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Active disturbance rejection control:
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This paper articulates, from a theoretical perspective, a new emerg-
ing control technology, known as active disturbance rejection con-
trol to this day. Three cornerstones toward building the founda-
tion of active disturbance rejection control, namely, the track-
ing differentiator, the extended state observer, and the extended
state observer based feedback are expounded separately. The paper
tries to present relatively comprehensive overview about origin,
idea, principle, development, possible limitations, as well as some
unsolved problems for this viable PID alternative control technol-
ogy.
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1. Introduction

Disturbance rejection is a different paradigm in control theory since the
inception of the modern control theory in the later years of 1950s, seeded in
[43] where it is stated that the control operation “must not be influenced by
internal and external disturbances” [43, p.228]. The tradeoff between math-
ematical rigor by model-based control theory and practicability by model-
free engineering applications has been a constantly disputed issue in control
community. On the one hand, we have mountains of papers, books, mono-
graphes published every year, and on the other hand, the control engineers
are nowhere to find, given the difficulty of building (accurate) dynamic model
for the system to be controlled, a simple, model free, easy tuning, better
performance control technology more than proportional-integral-derivative
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(PID) control. Actually, it is indicated in [42] (see also [5]) that “98% of
the control loops in the pulp and paper industries are controlled by single-
input single output PI controllers and that in process control applications,
more than 95% of the controllers are of the PID type”. This awkward coex-
istence of huge modern control theories on the one hand and a primitive
control technology that has been dominating engineering applications for
one century on the other pushed Jingqing Han, a control scientist at the
Chinese Academy of Sciences to propose active disturbance rejection control
(ADRC), as an alternative of PID. This is because PID has the advantage
of model free nature whereas most parts of modern control theory are based
on mathematical models. By model-based control theory, it is hard to cross
the boundaries such as time variance, nonlinearity, and uncertainty created
mainly by the limitations of mathematics. However, there are four basic
limitations for PID in practice to accommodate the liability in the digital
processors according to [34]: a) Setpoint is often given as a step function,
not appropriate for most dynamics systems; b) PID is often implemented
without the D part because of the noise sensitivity; c) weighted sum of the
three terms in PID may not be the best control law based on the current and
the past of the error and its rate of change; d) The integral term introduces
problems such as saturation and reduced stability margin.

To address this problem, Han would seek solution from the seed idea of
disturbance rejection imbedded in [43]. Consider stabilization for the follow-
ing second order Newton system:

(1.1)


ẋ1(t) = x2(t),

ẋ2(t) = f(x1(t), x2(t), d(t), t) + u(t),

y(t) = x1(t),

where u(t) is the control input, y(t) is the measured output, d(t) is the exter-
nal disturbance, and f(·) is an unknown function which contains unmodelled
dynamics of the system or most possibly, the internal and external distur-
bance discussed in [43]. Introducing ADRC is by no means saying that there
is no way other than ADRC to deal with system (1.1). For simplicity, we
just take state feedback instead of output feedback control to stabilize sys-
tem (1.1) by sliding model control (SMC), a powerful robust control in
modern control theory. Suppose that |f(·)| ≤M which is standard because
in any sense f(·) represents somehow a “perturbation”, otherwise, any sta-
bilizing controller needs infinite gain which is not realistic. In SMC, we
need first choose a manifold called “sliding surface” which is chosen here
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as S = {(x1, x2) ∈ R2|ax1 + x2 = 0}, a > 0, a closed subspace in the state
space R2. On the sliding surface, since ẋ1(t) = x2(t), we have

ẋ1(t) = −ax1(t)⇒ x1(t)→ 0 and hence x2(t) = −ax1(t)→ 0 as t→∞,

where a > 0 is seen to regulate the convergence speed on the sliding surface:
the larger a is, the faster the convergence. Design the state feedback as

(1.2) u(t) = −ax2(t)−Ksign(s(t)), s(t) = ax1(t) + x2(t), K > M,

where s(t) = ax1(t) + x2(t) is, by abuse of terminology, also the sliding sur-
face. As a result, s(t) satisfies the “finite reaching condition”:

ṡ(t)s(t) ≤ −(K −M)|s(t)|,

and therefore |s(t)| ≤ |s(0)| − (K −M)t. This means that s(t) = 0 for some
t > t0 where t0 depends on the initial condition.

At the moment, everything proceeds beautifully: The control law (1.2)
meets the standard of mathematical “beauty” where the control is so robust
and the convergence proof is a piece of cake even for beginners. However,
subject the control law (1.2) to scrutiny, we find that the control gain K
must satisfy K > M , that is, the control law (1.2) focuses on the worst case
scenario which makes the controller design rather conservative.

Now it is Han who came to the scene. Han just let a(t) = f(x1(t), x2(t),
d(t), t) and system (1.1) becomes

(1.3)


ẋ1(t) = x2(t),

ẋ2(t) = a(t) + u(t),

y(t) = x1(t).

A flash of insight arises ([29]): system (1.3) is exactly observable because it
is trivially seen that (y(t), u(t)) ≡ 0, t ∈ [0, T ]⇒ a(t) = 0, t ∈ [0, T ]; (x1(0),
x2(0)) = 0 (see, e.g., [6, p.5, Definition 1.2]). This means that y(t) contains
all information of a(t)! Why not use y(t) to estimate a(t)?, was perhaps the
question in Han’s mind. If we can, for instance, y(t)⇒ â(t) ≈ a(t), then we
can cancel a(t) by designing u(t) = −â(t) + u0(t) and system (1.3) amounts
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to, approximately of course,

(1.4)


ẋ1(t) = x2(t),

ẋ2(t) = u0(t),

y(t) = x1(t).

The nature of the problem is therefore changed now. System (1.4) is just
a linear time invariant system for which we have many ways to deal with
it. This is likewise feedforward control yet to use output to “transform” the
system first. In a different point of view, this part is called the “rejector”
of disturbance ([11]). It seems that a further smarter way would be hardly
to find anymore because the control u(t) = −â(t) + u0(t) adopts a strategy
of estimation/cancellation, much alike our experience in dealing with uncer-
tainty in daily life. One can imagine and it actually is, one of the most energy
saving control strategies as confirmed in [57].

This paradigm-shift is revolutionary for which Han wrote in [29] that “to
improve accuracy, it is sometimes necessary to estimate a(t) but it is not
necessary to know the nonlinear relationship between a(t) and the state vari-
ables”. The idea breaks down the garden gates from time varying dynamics
(e.g., f(x1, x2, d, t) = g1(t)x1 + g2(t)x2), nonlinearity (e.g., f(x1, x2, d, t) =
x2

1 + x3
2), and “internal and external disturbance” (e.g., f(x1, x2, d, t) = x2

1 +
x2

2 + ∆f(x1, x2) + d). The problem now becomes: how can we realize y(t)⇒
â(t) ≈ a(t)?

Han told us in [31] that it is not only possible but also realizable sys-
tematically. This is made possible by the so called extended state observer
(ESO). Firstly, Han considered a(t) to be an extended state variable and
changed system (1.3) to

(1.5)



ẋ1(t) = x2(t),

ẋ2(t) = a(t) + u(t),

ȧ(t) = a′(t),

y(t) = x1(t).
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A linear observer for system (1.5), or equivalently linear ESO for system (1.3)
can be designed as

(1.6)


˙̂x1(t) = x̂2(t) + a1(x̂1(t)− y(t)),

˙̂x2(t) = x̂3(t) + u(t) + a2(x̂1(t)− y(t)),

˙̂x3(t) = a3(x̂1(t)− y(t)),

where we can choose ai, i = 1, 2, 3 so that

(1.7) x̂1(t)→ x1(t), x̂2(t)→ x2(t), x̂3(t)→ a(t) as t→∞.

It is seen that we have obtained estimation x̂3(t) ≈ a(t) from y(t)! Perhaps
a better way to avoid aesthetic fatigue for readers is to leave the verification
of (1.7) for (1.6) to give a much simpler example than (1.5). Consider the
one-dimensional system

(1.8)

{
ẋ(t) = a(t) + u(t),

y(t) = x(t),

where for first order system we have no other choice more than output to
be identical to state. Likewise (1.6), a linear ESO can be designed as

(1.9)

{
˙̂x(t) = â(t) + u(t) + a1(x̂(t)− x(t)),

˙̂a(t) = a2(x̂(t)− x(t)).

Set x̃(t) = x̂(t)− x(t) and ã(t) = â(t)− a(t) to be the errors. Then

(1.10)

{
˙̃x(t) = ã(t) + a1x̃(t),

˙̃a(t) = a2x̃(t)− ȧ(t).

We solve system (1.10) to obtain

(1.11) (x̃(t), ã(t)) = eAt(x̃(0), ã(0)) +

∫ t

0
eA(t−s)Bȧ(s)ds,

where

(1.12) A =

(
a1 1
a2 0

)
, B =

(
0
−1

)
.
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Definition 1.1. The ESO (1.9) is said to be convergent, if for any given
δ > 0, there exists a Tδ > 0 such that

|x̃(t)| = |x̂(t)− x(t)| ≤ δ and |ã(t)| = |â(t)− a(t)| ≤ δ, ∀ t > Tδ.

Now we investigate when ESO (1.9) is convergent. Choose a1 and a2 so
that eAt decays as fast as desired with conjugate pair roots:

|λ−A| = λ2 − a1λ− a2 = (λ+ ω + ω0i)(λ+ ω − ω0i)(1.13)

⇒ a1 = −2ω, a2 = −ω2 − ω2
0,

where ω0 and ω are positive numbers. An obvious fact that

(1.14) ω →∞ if and only a1 → −∞, a2 → −∞

will be used for other purpose later. With ω0 6= 0, we have

eAt =
1

2ω0i

(
1 1

ω − ω0i ω + ω0i

)(
e−ωt−ω0it 0

0 e−ωt+ω0it

)(
ω + ω0i −1
−ω + ω0i 1

)(1.15)

=
1

2ω0i

(
(ω + ω0i)e

−ωt−ω0it − (ω − ω0i)e
−ωt+ω0it −e−ωt−ω0it + e−ωt+ω0it

(ω2 + ω2
0)e

−ωt−ω0it − (ω2 + ω2
0)e

−ωt+ω0it −(ω − ω0i)e
−ωt−ω0it + (ω + ω0i)e

−ωt+ω0it

)
,

eAtB =
1

2ω0i

(
−e−ωt−ω0it + e−ωt+ω0it

−(ω − ω0i)e
−ωt−ω0it + (ω + ω0i)e

−ωt+ω0it

)
.

Choosing particularly that

(1.16) ω0 ≥ ω,

we arrive at

(1.17) ‖eAt‖ ≤ Lωe−ωt and ‖eAtB‖ ≤ Le−ωt

for some constant L > 0 independent of ω. When ω = ω0 = 1/ε, it leads to
the high gain design

(1.18) a1 = −2

ε
, a2 = − 2

ε2
.

When we choose two different real roots,

|λ−A| = λ2 − a1λ− a2 = (λ+ ω1)(λ+ ω2)(1.19)

⇒ a1 = −ω1 − ω2, a2 = −ω1ω2,
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where real ωi, i = 1, 2 are positive numbers. It also leads to (1.14) alike:

(1.20) ω = min{ω1, ω2} → ∞ if and only a1 → −∞, a2 → −∞,

and to high gain kind design (1.18) when ω1 = ω2 = 1/ε. Now
(1.21)

eAt = −ω1 + ω2

ω2 − ω1

(
ω2

ω1+ω2
e−ω1t + ω1

ω1+ω2
e−ω2t e−ω1t + e−ω2t

− ω1ω2
ω1+ω2

e−ω1t + ω1ω2
ω1+ω2

e−ω2t + ω1
ω1+ω2

e−ω1t + ω2
ω1+ω2

e−ω2t

)
,

eAtB = −ω1 + ω2

ω2 − ω1

(
−e−ω1t − e−ω2t

− ω1

ω1+ω2
e−ω1t + ω2

ω1+ω2
e−ω2t

)
.

We also have (1.17) in most of the cases where |ω2 − ω1| = c with c being a
fixed constant restraining the possibility like ω2 = ω1 + e−ω1 . Now suppose
that

(1.22) |ȧ(t)| ≤M, ∀ t ≥ 0.

