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Performance analysis of distributed

adaptive filters

Chen Chen, Zhixin Liu and Lei Guo

This paper investigates the tracking performance of the normalized
least mean square (LMS) based distributed adaptive filters, where
a set of filters are designed to estimate the unknown time-varying
parameters or signals using noisy measurements in a cooperative
way. We show that under a general connected topology, the track-
ing error covariances of the distributed filters can be approximately
described and calculated by a simple, linear and deterministic ma-
trix difference equation. Different from most of the existing results,
we do not require the regression vectors to satisfy stationarity or
independency assumptions, which makes our theory applicable to
stochastic systems with feedback.

1. Introduction

With the rapid development of the miniature sensing technology and the
communication technology, sensor networks have exhibited the advantages
of flexibility, fault tolerance, and ease of deployment [1], and thus, have
wide applications in many practical situations, such as industrial process
monitoring and control, machine health monitoring, and so on. Parameter
estimation or system identification is one of the most important topics in
system and control areas, and the least mean square (LMS) method is a ba-
sic algorithm to track a sequence of unknown time-varying parameters; See
[2]–[4] for algorithms and theoretical analysis. However, for many complex
systems, a single sensor may not be able to accomplish the estimation or
filtering tasks because of its limited sensing and observation capability. It is
natural to cooperate multiple sensors to design the estimation algorithms.
Limited by the communication ability, the distributed adaptive filters where
the sensors use the local observations to design the estimation algorithms
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are widely adopted. In comparison with the centralized algorithms where a
fusion center is required to receive and process the information from all sen-
sors, the distributed adaptive filters have some advantages, e. g., reduction
of the communication and computation costs, robustness to partial node
failures.

Over the last decade, a lot of efforts have been paid on the design and
performance analysis of the distributed filtering algorithms. Since the con-
sensus scheme usually embodies the cooperation of the sensors over the net-
work, the consensus-based algorithms are widely used. For the case where
the regression vectors used in the filtering algorithms are deterministic, some
theoretical analyse have been carried out, see, e.g., [5]–[8]. For the case of
stochastic regression vectors, some theoretical results are also obtained, see
[9]–[13]. However, in almost all existing results, the stationarity and inde-
pendency assumptions of the regression vectors are used.

It is worth pointing out that the stationarity and independency assump-
tion are idealizations of the regression vectors for the complicated practical
systems. For feedback closed-loop stochastic control systems (cf., [14]), the
stationarity and independency assumptions of regression vectors are not sat-
isfied because the input and output constitute the regression vectors, and the
outputs are usually generated from a set of highly nonlinear and stochastic
equations, and thus, are correlated.

In this paper, we focus on the normalized diffusion least mean-square
algorithm (DLMS) introduced in [10], and provide the performance approx-
imation of the algorithms without imposing stationary and independent as-
sumptions on the stochastic regression vectors. The difficulty lies in how
to deal with the product of random matrices which are temporally non-
commutative, non-independent and spatially coupled. Under a general con-
nected topology, we establish the performance approximation formula of the
tracking error covariances of the normalized LMS based distributed filters,
which can be approximately described and calculated by a simple, linear
and deterministic matrix difference equation. Our theory shows that the
distributed filters can work well cooperatively, even if any individual sensor
does not have the ability of tracking due to lack of necessary information.
This desirable property for the distributed filters does not seem to have been
established except the authors’ companion work of [15].

The remainder of this article is organized as follows. In Section 2, we
introduce the DLMS algorithm as well as the the main results concerning
the approximation of the tracking performance. In Section 3, we provide the
proof of the main theorems. The concluding remarks are made in Section 4.
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2. Problem statement and main results

Let us first introduce some notations used throughout the paper. For a
matrix A, A ≥ 0 means that A is semi-positive definite, and A ≥ B means
that A−B ≥ 0. The notations (A)τ , λmax(A) and λmin(A), respectively, de-
note the transpose, the largest eigenvalue and the smallest eigenvalue of the
matrix A. The notation ⊗ denotes the Kronecker product of two matrices. In
denotes the identity matrix with order n. The operator diag(c1, c2, . . . , cn)
denotes the diagonal matrix with diagonal elements c1, c2, . . . , cn . The no-
tation col(· · · ) stands for a vector by stacking the specified vectors. For
a vector x, ‖x‖ represents the Euclidean norm of x, and for a matrix A,
its norm is defined as ‖A‖ = {λmax(AA

τ )} 1

2 . We refer to ‖A‖Lp
defined

by ‖A‖Lp
� {E‖A‖p} 1

p as the Lp-norm of a random matrix A, where E
is the mathematical expectation on the basic probability space (Ω,F , P ).
Given a matrix sequence {Ak, k = 1, 2, . . .} and a positive scalar sequence
{bk, k = 1, 2, . . .}, by Ak = O(bk) we mean that there exists a positive con-
stant M free of k such that for any k ≥ 0, we have ‖Ak‖ ≤Mbk.

