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Stochastic volatility models with volatility
driven by fractional Brownian motions

T. E. Duncan, J. Jakubowski and B. Pasik-Duncan

In this paper the price of a risky asset that has a stochastic volatil-
ity being a function of a fractional Brownian motion is considered.
Such models can provide a long range dependence for the volatil-
ity. The probability density function for the price at a given time
is given explicitly under some natural, verifiable conditions. An
option pricing model is also considered with some explicit results.
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1. Introduction

Some research indicates the presence of long range dependence in financial
data and in volatility dynamics (e.g. Anderson and Bollerslew [1], Casas and
Gao [2], Comte and Renault [4], [5] and Comte et al [3], Ding and Granger
[6], Fukasawa [7]). Based on these investigations a market with volatility
determined by fractional Brownian motion (FBM) is considered. Specifically
it is assumed that the asset price process X satisfies the following stochastic
equation

(1.1) dX(t) = f(WH(t))g(t)X(t) dW (t),

where X(0) is a positive constant, the process W is a standard Brownian
motion,WH is a standard fractional Brownian motion with Hurst parameter
H ∈ (0, 1), f : R→ R+ is Borel measurable and g : R→ R+ is Borel measur-
able and bounded such that the equation (1.1) has a unique strong solution.
This approach is motivated by [9]. Following Jakubowski and Wiśniewolski
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[9] this model (1.1) is called a linear stochastic volatility model with volatility
driven by a fractional Brownian motion.

Under some natural assumptions it is verified that the distribution of the
asset price X has a probability density function that admits a probabilistic
representation (Theorem 2.1).

Subsequently examples of such models are given where the probabilistic
representations of the asset price density function is important. The first ex-
ample is for volatility being a function of a fractional Brownian motion. The
second example that is given is the case where the volatility is a geometric
fractional Brownian motion.

In Section 3 the probabilistic representations for European call and put
option prices in some linear stochastic volatility models are given.

In this paper a similar approach as in Jakubowski and Wiśniewolski [9]
is used where the probabilistic representations for the density and European
call and put option prices with a linear stochastic volatility model have been
given.

2. The density function of the asset price in a volatility
model with volatility given by fractional

Brownian motions

Consider a market defined on a complete probability space (Ω,F ,P) with
filtration F = (Ft)t∈[0,T ], T <∞, satisfying the usual conditions and F =
FT . Without loss of generality it is assumed that the savings account is
constant and identically equal to one. Moreover, it is assumed that the price
X of the underlying asset has a stochastic volatility given by a function of a
standard fractional Brownian motion, so the dynamics of X is given by

dX(t) = f(WH(t))g(t)X(t) dW (t),(2.1)

where X(0) is a positive constant, the process W is a standard Brownian
motion, WH is a standard fractional Brownian motion with the Hurst pa-
rameter H ∈ (0, 1), f : R→ R+ is Borel measurable and g : [0, T ]→ R+ is
Borel measurable and bounded. It is well known (e.g. Nualart [10]) thatWH

has a representation

WH(t) =

∫ t

0
KH(t, s)dŴ (s),(2.2)
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where for H < 1/2

KH(t, s) = cHs
1

2
−H
∫ t

s
(u− s)H−

3

2uH−
1

2du,(2.3)

where cH =
[

H(2H−1)
β(2−2H,H− 1

2
)

] 1

2 , t > s, and for H > 1/2

KH(t, s) = cH

[(
t

s

)H− 1

2

(t− s)H−
1

2(2.4)

−
(
H − 1

2

)
s

1

2
−H
∫ t

s
uH−

3

2 (u− s)H−
1

2du

]
,

where cH =
[

2H
(1−2H)β(1−2H,H+ 1

2
)

] 1

2 , t > s, and Ŵ is a standard Brownian

motion. Assume that the stochastic basis is rich enough so that W and Ŵ
are well defined on it. Let∫ T

0
f2(WH(u))du <∞, P− a.s.(2.5)

If f is a continuous function, then clearly (2.5) is always satisfied. Since g is
bounded, then ∫ T

0
f2(WH(u))g2(u)du <∞, P− a.s.(2.6)

So, under the assumption (2.5) there exists a unique strong solution of (2.1)
and the process X can be expressed as

X(t) = X0 exp

(∫ t

0
f(WH(u))g(u)dW (u)(2.7)

− 1

2

∫ t

0
f2(WH(u))g2(u)du

)
(see, e.g., Revuz and Yor [11]). The process X is a local martingale, so there
is no arbitrage in the market so defined.