Then the solution of (1.11) is estimated as

(1.23) ‖(x̃(t), ã(t))‖ ≤ ωe−ωt‖(x̃(0), ã(0))‖+
L

ω
M.

The first term of (1.23) tends to zero as t→∞ and the second term can
be as small as desired by setting ω to be large. In other words, to make
ESO (1.9) be convergent, ω must be chosen large. This is the meaning of
the high gain. The sufficiency is obvious from (1.23), the necessity can be
checked directly from (1.11) for special signal like

a(t) = nt− n
(
n+

i− 1

n

)
, t ∈

[
n+

i− 1

n
, n+

i

n

)
,

i = 1, 2, . . . , n, n = 1, 2, . . . ,

for which |a(t)| ≤ 1 but ȧ(t) = n in t ∈ (n, n+ 1). We leave reader for this
verification as an exercise.

Remark 1.1. The boundedness of derivative ȧ(t) obviously seen from (1.11)
can be relaxed up to a(N)(t) to be bounded for some finite positive integer
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N . In this case the ESO (1.9) can be changed into

(1.24)


˙̂x(t) = â1(t) + u(t) + a1(x̂(t)− x(t)),

˙̂ai(t) = âi+1(t) + ai(x̂(t)− x(t)), i = 2, 3, · · · , N − 1.

We can also prove that x̂(t)− x(t)→ 0, âi(t)− a(i−1)(t)→ 0, i = 1, 2, . . . ,
N − 1 by properly choosing ai, i = 1, 2, · · ·N − 1.

To sum up, we can say now that under condition (1.22), the ESO (1.9)
is convergent, that is,

(1.25) x̂(t)→ x(t), â(t)→ a(t) as t→∞, ω →∞.

A remarkable finding beyond what is usual from (1.23) is that the peak-
ing phenomena occurs at t = 0 only with large ω and nonzero (x̃(0), ã(0)).
Finally, to stabilize system (1.8), we simply cancel the disturbance by using
the ESO-based feedback:

(1.26) u(t) = −â(t)− x(t),

where the first term is used to cancel (compensate) the disturbance and the
second term is a standard stabilizing controller for the “transformed” system
ẋ(t) = u(t). The closed-loop of (1.8) under the feedback (1.26) becomes

(1.27)


ẋ(t) = −x(t)− â(t) + a(t),

˙̂x(t) = −x(t) + a1(x̂(t)− x(t)),

˙̂a(t) = a2(x̂(t)− x(t)),

which is equivalent, by setting x̃(t) = x̂(t)− x(t) and ã(t) = â(t)− a(t), to

(1.28)


ẋ(t) = −x(t)− ã(t),

˙̃x(t) = ã(t) + a1x̃(t),

˙̃a(t) = a2x̃(t)− ȧ(t).

Since (x̃(t), ã(t))→ 0 as ω →∞ and t→∞, we have immediately that

x(t)→ 0 as t→∞, ω →∞,

or equivalently

(1.29) x(t)→ 0, x̂(t)→ 0, â(t)− a(t)→ 0 as t→∞, ω →∞.
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This is the well known separation principle in linear system theory. So,
the whole idea not only works but also works in an extremely wise way of
estimating and cancelling the disturbance in real time.

Certainly, as any other methods, some limitations likely exist in an oth-
erwise perfect setting of ESO in the sense:

• The high gain is resorted in ESO as shown by (1.14) to suppress the
effect of the derivative of disturbance;

• the derivative of disturbance as shown in (1.22) is supposed to be
bounded (or some finite order of derivative is bounded as explained in
Remark 1.1) as well as from (1.5) where a(t) is regarded as an extended
state variable.

The second problem can be resolved by time-varying gain instead of
constant high gain. Suppose for instance that the derivative of a(t) satisfies

|ȧ(t)| ≤ B0 +Bebt, b > 0.

Then let a1 and a2 be replaced by a1r(t) and a2r(t) with r(t) = eβt, β > b
in (1.27) and let {

η1(t) = r(t)(x̂(t)− x(t)),

η2(t) = â(t)− a(t).

Then

(1.30)

{
η̇1(t) = r(t)(η2(t)− a1η1(t)) + 2aη1(t),

η̇2(t) = −a2r(t)η1(t)− ḋ(t).

Let V (x1, x2) = (x1, x2)P (x1, x2)> with P being the positive definite matrix
solution of the Lyapunov function PA+A>P = −I2×2 where I2×2 is the 2-
dimensional identity matrix. We have

dV (η1(t), η2(t))

dt
≤ −eat‖(η1(t), η2(t))‖2 + 4aλmax(P )‖(η1(t), η2(t))‖2

+ 2λmax(P )‖(η1(t), η2(t))‖(B0 +Bebt),

by which we have arrived at limt→∞ V (η1(t), η2(t)) = 0 and therefore once
again (1.29). Notice that although the gain is increasing to infinity in ESO
(1.30), the control (1.26) is bounded: u(t) = −â(t)− x(t)→ a(t) as t→∞.
This is very different from another well known control method known as
high gain control where the high gain is also required in control ([39, 44])
as well as in observer, and will be explained in subsequent sections.
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One may argue at this moment that the derivative ȧ(t) in (1.28) is an
manmade problem because in ESO (1.27), we have no ȧ(t). An alternative
way is to change (1.11) as

(x̃(t), ã(t))(1.31)

= eAt(x̃(0), ã(0)) +

∫ t

0
eA(t−s)Bȧ(s)ds

= eAt(x̃(0), ã(0)) +Ba(t)− eAtBa(0) +

∫ t

0
AeA(t−s)Ba(s)ds

≈ Ba(t) +

∫ t

0
AeA(t−s)Ba(s)ds as t→∞,

from which, however, we are not able to obtain convergence.
The first problem is possibly resolved by designing a different type of

ESO because in the final analysis when we scrutinize the whole process, ESO
(1.9) is nothing more than one of such devices, developed by Han himself
only aiming at estimating disturbance from observable measured output
which is the ultimate goal of ADRC. It is not, and should not be, a unique
way for this purpose. To explain this point, let us go back to other methods
of modern control theory where we can find expectedly the similar idea as
economical as ADRC on the basis of estimation/cancellation strategy yet
no high gain is utilized.

The popular and powerful method to deal with unknown parameter
in the system is the adaptive control. Consider again stabilization of one
dimensional system:

(1.32)

{
ẋ(t) = θf(x(t)) + u(t),

y(t) = x(t),

where θ is an unknown parameter. Suppose that we have parameter estima-
tion:

(1.33) θ̂(t)→ θ.

Then the stabilizing control is certainly designed by estimation/cancellation
way

(1.34) u(t) = −x(t)− θ̂(t)f(x(t)),
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where the second term is also used to cancel the effect of the disturbance.
When it is substituted into (1.32), we have the closed-loop:

(1.35)

{
ẋ(t) = θ̃(t)f(x(t))− x(t), θ̃(t) = θ − θ̂(t),

y(t) = x(t).

Since system has added additional variable θ̂(t), the Lyapunov function
should include θ̂(t), which is assigned as

V (x(t), θ̃(t)) =
1

2
x2(t) +

1

2
θ̃2(t)

for system (1.35). Finding the derivative of V (x(t), θ̃(t)) along the solution
of (1.35), we obtain

dV (x(t), θ̃(t))

dt
= −x2(t) + θ̃(t)[

˙̃
θ(t) + x(t)f(x(t)] = −x2(t)

provided
˙̃
θ(t) = −x(t)f(x(t). The closed-loop now reads

(1.36)

 ẋ(t) = θ̃(t)f(x(t))− x(t),

˙̃
θ(t) = −x(t)f(x(t)).

By Lasalle’s invariance principle, we obtain immediately that

(1.37) x(t)→ 0 as t→∞

for closed-loop (1.36). The left problem is: does θ̂(t)→ θ or equivalently
θ̃(t)→ 0 in the end? The answer is not necessarily. By Lasalle’s invariance
principle further, when V̇ = 0 we obtain x = 0 and hence θ̃ = θ̃0 is a con-
stant and θ̃0f(0) = 0. So we come up two cases a) θ̃0 = 0 when f(0) 6= 0;
b) (x(t), θ̃(t)) = (0, θ̃0) is a solution to (1.36). The second case means that

˜θ(t)→ 0 is not necessarily occurring whereas the first case leads to the well
known persistence exciting (PE) condition which is f(0) 6= 0 for our case.
However, in both cases, we always have

θ̃(t)f(x(t))→ 0 as t→∞

no matter the parameter update law which is
˙̂
θ(t) = x(t)f(x(t)) is conver-

gent or not. In other words, the unknown term θf(x(t)) in system (1.32)
is cancelled anyway by the feedback control (1.33). Very accidentally, the
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order of (1.32) is increased from one to two in (1.36). People are surprised in
ADRC configuration (1.5) that the disturbance is regarded as an extended
state variable which is not actually an state but increases the order of sys-
tem while in control theory, the reduced order state observer is to reduce
the number of states for the sake of simplification, as indicated in [11]. But
here we first meet the order increasing in a matured control theory. What is
more, the unknown constant θ comes from internal disturbance and we do
not use high gain in both parameter estimation and feedback.

Next, we come to another control method known as internal model
principle [8, 37], a robust control method in dealing with external distur-
bance. Once gain we consider system (1.8) where a(t) = θ sinωt with θ being
unknown but usually a(t) represents an external disturbance. Since a(t) sat-
isfies ä(t) = −ω2a(t), we couple this with (1.8) to obtain

(1.38)


ẋ(t) = a(t) + u(t),

ä(t) = −ω2a(t),

y(t) = x(t),

We write (1.38) in the matrix form that we are familiar with:

(1.39)

{
Ẋ(t) = AX(t) +Bu(t),

y(t) = CX(t),

where

X(t) = (x(t), a(t), ȧ(t))>,

A =

 0 1 0
0 0 1
0 −ω2 0

 , B =

 1
0
0

 , C = (1, 0, 0).

A simple computation shows that

rank

 C
CA
CA2

 = 3.

So system (1.38) or (1.39) is exactly observable and certainly it is not
exactly controllable (even not stabilizable). This point is explained from
another point for system (1.3). So we can naturally design a Luenberger

observer as
˙̂
X(t) = AX̂(t) +Bu(t) + L(CX̂(t)− x(t)) with L = `1, `2, `3) to



i
i

“3-active” — 2016/3/28 — 22:35 — page 373 — #13 i
i

i
i

i
i

Active disturbance rejection control 373

make A+ LC be Hurwitz. For instance when L = (−3, ω2 − 3, 3ω2 − 1)> the
eigenvalues of A+ LC are identical to negative one. Explicitly,

(1.40)


˙̂x(t) = a(t) + u(t) + `1(x̂(t)− x(t)),

˙̂a(t) = −ω2â(t) + `2(x̂(t)− x(t)),

ż(t) = −ω2â(t) + `3(x̂(t)− x(t)).

Surprisedly, (1.40) is very likewise an ESO for (1.38) where we also consider
a(t) as an extended state variable. This is our second time from a matured
conventional modern control method to regard the external disturbance as
an extended state variable and the order of system is certainly increased
from first order to even third order which is additionally implicitly extrava-
gant because we do not need estimation of ȧ(t) anyway. In addition, slightly
different to adaptive control, we estimate the disturbance before the feed-
back. In this sense, ESO is no more than a kind of observer in control theory.
The stabilizing feedback control is the same as (1.26). Once again, here we
do not use high gain.

If we let the matter drop here, the ADRC seems not very new idea
in control theory. But when we go further to have a comparison, we find
from (1.1) that ADRC regards both internal and external disturbance a(t) =
f(x1(t), x2(t), d(t), t) together as a signal of time which can be estimated by
the output. This spans significantly the concept of the disturbance where in
adaptive control they are some internal unknown parameters and in inter-
nal model principle they are some “almost known” external disturbance
produced from a dynamical exosystem. The ADRC’s major component ESO
provides a systematical feasible way to estimate total disturbance from mea-
sured output. It opens another gate so that we can get rid of mathematical
brunt like a(t) = f(x1(t), x2(t), d(t), t) to be state dependent or state free,
time invariant or time variant, linear or nonlinear and whatever. This is an
almost model free control method, carrying PID control forward.

