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Distributed estimation for parameter in

heterogeneous linear time-varying models

with observations at network sensors

Jinlong Lei and Han-Fu Chen

In this paper, a distributed stochastic approximation based esti-
mation algorithm is proposed to estimate the parameter in hetero-
geneous linear time-varying models associated with sensors from a
network. At any time, each agent updates its estimate using the
local observations and the information derived from its neighbor-
ing agents. The estimates are shown to converge to the one that
minimizes the long run average of the square residuals. Switch of
the communication graphs is assumed to be deterministic, and the
regressors of the linear models are assumed to satisfy some ergodic
property, rather than the conditional independence or strict sta-
tionarity. Numerical simulations are given to illustrate the obtained
theoretic result.

1. Introduction

With wide applications of sensor networks [1, 2], estimating unknown pa-
rameters based on the data gathered by a group of spatially distributed
sensors has attracted much attention from researchers. In the centralized
approach, all data is transferred to a fusion center and the collected data
is processed there. However, this approach may not be preferable, because
1) it costs too much communication resource, 2) it is not robust since a
failure of the central node would lose all information achieved, and 3) some
agents might be reluctant to share its local data due to privacy concern [3].
Alternatively, for the distributed approach each sensor acts as an individual
adaptive filter, which estimates the parameter by using its local observations
and the information derived from its neighboring sensors. So, compared with
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the centralized approach, the distributed estimation schema has advantages
of enhancing the robustness of the sensor networks, preserving privacy, and
reducing the communication and computation costs.

Consensus problems have been widely investigated recently in different
aspects [4–6]. There exist many distributed problems that are solved by
consensus-based distributed algorithms, for example, sensor localization [7],
distributed optimization [8, 9], distributed stochastic approximation [10, 11],
and distributed control [12][13]. As for the parameter estimation problem
in sensor networks, consensus-based distributed estimation algorithms and
their convergence analysis have also been studied in many papers, such as the
diffusion least mean square (LMS) algorithm [14, 15], the diffusion recursive
least squared (RLS)[16], the distributed LMS algorithm [17], the distributed
RLS [18], the distributed Kalman filtering [19][20], SA based distributed
estimation algorithm [21–23], and so on.

Most of the above-mentioned works require the (conditionally) indepen-
dent or strictly stationary ergodic conditions on the observation models. Al-
gorithms proposed in [14],[15] utilize constant step-sizes and give the mean-
square errors when the regressors are assumed to be independent Gaussian
sequences. In [17], the estimation error norms are shown to be bounded for
most of the time when the regressors are assumed to be strictly stationary
ergodic. In [21], the regressors are assumed to be independent, the covariance
matrix of the regressor is assumed to satisfy the strict diagonal dominance
condition, and the fourth order moments of the regressor are assumed to be
finite. In [22], the regressors of all sensors are assumed to be iid (independent
and identically distributed) sequences, while in [23], the regressors at time
k are assumed to be independent of the σ-filed Ft−1 generated by the past
information. In [22, 23], expectations of regressors are assumed to be known
and are used in the distributed estimation algorithm.

In this paper, we estimate the unknown M -dimensional vector θ∗ based
on the data gathered by N spatially distributed sensors in the network.
Every agent i = 1, . . . , N at time k has access to its local di-dimensional
vector measurement given by the following linear time-varying model

(1) Yi,k = Hi,kθ
∗ + vi,k,

where Hi,k ∈ R
di×M is the regressor accessible to agent i, and vi,k ∈ R

di×1

is the local observation noise of agent i. Set

Yk � col{Y1,k, . . . , YN,k} ∈ R
d×1,(2)

Hk � col{H1,k, . . . , HN,k} ∈ R
d×M(3)
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with d =
∑N

i=1 di, where col{x1, . . . , xN} � (xT1 , . . . , x
T
N )T . The distributed

parameter estimation problem is to seek the M -dimensional vector that
minimizes the long run average of the square residuals

(4) lim sup
n→∞

1

n

n∑
k=1

‖ Yk −Hkθ ‖2 .

As to be shown this is equivalent to a distributed root-seeking problem
with some proper assumptions imposed on the models. Then the distributed
estimation algorithm based on the distributed stochastic approximation al-
gorithm with expanding truncations (DSAAWET) given in [11] can be ap-
plied. The update rule of each sensor is a combination of the consensus
term being the weighted average of the estimates derived at its neighbor-
ing agents, and the innovation term processing its current observation. The
estimates are shown to converge to the minimum of (4). Compared with
the existing results, here we impose neither (conditional) independency nor
strict stationarity on regressors, but the switch of communication graphs is
assumed to be deterministic rather than random. Numerical simulations are
given to demonstrate the theoretic result for the case, where the regressors
of all linear time-varying models are generated by AR processes.

The remainder of the paper is organized as follows. The distributed esti-
mation algorithm is proposed and its convergence theorem is formulated in
Section 2. The global behavior of the estimate sequence is given in Section 3,
while the local properties of the estimates and the noises along bounded sub-
sequences of estimates are presented in Section 4. The proof of the theorem
is placed in Section 5. The numerical simulations are demonstrated in Sec-
tion 6, and some concluding remarks are given in Section 7.

The notations used in the paper are as follows: A given matrix A =
[aij ] ∈ R

n×n is called nonnegative if aij ≥ 0 ∀i, j = 1, . . . , n. A nonnegative
square matrix A is called doubly stochastic if A1 = 1 and 1TA = 1T , where
1 denotes the vectors of compatible dimensions with all entries equal to
1, and XT denotes the transpose of X. Im denotes the identity matrix of
dimension m. 0 denotes the matrices or vectors of compatible dimensions
with all entries equal to 0. By ⊗ we denote the Kronecker product.

A nonnegative matrixW (k) = [ωij(k)]
N
i,j=1 with positive diagonal entries

is used to describe the communication relationship among N agents in the
network at time k. The corresponding digraph is denoted by Gk = (V, Ek),
where V = {1, . . . , N} is the node set and Ek = {(j, i) : ωij(k) > 0} is the
edge set. Denote by Ni(k) = {j ∈ V : ωij(k) > 0} the neighboring agents of
agent i at time k.
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The digraph G = {V, E} is called strongly connected if for any given
pair i, j ∈ V, there exists a sequence of distinct nodes i1, . . . , ip such that
(i, i1) ∈ E , (i1, i2) ∈ E , . . . , (ip, j) ∈ E .

2. Distributed estimation algorithm

We first show that the distributed parameter estimation (1)–(4) is equivalent
to the distributed root-seeking problem for linear local functions. Then a
distributed estimation algorithm based on DSAAWET [11] is proposed to
recursively estimate the unknown parameter.

2.1. Assumptions

We impose the following assumptions on the linear time-varying models.