2.1. Diffusion least mean square (DLMS) algorithm

Consider a network composed of n sensors. Each sensor is aimed at
estimating a sequence of m−dimensional unknown time-varying parameter
process {θk}. In this paper, we assume that the observation of each sensor
obeys the following stochastic linear regression model,

(1) yik = (ϕi
k)

τθk + vik, k ≥ 1, i = 1, 2, . . . , n

where yik and vik are, respectively, scalar observation and noise signal of the
sensor i at discrete-time instant k, and ϕi

k is an m-dimensional stochastic
regression vector. In order to give a performance analysis of the filtering algo-
rithm to be given in this paper, it is natural to introduce some assumptions
on the unknown parameters. In general, we may write θk as the following
equation,

θk = θk−1 + γωk,(2)

where γ is a scaling constant and ωk is an unknown vector.
The communications between sensors are represented by a weighted

graph G = {V, E , A}, where V is the set of sensors, E ⊆ V × V is the edge
set, and the matrix A = [aij ]n×n defines the communication weights between
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sensors where aij > 0 if (i, j) ∈ E and aij = 0 otherwise. In this paper, we
assume that the elements of the weighted matrix A satisfy aij = aji for any
i and j, and

∑n
j=1 aij = 1 for any i. For a sensor i, it can only communicate

with its neighbors Ni = {j : (i, j) ∈ E}. The stochastic matrix provide some
nice properties for the performance analysis of the distributed filtering al-
gorithms. A matrix is called stochastic if all elements are non-negative and
the sum of each row equals to 1. Furthermore, it is called doubly stochastic,
if it is a stochastic matrix and the sum of each column also equals to 1. A
stochastic matrix M is called ergodic if limt→∞M t exists and all rows of
limt→∞M t are the same. It is clear that the weighted matrix A is doubly
stochastic.

Denote the estimate of the sensor i at time k as θ̂ik. In this paper, we
adopt the following normalized DLMS algorithm where the Combine-then-
Adapt diffusion strategy is used to estimate the unknown parameter θk,

{
θ̂ik+1 = ϑi

k + μi
ϕi

k

1+‖ϕi
k‖2 (y

i
k − (ϕi

k)
τϑi

k),

ϑi
k =

∑n
j=1 aij θ̂

j
k,

(3)

where μi ∈ (0, 1) is a step-size, and the initial estimates θ̂i0 (i = 1, 2, . . . , n)
can be chosen arbitrarily.

The DLMS algorithm (3) without normalization appears to be first in-
troduced in [10]. The advantage of the DLMS over the centralized algorithms
is discussed in [12]. The stability theorem for the above DLMS algorithm
has been established, and an upper bound for tracking error covariance has
also been given; see [15].

The objective of this paper is to refine the performance analysis of the
above DLMS given in [15], by providing a performance approximation for-
mula for the estimation error covariance under a class of general regression
signals. In order to proceed with our analysis, we introduce the following
quantities which are similar to those used in [15],

Θk � col{θk, . . . , θk︸ ︷︷ ︸
n

}, Wk � col{ωk, . . . , ωk︸ ︷︷ ︸
n

},

Yk � col{y1k, . . . , ynk}, ϑk � col{ϑ1
k, . . . , ϑ

n
k},

Ψk � diag{ϕ1
k, . . . , ϕ

n
k}, Θ̂k � col{θ̂1k, . . . , θ̂nk},

Θ̃k � col{θ̃1k, . . . , θ̃nk} with θ̃ik = θ̂ik − θik

Vk = col{v1k, . . . , vnk},
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Lk � diag

{
ϕ1
k

1 + ‖ϕ1
k‖2

, . . . ,
ϕn
k

1 + ‖ϕn
k‖2

}
,

Λ � diag{μ1Im, . . . , μnIm}, A = A⊗ Im.

Using the Kronecker product ⊗, the Equation (3) can be written as

(4) Θ̂k+1 = AΘ̂k + ΛLk(Yk −Ψτ
kAΘ̂k),

where by (1), the observation Yk evolves according to the following equation

(5) Yk = Ψτ
kΘk + Vk.