Up to now, we have introduced ESO and ESO based feedback control
which are two key parts of ADRC and exemplified stabilization for introduc-
tion of ADRC. Actually, ADRC’s configuration is for output tracking which
contains stabilization as a special case when the reference signal is identi-
cal to zero. As mentioned, in PID, “the setpoint is often given as a step
function, not appropriate for most dynamics systems because it amounts to
asking the output and, therefore, the control signal, to make a sudden jump”
([34]), whereas in output tracking, the reference, i.e. the desired output tra-
jectory, should be generated to make it physically feasible for the output to
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follow and to keep the tracking error small. Han was aware of this practi-
cal concern and suggested a simple generator called tracking differentiator.
In the linear case, Han’s tracking differentiator is shown to be the high
gain tracking differentiator ([26]). The tracking differentiator, shorthanded
as TD, is included as a first part of ADRC but is relatively independent part
of ADRC. In the subsequent sections, we will concern ourselves with TD,
ESO, and ESO based feedback control.

Before we end this opening story, we indicate that the possible improve-
ment of ADRC lies in ESO as what we have seen in adaptive control and
internal model principle where the inherent estimation/cancellation is kept
yet no high gain is used.

The remaining part is organized as follows. In the next section, section
2, we introduce tracking differentiator. The extended state observer is intro-
duced in section 3. Section 4 is devoted to extended state observer based
feedback control, followed by a short summary in section 5.

2. Tracking differentiator

In three parts of ADRC, tracking differentiator (TD) is the most obvious
part inherited from PID directly. Because in PID, D is usually not physically
implementable, which makes PID most often PI control actually. Commonly,
when D is used in PID, the implementation that a differentiation of a signal
v(t) is obtained approximately as

(2.1) y(t) ≈ 1

τ
(v(t)− v(t− τ)) ≈ v̇(t),

where τ is a small positive constant. Let delay signal v(t− τ) be denoted by
y1(t). Then

(2.2) ŷ1(s) = e−τsv̂(s).

where φ̂(s) represents the Laplace transform which for a given function φ(t),
is

(2.3) φ̂(s) =

∫ ∞
0

φ(t)e−stdt.

Approximating esτ by its first order in Taylor expansion, which is 1 + sτ as
τ small, we have

(2.4) ŷ2(s) =
1

1 + τs
v̂(s).
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The state-space realization of (2.4) is

(2.5) ẏ2(t) = −1

τ
(y2(t)− v(t))⇒ y2(t) =

1

τ

∫ t

0
e−

1

τ
(t−ρ)v(ρ)dρ.

This obtained delayed signal can filter the high-frequency noise ([33, p.50-
51]). So when the input v(t) is contaminated by high-frequency noise let’s
say, n(t) with zero expectation, that is, in (2.2), the input is v(t) + n(t)
instead of v(t), y2(t) can also approximate v(t− τ) satisfactorily. However,

(2.6) y(t) ≈ 1

τ
(v(t) + n(t)− y2(t)− n(t− τ)) ≈ v̇(t) +

1

τ
n(t)

is still quite sensitive to the noise in v(t) because it is amplified by a factor
of 1/τ . To address this difficulty, Han proposed a noise tolerant tracking
differentiator:

(2.7) v̇(t) ≈ v(t− τ1)− v(t− τ2)

τ2 − τ1
, 0 < τ1 < τ2.

Since the first term in (2.7) involves a time delay, it can also filter high-
frequency noise as explained. Analogously from (2.2) to (2.4), we have

(2.8) ŷ(s) =
1

τ2 − τ1

(
1

τ1s+ 1
− 1

τ2s+ 1

)
v̂(s)

and its state-space realization is

(2.9)


ẋ1(t) = x2(t),

ẋ2(t) = − 1

τ1τ2
(x1(t)− v(t))− τ2 − τ1

τ1τ2
x2(t),

y(t) = x2(t).

System (2.9) is a special form of the nonlinear TD proposed first time by
Han in [29] as follows:

(2.10)


ẋ1(t) = x2(t),

ẋ2(t) = r2f

(
x1(t)− v(t),

x2(t)

r

)
,

where r is the tuning parameter, f(·) is an appropriate nonlinear function.
In [29], it is declared, based on numerous numerical simulations, that the
TD (2.10) is convergent.
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Conjecture 2.1 (Han’s TD). If all the solutions (in the sense of Filippov)
of the following reference free system:

(2.11)

{
ẋ1(t) = x2(t),

ẋ2(t) = f(x1(t), x2(t)),

is globally asymptotically stable: limt→∞ x1(t) = 0, limt→∞ x2(t) = 0, then
for any bounded measurable function v(t) and any constant T > 0, the solu-
tion of system following

(2.12)


ż1R(t) = z2R(t),

ż2R(t) = R2f

(
z1R(t)− v(t),

z2R(t)

R

)
satisfies

(2.13) lim
R→∞

∫ T

0
|z1R(t)− v(t)|dt = 0

for any T > 0.

The convergence of (2.13) implies that z2R(t) is (weakly) convergent to
v̇(t) as R→∞ in the sense of generalized function which is defined as a
functional of C∞0 (0, T ) for any T > 0 as follows:

(2.14) v(i−1)(ϕ) = (−1)(i−1)

∫ T

0
v(t)ϕ(i−1)(t)dt,

where ϕ ∈ C∞0 (0, T ), i > 1. The definition (2.14) is a standard definition for
the generalized derivative [1]. From this definition, we see that any order of
the generalized derivative v(i)(t) always exists provided that v(t) is bounded
measurable. Suppose that (2.13) holds. Then considering ziR(t) as a func-
tional of C∞0 (0, T ), we have

lim
R→∞

ziR(ϕ) = lim
R→∞

∫ T

0
ziR(t)ϕ(t)dt = lim

R→∞

∫ T

0
z

(i−1)
1R (t)ϕ(t)dt(2.15)

= lim
R→∞

(−1)(i−1)

∫ T

0
z1R(t)ϕ(i−1)(t)dt

= (−1)(i−1)

∫ T

0
v(t)ϕ(i−1)(t)dt, ϕ ∈ C∞0 (0, T ), i > 1.



i
i

“3-active” — 2016/3/28 — 22:35 — page 377 — #17 i
i

i
i

i
i

Active disturbance rejection control 377

Comparing the right-hand sides of (2.14) and (2.15), we see that

ziR(t) ⇀ v(i−1)(t), R→∞.

In what follows, we say that if (2.13) is satisfied, then z2R(t) converges
weakly to v̇(t) as time goes to infinity, and we say that z2R(t) is strongly
convergent to v̇(t) if limR→∞ |z2R(t)− v̇(t)| = 0 uniformly on [a,∞) for some
a > 0.

From above process, we see that Han’s proposal for (2.10) is motivated
entirely from classical derivative extraction for reference signal and is rela-
tively independent of high-gain observer ([7]) although in linear case, (2.9)
happens to be high-gain tracking differentiator under coordinate transfor-
mation as shown in [22].

As mentioned in previous section, TD (2.10) severs not only the deriva-
tive extraction, but also a transient profile that the output of plant can
reasonably follow to avoid setpoint jump in PID. In other words, in engi-
neering applications, the designed trajectory to be tracked by output of the
plant is x1(t) produced by (2.10) rather than v(t) which could be jumping
like step function. This makes the reference smooth. By making the reference
smooth, the control signal can be made smooth as well, which has significant
engineering values. Han suggested transient profile specifically in [34].

Now we come to the convergence of Conjecture 2.1. Although a first proof
is reported in [30], it is later on shown to be true only for constant signal
v(t). Nevertheless, the effectiveness of a tracking differentiator (2.10) has
been witnessed by countless numerical experiments and control practices
[35, 36]. An indirect but relevant evidence is that the linear TD (LTD)
(2.9), which is neatly written as follows, is shown early in [12] to be indeed
convergent:

(2.16)

{
ż1R(t) = z2R(t),

ż2R(t) = −k1R
2((z1R(t)− v(t))− k2Rz2R(t),

where k1 > 0 and k2 > 0 are constants, and R > 0 is the tuning parameter.

Theorem 2.1. Suppose that k1, k2 > 0, and v : [0,∞)→ R satisfies
supt∈[0,∞)[|v(t)|+|v̇(t)|]=M<∞ for constant M>0. Then the linear track-
ing differentiator (2.16) is convergent in the sense that for any a > 0,

lim
R→∞

|z1R(t)− v(t)| = 0, lim
R→∞

|z2R(t)− v̇(t)| = 0

uniformly for t ∈ [a,∞).
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In many control practices, we also need high-order derivatives of refer-
ence signal. To do this, we can use the above differentiator repeatedly. The
linear high order tracking differentiator can be designed as follows:

(2.17)



ż1R(t) = z2R(t), z1R(0) = z10,

ż2R(t) = z3R(t), z2R(0) = z20,

...

ż(n−1)R(t) = znR(t), z(n−1)R(0) = z(n−1)0,

żnR(t) = Rn
(
a1(z1R(t)− v(t)) +

a2z2R(t)

R

+ · · ·+ anznR(t)

Rn−1

)
, znR(0) = zn0.

The high-order linear TD (2.17) is constructed in [25] and the following
strong convergence results are also proved.

Theorem 2.2. Suppose that the matrix of the following

(2.18) A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
a1 a2 a3 · · · an


is Hurwitz, and v : [0,∞)→ R satisfies supt∈[0,∞),1≤k≤n |v(k)(t)| <∞ for
some constant M > 0. Then the linear tracking differentiator (2.17) is con-
vergent in the sense that for any a > 0,

(2.19) lim
R→∞

|ziR − v(i−1)(t)| = 0 unoformly on [a,∞), i = 1, 2, . . . , n,

where (z10, z20, . . . , zn0) is any given initial value.

We are now coming to nonlinear TD for which we also have convergence
([25]).

Theorem 2.3. Let f : R2 → R be a locally Lipschtz continuous function,
f(0, 0) = 0. Suppose that the equilibrium point (0, 0) of the following system
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is globally asymptotically stable:

(2.20)

{
ẋ1(t) = x2(t), x1(0) = x10,

ẋ2(t) = f(x1(t), x2(t)), x2(0) = x20,

where (x10, x20) is any given initial value. If the signal v(t) is differentiable
and satisfies supt∈[0,∞) |v̇(t)| <∞, then the solution of the following tracking
differentiator:

(2.21)


ż1R(t) = z2R(t), z1R(0) = z10,

ż2R(t) = R2f

(
z1R(t)− v(t),

z2R(t)

R

)
, z2R(0) = z20,

is convergent in the sense that for every a > 0,

(2.22) lim
R→∞

|z1R − v(t)| = 0 unoformly on [a,∞),

where (z10, z20) is any given initial value.

Compared with Han’s Conjecture 2.1, we require in Theorem 2.3 addi-
tionally the Lyapunov stability for the reference free system, which is slightly
restrictive than Han’s Conjecture 2.1 but it is natural, one cannot image a
controlled physical system is asymptotically stable but not Lyapunov sta-
ble (yet it is mathematically possible). What is more, the convergence is
also stronger. Theorem 2.3 can also be generalized to include high-order
nonlinear TD.

Theorem 2.4. Let f : Rn → R be a locally Lipschtz continuous function,
f(0, . . . , 0) = 0. Suppose that the equilibrium point (0, . . . , 0) of the following
reference free system is globally asymptotically stable:

(2.23)



ẋ1(t) = x2(t), x1(0) = x10,

ẋ2(t) = x3(t), x2(0) = x20,

...

ẋn(t) = f(x1(t), x2(t), . . . , xn(t)), xn(0) = xn0,

where (x10, x20, . . . , xn0)> is a given initial value. If the signal v(t) is dif-
ferentiable and satisfies supt∈[0,∞) |v(n+1)(t)| <∞, then the solution of the



i
i

“3-active” — 2016/3/28 — 22:35 — page 380 — #20 i
i

i
i

i
i

380 B.-Z. Guo and Z.-L. Zhao

following tracking differentiator:

(2.24)



ż1R(t) = z2R(t), z1R(0) = z10,

ż2R(t) = zR3(t), zR2(0) = z20,

...