C1 For any i ∈ V, the regressor Hi,k satisfies the ergodicity property:

lim
n→∞

1

n

n∑
k=1

HT
i,kHi,k � Ri,h,(5)

and {vi,k,Fi,k} is a martingale difference sequence (mds) with

sup
k

E[‖vi,k+1‖2|Fi,k] < ∞,

where Fi,k � σ{Hi,t, vi,t, 1 ≤ t ≤ k}.
C2 Rh �

∑N
i=1Ri,h is positive definite.

Remark 1. Clearly, the independent or strictly stationary ergodic regres-
sors imply (5) with probability one. There are some other regressors also
satisfying C1. The collective identifiability assumption C2 extends identifia-
bility condition for a centralized estimator that is needed to get a consistent
estimate of the unknown parameter θ∗. This together with the ergodic as-
sumption plays a crucial rule in the convergence analysis.

We impose the following assumption on the communication network.

C3 (a) W (k) ∀k ≥ 0 are doubly stochastic matrices;

(b) There exists a constant 0 < η < 1 such that

ωij(k) ≥ η ∀j ∈ Ni(k) ∀i ∈ V ∀k ≥ 0;
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(c) The digraph G∞ = {V , E∞} is strongly connected, where

E∞ = {(j, i) : (j, i) ∈ E(k) for infinitely many indices k};

(d) There exists a positive integer B such that

(j, i) ∈ E(k) ∪ E(k + 1) ∪ · · · ∪ E(k +B − 1)

for all (j, i) ∈ E∞ and any k ≥ 0.

Remark 2. If C3 holds, then by [8, Proposition 1 ] there exist constants
c > 0, 0 < ρ < 1 such that

(6)

∥∥∥∥Φ(k, s)− 1

N
11T

∥∥∥∥ ≤ cρk−s+1 ∀k ≥ s,

where Φ(k, s) is given by

Φ(k, k + 1) = IN , Φ(k, s) = W (k) · · ·W (s) ∀k ≥ s.

2.2. Equivalent problem

Since Hi,k is adapted to Fi,k, by the property of the weighted mds [26]

n∑
k=1

HT
i,kvi,k = O(sn(2)log

1

2
+η(s2n(2) + e)) a.s. ∀η > 0,

where sn(2) = (
∑n

k=1 ‖Hi,k‖2) 1

2 . Hence by (5) we obtain

n∑
k=1

HT
i,kvi,k = O(n

1

2
+η) a.s. ∀η > 0.

Thus, from (5) we obtain

lim
n→∞

1

n

n∑
k=1

HT
i,kYi,k = lim

n→∞
1

n

n∑
k=1

HT
i,kHi,kθ

∗ + lim
n→∞

1

n

n∑
k=1

HT
i,kvi,k(7)

= Ri,hθ
∗ � Ri,hy a.s.

From (2) (3) it follows that

1

n

n∑
k=1

HT
k Hk =

1

n

N∑
i=1

n∑
k=1

HT
i,kHi,k,

1

n

n∑
k=1

HT
k Yk =

1

n

N∑
i=1

n∑
k=1

HT
i,kYi,k,
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and hence by (5) (7) we derive

lim
n→∞

1

n

n∑
k=1

HT
k Hk =

N∑
i=1

Ri,h � Rh,

lim
n→∞

1

n

n∑
k=1

HT
k Yk =

N∑
i=1

Ri,hy = Rhθ
∗ � Rhy.

Then we obtain

lim sup
n→∞

1

n

n∑
k=1

‖ Yk −Hkθ ‖2= lim sup
n→∞

1

n

n∑
k=1

Y T
k Yk − 2θTRhy + θTRhθ.

So, the minimum of (4) is the root of its gradient function:

−Rhy +Rhθ = 0.

Since Rh is positive definite, the minimum of (4) is uniquely achieved at
θ = R−1h Rhy = θ∗.

In summary, under C1, C2 the problem of finding the minimum of (4)
is converted to collectively seeking root of the function

f(θ) =

N∑
i=1

fi(θ)

with fi(θ) = −Ri,hθ +Ri,hy. The corresponding root set is J = {θ∗}.

2.3. Algorithm

Denote by θi,k the estimate for θ∗ given by agent i at time k. Since Ri,h and
Ri,hy cannot be directly derived, by replacing Ri,h and Ri,hy with HT

i,kHi,k

and HT
i,kYi,k the observation of the function fi(θ) = −Ri,hθ +Ri,hy at point

θi,k is constructed as

(8) Oi,k+1 = HT
i,k(Yi,k −Hi,kθi,k).

Thus, the observation noise εi,k+1 is

εi,k+1 = Oi,k+1 − fi(θi,k) = HT
i,kYi,k −Ri,hy + (Ri,h −HT

i,kHi,k)θi,k.(9)
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For any i ∈ V, the estimate is generated by the following algorithm

σi,0 = 0, σ̂i,k � max
j∈Ni(k)

σj,k,(10)

θ′i,k+1 =

⎛
⎝ ∑

j∈Ni(k)

ωij(k)θj,kI[σj,k=σ̂i,k] +
1

k
Oi,k+1

⎞
⎠ I[σi,k=σ̂i,k],(11)

θi,k+1 = θ′i,k+1I[‖θ′
i,k+1‖≤σ̂i,k],(12)

σi,k+1 = σ̂i,k + I[‖θ′
i,k+1‖>σ̂i,k],(13)

where Oi,k+1 is defined in (8), and IA is the indicator of a random event A,
i.e., IA(ω) = 1 if ω ∈ A, and IA(ω) = 0, otherwise.

2.4. Convergence theorem

Theorem 3. Let {θi,k}k≥1 be generated by (10)–(13) with Oi,k+1 defined
by (8) for any initial value θi,0. Assume C1, C2, and C3 hold. Then

lim
k→∞

θi,k = θ∗, a.s., ∀i ∈ V.

The proof consists in verifying conditions guaranteeing convergence of
DSAAWET stated in Appendix. It is noticed that the algorithm (10)–(13)
coincides with the algorithm (68)–(71) by identifying xi,k, x

∗, γk and Mk in
(68)–(71) with θi,k, 0,

1
k , and k in (10)–(13), respectively. The detailed proof

of Theorem 3 is given in Section 5. The theorem points out that the estimates
given by all agents converge to the true parameter θ∗ with probability one.

Remark 4. Assume there exists a positive constant α > 0 such that

1

n

n∑
k=1

(HT
i,kHi,k −Ri,h) = o

(
1

nα

)
.(14)

Then Theorem 3 remains true if the step-size 1
k in (11) is replaced by 1

kβ

with 1 ≥ β > 0.5 and α+ β ≥ 1.

