realistic to replace the systems with stochastic differ-
ential equations of the form

dz = ((6()A + (1 — 6(t))B)x(t))dt + CAW (t)

where dW (t) is Brownian motion. However the goal of the paper is not to
make a complete model but to show that the switched system is a good
candidate for a model.
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4. Conclusion

In this paper we have described three versions of the switching system
methodology both in theory and in simulation. We have modelled a simpli-
fied version of a trial to show the utility of the modelling techniques. While
we have used linear models as the basis for this paper the same approach
could be used for nonlinear models of physiological processes. For the pur-
poses of simulation we however prefer the linear models due to their inherent
simplicity and their adaptability. There is a great deal known about fitting
linear models to data. A much more detailed model is being developed in,
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based on the PhD dissertation of S. Li.
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