Following [9] this model is called a linear stochastic volatility model, be-
cause the stochastic differential equation (2.1) governing the asset price is
linear with respect to the asset itself with the coefficient being the stochastic
volatility driven by a fractional Brownian motion.
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Now, for a fixed t, the probability density function for a stochastic volatil-
ity model with volatility given by a function of FBM, which can be correlated
with the Brownian motion driving the price equation (2.1) is described.

Theorem 2.1. Let t ∈ [0, T ], X be given by (2.1), WH by (2.2) and W ,
Ŵ be correlated Brownian motions, d

〈
W, Ŵ

〉
t

= ρ(t)dt with a measurable,
deterministic function ρ : [0, T ]→ (−1, 1). Under (2.5) the random variable
Xt has a probability density function hXt

satisfying

hX(t)(s) = E
[

1

sσH
ϕ

(
ln s

X0
−
∫ t
0 f(WH(u))g(u)ρ(u)dŴ (u)

σH
(2.8)

+
1
2

∫ t
0 f

2(WH(u))g2(u)du

σH

)]
,

where s > 0, ϕ is the probability density of a standard Gaussian random
variable N(0, 1), and

σ2H =

∫ t

0
f2(WH(u))g2(u)(1− ρ2(u))du.(2.9)

Proof. Let B be a standard Brownian motion independent of Ŵ such that

(2.10) W (t) = ρ(t)Ŵ (t) +
√

1− ρ2(t)B(t).

Let V and Z be defined as follows

Z =

∫ t

0
f(WH(u))g(u)

√
(1− ρ2(u))dB(u)(2.11)

− 1

2

∫ t

0
f2(WH(u))g2(u)(1− ρ2(u))du,

V =

∫ t

0
f(WH(u))g(u)ρ(u)dŴ (u)(2.12)

− 1

2

∫ t

0
f2(WH(u))g2(u)ρ2(u)du,

Then, by (2.7), Y := lnXt = lnX0 + V + Z. By the independence of B
and Ŵ it follows that Z, conditioned on FŴt , has the Gaussian distribution
N
(
− σ2

H

2 , σ
2
H

)
. So to verify (2.8) it is sufficient to note that the cumulative
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distribution function for X(t) is

P(X(t) ≤ s) = EE
[
1{
Z≤ln s

X0
−V

}∣∣∣FŴt ]
= E

[
Φ

(
ln s

X0
−
∫ t
0 f(WH(u))g(u)ρ(u)dŴ (u)

σH

+
1
2

∫ t
0 f

2(WH(u))g2(u)du

σH

)]
,

where Φ denotes the cumulative distribution function of a standard Gaussian
random variable. Hence, by the Fubini theorem for nonnegative functions the
equality (2.8) follows because

∂

∂s
Φ

(
ln s

X0
−
∫ t
0 f(WH(u))g(u)ρ(u)dŴ (u) + 1

2

∫ t
0 f

2(WH(u))g2(u)du

σH

)
=

1

sσH
φ

(
ln s

X0
−
∫ t
0 f(WH(u))g(u)ρ(u)dŴ (u)

σH

+
1
2

∫ t
0 f

2(WH(u))g2(u)du

σH

)
.

�

Remark 2.2. If W and Ŵ are independent Brownian motions (so W and
WH are independent Gaussian processes), then

σ2H =

∫ t

0
f2(WH(u))g2(u)du(2.13)

and the equality (2.8) takes a simpler form

(2.14) hX(t)(u) = E
[

1

uσH
ϕ

(
ln u

X0
+ σ2H/2

σH

)]
,

So to determine the probability density of X(t) it is sufficient to determine
the distribution of σ2H =

∫ t
0 f

2(WH(u))g2(u)du, provided that (2.5) is sat-
isfied. Since WH is a Gaussian process there are estimation methods to
estimate the distribution of σ2H .
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Remark 2.3. It follows directly that for H 6= 1
2

corr(W (t),WH(t)) =

∫ t

0
KH(t, s)ds,

where KH is given by (2.3) for H < 1/2, and by (2.4) for H > 1/2.