Remark 5. Compared with the iid Gaussian assumption [14],[15] and the
strictly stationary condition [17], we impose weaker conditions on the regres-
sors. It will be shown in Section 6 that the regressors being AR processes
satisfy (5). Besides, the switch of the communication graphs is assumed to
be deterministic in the paper, while the random switches are considered in
[22, 23], and the fixed undirected graph is considered in [14, 15, 17].



430 J.-L. Lei and H.-F. Chen

3. Global behavior of estimate sequence

Denote by τi,m � inf{k : σi,k = m} the smallest time when the truncation
number of agent i has reached m, by τm � min

i∈V
τi,m the smallest time when

at least one of agents has its truncation number reached m, and by σk �
max
i∈V

σi,k the largest truncation number among all agents at time k. Set

τ̃j,m � max{τj,m, τm+1}. We first recall some results from [11] that will be
used in the sequel.

Lemma 6. i) [11, Remark 3.1] For {θi,k} generated by (10)–(13) with
any initial values the following assertion takes place:

(15) θi,k+1 = 0 when σi,k+1 > σi,k.

ii) [11, Lemma 4.3] Assume C3 holds. Then

τ̃j,m ≤ τm +B(N − 1) ∀j ∈ V for m ≥ 0.

iii) [11, Lemma 5.5] Assume C3 holds. If lim
k→∞

σk = σ < ∞, then there

exists an integer k0 > 0 such that

σi,k = σ ∀k ≥ k0 ∀i ∈ V.

Next we give some lemmas that will be used for the proof of Theorem 3.

Lemma 7. For a sequence of matrices {Ak}, if

(16) lim
k→∞

∑k
m=1Am

k
= Ā,

then for any constant T > 0

lim
k→∞

m(k,Tk)∑
m=k

Am − Ā

m
= 0 ∀Tk ∈ [0, T ],(17)

lim
k→∞

1

T

m(k,T )∑
m=k

Am

m
= Ā,(18)

where m(k, T ) � max{m :
∑m

p=k
1
p ≤ T}.
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Proof. By denoting Qk=
∑k

m=1(Am−Ā), from (16) it follows that Qk

k −−−−→
k→∞

0. Therefore,

m(k,Tk)∑
m=k

Am − Ā

m
=

m(k,Tk)∑
m=k

1

m
(Qm −Qm−1)

=
Qm(k,Tk)

m(k, Tk)
− Qk−1

k
+

m(k,Tk)−1∑
m=k

1

m(m+ 1)
Qm −−−−→

k→∞
0 ∀Tk ∈ [0, T ],

and hence (17) holds.
By replacing Tk in (17) with T , it is seen that (18) holds. �
Set Θk = col{θ1,k, . . . , θN,k}, θk = 1

N

∑N
i=1 θi,k, Θ⊥,k = Θk − (1⊗ IM )θk,

and εk = col{ε1,k, . . . , εN,k}.

Lemma 8. If C1 and C3 hold, then the sequence of estimates {Θk} gen-
erated by (10)–(13) contains at least one bounded subsequence {Θnk

} with
σi,nk

= σnk
∀i ∈ V.

Proof. In what follows all discussion is carried out for a fixed sample path.
Case 1: If lim

k→∞
σk = σ < ∞, then there exists a positive integer k0 such

that there is no truncation after k0. Consequently, the estimate sequence
{Θk} is bounded and by Lemma 6 iii) σi,k = σ ∀k ≥ k0 ∀i ∈ V.

Case 2: For the case lim
k→∞

σk = ∞ it suffices to show that for sufficiently

large m > m0 � 2D − 1

(19) σi,τm+D = m ∀i ∈ V, ‖ Θτm+D ‖≤ cb,

where D = (N − 1)B, and cb =
√
N(2D − 1).

Set k = τm. For sufficiently large m ≥ m0 and any q = 1, . . . , D we first
show the following facts:

i) For any agent i with σi,k = m it holds that

σi,k+q = m, and ‖ θi,k+q ‖≤ 2q − 1 ≤ Mm;(20)

ii) For any agent j with σj,k < m it holds that

σj,k+q ≤ m,

further, ‖ θj,k+q ‖≤ 2q − 1, if, in addition, σj,k+q = m.
(21)

We prove i) and ii) by induction.
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Step 1: We first show that i) and ii) hold for q = 1.
Since k = τm, by the definition of τm we derive σj,k ≤ m and σj,k−1 <

m ∀j ∈ V. Then from (10) it follows that σ̂i,k = m for any agent i with
σi,k = m. Since σi,k−1 < σi,k, θi,k = 0 by (15). Then from (11) we derive

(22) θ′i,k+1 =
1

k
HT

i,kYi,k.

By (7) we have

(23) lim
k→∞

1

k
HT

i,kYi,k = 0.

Thus, there exists a sufficiently large k ≥ m0 such that

(24)
1

k
‖ HT

i,kYi,k ‖≤ 1 ∀i ∈ V.

Since k = τm ≥ m, from (22) (24), Mm = m, and m0 = 2D − 1 it follows
that for sufficiently large m ≥ m0

(25) ‖ θ′i,k+1 ‖≤
1

k
‖ HT

i,kYi,k ‖≤ 1 ≤ Mm

for any agent i with σi,k = m. Therefore, θi,k+1 = θ′i,k+1 by (12), and σi,k+1 =
σ̂i,k = m by (13). Hence by (25) we derive ‖ θi,k+1 ‖≤ 1. Consequently, i)
holds for q = 1.

By definition (10) for σ̂j,k we know that σ̂j,k ≤ m for any agent j with
σj,k < m since k = τm. If σ̂j,k = m, then θ′j,k+1 = 0 by (11) since σj,k < σ̂j,k,
and hence σj,k+1 = σ̂j,k = m by (13); If σ̂j,k < m, then σj,k+1 ≤ σ̂j,k + 1 ≤
m by (13). Thus in the case σj,k < m by considering the alternative cases
σ̂j,k < m and σ̂j,k = m we conclude σj,k+1 ≤ m. From (15) we see θj,k+1 = 0
when σj,k+1 = m. Therefore, ii) holds for q = 1.

Step 2: Assume i) and ii) hold for q = 1, . . . , p with p < D. We show
that they hold for q = p+ 1.

From the inductive assumption by (20) (21) we have σk+p ≤ m and
σi,k+p = m. Hence, σ̂i,k+p = m. Then by (11)

θ′i,k+p+1 =
∑

j∈Ni(k)

ωij(k)θj,k+pI[σj,k+p=m](26)

+
1

k + p
HT

i,k+p(Yi,k+p −Hi,k+pθi,k+p).
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By (20) (21) we know

‖ θi,k+p ‖≤ 2p − 1 if σi,k+p = m.

Then from (26) it follows that

‖ θ′i,k+p+1 ‖ ≤ 2p − 1 +
1

k + p
‖ HT

i,k+pYi,k+p ‖(27)

+
1

k + p
(2p − 1) ‖ HT

i,k+pHi,k+p ‖ .