żnR(t) = Rnf

(
z1R(t)− v(t),

z2R(t)

R
, . . . ,

znR(t)

R(n−1)

)
, znR(0) = zn0,

is convergent in the sense that for every a > 0,

(2.25) lim
R→∞

|z1R − v(t)| = 0 unoformly on [a,∞),

where (z10, z20, . . . , zn0) is any given initial value.

For general nonlinear TD, we are not able to give an explicit error esti-
mation, similarly with the LTD in Theorems 2.1 and 2.2. However, for some
special nonlinear TD, we do have error estimation.

Theorem 2.5. Suppose that
(i) supt∈[0,∞ |v(i)(t)| <∞, i = 1, 2, . . . , n;
(ii) the nonlinear function f(x) in (2.24) satisfies that

(2.26) |f(x)− f(x)| ≤
n∑
j=1

kj‖xj − xj‖θj for some kj > 0, θj ∈ (0, 1];

(iii) there exists a continuous, positive definite function V : Rn → R,
with all continuous partial derivatives in its variables, satisfying

(2.27) LhV (x) ≤ −c(V (x))α,

with c > 0, α ∈ (0, 1), γ = 1−α
α , and h(x) is the vector field: h(x) = (x2, x3,

. . . , xn−1, f(x))>. Then for any initial value of (2.24) and constant a > 0,
there exists R0 > 0 such that for every R > R0,

(2.28) |ziR(t)− v(i−1)(t)| ≤ L
(

1

R

)θγ−i+1

, ∀ t > a,

where L is some positive constant, θ = min{θ2, θ3, . . . , θn}, and ziR(t) is the
solution of (2.24), i = 1, 2, . . . , n.
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Theorem 2.5 is presented in [22]. To be easily practically implementable,
an concrete nonlinear TD in terms of Theorem 2.5 is constructed.

Theorem 2.6. If the signal v(t) satisfies supt∈[0,∞) |v(i)(t)| <∞ for i =
1, 2, then the second order finite-time stable differentiator following:

(2.29)


ż1R(t) = z2R(t),

˙z2R(t) = R2

(
−k1[z1R(t)− v(t)]α − k2

[
z2R(t)

R

]β)
,

is convergent in the sense that for any initial value of (2.29) and a > 0,
there exists a constant R0 > 0 such that for all R > R0 and t > a,
(2.30)

|z1R(t)− v(t)| ≤M1

(
1

R

)β 1−γ
γ

, |z2R(t)− v̇(t)| ≤M2

(
1

R

)β 1−γ
γ
−1

,

where γ = l−1
l , l > max{1, a, b}, and the parameters in (2.29) are selected

to satisfy

(2.31) k1, k2 > 0, α =
b− 1

a
, β =

b− 1

b
, a = b+ 1, b > 1.

If β 1−γ
γ > 1 then z2R(t)→ v̇(t) in classical sense, while β 1−γ

γ ≤ 1, z2R(t)→
v̇(t) in the sense of weak derivative (weak convergence).

To have a visual comparison, we compute LTD and nonlinear (NLTD),
in terms of (2.29), numerically. Here LTD is based on Theorem 2.1:

(2.32)


ż1R(t) = z2R(t),

ż2R(t) = R2

(
−(z1R(t)− v(t))− z2R(t)

R

)
.

The NLTD is based on Theorem 2.6:

(2.33)


ż1R(t) = z2R(t),

ż2R(t) = R2

(
−[z1R(t)− v(t)]

1

2 −
[
z2R(t)

R

] 2

3

)
.

The Matlab with Eular method is programmed. Here we choose the same
zero initial value, step h = 0.001, and v(t) = sin t in all simulations.
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The results by LTD are plotted in Figure 1 where in Figure 1(a), R = 10
is taken, and in Figure 1(b) R = 20. The results by FTSTD are plotted in
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Figure 1: Derivative tracking for v(t) = sin t by LTD.

Figure 2 where in Figure 2(a), R = 10 is taken, while in Figure 2(b) R = 20.
It is seen from Figures 1 and 2 that both TDs can recover effectively the
derivatives of reference signal. In addition, for both TDs, the larger R is, the
more accurate estimation. For the same tuning parameter, it is seen from
comparisons of Figure 1(a) with 2(a), Figure 1(b) with 2(b) to find that
NLTD is more accurate than LTD.

Now we illustrate the performance of TD in the presence of measure-
ment noise. Suppose that the reference signal v(t) is contaminated by its 1%
Gaussian noise, that is, the input of TD is v(t) + 0.01v(t) instead of v(t).
The results by LTD are plotted in Figure 3 where in Figure 3(a), R = 10
is taken, and in Figure 3(b) R = 20. The results by FTSTD are plotted in
Figure 4 where in Figure 4(a), R = 10 is taken, while in Figure 4(b) R = 20.
It is seen from Figures 3 and 4 that both TD can filter the noise to some
extent. So in the presence of noise, the performance is getting worse as R is
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Figure 2: Derivative tracking for v(t) = sin t by NLTD.

increasing. Therefore, there is always a tradeoff between accuracy and noise
filtering in applications.

Comparing Figure 3 over Figure 4, we find that for the same tuning
parameter R, LTD is better than NLTD in the presence of measurement
noise. This is another tradeoff in choosing LTD and NLTD in practice.

There are many theoretical issues to be addressed further. The first
problem is convergence for the time optimal control system based tracking
differentiator. For the second order system:

(2.34)

{
ẋ1(t) = x2(t),

ẋ2(t) = u(t), |u(t)| ≤ R, R > 0.

The time-optimal feedback control is

(2.35) u(x1(t), x2(t)) = −Rsign

(
x1(t) +

x2(t)|x2(t)|
2R

)
.
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Figure 3: Derivative tracking for v(t) = sin t by LTD.

It is this state feedback control (2.35) that drives the system from the ini-
tial state to zero equilibrium in shortest time. Based on the time-optimal
feedback control, we can construct the following TD:

(2.36)


ż1R(t) = x2R(t),

ẋ2R(t) = −Rsign

(
z1R(t)− v(t) +

z2R(t)|z2R(t)|
2R

)
.

The numerical results show that TD (2.36) is convergent and quite fast.
However, the convergence of TD (2.36) remains open. In [34], a desired
transient profile of type (2.36) is specially emphasized.

The second problem is that whether a tracking differentiator based on an
attractive system only is also convergent. In this section, the zero equilibrium
state of the reference free system of TD, that is, the TD with reference zero
and parameter identical to one, is assumed to be asymptotically stable.
However, we do have systems that are attracting yet not Lyapunov stable
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Figure 4: Derivative tracking for v(t) = sin t by NTD.

(hard to imagine physically). It is interesting to know if an attractive based
TD is also convergent.

Another problem is that except LTD, convergence for other tracking
differentiators is in the sense of distribution which is weaker than uniform
convergence. It is interesting to know whether a nonlinear weak convergent
tracking differentiator is also convergent uniformly.

3. Extended state observer

As streamlined in section 1, the second key part of ADRC is the extended
state observer (ESO). ESO is an extension of the state observer in modern
control theory. A state observer is an auxiliary system that provides an
estimation of the internal state of a given real system from its input and
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output. For the linear system of the following:

(3.1)

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

where x(t) ∈ Rn(n ≥ 1) is the state, u(t) ∈ Rm is the control (input), and
y(t) ∈ Rl is the output (measurement), when n = l, the whole state is mea-
sured and the state observer is unwanted, while if n > l, the classical Luen-
berger observer can be designed in the following way to recover the whole
state by the input and output:

(3.2) ˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t)− Cx̂(t)),

where the matrix L is chosen so that A− LC is Hurwitz. This “copy of
the plant plus injection of the output” is the general principle in designing
an observer. It is readily shown that the observer error x(t)− x̂(t)→ 0 as
t→∞. The existence of the gain matrix L is guaranteed by the detectability
of system (3.1). In addition, when Σ(A,B) is stabilizable with stabilizing
feedback back u(t) = Fx(t), then an observer-based output feedback u(t) =
Fx̂(t) also stabilizes system (3.1). This is the well-known separation principle
for linear systems, which is, however, not always true for nonlinear systems.

The observer design is a relatively independent topic in control theory.
There are huge works dedicated to observer design. For more details of the
state observer we refer to recent monograph [4].

ESO is a ground breakthrough of state observer where not only state
but also ”total disturbance” are estimated. The “total disturbance” can
come from un-modeled system dynamics, unknown coefficient of control, and
external disturbance. Since in ESO, the ”external disturbance” and state of
the system are estimated simultaneously, we can design an output feedback
control law which is not critically reliant to the mathematical model. A first
ESO was proposed by Han in [31] as

(3.3)



˙̂x1(t) = x̂2(t)− α1g1(x̂1(t)− y(t)),

˙̂x2(t) = x̂3(t)− α2g2(x̂1(t)− y(t)),

...

˙̂xn(t) = x̂n+1(t)− αngn(x̂1(t)− y(t)) + u(t),

˙̂xn+1(t) = −αn+1gn+1(x̂1(t)− y(t)),
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for the following single-input single-output (SISO) system

(3.4)



ẋ1(t) = x2(t),

ẋ2(t) = x3(t),

...

ẋn(t) = f(t, x1(t), x2(t), . . . , xn(t)) + w(t) + u(t),

y(t) = x1(t),

where u(t) ∈ C(R,R) is the control (input), y(t) is the output (measure-
ment), f ∈ C(Rn,R) is the system function which is possibly unknown,
w ∈ C(R,R) is an unknown external disturbance. f(·, t) + w(t) is called
the “total disturbance” or “extended state”, and αi ∈ R, i = 1, 2, . . . , n+ 1
are the tuning parameters. By appropriately choosing the nonlinear func-
tions gi ∈ C(R,R), and tuning the parameters αi, we expect that the states
x̂i(t), i = 1, 2, . . . , n+ 1 of the ESO (3.3) can approximately recover the
states xi(t), i = 1, 2, . . . , n and the extended state f(·, t) + w(t).

In order to be easy of use for engineers, in [10], Gao simplified ESO
(3.3) by introducing, in terms of bandwidth, one parameter tuning linear
ESO (LESO) for second order nonlinear systems, which is extended to the
n-th order nonlinear system (3.4) in [56], as follows:

(3.5)



˙̂x1(t) = x̂2(t) +
α1

ε
(y(t)− x̂1(t)),

˙̂x2(t) = x̂3(t) +
α2

ε2
(y(t)− x̂1(t)),

...

˙̂xn(t) = x̂n+1(t) +
αn
εn

(y(t)− x̂1(t)) + u(t),

˙̂xn+1(t) =
αn+1

εn+1
(y(t)− x̂1(t)),

where αi, i = 1, 2, . . . , n+ 1 are pertinent constants chosen by virtue of pole
assignment, and ε which is ω in [56], is the bandwidth. This is likewise
in (1.13), ω = −1/(2ε), ω0 =

√
3/(2ε). Generally, if the total disturbance

changes fast, in order the states of ESO track the states and “total distur-
bance”, the tuning parameter ε should be tuned to be large accordingly.
Essentially, this parameter design method is similar with parameter design
in high-gain observer, but in classical high-gain observer, only system state
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is estimated and there is no “total disturbance” estimation ([39]). The con-
vergence of LESO is investigated in [56]. As a consequence of convergence of
nonlinear ESO (NLESO), the convergence of LESO (3.3) can also be found
in [24]. The succeeding Theorem 3.1 is on convergence of linear ESO (3.3)
presented in [24].

The following Assumption (H1) is about prior assumption on the un-
known nonlinear function f(t, x) and the external disturbance w(t).

Assumption (H1). The possibly unknown functions f(t, x) and w(t) are
continuously differentiable with respect to their variables, and

|u(t)|+ |f(t, x)|+ |ẇ(t)|+
∣∣∣∣∂f(t, x)

∂t

∣∣∣∣+

∣∣∣∣∂f(t, x)

∂xi

∣∣∣∣(3.6)

≤ c0 +

n∑
j=1

cj |xj |k, ∀ t ≥ 0, x = (x1, x2, . . . , xn),

for some positive constants cj , j = 0, 1, . . . , n and positive integer k.

The Assumption (H2) is a priori assumption about solution.

