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Stochastic volatility models with volatility
driven by fractional Brownian motions

T. E. DUNCAN, J. JAKUBOWSKI AND B. PASIK-DUNCAN

In this paper the price of a risky asset that has a stochastic volatil-
ity being a function of a fractional Brownian motion is considered.
Such models can provide a long range dependence for the volatil-
ity. The probability density function for the price at a given time
is given explicitly under some natural, verifiable conditions. An
option pricing model is also considered with some explicit results.
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1. Introduction

Some research indicates the presence of long range dependence in financial
data and in volatility dynamics (e.g. Anderson and Bollerslew [1], Casas and
Gao [2], Comte and Renault [4], [5] and Comte et al [3], Ding and Granger
[6], Fukasawa [7]). Based on these investigations a market with volatility
determined by fractional Brownian motion (FBM) is considered. Specifically
it is assumed that the asset price process X satisfies the following stochastic
equation

(1.1) dX(t) = fFWH(1)g(t)X (t) dW (1),

where X (0) is a positive constant, the process W is a standard Brownian
motion, W is a standard fractional Brownian motion with Hurst parameter
H € (0,1), f : R — RT is Borel measurable and g : R — R™ is Borel measur-
able and bounded such that the equation has a unique strong solution.
This approach is motivated by [9]. Following Jakubowski and Wisniewolski
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[9] this model is called a linear stochastic volatility model with volatility
driven by a fractional Brownian motion.

Under some natural assumptions it is verified that the distribution of the
asset price X has a probability density function that admits a probabilistic
representation (Theorem [2.1)).

Subsequently examples of such models are given where the probabilistic
representations of the asset price density function is important. The first ex-
ample is for volatility being a function of a fractional Brownian motion. The
second example that is given is the case where the volatility is a geometric
fractional Brownian motion.

In Section [3| the probabilistic representations for European call and put
option prices in some linear stochastic volatility models are given.

In this paper a similar approach as in Jakubowski and Wisniewolski [9]
is used where the probabilistic representations for the density and European
call and put option prices with a linear stochastic volatility model have been
given.

2. The density function of the asset price in a volatility
model with volatility given by fractional
Brownian motions

Consider a market defined on a complete probability space (€2, F,P) with
filtration F = (F)ejo,7), T < 00, satisfying the usual conditions and F =
Fr. Without loss of generality it is assumed that the savings account is
constant and identically equal to one. Moreover, it is assumed that the price
X of the underlying asset has a stochastic volatility given by a function of a
standard fractional Brownian motion, so the dynamics of X is given by

(2.1) dX(t) = FVH(t)g(t) X (t) dW (1),

where X (0) is a positive constant, the process W is a standard Brownian
motion, W is a standard fractional Brownian motion with the Hurst pa-
rameter H € (0,1), f:R — R* is Borel measurable and g : [0,7] — R is
Borel measurable and bounded. It is well known (e.g. Nualart [10]) that W#
has a representation

(2.2) WH (1) = / Kyt s)dT(s),
0
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where for H < 1/2

t
(2.3) Ku(t,s) = CH52_H/ (u— )T 202 du,
S

where cy = [%]E, t > s, and for H > 1/2

(2.4) Ku(t,s) = cir [(E)H—;(t g

1 1 t 3 1
— <H— 2)82_H/ w2 (v — s)H 2 du|,
S

2H }2, t>s, and W is a standard Brownian

1—2H)B(1—2H,H+1L)
motion. Assume that the stochastic basis is rich enough so that W and W
are well defined on it. Let

where cy = [(

T
(2.5) /0 FPWH (u))du < 0o, P—a.s.

If f is a continuous function, then clearly ({2.5)) is always satisfied. Since g is
bounded, then

T
(2.6) /0 PWH ) g2(w)du < 00, P —a.s.

So, under the assumption (2.5)) there exists a unique strong solution of ([2.1)
and the process X can be expressed as

(2.7) X(t) = Xoexp ( /0 FOVH (w))g ) VY ()
—5 [ POV wa)

(see, e.g., Revuz and Yor [I1]). The process X is a local martingale, so there
is no arbitrage in the market so defined.

Following [9] this model is called a linear stochastic volatility model, be-
cause the stochastic differential equation governing the asset price is
linear with respect to the asset itself with the coefficient being the stochastic
volatility driven by a fractional Brownian motion.
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Now, for a fixed ¢, the probability density function for a stochastic volatil-
ity model with volatility given by a function of FBM, which can be correlated
with the Brownian motion driving the price equation ({2.1)) is described.

Theorem 2.1. Let t € [0,T], X be given by (2.1] ., WH by (2.2 . and W,
W be correlated Brownian motions, d<W W> = p(t)dt with a measurable,
deterministic function p : [0,T] — (—=1,1). Under (2.5) the random variable
X has a probability density function hX,, satisfying

1 <1n = = [y POV (u))g(w) p(u)dW (w)

28 ) —E| o

OH

L 3h fz(WH(U))QQ(u)du)]

OH

where s > 0, ¢ is the probability density of a standard Gaussian random
variable N(0,1), and

(2.9) o = / P2 () g () (1~ p(u)