Since HT
i,kHi,k satisfies (5), similar to (24) it can be shown that for

sufficiently large k ≥ m0 = 2D − 1

1

k
‖ HT

i,kHi,k ‖≤ 1 ∀i ∈ V,

which incorporating with (24)(27) implies that for sufficiently large m ≥ m0

‖ θ′i,k+p+1 ‖≤ 2p − 1 + 1 + (2p − 1) = 2p+1 − 1 ≤ 2D − 1 < Mm.(28)

So, θi,k+p+1 = θ′i,k+p+1 by (12), and σi,k+p+1 = σ̂i,k+p = m by (13). Then

by (28) we derive ‖ θi,k+p+1 ‖≤ 2p+1 − 1.
Thus, we conclude that

σi,k+p+1 = m, and ‖ θi,k+p+1 ‖≤ 2p+1 − 1 ≤ Mm.(29)

This proves i) for q = p+ 1.
We now show ii) for q = p+ 1. By the inductive assumption we have

σj,k+p ≤ m. For the case σj,k+p = m, as shown in (26)–(29), we have (29)
with i replaced by j. So, ii) is valid for q = p+ 1 for the case σj,k+p = m. For
the case σj,k+p < m we separately consider the cases σ̂j,k+p = m and σ̂j,k+p <
m. For the case σ̂j,k+p = m, by (11) we have θ′j,k+p+1 = 0 since σj,k+p <
σ̂j,k+p, and hence σj,k+p+1 = σ̂j,k+p = m by (13). For the case σ̂j,k+p < m, we
have σj,k+p+1 ≤ σ̂j,k+p + 1 ≤ m by (13). Therefore, for the case σj,k+p < m
we have σj,k+p+1 ≤ m. If, in addition, σj,k+p+1 = m, then σj,k+p+1 > σj,k+p

and by (15) we conclude θj,k+p+1 = 0. Thus, we have proved ii) for q = p+ 1.
Consequently, (20) (21) hold for q = 1, . . . , D by induction. Hence, we

conclude that τi,m+1 > k +D ∀i ∈ V for sufficiently large m ≥ m0. Since
k = τm, we have τm+1 − τm > D. Then by Lemma 6 ii) we obtain τi,m ≤
τm +D ∀i ∈ V, and hence σi,τm+D ≥ m by noticing σi,τi,m = m by defini-
tion. On the other hand, from τm+1 > τm +D it follows that σi,τm+D ≤



434 J.-L. Lei and H.-F. Chen

m ∀i ∈ V. This yields σi,τm+D = m ∀i ∈ V. From (20) (21) it is seen that
‖ θi,τm+D ‖≤ 2D − 1 ∀i ∈ V for large enough m ≥ m0. Thereby

‖ Θτm+D ‖≤
√
N max

i
‖ θi,τm+D ‖≤

√
N(2D − 1).

Thus, we have shown (19).
Combining Case 1 and Case 2 proves the lemma. �

4. Local properties along bounded subsequences

The following lemma measures the closeness of the sequence {Θk} along the
bounded subsequence {Θnk

} with σi,nk
= σnk

∀i ∈ V.

Lemma 9. Let {Θnk
} be a bounded subsequence with σi,nk

= σnk
∀i ∈ V.

Assume C1 and C3 hold. Then there exist constants c1 > 0, c2 > 0, M ′
0 > 0,

T > 0 such that for sufficiently large k

‖ Θm+1 −Θnk
‖ ≤ c1T +M ′

0,(30)

‖ θm+1 − θnk
‖ ≤ c2T ∀m : nk ≤ m ≤ m(nk, T ).(31)

Proof. Since {Θnk
} is a bounded subsequence with σi,nk

= σnk
∀i ∈ V, by

(10) we see σi,nk
= σ̂j,nk

∀i, j ∈ V. Then by (11) we derive

θ′i,nk+1 =
∑

j∈Ni(nk)

ωij(nk)θj,nk
+ γnk

Oi,nk+1.

If there is no truncation at time nk + 1 for any agent i ∈ V, then

θi,nk+1 = θ′i,nk+1 =
∑

j∈Ni(nk)

ωij(nk)θj,nk
+ γkOi,nk+1,

and the recursion (10)–(13) can be rewritten in the compact form:

(32) Θnk+s+1 = (W (nk + s)⊗ IM )Θnk+s + γnk+s(F (Θnk+s) + εnk+1+s)

for s = 0.
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Since the sequence {Θnk
} is bounded, there exists a constant C > 0 and

an integer k0 > 0 such that

(33) ‖ Θnk
‖≤ C ∀k ≥ k0.

Set F (Θ) � col{f1(θ1), . . . , fN (θN )} with Θ = col{θ1, . . . , θN}. Define

M ′
0 = 1 + C(cρ+ 2),(34)

H1 = max
Θ

{‖ F (Θ) ‖:‖ Θ ‖≤ M ′
0 + 1 + C},(35)

c1 = H1 + c0(3 +
c(ρ+ 1)

1− ρ
), c2 =

H1 + c0√
N

,(36)

where c and ρ are given in (6), and c0 is given by

(37) c0 =
√
Nc3max

i∈V
(‖Ri,h‖+ tr(Ri,h)) + 1,

where c3 = C +M ′
0 + 1 and tr(Ri,h) denotes the trace of Ri,h. Select T > 0

such that

(38) c1T < 1.

For any k ≥ k0 define

sk � sup{s ≥ nk :‖ Θj −Θnk
‖≤ c1T +M ′

0 ∀j : nk ≤ j ≤ s}.(39)

From (33) and (38) it follows that for any k ≥ k0

‖ Θs ‖ ≤ c1T+ ‖ Θnk
‖ +M ′

0 ≤ M ′
0 + 1 + C = c3 ∀s : nk ≤ s ≤ sk.(40)

We now show sk > m(nk, T ).
Assume the converse that for sufficiently large k ≥ k1

(41) sk ≤ m(nk, T ).

We first show that there exists integer k1 > k0 such that for all k ≥ k1

(42) sk < τσnk
+1.

We prove (42) for the two alternative cases: i) lim
k→∞

σk = ∞ and ii)

lim
k→∞

σk = σ < ∞. i) Since {Mk} is a sequence of positive numbers increas-

ingly diverging to infinity, there exists a positive integer k1 > k0 such that
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Mσnk
> M ′

0 + 1 + C for all k ≥ k1. Hence, from (40) we know sk < τσnk
+1.

ii) For this case there exists a positive integer k1 > k0 such that σnk
= σ for

all k ≥ k1, and hence τσnk
+1 = τσ+1 = ∞. This implies (42).