Assumption (H2). The solution of (3.4) and the external disturbance w(t)
satisfy |w(t)|+ |xi(t)| ≤ B for some constant B > 0 and all i = 1, 2 . . . , n,
and t ≥ 0.

Theorem 3.1. If the matrix E defined by (3.7) below:

(3.7) E =


−α1 1 0 · · · 0
−α2 0 1 · · · 0

...
...

...
. . .

...
−αn 0 0 · · · 1
−αn+1 0 0 · · · 0

 ,

is Hurwitz and Assumptions (H1)–(H2) are satisfied, then
(i). For every positive constant a > 0,

lim
ε→0
|xi(t)− x̂i(t)| = 0 uniformly in t ∈ [a,∞).

(ii). For any ε > 0 there exists tε > 0 depending on initial value such
that

|xi(t)− x̂i(t)| ≤ Γiε
n+2−i, ∀ t ≥ tε,
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where Γi is an ε and initial value independent constant, xi(t) and x̂i(t) are
solutions of (3.4) and (3.5) respectively, i = 1, 2, . . . , n+ 1, and xn+1(t) =
f(t, ·) + w(t) is the extended state for system (3.4).

The one parameter tuning NLESO proposed in [24] is as follows:

(3.8)



˙̂x1(t) = x̂2(t) + εn−1g1

(
y(t)− x̂1(t)

εn

)
,

˙̂x2(t) = x̂3(t) + εn−2g2

(
y(t)− x̂1(t)

εn

)
,

...

˙̂xn(t) = x̂n+1(t) + gn

(
y(t)− x̂1(t)

εn

)
+ u(t),

˙̂xn+1(t) =
1

ε
gn+1

(
y − x̂1(t)

εn

)
,

where ε is constant tuning gain and gi(·), i = 1, 2, . . . , n+ 1 are pertinent
chosen functions. The NLESO (3.8) is a special case of (3.3) and a nonlinear
extension of the LESO (3.5) for gain ε.

The nonlinear functions gi(·)(i = 1, 2, . . . , n+ 1) are chosen such that
the following Assumption (H3) holds.

Assumption (H3). There exist constants λi(i = 1, 2, 3, 4), α, β, and posi-
tive definite, continuous differentiable functions V,W : Rn+1 → R such that

• λ1‖y‖2 ≤ V (y) ≤ λ2‖y‖2, λ3‖y‖2 ≤W (y) ≤ λ4‖y‖2,

•
n∑
i=1

∂V (y)

∂yi
(yi+1 − gi(y1))− ∂V (y)

∂yn+1
gn+1(y1) ≤ −W (y),

•
∣∣∣∣∂V (y)

∂yn+1

∣∣∣∣ ≤ β‖y‖,
where y = (y1, y2, . . . , yn+1).

Theorem 3.2. Suppose that Assumption (H1)–(H3) are satisfied. Then

(i) for every positive constant a > 0,

lim
ε→0
|xi(t)− x̂i(t)| = 0 uniformly in t ∈ [a,∞);

(ii) lim
t→∞
|xi(t)− x̂i(t)| ≤ O

(
εn+2−i),
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where xi(t) and x̂i(t) are the solutions of (3.4) and (3.8) respectively, i =
1, 2, . . . , n+ 1, and xn+1(t) = f(t, ·) + w(t) is the extended state variable of
system (3.4).

The further investigation shows that Assumption (H3) can be weakened
by Assumption (H4). ([24]):

Assumption (H4). There exist constants R,α > 0, and positive definite,
continuous differentiable functions V,W : Rn+1 → R such that for y = (y1, y2,
. . . , yn+1),

• {y|V (y) ≤ d} is bounded for any d > 0,

•
n∑
i=1

∂V (y)

∂yi
(yi+1 − gi(y1))− ∂V (y)

∂yn+1
gn+1(y1) ≤ −W (y),

•
∣∣∣∣∂V (y)

∂yn+1

∣∣∣∣ ≤ αW (y) for ‖y‖ > R.

Under this weaker condition, the convergence obtained in [24] is accord-
ingly slightly weaker than Theorem 3.2. However, the class of nonlinear
functions gi(·) for constructing the nonlinear ESO is also broadened.

Theorem 3.3. Under Assumptions (H1),(H2), and (H4), the nonlinear
extended state observer (3.8) is convergent in the sense that for any σ ∈
(0, 1), there exists εσ ∈ (0, 1) such that for any ε ∈ (0, εσ),

|xi(t)− x̂i(t)| < σ, ∀ t ∈ (Tε,∞),

where Tε > 0 depends on ε and initial value, xi(t) and x̂i(t) are the solutions
of (3.4) and (3.8) respectively, i = 1, 2, . . . , n+ 1, and xn+1(t) = f(t, ·) +
w(t) is the extended state variable of system (3.4).

It is verified in [24] that the following nonlinear ESO satisfies Assump-
tion (H4):

(3.9)



˙̂x1(t) = x̂2(t) + 3ε

[
y(t)− x̂1(t)

ε2

]α
,

˙̂x2(t) = x̂3(t) + 3

[
y(t)− x̂1(t)

ε2

]2α−1

+ u(t),

˙̂x3(t) =
1

ε

[
y(t)− x̂1(t)

ε2

]3α−2

,
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for some α ∈ (0, 1).
Now we use numerical methods to illustrate the effectiveness of LESO

and NLESO (3.9). The considered system is the following system with large
uncertainty:

(3.10)


ẋ1(t) = x2(t),

ẋ2(t) = f(x1(t), x2(t)) + w(t) + u(t),

y(t) = x1(t),

where f(x1(t), x2(t)) is the system unknown function, w(t) is the external
disturbance, and x3(t) , f(x1(t), x2(t)) + sin(x1(t) + x2(t)) + w(t) is the
total disturbance. The LESO is designed as follows:

(3.11)



˙̂x1(t) = x̂2(t) +
3

ε
(y(t)− x̂1(t)),

˙̂x2(t) = x̂3(t) +
3

ε2
(y(t)− x̂1(t)) + u(t),

˙̂x3(t) =
1

ε3
(y(t)− x̂1(t)).

In numerical simulation, we use f(x1(t), x2(t))=−x1(t)−x2(t)+sin(x1(t)+
x2(t)), u(t) = sin(t), w(t) = 1 + cos(t) + sin 2t, α = 0.8 and ε = 1/20. The
numerical results by the LESO (3.11) is plotted in Figure 5, and NLESO
(3.9) in Figure 6.

It is seen from Figures 5 and 6 that both LESO and NLESO track the
system state and total disturbance satisfactorily. Comparing Figure 5 with
Figure 6 we can find that for the same tuning parameter, the NLESO takes
advantage of accurate estimating and much smaller peaking value near the
initial stage. On the other hand the tracking speed of LESO is faster than
NLESO.

We should point out that there are two drawbacks in constant gain ESO.
The first one is the peaking problem and the other is that only practical
convergence can be achieved for general uncertainty. Although the NLESO
has smaller peaking value near the initial stage, but it may arise again as ε
increases. To tackle this problem, we proposed a time-varying gain ESO in
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Figure 5: Linear ESO (3.11) for system (3.10).
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Figure 6: NLESO (3.9) for system (3.10).

[51] as follows:

(3.12)



˙̂x1(t) = x̂2(t) + 1
rn−1(t)g1(rn(t)(y(t)− x̂1(t))),

˙̂x2(t) = x̂3(t) +
1

rn−2(t)
g2(rn(t)(y(t)− x̂1(t))),

...

˙̂xn(t) = x̂n+1(t) + gn(rn(t)(y(t)− x̂1(t))) + b0u(t),

˙̂xn+1(t) = r(t)gn+1(rn(t)(y(t)− x̂1(t))),
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which is used also to estimate the state (x1(t), x2(t), . . . , xn(t)) and the total
disturbance, where r(t) is the time-varying gain to be increasing gradually.
When r(t) ≡ 1/ε, (3.12) is reduced to the constant gain ESO (3.8). The suit-
able time varying gain can reduce dramatically the peaking value of the ESO
near the initial time. To achieve the asymptotical convergence of ESO, we
assume the time-varying gain r(t) in ESO (3.12) to satisfy Assumption (A1).

Assumption (A1). r(t)∈C1([0,∞), [0,∞)), r(t), r′(t)>0, limt→+∞ r(t)=

+∞, and there exists a constant M > 0 such that limt→+∞
ṙ(t)
r(t) ≤M .

The following Assumption (A2) is on functions gi(·) in the ESO (3.12).

Assumption (A2). There exist positive constants R and N > 0, and radi-
ally unbounded, positive definite functions V ∈ C1(Rn+1, [0,∞)) and W ∈
C(Rn+1, [0,∞)) such that

•
n∑
i=1

(xi+1 − gi(x1))
∂V (x)

∂xi
− gn+1(x1)

∂V (x)

∂xn+1
≤ −W (x);

• max{i=1,...,n}

{∣∣∣∣xi∂V (x)

∂xi

∣∣∣∣} ≤ NW (x), and

∣∣∣∣∂V (x)

∂xn+1

∣∣∣∣ ≤ NW (x),

for all x = (x1, x2, . . . , xn+1), ‖x‖ ≥ R.

Theorem 3.4. Assume Assumptions (H1), (A1), and (A2). Then the states
of ESO (3.12) converge to the states and the extended state of (3.4) in the
sense that

(3.13) lim
t→+∞

|x̂i(t)− xi(t)| = 0, i = 1, 2, . . . , n+ 1.

In practice, we can design r(t) to be increasing continuously at first and
then keep a large constant thereafter. By this idea, we modify the constant
gain ε in (3.9) to time-varying r(t) as follows:

(3.14) r(t) =

{
e5t, 0 ≤ t < 1

5 ln 100,
100, t ≥ 1

5 ln 100.

The numerical results for NLESO (3.9) with time-varying gain are plotted
in Figure 7. It is seen from Figure 7 that time-varying gain ESO has the
merits of accurate estimation and smaller peaking value in the initial time.

In what follows, we give a brief discussion on the notorious peaking value
problem in high gain method, both by constant high gain and time varying
gain. To bring the object into focus, we consider the linear ESO (3.5) with
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Figure 7: Time-varying gain nonlinear ESO (3.9) for system (3.10).

the Hurwitz matrix E given by (3.7). Suppose that E has n+ 1 different
negative real eigenvalues λ1, . . . , λn+1. First, by constant high gain 1/ε = r,
the solution of ESO (3.24) is:

(3.15) x̂i(t) =
1

rn+1−i εi(t) + xi(t),
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where 
ε1(t)
ε2(t)

...
εn+1(t)

 = e−rEt


rn(x1(0)− x̂1(0))
rn−1(x2(0)− x̂2(0))

...
xn+1(0)− x̂n+1(0)

(3.16)

+

∫ t

0
e−rE(t−s)


0
0
...

ẋn+1(s)

 ds.

The peaking value is mainly caused by large initial value of ε(t) = (ε1(t),
. . . , εn+1(t)):

εi(t) =

n+1∑
j=1

n+1∑
l=1

dlije
rtλlrn+1−i(xi(0)− x̂i(0))(3.17)

+

n+1∑
l=1

∫ t

0
ẋn+1(s)dli(n+1)e

rtλlds,

where dlij are real numbers determined by the matrix E. It is seen that
the peaking value occurs only at t = 0 since for any a > 0, εi(t)→ 0 as
r →∞ uniformly in t ∈ [a,∞). On the other hand, in the initial time stage,
however, ertλi is very close to 1. This is the reason behind for the peak-
ing value problem by constant high gain. Actually, the peaking values for
x̂2(t), . . . , x̂n+1(t) are the orders of r, r2, . . . , rn, respectively. The larger r is,
the larger the peaking values.

Next, when we replace the time varying gain r(t) by 1/ε and let the gain
be relatively small in the initial stage, the initial value of error η(t) is(

r(0)n(x1(0)− x̂1(0)), rn−1(0)(x2(0)− x̂2(0)),(3.18)

. . . , xn+1(0)− x̂n+1(0)
)>
,

which is also small. Actually the initial value of error η(t) is

(3.19) ((x1(0)− x̂1(0)), (x2(0)− x̂2(0)), . . . , xn+1(0)− x̂n+1(0))> .