Theorem 2.1 allows to include two important cases of volatility, the
volatility being a function of a fractional Brownian motion and the volatility
being a function of a geometric fractional Brownian motion.

Remark 2.4. a) Taking g ≡ 1 the problem for volatility being a function
of a fractional Brownian motion is solved, that is, f(WH(t)), so

dX(t) = f(WH(t))X(t) dW (t),

provided (2.5) is satisfied.

b) Let the volatility Y be a geometric fractional Brownian motion, that
is, Y satisfies the stochastic equation

(2.15) dY (t) = Y (t)(adt+ bdWH(t)),

and X is defined by

dX(t) = Y (t)X(t) dW (t).

Using the form of the unique solution of (2.15) and defining

f(x) = exp(bx), g(t) = exp

(
at− 1

2
b2t2H

)
,

by Theorem 2.1, the probability density of X(t) is obtained. Indeed, assump-
tion (2.5) is satisfied by continuity of the sample paths.

Example 2.5. If g ≡ 1, f(x) = |x|, then (2.5) is satisfied, and in fact the
following expectation is easily computed

(2.16) E
[ ∫ t

0
(WH

u )2du

]
.
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3. Pricing in the model with stochastic volatility driven
by a fractional Brownian motion

Using the probabilistic representation of the density, a closed form of the
probability density function is determined in some cases. Initially, recall that
X given by (2.1) is a local martingale. If the integrability condition

E
(

exp

(
1

2

∫ T

0
f2(WH(u))g2(u)du

))
<∞.(3.1)

is satisfied then X is a martingale (e.g. [11]).
Note that having the probability density, a formula for the price can

be determined for many financial derivatives, indeed from Theorem 2.1 it
follows immediately

Corollary 3.1. Let X be the price of an asset with dynamics given by (2.1),
and Y be an attainable European contingent claim of the form Y = F (XT )
with maturity at time T . If Y ∈ L2(P ) then its price at time 0 is equal to∫ ∞

0
F (u)hXT

(u)du,

where hXT
is the density of XT .

Therefore for X the closed form solution of prices can be determined and
they can be explicitly calculated or numerical methods can be used.

In the next proposition a representation of a vanilla option price is de-
termined. These formulae generalize the famous Black-Scholes formulae as
well as a result of Hull and White for a stochastic volatility model with
uncorrelated noises [8].

Proposition 3.2. Let K > 0 be fixed and the price X be given by (2.1).
Then

E[X(t)−K]+ = X0E
[
eV Φ(d1)

]
−KEΦ(d2),(3.2)

E[K −X(t)]+ = KEΦ(−d2)−X0E
[
eV Φ(−d1)

]
,(3.3)

where

d1 =
ln X0

K + V + σ2
H

2

σH
, d2 = d1 − σH ,

and σH and V are given by (2.9) and (2.12), respectively.
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Proof. Recall that X(t) = X0 exp(V + Z), by (2.7), where Z is given
by (2.11). It follows that V is FŴt -measurable, so

E(K −Xt)
+ = E

[
X0e

V E

((
K

X0eV
− eZ

)+ ∣∣∣FŴt
)]

:= I.

Since Z, conditioned on FŴt , has the Gaussian distribution N(−σ2
H

2 , σ
2
H) (by

independence of B and Ŵ ) using some classical results it follows that

I = E

[
X0e

V K

X0eV
Φ

(
− ln X0

K − V + σ2
H

2

σH

)
−X0e

V Φ

(
− ln X0

K − V −
σ2
H

2

σH

)]
= KEΦ(−d2)−X0E

[
eV Φ(−d1)

]
.

By the same arguments it follows that

E(Xt −K)+

= E

[
X0e

V E

((
eZ − K

X0eV

)+ ∣∣∣FŴt
)]

= E

[
X0e

V Φ

(
ln X0

K + V + σ2
H

2

σH

)
−X0e

V K

X0eV
Φ

(
ln X0

K + V − σ2
H

2

σH

)]
= X0E

[
eV Φ(d1)

]
−KEΦ(d2).

�
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