From (42) it follows that (32) holds for s : 0 ≤ s ≤ sk − nk − 1.
Next we investigate the property of the noise sequence {εk+1}k≥0. Let

us decompose the noise εi,k+1 given in (9) into two parts as

(43) εi,k+1 = ε1i,k+1 + ε2i,k+1,

where ε1i,k+1 = HT
i,kYi,k −Ri,hy, and ε2i,k+1 = (Ri,h −HT

i,kHi,k)θi,k. By set-

ting Ak = HT
i,kYi,k, from (7) we see that (16) holds with Ā = Ri,hy. Hence

by (17) we derive

lim
k→∞

1

T

∥∥∥∥∥∥
m(nk,Tk)∑
m=nk

1

m
(HT

i,mYi,m −Ri,hy)

∥∥∥∥∥∥ = 0 ∀Tk ∈ [0, T ].(44)

Then by (41) we conclude that

(45) lim
k→∞

1

T

∥∥∥∥∥
s∑

m=nk

1

m
ε1i,m+1

∥∥∥∥∥ = 0 ∀s : nk ≤ s ≤ sk.

Denote by λmax(A) the largest eigenvalue of a square matrix A. We have

(46) tr(HT
i,mHi,m) ≥ λmax(H

T
i,mHi,m) = ‖Hi,m‖2.

Therefore, from (40) and (41) it follows that

∥∥∥∥∥
s∑

m=nk

1

m
ε2i,m+1

∥∥∥∥∥ ≤
s∑

m=nk

1

m
[‖Ri,h‖+ ‖Hi,m‖2]‖θi,m‖

≤ c3

m(nk,T )∑
m=nk

1

m
[‖Ri,h‖+ tr(HT

i,mHi,m)] ∀s : nk ≤ s ≤ sk

(47)

for sufficiently large k ≥ k1 .
By setting Ak = HT

i,kHi,k, from (5) it follows that (16) holds with Ā =
Ri,h. Therefore, by (18) we derive

lim
k→∞

1

T

m(nk,T )∑
m=nk

1

m
tr(HT

i,mHi,m) = tr(Ri,h).
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Hence

lim
k→∞

1

T

m(nk,T )∑
m=nk

1

m
[‖Ri,h‖+ tr(HT

i,mHi,m)] = tr(Ri,h) + ‖Ri,h‖.(48)

Combining (47) with (48), we obtain

lim sup
k→∞

1

T

∥∥∥∥∥
s∑

m=nk

γmε2i,m+1

∥∥∥∥∥ ≤ c3(‖Ri,h‖+ tr(Ri,h)) ∀s : nk ≤ s ≤ sk,

which incorporating with (45) yields

lim sup
k→∞

1

T

∥∥∥∥∥
s∑

m=nk

γmεi,m+1

∥∥∥∥∥ ≤ c3(‖Ri,h‖+ tr(Ri,h)) ∀s : nk ≤ s ≤ sk.

Thus, for sufficiently large k ≥ k1

1

T

∥∥∥∥∥
s∑

m=nk

γmεi,m+1

∥∥∥∥∥ ≤ c3(‖Ri,h‖+ tr(Ri,h)) +
1√
N

∀s : nk ≤ s ≤ sk.

Consequently, from
∥∥∥ s∑
m=nk

γmεm+1

∥∥∥ ≤ √
N max

i∈V

∥∥∥ s∑
m=nk

γmεi,m+1

∥∥∥ we con-

clude that for sufficiently large k ≥ k1

∥∥∥∥∥
s∑

m=nk

γmεm+1

∥∥∥∥∥ ≤ c0T ∀s : nk ≤ s ≤ sk.(49)

Define

(50) Zsk+1 = (W (sk)⊗ IM )Θsk + γsk(F (Θsk) + εsk+1).

Set zsk+1 =
1T⊗IM

N Zsk+1. By
1T⊗IM

N (W (s)⊗ IM ) = 1T⊗IM
N ∀s ≥ 0 we derive

zsk+1 = θsk +
1T ⊗ IM

N
γs(F (Θsk) + εsk+1)

= θnk
+

1T ⊗ IM
N

sk∑
m=nk

γm(F (Θm) + εm+1),
(51)
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and hence by (35) (40) (41) and (49) it follows that

‖zsk+1 − θnk
‖ ≤

∥∥∥∥1
T ⊗ IM
N

∥∥∥∥
∥∥∥∥∥

sk∑
m=nk

γm(F (Θm) + εm+1)

∥∥∥∥∥(52)

≤ 1√
N

sk∑
m=nk

γm ‖ F (Θm) ‖ +
1√
N

∥∥∥∥∥
sk∑

m=nk

γmεm+1

∥∥∥∥∥
≤ H1 + c0√

N
T = c2T for sufficiently large k ≥ k1.

Define Z⊥,sk+1 = Zsk+1 − (1⊗ Im)zsk+1. Since W (k) ∀k ≥ 0 are doubly
stochastic, it is seen that

Z⊥,sk+1 =

[(
Φ(sk, nk)− 1

N
11T

)
⊗ IM

]
Θnk

+

sk∑
m=nk

γm

[(
Φ(sk − 1,m)− 1

N
11T

)
⊗ IM

]
F (Θm)

+

sk∑
m=nk

γm

[(
Φ(sk − 1,m)− 1

N
11T

)
⊗ IM

]
εm+1.

Noting that ‖F (θm)‖ ≤ H1 ∀m : nk ≤ m ≤ sk by (35) (40), from (6) (33)
we see that for sufficiently large k ≥ k1

‖ Z⊥,sk+1 ‖ ≤ Ccρsk+1−nk +

sk∑
m=nk

γmH1cρ
sk−m(53)

+

∥∥∥∥∥
sk∑

m=nk

γm

[(
Φ(sk − 1,m)− 1

N
11T

)
⊗ IM

]
εm+1

∥∥∥∥∥ .

By (49) we derive

(54) ‖ Γs − Γnk−1 ‖≤ c0T ∀s : nk ≤ s ≤ sk,

where Γn �
∑n

m=1 γmεm+1. Note that
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s∑
m=nk

γm(Φ(s− 1,m)⊗ Il)εm+1 =

s∑
m=nk

(Φ(s− 1,m)⊗ Il)(Γm − Γm−1)

=

s∑
m=nk

(Φ(s− 1,m)⊗ Il)(Γm − Γnk−1)

−
s∑

m=nk

(Φ(s− 1,m)⊗ Il)(Γm−1 − Γnk−1).

Summing by parts, by (6) (54) we derive

∥∥∥∥∥
s∑

m=nk

γm(Φ(s− 1,m)⊗ Il)εm+1

∥∥∥∥∥
≤‖ Γs − Γnk−1 ‖ +

s−1∑
m=nk

‖ Φ(s− 1,m)− Φ(s− 1,m+ 1) ‖‖ Γm − Γnk−1 ‖

≤ c0T +

s−1∑
m=nk

(cρs−m−1 + cρs−m)c0T

≤ c0T +
c(ρ+ 1)

1− ρ
c0T ∀s : nk ≤ s ≤ sk.