Since the gain function r(t) is small in the initial stage, when ‖ε(t)‖ increases
with increasing of eigenvalues to some given value, ‖ε(t)‖ stops increasing
at some value which is determined by the system functions and the external
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disturbances, but does not rely on the maximal value of r(t). Actually, let
V : Rn+1 → [0,∞) be V(ν) = 〈Pν, ν〉, ν ∈ Rn+1 and let the gain function r(t)
be chosen as in (3.14), we can prove that the derivative of V(ε(t)) satisfies

(3.20)
dV(ε(t))

dt
≤ −(r(t)−N12)〈η(t), η(t)〉,

where N12 is the upper bound of the derivative of total disturbance. When
r(t) increases to N12, then V(ε(t)) stops increasing. This together with

(3.21) ‖ε(t)‖ ≤ 1

λmax(P )
V(ε(t))

shows that ‖ε(t)‖ does not increase any more although ρ(t) increases con-
tinuously to a large number r or ∞. If N12 ≤ 1, then V(ε(t)) decreases from
the beginning. It then follows from (3.21) and (3.15) that the peaking values
become much small.

The ESO is extended to lower-triangular systems with large uncertainty
in [52] as follows:

(3.22)



ẋ1(t) = x2(t) + g1(u(t), x1(t)),

ẋ2(t) = x3(t) + g2(u(t), x1(t), x2(t)),

...

ẋn(t) = f(t, x(t), w(t)) + gn(u(t), x(t)),

y(t) = x1(t),

where gi ∈ C(Ri+m,R) is the known nonlinear function, f ∈ C(Rn+s+1,R)
is usually an unknown nonlinear function, x(t) = (x1(t), x2(t), . . . , xn(t)) is
the state of system, u ∈ Rm is the input (control), y(t) is the output (mea-
surement), and w ∈ C([0,∞),R) is the external disturbance.

The constant high gain ESO is designed to recover both state of sys-
tem (3.22) and its extended state

(3.23) xn+1(t) , f(t, x(t), w(t))
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as follows:

(3.24) ESO:



˙̂x1(t) = x̂2(t) +
1

rn−1
h1(rn(y(t)− x̂1(t)))

+g1(u(t), x̂1(t)),
...

˙̂xn(t) = x̂n+1(t) + hn(rn(y(t)− x̂1(t)))
+gn(u(t), x̂1(t), . . . , x̂n(t)),

˙̂xn+1(t) = rhn+1(rn(y(t)− x̂1(t))),

where r is the constant high gain parameter and hi ∈ C(R,R), i = 1, 2, . . . ,
n+ 1 are the design functions.

To achieve convergence of ESO (3.24), some mathematical assumptions
are required. The following Assumptions B1 and B2 are on gi(·) and f(·) in
system (3.22).

Assumption B1. gi : Ri+1 → R satisfies

|gi(u, ν1, . . . , νi)− gi(u, ν̃1, . . . , ν̃i)|(3.25)

≤ Γ(u)‖(ν1 − ν̃1, . . . , νi − ν̃i)‖θi , Γ ∈ C(Rm,R),

where θi ∈ ((n− i)/(n+ 1− i), 1], i = 1, 2, . . . , n.

The condition (3.25) means that gi(·), i = 1, 2, . . . , n are Hölder continu-
ous. For triangular systems, the widely assumed Lipschitz continuity is just
a special case of the Hölder continuity with the exponents θi = 1. Some sys-
tems with appropriate Hölder continuous functions have merit of finite-time
stable, and these kinds of functions can be used for feedback control design
([3]).

Assumption B2. f ∈ C1(Rn+2,R) satisfies

|f(t, x, w)|+
∣∣∣∣∂f(t, x, w)

∂t

∣∣∣∣+

∣∣∣∣∂f(t, x, w)

∂xi

∣∣∣∣+

∣∣∣∣∂f(t, x, w)

∂w

∣∣∣∣ ≤ $1(x) +$2(w),

where i = 1, 2, . . . , n, $1 ∈ C(Rn, [0,∞)), $2 ∈ C(R, [0,∞)) are two known
functions.

The succeeding Assumption B3 is on the control input u(t) and external
disturbance w(t).

Assumption B3. supt∈[0,∞)(|w(t)|+ |ẇ(t)|+ |u(t)|) <∞.
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The Assumption B4 below is on functions hi(·) in ESO (3.24). It pro-
poses a principle of choosing hi(·).

Assumption B4. All hi ∈ C(R,R) satisfy the following Lyapunov con-
ditions: There exist positive constants R,N > 0, and continuous, radially
unbounded, positive definite functions V,W ∈ C(Rn+1, [0,∞)) such that

1)

n∑
i=1

(νi+1 − hi(ν1))
∂V (ν)

∂νi
− hn+1(ν1)

∂V (ν)

∂νn
≤ −W (ν), ∀ ν = (ν1, ν2,

. . . , νn+1) ∈ Rn+1;

2) max
i=1,...,n

{
‖(ν1, . . . , νi)‖θi

∣∣∣∣∂V (ν)

∂νi

∣∣∣∣} ≤ NW (ν),

∣∣∣∣∂V (ν)

∂νn+1

∣∣∣∣ ≤ NW (ν), ν ∈

Rn+1, ‖ν‖ ≥ R.

The Assumption B4 guarantees that the zero equilibrium of the following
system

ν̇(t) =
(
ν2(t)− h1(ν1(t)),

. . . , νn+1(t)− hn(ν1(t)),−hn+1(ν1(t))
)>
, ν ∈ Rn+1

is asymptotically stable.

Theorem 3.5. Assume that Assumptions B1-B4 and suppose that the solu-
tion of (3.22) is globally bounded. Then the states of ESO (3.24) converge
practically to the states and extended state of system (3.22): For any σ > 0,
there exists a positive constant r0 > 0 such that

(3.26) |x̂i(t)− xi(t)| < σ, ∀ t > tr, r > r0, i = 1, 2, . . . , n+ 1,

where tr is an r and initial value dependent constant.

The first concrete ESO of Theorem 3.5 is certainly the LESO, that is, the
nonlinear functions hi(·)(i = 1, 2, . . . , n+ 1) in (3.24) are linear functions:
hi(ν) = αiν, ν ∈ R, where αi are constants to be specified. Let the matrix

(3.27) E =


−α1 1 · · · 0

...
...

. . .
...

−αn 0 · · · 1
−αn+1 0 · · · 0


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be Hurwitz and assume Assumptions B2 and B3, and Assumption B1 with
all θi = 1. Then there exists r0 > 0 such that

(3.28) |xi(t)− x̂i(t)| ≤ D1

(
1

r

)n+2−i
, r > r0, t > tr, i = 1, 2, . . . , n+ 1,

where tr is an r and initial value dependent constant and D1 is an r-
independent constant only.

The second concrete ESO of Theorem 3.5 is homogeneous ESO (HESO),
that is, the nonlinear functions hi(·) are chosen as (3.29),

(3.29) hi(ν) = [ν]iβ−(i−1) , sign(ν)|ν|iβ−(i−1), ν ∈ R, β ∈ (0, 1).

Assume that Assumptions B1-B3 hold true with θi ∈ (0, 1] and the matrix
in (3.27) is Hurwitz. Then there exists β∗ ∈ (0, 1) such that for any β ∈
(β∗, 1), there exists an r0 > 0 such that for all r > r0, i ∈ {1, 2, . . . , n+ 1},

lim
t→∞
|xi(t)− x̂i(t)| ≤ D2

(
1

r

)n+1−i+ (i−1)β−(i−2)

(n+1)β−n (1−Λ)

,(3.30)

r > r0, t > rr, i = 1, 2, . . . , n+ 1,

where Λ = max(n+ 1− i)(1− θi), tr is an r-dependent constant, D2 is an
r-independent.

In [27], ESO is extended to the following MIMO systems with large
uncertainty:

(3.31)



x
(n1)
1 (t) = f1

(
x1(t), . . . , x

(n1−1)
1 (t), . . . , x(nm−1)

m (t), w1(t)
)

+g1(u1(t), . . . , uk(t)),

x
(n2)
2 (t) = f2

(
x1(t), . . . , x

(n1−1)
1 (t), . . . , x(nm−1)

m (t), w2(t)
)

+g2(u1(t), . . . , uk(t)),
...

x(nm)
m (t) = fm

(
x1(t), . . . , x

(n1−1)
1 (t), . . . , x(nm−1)

m (t), wm(t)
)

+gm(u1(t), . . . , uk(t)),
yi(t) = xi(t), i = 1, 2, . . . ,m,

where ni ∈ Z, fi ∈ C(Rn1+n2+···+nm+1) represents the system function, wi ∈
C([0,∞),R) the external disturbance, ui ∈ C([0,∞),R) the control (input),
yi(t) the observations (output), gi ∈ C(Rk,R).

We have presented some convergence results of ESO for open-loop sys-
tems. It is fairly to say that ESO is a systematical design to realize ultimate
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goal of estimating total disturbance from the measured output, which cov-
ers much wide class of disturbances both internally and externally. It is the
ESO that estimates the first time and in large scale, the unknown internal
uncertainty while other modern control methods estimate mainly the exter-
nal disturbance. ESO constitutes the major key part toward ADRC tech-
nology. By cancellation, it transforms essentially, beforehand the feedback
taking place, the control system that is seemly mathematically formidable
due to variant forms of total disturbance to be a canonical system (linear
system most often) for which we have countless ways to deal with. More-
over, some sophisticated part of the plant which is hardly to be dealt with by
practitioner can also be treated as part of total disturbance, which changes
significantly the concept of disturbance and spans the applicability of ESO.
In this sense, ESO shows the characteristic of feedforward control although
it does utilize the measurement of the state.

As a completely new strategy, there are many theoretical problems
needed to be further investigated. The first problem is the tuning parameter.
Basically, our design is based typically on a high gain approach:

(3.32)



˙̂x1(t) = x̂2(t)− β1g1(x̂1(t)− y(t)),
˙̂x2(t) = x̂3(t)− β2g2(x̂1(t)− y(t)),

...
˙̂xn(t) = x̂n+1(t)− βngn(x̂1(t)− y(t)) + u(t),
˙̂xn+1(t) = −βn+1gn+1(x̂1(t)− y(t)),

where

(3.33) β1 =
1

ε
, β2 =

1

ε2
, . . . , βn+1 =

1

εn+1
.

Although as pointed out in section 1, high gain is unavoidable in ESO
design, there are many other ways to choose the gain to improve the perfor-
mance. It is indicated in [33], based on numerical simulations, that ESO with
n+ 1 tuning parameters β1, β2, . . . , βn+1 can be chosen based on Fibnacci
sequence:

(3.34) β1 =
1

h
, β2 =

1

3h2
, β3 =

2

82h3
, β4 =

5

133h4
, . . . ,

which can achieve more satisfactory estimation both for system state and
total disturbances, where h is the sample step length. But a mathematical
justification is required for this choice. In addition, more tuning parameters
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in (3.32) are expected to be more effective than one parameter high gain
tuning.

In [33], it indicates, based on numerical experiments again, that the
following nonlinear ESO:

(3.35)


˙̂x1(t) = x̂2(t)− β1(x̂1(t)− x1(t)),

˙̂x2(t) = x̂3(t)− β2fal(x̂1(t)− x1(t), 1/2, δ),

˙̂x3(t) = −β3fal(x̂1(t)− x1(t), 1/4, δ),

can also recover state and total disturbance simultaneously for the second
order control systems with uncertainty, where

(3.36) fal(e, α, δ) =

{
e

δα−1 , |e| ≤ δ,

|e|αsign(e), |e| > δ,
δ > 0, α > 0,

with β1,2,3 being chosen as (3.34). However convergence for this special non-
linear ESO is still open. A recent progress for convergence of ESO with
nonlinear function of type (3.36) has been made in [55].

4. Active disturbance rejection control: ESO based feedback

The last key part of ADRC is TD and ESO based feedback control. In the
feedback loop, one component is to cancel (compensate) the ”total distur-
bance” using its estimation obtained from ESO. For simplicity, we start from
ADRC for the following SISO system:

(4.37)



ẋ1(t) = x2(t),

ẋ2(t) = x3(t),

...