Proof. Let B be a standard Brownian motion independent of W such that
(2.10) W (t) = p(t)W(t) + /1 — p2(t)B(t).
Let V and Z be defined as follows
(211) 7= [ 507" gt VT Plat)
— 3 [ P02 @a - #
(212) V= [ 0 w)atwpt ¥ w
- % [ o
Then, by ., =InX; =InXy+V + Z. By the independence of B

and W 1t follows that Z, condltloned on ]-" , has the Gaussian distribution
N( — 2 ,UH). So to verify (2.8) it is sufﬁc1ent to note that the cumulative
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distribution function for X (¢) is

P(X(t) <s) =EE [1{Z§1n;0—‘/} ‘ftw]

—E [<P <ln = = Jy FOVH (u))g(w) p(u)dW (u)
oy

L2k f2(WH(U))92(U)dU>] |

OH

where ® denotes the cumulative distribution function of a standard Gaussian
random variable. Hence, by the Fubini theorem for nonnegative functions the
equality (2.8]) follows because

9 <1n &= JL ROV () g(u)p(w)d TV (u) + 1 f?(WH(u»g?(u)du)

—o
0s OH
1 ¢<ln§0—fJf(WH(U))g(U)p(U)dW(u)
SOH OH
N §f5f2<wH<u>>g2<u>du>.
OH

O

Remark 2.2. If W and W are independent Brownian motions (so W and
WH are independent Gaussian processes), then

(2.13) o = /0 P20 () g2 () du

and the equality ([2.8]) takes a simpler form

1 In & +0%/2
(214 () = E| (R
uo g og

So to determine the probability density of X (¢) it is sufficient to determine
the distribution of 0% = fot F2WH (u))g?(u)du, provided that is sat-
isfied. Since W# is a Gaussian process there are estimation methods to
estimate the distribution of .
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Remark 2.3. It follows directly that for H # %

corr(W(t), WH(t)) = /t Kpy(t, s)ds,
0

where Ky is given by (2.3)) for H < 1/2, and by (2.4) for H > 1/2.

Theorem allows to include two important cases of volatility, the
volatility being a function of a fractional Brownian motion and the volatility
being a function of a geometric fractional Brownian motion.

Remark 2.4. a) Taking g = 1 the problem for volatility being a function
of a fractional Brownian motion is solved, that is, f(W(t)), so

dX(t) = fFWH(1)X () dW (1),

provided (2.5)) is satisfied.

b) Let the volatility Y be a geometric fractional Brownian motion, that
is, Y satisfies the stochastic equation

(2.15) dY (t) = Y (t)(adt + bdW (1)),
and X is defined by
dX(t) =Y (t) X (t) dW (t).
Using the form of the unique solution of (2.15)) and defining

f(x) =exp(bzx), ¢(t) =exp <at — ;b2t2H> ,

by Theorem the probability density of X (¢) is obtained. Indeed, assump-
tion ([2.5) is satisfied by continuity of the sample paths.

Example 2.5. If g=1, f(z) = |z|, then (2.5)) is satisfied, and in fact the
following expectation is easily computed

(2.16) E[/Ot(Wf)Qdu} :
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3. Pricing in the model with stochastic volatility driven
by a fractional Brownian motion

Using the probabilistic representation of the density, a closed form of the
probability density function is determined in some cases. Initially, recall that
X given by (2.1)) is a local martingale. If the integrability condition

(3.1) E <exp (; /OT fz(WH(u))QZ(u)du>> < 0.

is satisfied then X is a martingale (e.g. [11]).

Note that having the probability density, a formula for the price can
be determined for many financial derivatives, indeed from Theorem [2.] it
follows immediately

Corollary 3.1. Let X be the price of an asset with dynamics given by (2.1)),
and Y be an attainable European contingent claim of the form' Y = F(Xr)
with maturity at time T. If Y € L?(P) then its price at time 0 is equal to

/ " F(u)hy, (u)du,
0

where hx, is the density of Xr.

Therefore for X the closed form solution of prices can be determined and
they can be explicitly calculated or numerical methods can be used.

In the next proposition a representation of a vanilla option price is de-
termined. These formulae generalize the famous Black-Scholes formulae as
well as a result of Hull and White for a stochastic volatility model with
uncorrelated noises [§].

Proposition 3.2. Let K >0 be fized and the price X be given by (2.1)).
Then

(3.2) E[X(t) — K]" = XoE[e" ®(d1)] — KE®(d>),
(3.3) E[K — X(t)]" = KE®(—dy) — XoE [evé(—dl)} ,
where

nXe 4V 42
dy = —& 2 dy=dy — oy,
oHg

and og and V are given by (2.9) and (2.12)), respectively.
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Proof. Recall that X(t) = Xoexp(V + Z), by (2.7), where Z is given
by (2.11)). It follows that V is F}V-measurable, so

1% K z * W
Xoe'E <X06V_e> ‘]—“t = 1.

Since Z, conditioned on ]-";W, has the Gaussian distribution N(—%, o%) (by
independence of B and W) using some classical results it follows that

K —Ine V4% X Y%
X()CVX V@( nK 2 —X06V<P nK 2

E(K — X))t =E

I=E

0€ OH oH
= KE®(—dy) — XoE [eV®(—dy)] .

By the same arguments it follows that

E(X; — K)*
K\
— \4 4 W
=E | Xpe E((e _X0€V> ‘ft )]
=E

OH

Xo O-%I XO U?—I
XO€V<I> <1HK+V+2>—X06V K (I)<1HK+V_2>]

= XoE [eV®(dy)] — KE®(ds).
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