This incorporating with (49) yields

∥∥∥∥∥
sk∑

m=nk

γm

[(
Φ(sk − 1,m)− 1

N
11T

)
⊗ IM

]
εm+1

∥∥∥∥∥(55)

≤ (2 +
c(ρ+ 1)

1− ρ
)c0T for sufficiently large k ≥ k1.

From (53) (55) and γk −−−−→
k→∞

0 it follows that

‖ Z⊥,sk+1 ‖≤ Ccρ+ 1 +

(
2 +

c(ρ+ 1)

1− ρ

)
c0T(56)

for sufficiently large k ≥ k1.
Since Zsk+1 = Z⊥,sk+1 + (1⊗ IM )zsk+1 we derive

‖ Zsk+1 −Θnk
‖ =‖ (1⊗ IM )zsk+1 + Z⊥,sk+1 −Θ⊥,nk

− (1⊗ IM )θnk
‖

≤‖ Z⊥,sk+1 ‖ + ‖ Θ⊥,nk
‖ +

√
N ‖ zsk+1 − θnk

‖ .
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Noting that ‖Θ⊥,nk
‖ ≤ 2C ∀k ≥ k0 by (33), from (52) and (56) it is seen

that for sufficiently large k ≥ k1

‖ Zsk+1 −Θnk
‖ ≤ Ccρ+ 1 +

(
2 +

c(ρ+ 1)

1− ρ

)
c0T + 2C(57)

+
√
N

H1 + c0√
N

T = M ′
0 + c1T,

where M ′
0 and c1 are defined by (34) and (36), respectively. Therefore,

‖ Zsk+1 ‖≤‖ Θnk
‖ +M ′

0 + c1T ≤ M ′
0 + 1 + C.

This means that (32) holds for s = sk − nk and Θsk+1 = Zsk+1 for suffi-
ciently large k ≥ k1. Hence, from (57) we obtain

‖ Θsk+1 −Θnk
‖≤ M ′

0 + c1T,

which contradicts with the definition (39) for sk. Thereby, sk > m(nk, T )
holds for sufficiently large k ≥ k1. Consequently, from (39) we know that
(30) holds for sufficiently large k.

Since sk > m(nk, T ), similar to (52) it can be proven that (31) holds for
sufficiently large k.

The proof is completed. �
The following lemma gives the property of the noise sequence along the

bounded subsequence {Θnk
} with σi,nk

= σnk
∀i ∈ V.

Lemma 10. If C1, C3 hold, then for any {nk} with σi,nk
= σnk

∀i ∈ V
and with {Θnk

} bounded it holds that

(58) lim
T→0

lim sup
k→∞

1

T

∥∥∥∥∥∥
m(nk,Tk)∑
m=nk

1

m
εk+1

∥∥∥∥∥∥ = 0 ∀Tk ∈ [0, T ].

Proof. Noticing that εi,k+1 is divided into two parts by (43), from (44) we
know that to prove (58) it suffices to verify

lim
T→0

lim sup
k→∞

1

T

∥∥∥∥∥∥
m(nk,Tk)∑
m=nk

1

m
(Ri,h −HT

i,mHi,m)θi,m

∥∥∥∥∥∥ = 0 ∀Tk ∈ [0, T ](59)

Inequality (30) in Lemma 9 assures that there exists a T ∈ (0, 1) such
that m(nk, T ) < τσnk

+1 and {Θs : nk ≤ s ≤ m(nk, T ) + 1} are bounded for
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sufficiently large k. Therefore, there exists a positive constant c4 such that

(60) ‖ θi,m ‖≤ c4 ∀m : nk ≤ m ≤ m(nk, T )

for sufficiently large k.
Combining (53) and (55) we see that there exist positive constants

c′3, c′4, c′5 such that for sufficiently large k

‖ Θ⊥,s+1 ‖≤ c3ρ
s+1−nk + c4 sup

m≥nk

γm + c5T ∀s : nk ≤ s ≤ m(nk, T ).(61)

Since 0 < ρ < 1, there exists a positive integer m′ such that ρm
′
< T. Then∑nk+m′

m=nk
γm −−−−→

k→∞
0 by lim

k→∞
γk = 0. Thus, nk+m′ < m(nk, T ) for sufficiently

large k. Therefore, from (61) we know that for sufficiently large k

‖ Θ⊥,s+1 ‖≤ o(1) + (c3 + c5)T ∀s : nk +m′ ≤ s ≤ m(nk, T ),

where o(1) → 0 as k → ∞. From (31) it follows that for sufficiently large k

‖ θi,s+1 − θnk
‖≤ o(1) + (c2 + c5)T ∀s : nk +m

′ ≤ s ≤ m(nk, T ).

Therefore, from here by (46) (48) (60) we conclude that

∥∥∥∥∥∥
m(nk,Tk)∑
m=nk

1

m
(Ri,h −HT

i,mHi,m)(θi,m − θnk
)

∥∥∥∥∥∥
≤ 2c4

nk+m
′∑

m=nk

1

m
(‖ Ri,h ‖ +tr(HT

i,mHi,m))

+ [o(1) + (c2 + c5)T ]

m(nk,T )∑
m=nk

1

m
(‖ Ri,h ‖ +tr(HT

i,mHi,m))

for sufficiently large k and any Tk ∈ [0, T ]. Then by (48) we derive

lim sup
k→∞

∥∥∥∥∥∥
m(nk,Tk)∑
m=nk

1

m
(Ri,h −HT

i,mHi,m)(θi,m − θnk
)

∥∥∥∥∥∥(62)

≤ (c2 + c5)([‖ Ri,h ‖ +tr(Ri,h)]T
2 ∀Tk ∈ [0, T ].
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By (60) we know

∥∥∥∥∥∥
m(nk,Tk)∑
m=nk

1

m
(Ri,h −HT

i,mHi,m)θnk

∥∥∥∥∥∥ ≤ c4

∥∥∥∥∥∥
m(nk,Tk)∑
m=nk

1

m
(Ri,h −HT

i,mHi,m)

∥∥∥∥∥∥ ,

which incorporating with (5) (17) yields

lim sup
k→∞

∥∥∥∥∥∥
m(nk,Tk)∑
m=nk

1

m
(Ri,h −HT

i,mHi,m)θnk

∥∥∥∥∥∥ = 0 ∀Tk ∈ [0, T ].(63)

Therefore, combining (62) (63) we derive (59). The proof is completed. �

5. Proof of Theorem 3

We first show that the truncation number of each agent converges to the
same positive integer. Based on this fact, we then prove the strong consis-
tency of the estimates.