Subtracting Θk from both sides of (4) and using the fact that AΘk = Θk, we
obtain that the estimation error evolves according to the following equation,

Θ̃k+1 = (Imn − ΛFk)AΘ̃k + ΛLkVk − γWk+1,(6)

where Fk = LkΨ
τ
k.

2.2. Definitions and assumptions

In order to analyze the tracking performance of Θk, some definitions and
assumptions on the regression signals and observation noises are introduced,
see [16]- [19] for more details. Throughout the sequel, the notation Fk is
employed to denote the σ-algebra generated by {ϕj

i , ωi, v
j
i−1, j = 1, . . . , n, i ≤

k}.
The exponential stability of the homogeneous part of the error equa-

tion (6) plays a key role for our analysis. We first present the definitions for
exponential stability of random matrices.

Definition 1. A sequence of d× d random matrices A = {Ak, k ≥ 0} is
called Lp-exponentially stable (p > 0) with parameter λ ∈ [0, 1), if it belongs
to the following set

Sp(λ) =

{
A :

∥∥∥∥ k∏
j=i+1

Aj

∥∥∥∥
Lp

≤Mλk−i, ∀k ≥ i ≥ 0, for some M > 0

}
.
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Definition 2. A scalar random sequence a = {ai, i ≥ 0} is called stably
exciting if it belongs to the following set:

So(λ) =

{
ai ∈ [0, 1] : E

k∏
j=i+1

(1− aj) ≤Mλk−i,

∀k ≥ i ≥ 0, for some M > 0

}
.

We may denote

So �
⋃

λ∈(0,1)
So(λ).

Definition 3. We say that a random sequence x � {xk} ∈ Mp(p ≥ 1) if
there exists a constant Cp(x) only depending on p and {xk} such that for
any j ≥ 0, ∥∥∥∥∥∥

j+h∑
i=j+1

xi

∥∥∥∥∥∥
Lp

≤ Cp(x)h
1

2 , ∀h ≥ 1, .(7)

Remark 4. The widely used random sequences in the investigation of es-
timation or filtering algorithms, such as martingale difference sequence, the
φ-mixing and α-mixing sequences, and the linear process driven by white
noises, all belong to the set Mp; See [16] for details.

Assumption 5. (Connectivity) The graph G is undirected and connected,
and contains a self-loop at each vertex, i.e., i ∈ Ni for any i ∈ V .

By Assumption 5, it is easy to see that the weighted matrix A is ergodic.
Furthermore, by the symmetry and stochastic property of the matrix A, we
see that A has n real eigenvalues and 1 is one of the eigenvalues. Thus, we
can arrange the eigenvalues of A in a non-decreasing order −1 < λn(A) ≤
λn−1(A) ≤ · · · ≤ λ2(A) < λ1(A) = 1. Denote λgap = max{|λ2(A)|, |λn(A)|}
< 1.

Assumption 6. (Cooperative Excitation Condition) Let {ϕi
k,Fk, k ≥ 0},

i = 1, . . . , n be n adapted sequences, and {ρk, k ≥ 0} ∈ So(λ) for some λ ∈
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(0, 1), where

(8) ρk � λmin

{
E

[
1− λgap

n

n∑
i=1

ϕi
k+1(ϕ

i
k+1)

τ

1 + ‖ϕi
k+1‖2

∣∣∣ Fk

]}
,

and λgap � max{|λ2(A)|, |λn(A)|} with A being the weighted matrix.

Remark 7. In order to analyze the tracking performance of Θk, some as-
sumptions on the regressors are needed. It is clear that Assumption 6 is
more practical and more general than the previously used stationarity and
independency assumptions; See [15] for more details. In this paper, we aim
at providing an asymptotic formula for the estimation error covariance when
the regression signals satisfy Assumption 6.

Assumption 8. For some p ≥ 1, we have ‖Θ̃0‖L2p
<∞, {LkVk} ∈ M2p

and {Wk} ∈ M2p.

Under Assumptions 5, 6 and 8, we have derived an upper bound for
the tracking performance of the DLMS algorithm; See [15]. To get more
accurate results on the estimation error covariance than just upper bounds,
we need more assumptions on the regression signals, observation noises, and
the parameter drift.