ẋn(t) = f(t, x(t), ζ(t), w(t)) + b(w(t))u(t),

ζ̇(t) = F0(x(t), ζ(t), w(t)),

y(t) = x1(t),

where x(t) = (x1(t), x2(t), . . . , xn(t))> ∈ Rn, ζ ∈ Rm are states, y(t) ∈ R is
the output, u(t) ∈ R is the input, f ∈ C1(Rn+m+2,R) and F0 ∈ C1(Rn+m+1,
Rm) are unknown system functions, b ∈ C1(R1,R) is control magnifying
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coefficient which also contains some uncertainty, but there is a known nom-
inal value b0 close to b(·), w ∈ C1(R,R) is the external disturbance. In stan-
dard control formulation, ζ(t) represents the zero dynamics.

The control objective of ADRC is to design a state and disturbance
observer-based output feedback control so that the output y(t) tracks a
given reference signal v(t), and at the same time xi(t) tracks v(i−1)(t) for
every i = 2, 3, . . . , n provided that the latter exist in some sense.

To have a holistic feeling about what ADRC is about, let us restate
the three key components of ADRC. The first component is to recover all
v(i−1)(t), i = 2, . . . , n+ 1 through the reference v(t) itself. This is realized
by tracking differentiator (TD):

(4.38)



ż1R(t) = z2R(t),

...

żnR(t) = z(n+1)R(t),

ż(n+1)R(t) = Rnψ

(
z1R(t)− v(t),

z2R(t)

R
, . . . ,

z(n+1)R(t)

Rn

)
,

ψ(0, 0, . . . , 0) = 0,

where R is the tuning parameter and ψ ∈ C(Rn+1,R). The system (4.38)
also serves as a transient profile for output tracking where y(t) tracks z1R(t)
instead of v(t) to avoid setpoint jump.

The second component of ADRC is ESO which is used to recover the
state (x1(t), . . . , xn+1(t))> of system (4.37), and the total disturbance xn+1(t) =
f(t, x(t), ζ(t), w(t)) + (b(w(t))− b0)u(t):

(4.39)



˙̂x1(t) = x̂2(t) + %n−1(t)g1(θ(t)),

˙̂x2(t) = x̂3(t) + %n−2(t)g2(θ(t)),

...

˙̂xn(t) = x̂n+1(t) + gn(θ(t)) + b0u(t),

˙̂xn+1(t) =
1

%(t)
gn+1(θ(t)),

where θ(t) = (y(t)− x̂1(t))/%n(t), y(t) = x1(t), gi ∈ C(R,R), and % ∈
C([0,∞),R+) is the gain function which is chosen here as a time-varying
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gain to satisfy:

%(0) = 1; %̇(t) = −a%(t), a > 0, if %(t) > ε;(4.40)

and %̇(t) = 0, otherwise,

where ε > 0 is a positive constant.
The third and also the last component of ADRC is to design ESO based

output feedback control law:

(4.41) ADRC : u(t) =
1

b0

[
ϕ(x̂(t)− zR(t)) + z(n+1)R(t)− x̂n+1(t)

]
,

where (x̂(t) = (x̂1(t), x̂2(t), . . . , x̂n(t)), x̂n+1(t)) is the solution of (4.39) and
(zR(t) = (z1R(t), z2R(t), . . . , znR(t)), z(n+1)R(t)) is the solution of (4.38). The
role played by x̂n+1(t) is to cancel the total disturbance xn+1(t). The non-
linear function ϕ : Rn → R is chosen so that zero equilibrium state of the
following target error profile system is asymptotically stable:

(4.42)



ẋ∗1(t) = x∗2(t),

ẋ∗2(t) = x∗3(t),

...

ẋ∗n(t) = ϕ(x∗1(t), . . . , x∗n(t)), ϕ(0, 0, . . . , 0) = 0.

Roughly speaking, under ADRC (4.41), the trajectory of the error
(x1(t)− v(t), . . . , xn(t)− v(n−1)(t)) converge to (0, . . . , 0) similarly with the
trajectory of (4.42) tending zero. In other words, we also regulate the way
of convergence for error profile.

The block of active disturbance rejection control is depicted as Figure 8.

Definition 4.1. We say that the ADRC closed-loop composed by (4.37),
(4.38), (4.39), and (4.41) is practically convergent, if for any given initial
values of (4.37), (4.38), (4.39), there exits a constant R0 > 0 such that for
all R > R0,

(4.43)

lim
t→∞
ε→0

[xi(t)− x̂i(t)] = 0, 1 ≤ i ≤ n+ 1,

lim
t→∞
ε→0

[xi(t)− ziR(t)] = 0, 1 ≤ i ≤ n.
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Figure 8: Block of active disturbance rejection control.

Moreover, for any given τ > 0, limR→∞ |z1R(t)− v(t)| = 0 uniformly in t ∈
[τ,∞). In particular, when v(t) ≡ 0, then ziR(t) = 0, we say that the ADRC
closed-loop is practically stable.

From Definition 4.1, stabilization is a special case of output tracking
with v(t) ≡ 0.

The convergence of ADRC is reached under some mathematical assump-
tions. The Assumption A1 is made for system (4.37) itself and the external
disturbance.

Assumption A1. Both w(t) and ẇ(t) are bounded in R, and there exist
positive constants C1, C2, and function $ ∈ C(R, [0,∞)) such that∣∣∣∣∂f(t, x, w)

∂xi

∣∣∣∣ ≤ C1 +$(w), i = 1, 2, . . . , n, |f(t, 0, w)| ≤ C1 +$(w),∣∣∣∣∂f(t, x, w)

∂w

∣∣∣∣+

∣∣∣∣∂f(t, x, w)

∂t

∣∣∣∣ ≤ C1 + C2‖x‖+$(w).

The Assumption A2 is for ESO (4.39) and the unknown parameter b.

Assumption A2. |gi(r)| ≤ Λi|r| for some positive constants Λi for all i =
1, 2, . . . , n+ 1. There exist constants λ1i(i = 1, 2, 3, 4), β1, and positive def-
inite continuous differentiable functions V1,W1 : Rn+1 → R such that

• λ11‖ν‖2 ≤ V1(ν) ≤ λ12‖ν‖2, λ13‖ν‖2 ≤W1(ν) ≤ λ14‖ν‖2, ∀ ν ∈ Rn+1;
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•
n∑
i=1

(νi+1 − gi(ν1))
∂V1(ν)

∂νi
− gn+1(ν1)

∂V1(ν)

∂νn+1
≤ −W1(ν), ∀ ν ∈ Rn+1;

•
∣∣∣∣∂V1(ν)

∂νn+1

∣∣∣∣ ≤ β1‖ν‖, ∀ ν = (ν1, ν2, . . . , νn+1) ∈ Rn+1.

Moreover, the parameter b satisfiesB ,
∣∣∣ b−b0b0

∣∣∣Λn+1 <
λ13

β1
. Here and through-

out the paper, we always use ‖ · ‖ to denote the corresponding Euclidian
norm.

The Assumption A3 is for nonlinear function ϕ(ν) in (4.41).

Assumption A3. ϕ(ν) is continuously differentiable, ϕ(0) = 0, and Lips-
chitz continuous with Lipschitz constant L: |ϕ(ν)− ϕ(ν̂)| ≤ L‖ν − ν̂‖ for all
ν, ν̂ ∈ Rn. There exist constants λ2i (i = 1, 2, 3, 4), β2, and positive definite
continuous differentiable functions V2,W2 : Rn → R such that

• λ21‖ν‖2 ≤ V2(ν) ≤ λ22‖ν‖2, λ23‖ν‖2 ≤W2(ν) ≤ λ24‖ν‖2;

•
n−1∑
i=1

νi+1
∂V2(ν)

∂νi
+ ϕ(ν1, ν2, . . . , νn)

∂V2(ν)

∂νn
≤ −W2(ν);

•
∣∣∣∣∂V2(ν)

∂νn

∣∣∣∣ ≤ β2‖ν‖,∀ ν = (ν1, ν2, . . . , νn) ∈ Rn.

In above assumption, the continuous differentiability and Lipschitz continu-
ity of ϕ(ν) imply that

(4.44)

∣∣∣∣∂ϕ(ν)

∂νi

∣∣∣∣ ≤ L, ν ∈ R, i = 1, 2, . . . , n.

The Assumption A4 is for TD (4.38).

Assumption A4. Both v(t) and v̇(t) are bounded in [0,∞), and ψ(·) is
locally Lipschitz continuous, and system (4.38) with v(t) ≡ 0, R = 1 is glob-
ally asymptotically stable.

The Assumption A5 is for the zero dynamics.

Assumption A5. There exist constants k̄1, k̄2, and function $ ∈ C(R, R̄+)
such that

‖F0(x, ζ, w)‖ ≤ k̄1 + k̄2‖x‖+$(w), ∀ x ∈ Rn, ζ ∈ Rm, w ∈ R.
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Theorem 4.1. Assume Assumptions A1-A5. Then under ADRC (4.41)
based on (4.38) and (4.39) with time varying gain given in (4.40), the closed-
loop is convergent in the sense of Definition 4.1.

Since the initial state is arbitrary, we say feedback control law (4.41) to
be global ADRC. If the bound of initial states is available, we can design
what so called semi-global ADRC.

Assumption A6. There exist positive constants C1, C2, and C3 such that
supt∈[0,∞) ‖(v(t), . . . , v(n)(t))‖ < C1, ‖x(0)‖ < C2, ‖(w(t), ẇ(t))‖ < C3 for all
t ∈ [0,∞).

The Assumption A1 can be weakened by Assumption A1∗.

Assumption A1∗. There exist positive constant N and functions $1 ∈
C(Rn,R+), $2 ∈ C(Rm,R+), and $3 ∈ C(R,R+) such that

n∑
i=1

∣∣∣∣∂f(t, x, ζ, w)

∂xi

∣∣∣∣+

m∑
i=1

∣∣∣∣∂f(t, x, ζ, w)

∂ζi

∣∣∣∣+

∣∣∣∣∂f(t, x, ζ, w)

∂t

∣∣∣∣+ |f(t, x, ζ, w)|

≤ N +$1(x) +$2(ζ) +$3(w).

Assumption A5 can also be replaced by Assumption A5∗.

Assumption A5∗. There exist positive definite functions V0,W0 : Rm → R
such that LF0

V0(ζ) ≤ −W0(ζ) for all ζ : ‖ζ‖ > χ(x,w), where χ : Rn+1 → R
is a wedge function, and LF0

V0(ζ) denotes the Lie derivative along the zero
dynamics of system (4.37).

The Assumption A7 is for the control coefficient b(·) and its nomi-
nal b0(·).

Assumption A7. The nominal control magnifying coefficient b0 6= 0 and

(4.45)

∣∣∣∣b(w(t))− b0
b0

∣∣∣∣ < min

{
1

2
, λ13

(
β1Λn+1

(
M1 +

1

2

))−1
}
.

In addition, the third condition of Assumption A2 is changed into∣∣∣∣∂V1(ν1, ν2, . . . , νn+1)

∂νn

∣∣∣∣+

∣∣∣∣∂V1(ν1, ν2, . . . , νn+1)

∂νn+1

∣∣∣∣ ≤ β1‖ν‖

∀ ν = (ν1, ν2, . . . , νn+1) ∈ Rn+1.
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In what follows, we construct a semi-global ADRC with the notations:

(4.46)

C∗1 ≥ max
{y∈Rn, ‖y‖≤C1+C2+1}

V2(y),

C4 ≥ max

{
sup

‖x‖≤C1+(C∗
1 +1)/λ23+1,‖w‖≤C3,

|χ(x,w)|, ‖ζ(0)‖

}
,

M1 ≥ 2

(
1 +M2 + C1

+ sup
‖x‖≤C1+(C∗

1 +1)/λ23+1,‖w ‖≤C3,‖ζ‖≤C4

[
N +$1(x)

+$2(ζ) +$3(w)
])
,

M2 ≥ max
‖x‖≤C1+(C∗

1 +1)/λ23+1
|ϕ(x)|.