5.1. Finiteness of number of truncations

The following lemma says that the truncation number is finite for all agents.

Lemma 11. If C1, C2, and C3 hold, then

(64) lim
k→∞

σk = σ < ∞.

Proof. From Lemma 8 we know that {Θk} contains a bounded subse-
quence {Θnk

} with σi,nk
= σnk

∀i ∈ V. For this bounded subsequence
{Θnk

}k≥1, there exists a positive constant c0 such that ‖Θnk
‖ ≤ c0 ∀k ≥ 1.

Thus, {θnk
} is in the bounded set {θ ∈ R

M : ‖θ‖ ≤ c0}. Note that v(θ) =
‖Rhθ −Rhy‖2 and Rh is positive definite. Then there exists a constant
c1 > c0 such that max‖θ‖≤c0 v(θ) < inf‖θ‖=c1 v(θ). Since J = {θ∗}, there ex-
ists a nonempty interval [δ1, δ2] ∈ (max‖θ‖≤c0 v(θ), inf ‖θ‖=c1v(θ)) such that
d([δ1, δ2], v(J)) > 0.

Assume the converse that lim
k→∞

σk = ∞. Similar to [11, Lemma 5.4] it

can be proven that θnk
starting from a point in the set {θ ∈ R

M : ‖θ‖ ≤ c0}
crosses the boundary {θ ∈ R

M : ‖ θ ‖= c1} infinitely many times. There-
fore, for the nonempty interval [δ1, δ2], there are infinitely many crossings
{v(θnk

), . . . , v(θmk
)}, where by “crossing [δ1, δ2] by {v(θnk

), . . . , v(θmk
)}” we
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mean that v(θnk
) ≤ δ1, v(θmk

) ≥ δ2, and δ1 < v(θs) < δ2 ∀s : nk < s < mk.
We now show that this is impossible.

In Section 2.2 it is noted that the distributed parameter estimation is
equivalent to the distributed root-seeking problem. We want to show that
A1-A3 required by Theorem 12 in Appendix are satisfied. Since γk = 1

k we
know that A1 holds. By noticing that fi(θ) = −Ri,hθ +Ri,hy ∀i ∈ V, we see
that fi(θ) is continuous, and hence A3 holds. Since f(θ) = −Rhθ +Rhy,
Rh is positive definite and J = {θ∗}, by setting v(θ) = ‖Rhθ −Rhy‖2 A2 is
verified. Thus, A1-A3 hold. Further, the noise sequence satisfies (58) along
indices {nk} with σi,nk

= σnk
∀i ∈ V and with {Θnk

} bounded. Then sim-
ilar to [11, Lemma 5.3] we can show that any nonempty interval [δ1, δ2]
with d([δ1, δ2], v(J)) > 0 cannot be crossed by infinitely many sequences
{v(θnk

), . . . , v(θmk
)}, which yields a contradiction.

Thus, the converse assumption lim
k→∞

σk = ∞ is not true, and hence (64)

holds. �

5.2. Strong consistency

Proof of Theorem 3. Since the algorithm (10)–(13) is in the same form as
DSAAWET, we use Theorem 12 in Appendix to prove Theorem 3. For this
it suffices to prove assumptions A1-A4, and C3 required by Theorem 12. It
has already been shown in the proof of Lemma 11 that A1-A3 hold. Since
C3 is assumed in the theorem, we only need to prove that noise condition
A4 is satisfied.

Since lim
k→∞

σk = σ < ∞ by Lemma 11, there exists c1 > 0 such that

‖θi,k‖ ≤ c1 ∀k ≥ 1. Note that lim
k→∞

1
k tr(H

T
i,kHi,k) = 0 by (5). Then by (46)

1

k
‖(Ri,h −HT

i,kHi,k)θi,k‖ ≤ c1
k
(‖Ri,h‖+ ‖Hi,k‖2)

≤ c1
k
(‖Ri,h‖+ tr(HT

i,kHi,k)) −−−−→
k→∞

0.

Therefore,

1

k
(Ri,h −HT

i,kHi,k)θi,k −−−−→
k→∞

0 ∀i ∈ V,

which incorporating with (23) implies A4 a).
By Lemma 11 and Lemma 6 iii) we know that there exists some positive

integer k0 such that

σi,k = σ ∀k ≥ k0.
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Hence the sequence {θi,k} is bounded for any i ∈ V. Then by Lemma 10

lim
T→0

lim sup
k→∞

1

T

∥∥∥∥∥∥
m(k,Tk)∑
m=k

1

m
εk+1

∥∥∥∥∥∥ = 0 ∀Tk ∈ [0, T ].

So, by the definition of εk+1 we conclude that for any i ∈ V

lim
T→0

lim sup
k→∞

1

T

∥∥∥∥∥∥
m(k,Tk)∑
m=k

1

m
εi,k+1

∥∥∥∥∥∥ = 0 ∀Tk ∈ [0, T ],

which implies A4 b).
By Theorem 12 we conclude that the estimates given by each agent

converge to θ∗. �

6. Numerical simulations

In this section, numerical simulations demonstrate the convergence of the
proposed algorithm. It is also shown how do both the size of the network
and the dimension of the unknown parameter affect the convergence rate.

The i-th component of the parameter θ∗ ∈ R
M is set to be (1 + 0.1i)

√
i.

For any i ∈ V, the regressor Hi,k = (hi,k, . . . , hi,k−M+1) is a row vector with
its entry hi,k generated by

(65) hi,k = (1− κi)αihi,k−1 +
√
κiξi,k.

For each agent i ∈ V, κi and αi are generated according to the uniform
distributions over the intervals [0.2, 0.4] and [0.8, 1.2], respectively. {ξi,k} is
a sequence of iid random variables ∈ N (0, 0.36), and the initial values hi,0
for all agents are mutually independent and uniformly distributed over the
interval [−2, 2]. The sequence {hi,k} produced by (65) is neither independent
nor strictly stationary, while by [24, Theorem 1.5.3] we have

(66) lim
n→∞

1

n

n∑
k=1

hi,k+mhi,k = Ri(m) a.s.

for all m ≥ 0 with Ri(m) = 0.36κi
∑∞

k=0[(1− κi)αi]
2k+m. Since (1− κi)αi ∈

(0, 1), by (66) we see that (5) holds. Moreover, it can also be verified that
(14) holds for any 0 < α < 0.5.

The observation noise vi,k in (1) for agent i is a sequence of iid ran-
dom variables ∈ N (0, 0.09). All components of the initial values xi,0 for all
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agents are set to be mutually independent and uniformly distributed over
the interval [−2, 2].

Let {θi,k}k≥1 be generated by (10)–(13) with the step-size 1
k in (11)

replaced by 1
k0.6 . Let θjk, j = 1, . . . ,M denote the j-th component of θk =

1
N

∑N
i=1 θi,k. Let the average of the square errors be e(k) =

∑N
i=1 ‖θi,k −

θ∗‖2/N . Three simulations are carried out.
Simulation One: Let N = 100, and M = 8. We divide agents into two

groups: the first group is composed of agents indexed from i = 1 to i = 50,
while the second group from i = 51 to i = 100. For any k ≥ 1,

• at time 3k − 2, the communication graph for agents in the first group
is strongly connected, while agents in the second group do not com-
municate with any agent;

• at time 3k − 1, the communication graph for agents in the second
group is strongly connected, while agents in the first group do not
communicate with any agent;

• at time 3k, agent i : 1 ≤ i ≤ 50 in the first group communicates with
agent i+ 50 in the second group through a bidirectional edge, and all
nonzero weights are set to be 1

2 .

Explicitly, the matrix W (k) is as follows:

W (3k − 2) =

(
W1 0
0 IN/2

)
, W (3k − 1) =

(
IN/2 0
0 W2

)
,

W (3k) =

(
1
2 IN/2

1
2 IN/2

1
2 IN/2

1
2 IN/2

)
,

where W1 ∈ R
N/2×N/2 and W2 ∈ R

N/2×N/2 are doubly stochastic matrices
with positive diagonal entries. Further, the digraphs of W1 and W2 are
strongly connected.

The simulation results are shown in Figure 1, where it is seen that the
estimates converge to the true parameter.

Simulation Two: SetM = 8. LetG(N, pN ) denote the Poisson random
graph model on N nodes defined in [25], by which it is meant that each edge
is included in the graph with probability pN independently of the rest. Take
samples from such a graph G(N, pN ) with pN = 6/N but only consider the
connected ones. Denote by di the number of neighboring agents of agent i.
Set W (k) = W = [ωij ]

N
i,j=1 ∀k ≥ 1 with ωij =

1
di

when j is the neighboring
agent of i.
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Figure 1: The average estimate θk.

The simulation is carried out separately for N = 20, 100, and 1000. The
results are shown in Figure 2. It is seen that the network size affects the
convergent rate: the larger N yields the slower convergent rate.

Simulation Three: Set N = 100. Take a sample graph that is con-
nected from the Poisson random graph G(N, p) with p = 6/N . Denote by di
the number of neighboring agents of agent i. SetW (k) = W = [ωij ]

N
i,j=1 ∀k ≥

1 with ωij =
1
di

when j is the neighboring agent of i.
The simulation is carried out separately for M = 2, 4, and 10. The re-

sults are shown in Figure 3, from which it is seen that the dimension of the
unknown parameter affects the convergent rate: the larger M leads to the
lower convergent rate.

7. Concluding remarks

In the paper, a distributed estimation algorithm is calculated at each sensor
in the network to estimate the unknown parameter. The estimates are shown
to converge to the true parameter when the regressors satisfy some ergodic
property. The numerical simulations are given to demonstrate the theoretic
result.
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Figure 2: The average square error
e(k) for different N .

Figure 3: The average square error
e(k) for different M .

Some directions for further research include investigating the conver-
gence rate and the asymptotic properties of the distributed algorithm, es-
timating the unknown time-varying parameter in the sensor networks, and
considering the distributed estimation problem with the sign errors [27] or
with the regressors corrupted by noises.

8. Appendix: Convergence for DSAAWET

DSAAWET proposed in [11] is used to collectively find the root of the fol-
lowing function

f(x) =

N∑
i=1

fi(x),

where fi(·) : RM → R
M is the local function assigned to agent i that can

only be observed by i itself. The root set of f(·) is denoted by J � {x ∈
R
M : f(x) = 0}.
Denote by xi,k ∈ R

M the estimate for the root of f(·) given by agent i at
time k. While obtaining the information shared from its neighboring agents,
agent i has its local observation

(67) Oi,k+1 = fi(xi,k) + εi,k+1,

where εi,k+1 is the observation noise.
With {Mk} being a sequence of positive numbers increasingly diverg-

ing to infinity and x∗ ∈ R
M being a given point known to all agents, the
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estimation sequence {xi,k}k≥1 of agent i is generated as follows:

σi,0 = 0, σ̂i,k � max
j∈Ni(k)

σj,k,(68)

x′i,k+1 =

( ∑
j∈Ni(k)

ωij(k)
(
xj,kI[σj,k=σ̂i,k] + x∗I[σj,k<σ̂i,k]

)
(69)

+ γkOi,k+1

)
I[σi,k=σ̂i,k] + x∗I[σi,k<σ̂i,k],

xi,k+1 = x∗I[‖x′
i,k+1‖>Mσ̂i,k

] + x′i,k+1I[‖x′
i,k+1‖≤Mσ̂i,k

],(70)

σi,k+1 = σ̂i,k + I[‖x′
i,k+1‖>Mσ̂i,k

],(71)

where Oi,k+1 is defined by (67), γk > 0 is the step size.
Let us introduce the following conditions.

A1 γk > 0, γk −−−−→
k→∞

0, and
∞∑
k=1

γk = ∞.

A2 There exists a continuously differentiable function v(·) : Rl → R such
that

a) sup
δ≤d(x,J)≤Δ

fT (x)vx(x) < 0 for any Δ > δ > 0, where vx(·) denotes
the gradient of v(·) and d(x, J) = infy{‖ x− y ‖: y ∈ J},

b) v(J) � {v(x) : x ∈ J} is nowhere dense,
c) ‖x∗‖ < c0 and v(x∗) < inf ‖x‖=c0v(x) for some positive constant

c0, where x∗ is used in (69) (70).

A3 The local functions fi(·) ∀i ∈ V are continuous.

A4 For any i ∈ V, the noise sequence {εi,k+1}k≥0 satisfies
a) γkεi,k+1 −−−−→

k→∞
0,

b) lim
T→0

lim sup
k→∞

1
T ‖

m(nk,tk)∑
m=nk

γmεi,m+1I[‖xi,m‖≤K] ‖= 0 ∀tk ∈ [0, T ] for

any sufficiently large K along indices {nk} whenever {xi,nk
} converges,

where m(k, T ) � max{m :
∑m

i=k γi ≤ T}.

Theorem 12. [11, Theorem 3.3] Let {xi,k} be generated by (68)–(71) for
any initial value xi,0. Assume A1-A3, and C3 hold. Then

X⊥,k −−−−→
k→∞

0 and d(xk, J) −−−−→
k→∞

0
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for the sample path ω for which A4 holds for all agents, where xk=
1
N

N∑
i=1

xi,k,

Xk = col{x1,k, . . . , xN,k}, and X⊥,k = Xk − (1⊗ IM )xk.
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