Let satM : R→ R be an odd continuous differentiable saturation function
given by

(4.47) satM (r) =


r, 0 ≤ r ≤M,

−1
2r

2 + (M + 1)r − 1

2
M2, M < r ≤M + 1,

M + 1
2 , r > M + 1,

where M > 0 is some constant.
Using the same tracking differentiator (4.38), the extended state ob-

server (4.39) with the constant tuning gain %(t) ≡ ε, the observer based
feedback control is designed as follows:

ADRC(S) : u(t) =
1

b0(x̂)

[
satM2

(ϕ(x̂(t)− zR(t)))(4.48)

− satM1
(x̂n+1(t)) + satC1+1(z(n+1)R(t))

]
.

Theorem 4.2. Assume Assumptions A2-A4, A1∗, A5∗, A6, and A7, and
in ESO (4.39), %(t) ≡ ε, with ε being a positive constant. Then under the
semi-global ADRC (4.48), the closed-loop is convergent in the sense of Def-
inition 4.1.

Theorems 4.1 and 4.2 are presented in [53]. In circumstance where the
derivatives of reference signal v(t) are known and v(t) is acceptable from
application standard for output tracking, TD part can be dropped in ADRC
design, and the states of TD is the derivatives of v(t). The concrete design
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of easy to use, in terms of Theorem 4.1 and 4.2, is linear ADRC, that is,
the functions gi(·) in ESO (4.39) and ϕ(·) in feedback control laws (4.41)
and (4.48) are linear functions. The convergence of semi-global linear ADRC
on stabilization, i.e., the reference signal v(t) ≡ 0, can also be found in [9]
under the name of extended high gain approach. Linear ADRC with adap-
tive ESO is studied in [47]. In [38], the projected gradient estimator is used
likewise linear ADRC for system (4.37) without using the nominal value
of control magnifying coefficient. The nonlinear ADRC for nonlinear sys-
tems with stochastic disturbance is investigated in [21] and with actuator
saturation is considered in [41]. The linear ADRC for mismatched distur-
bance can be found in [40]. The linear ADRC for lower triangular systems
is studied in [48, 49]. The nonlinear ADRC for this kind system is con-
sidered recently in [54]. The nonlinear ADRC is extended to multi-input
multi-output (MIMO) systems in [23]. The ADRC has been extended to
infinite dimensional systems recently, such as wave equation [13, 15, 18],
Euler-Bernoulli beam equation [14, 19], Schrodinger equation [16], coupled
heat and ODE [17], and Kirchhoff plate [20], among others.

We have found many similarities of ADRC with high gain control. To
have a comparison for both methods, we use a simple example for illustra-
tion. Consider {

ẋ1(t) = x2(t),

ẋ2(t) = u(t) + w(t),

where x1(t) ∈ R is the output, u(t) ∈ R is the control input, and w(t) ∈ R
is the unknown external disturbance. The control objective is to stabilize
(practically) the system. The high-gain feedback control can be designed
as u(t) = −R(x̃1(t) + 2x̃2(t)), where R is the tuning gain parameter to be
tuned large enough, so the high gain is used also in feedback control. The
x̃1(t) and x̃2(t) are coming from the following high-gain observer:{

˙̃x1(t) = x̃2(t) + x̃2(t) + 2r0(x1(t)− x̃1(t)),

˙̃x2(t) = r2
0(x1 − x̃1(t)) + u(t),

where the high-gain parameter is chosen r0 = 200. The ESO is designed as
follows to estimate, in real time, the external disturbance w(t) as well as the
system state (x1(t), x2(t)):

˙̂x1(t) = x̂2(t) + 3r(t)(x1(t)− x̂1(t)) + u(t),

˙̂x2(t) = x̂3(t) + 3r2(t)(x1(t)− x̂1(t)),

˙̂x3(t) = r3(t)(x1(t)− x̂1(t)),
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where r(t) is given as

(4.49) r(t) =

{
eat, 0 ≤ t < 1

a ln r0,
r0, t ≥ 1

a ln r0,

with a = 2 and r0 = 200.
The ADRC can be designed as u(t) = −x̂3(t)− x̂1(t)− 2x̂2(t), where

x̂1(t), x̂2(t), and x̂3(t) are states of ESO, x̂1(t) and x̂2(t) are the estimated
values of x1(t) and x2(t) respectively, x̂3(t) is the estimated value of external
disturbance w(t). Because the external disturbance is estimated and can-
celed by x3(t), so we do not need the high-gain in feedback loop of ADRC,
which is very different from high-gain control.

In numerical simulation, we set w(t) = 1 + sin t. The numerical results of
high-gain control with R = 2 and its magnifications are plotted in Figure 9.
Figure 10 plots the numerical results of high-gain control with R = 20 and
its magnifications.

We can see from Figure 9 that the high-gain control with small gain
parameter R = 2 cannot stabilize the system, and the system state (x1(t),
x2(t)) deviates from zero obviously. As the gain parameter chosen to be as
large as R = 20, we see from Figure 10 that the state (x1(t), x2(t)) converges
to zero state very rapidly. However, the absolute value of control is very large
near the initial time, and it actually exceeds 6000.

Figure 11 plots the numerical results by ADRC. Although in the feed-
back loop, the coefficients of estimated values of x1(t) and x2(t) are same
as in high-gain control, from Figure 11 we can see that the steady perfor-
mance is very well and the maximum of the absolute control value is quite
small. Actually, the maximum of absolute control value is less than 10, which
is sharp contrast to the maximal value 600 by classical high-gain control
with R = 2, and the maximal value 6000 by classical high-gain control with
R = 20.

It should also be pointed out that if the external disturbance w(t) is a
constant, that is, the derivative of the “total disturbance” is equal to zero,
we can obtain that there exists positive constant r∗0 > 0 such that for any
given r0 > r∗0, states of the ESO and the system driven by ADRC with the
gain function

r(t) =

{
eat, 0 ≤ t < 1

a ln r0,
r0, t ≥ 1

a ln r0,

are convergent to zero as t→∞. On the other hand, by classical high-
gain control, we can only obtain practical stability results with the error



i
i

“3-active” — 2016/3/28 — 22:35 — page 411 — #51 i
i

i
i

i
i

Active disturbance rejection control 411

0 1 2 3 4 5 6 7 8 9

−600

−500

−400

−300

−200

−100

0

 

 

Control value

x1

x2

(a) State (x1(t), x2(t)) and control value u

0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

 

 

control value

x1

x2

(b) Magnification of a) in y-axis

0 0.1 0.2 0.3 0.4 0.5 0.6

−600

−500

−400

−300

−200

−100

0

 

 

Control value

x1

x2

(c) Magnification of a) in y-axis

Figure 9: High-gain observer based high-gain control with R = 2.

estimation:

‖(x1(t), x2(t))‖ ≤ M

R
, t > t0

where t0 > 0, and M is a w-dependent constant but is independent of R.
In what follows, we use a first order system to illustrate the difference of

ADRC and sliding model control (SMC) numerically. The considered system
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Figure 10: High-gain observer based high-gain control with R = 20.

is described by

(4.50) ẋ(t) = u(t) + w(t),

where x(t) ∈ R is the output, u(t) ∈ R is the control input, and w(t) ∈ R
is the unknown external disturbance. The control purpose is to stabilize
practically the system. The SMC can be designed as u(t) = 2sign(x(t)). The
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Figure 11: Extended state observer based active disturbance rejection con-
trol.

ADRC is designed as u(t) = −ŵ(t)− 2x(t), where ŵ(t) is coming from the
following ESO to cancel the disturbance w(t):{

˙̂x(t) = ŵ(t) + 2r(t)(x(t)− x̂(t)) + u(t),

˙̂w(t) = r2(t)(x(t)− x̂(t)),

where r(t) is given in (2.10) with a = 2 and r0 = 200

%(t) =


e2t, 0 ≤ t < 1

2 ln r,

r, t ≥ 1

2
ln r.

The numerical results of SMC are plotted in Figure 12. From Figure 12,
we can see that the stead performance is very well. However the control u(t)
fills almost full the box and therefore the control energy is very large. The
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Figure 12: State of system (4.50) driven by sliding-mode control.

Figure 13 is the numerical results of ADRC. From Figure 13 we can see that
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the steady performance is very well and the control energy consumption is
smaller than SMC, because −u(t) is almost equal to the external distur-
bance, while the control u(t) of SMC almost equals to +2 or -2 along the
whole process.
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0
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2

 

 

Control u

 opposite number − w

System state x

Figure 13: State of system (4.50) driven by ADRC.

To end this section, we put forward some problems that are worth inves-
tigating. In the proof of convergence for nonlinear ADRC closed-loop system,
we require stronger conditions on nonlinear functions in ESO than for the
closed-loop system discussed in section 3. Naturally, there are some spaces to
weaken these conditions to include much larger class of nonlinear functions.
Finally, the conditions for convergence of closed-loop are usually restric-
tive than that for convergence of ESO, which should be relaxed in further
investigations. The ADRC with ESO (3.35) and (3.36) is also deserved for
investigation.

Additional attention should be paid to the nonlinear systems that are
not in canonical form. Systems like triangular structure as follows:

ẋ1(t) = f1(x1(t), x2(t), w1(t)),

...

ẋn(t) = fn(x1(t), . . . , xn(t), ξ(t), wn(t)) + b(x(t), ξ(t), wn(t))u(t)

ξ̇(t) = F (x1(t), . . . , xn(t), ξ(t), w1(t), . . . , wn(t)),

y(t) = x1(t),

where wi(t)(1 ≤ i ≤ n) is the external disturbance and fi(·)(1 ≤ i ≤ n) is
the system function with some uncertainty. The difficulty in dealing with
the external disturbances w1(t), . . . , wn−1(t) and other uncertainties lies in
that they are not in the control channel. For stabilization, the uncertainty
must be control matched while for output tracking, it is not necessary.
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5. Summary

In the landmark book [43], H.S. Tsien, an engineering scientist throughout
his career from a Caltech professor to father of nuclear missiles of China,
described control theory in his mind as “to organize the design principles
used in engineering practice into a discipline that thus to exhibit the simi-
larities between different areas of engineering practice and to emphasize the
power of fundamental concepts”. In his later years, Tsien had formed his
Three-layers theory about science, which, relevant to control theory, is from
mathematics, control theory, to finally engineering applications. As a tran-
sition layer, control theory needs the help of mathematics to build its theory
on the one hand, and provides solution and principle to engineering applica-
tions on the other. However, many control practitioners when they need to
solve practical control problems may have a dilemma: in applications, one
needs a control method that is simple, powerful, robust, and easy to use;
and on the other hand, no solutions can be found in countless of papers
and books. The evidence of this awkward situation is the PID, a primitive
control technology yet has dominated the control engineering practice for
almost one century till today.

This paper introduces an emerging control technology, known as active
disturbance rejection control (ADRC) to this day, which is generally believed,
through numerous successful engineering applications in different groups in
different countries, to be a viable PID alternative. This almost model free
control technology, inherent nature of PID, sprouts from seed idea of Tsien
[43] that the control operation “must not be influenced by internal and exter-
nal disturbances”. The creative idea of ADRC is that the total disturbance
which may come from internal disturbance including the unknown parts or
the parts of hardly to be treated by practitioner and external disturbance,
is reflected entirely in the measured output and hence can be regarded as a
function of time, no matter it is state dependent or time variant, and finally
can be estimated. Inasmuch as the total disturbance is estimated, it can
certainly be canceled in the feedback loop. This transforms a control system
into a canonical form (most often it is a linear one) for which we have many
ways to deal with. Although there are much selective ideas in dealing with
uncertainty including organizing our daily life, the estimation/cancellatgion
is among the smartest way, both logically and practically. We could certainly
find the similar idea from other control methods like adaptive control and
internal model principle, it is ADRC which first exploits this smart idea sys-
tematically in a very large scale not only for external disturbance but also
importantly for internal disturbance as well.
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This paper articulates, from a theoretical perspective, the origin, idea,
possibility, applicability, as well as relations with other relevant control
methods of ADRC. Three key parts, namely, tracking differentiator, extended
state observer, and extended state observer based output feedback are ex-
pounded separately, with the help of numerical visualizations. The limita-
tions and possible improvement in extended state observer design are indi-
cated. Some unsolved theoretical problems are also put forward.
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