Assumption 9. (Weak dependence) There is a bounded function φ(m̃, μ) ≥
0 with

lim
m̃→∞,μ→0

φ(m̃, μ) log
1

μ
= 0,

such that for any m̃, k and μ ∈ (0, 1),

‖E[Fk|Fk−m̃]− E[Fk]‖L4
≤ φ(m̃, μ),

where {Fk} is defined in (6).

Assumption 10. For all k ≥ 1 and r ≥ 1, there exists a constant M > 0
such that

E[Vk|Fk] = 0, E[Wk+1|Fk] = 0, E[Wk+1V
τ
k |Fk] = 0,

E[VkV
τ
k |Fk] = Rv(k) ≥ 0, E[Wk+1W

τ
k+1] = Qω(k + 1) ≥ 0,

sup
k≥0

(‖Vk‖L8
+ ‖Wk‖L8

) ≤M,

where {Vk} and {Wk} are defined in (6).
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Remark 11. Assumption 10 requires that the measurement noise Vk and
the parameter drift Wk are of white noise character. We note that the mar-
tingale difference property of Wk essentially means that the true parameters
are assumed to be a random walk. As pointed out in [16], in the context of
slow adaptation (small μ), a random walk model captures the tracking be-
havior of the algorithm quite well. Furthermore, we note that time-varying
covariances Qω(k) and Rv(k) are allowed, which may cover some special
model drifts of interests. Finally, we remark that higher order moments are
assumed, since more accurate performance than upper bounds are to be
obtained in the paper (see Theorem 13 in the following).

2.3. The main theorems

Under some conditions on the regression vectors and measurement noises,
a preliminary performance analysis is given for the estimation error covari-
ance.

Lemma 12. [15] Assume that Λ = μImn, where μ ∈ (0, 1/e), and that As-
sumptions 5-8 are satisfied. Then we have for all small μ > 0,

‖Θ̃k+1‖Lp
= O

([√
μ+

γ√
μ

]
log

1

μ
+ (1− μα)k‖Θ̃0‖L2p

)
.(9)

The above theorem provides an upper bound for the estimation error
covariance. Based on this theorem and following the ideas of [16], we further
proceed to give an asymptotic formula for the tracking error covariance. To
this end, we recursively define a linear and deterministic difference equation
as follows:

Π̂k+1 = (Imn − μE[Fk])AΠ̂kA(Imn − μE[Fk])
τ(10)

+ μ2Rv,ϕ(k) + γ2Qω(k + 1),

where Π̂0 = E[Θ̃0Θ̃
τ
0 ], Rv,ϕ(k) � E[LkVkV

τ
k L

τ
k] and Qω(k + 1) is defined in

Assumption 10. The deterministic matrix sequence {Π̂k} is used to approx-
imate Πk � E[Θ̃kΘ̃

τ
k].

Theorem 13. Suppose that Λ=μImn, and that Assumptions 5–6 and 9–10
hold. Then for all small μ ∈ (0, 1/e) and k ≥ 1, we have

‖ E[Θ̃k+1Θ̃
τ
k+1]− Π̂k+1 ‖≤ cσ(μ)

[
μ+

γ2

μ
+ (1− αμ)k

]
,
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where c > 0 and α ∈ (0, 1) are constants, and σ(μ) is defined by

σ(μ) � min
m̃≥1

{
m̃
√
μ log3

1

μ
+ φ(m̃, μ) log

1

μ

}
.(11)

which tends to zero as μ approaches to zero.

The proof of Theorem 13 is given in Section 3.

Remark 14. Theorem 13 implies that in a certain sense, the tracking error
covariance of DLMS can be approximated by the solution of a simple linear
deterministic difference equation (10), and the degree of the approximation
can be characterized by σ(μ): the faster it tends to zero, the better the
approximation can be obtained.

In general, the “dominant term” of {E[Θ̃kΘ̃
τ
k]}, i.e., Πk may not be easily

comprehended and analyzed. However, under some further conditions on the
signals and noises, we can obtain a nice expression of {E[Θ̃kΘ̃

τ
k]}; See the

following theorem.

Theorem 15. If in addition to the conditions in Theorem 13, the following
weak stationary conditions hold,

Rv,ϕ(k) ≡ Rv,ϕ, Rω(k) ≡ Rω,

F = E[Fk] = diag(F 1, . . . , Fn) with F i = F j ,

then we have for all small μ ∈ (0, 1/e),

E[Θ̃k+1Θ̃
τ
k+1] = μRv,ϕ +

γ2

μ
Rω +O

(
σ(μ)

(
μ+

γ2

μ

))
+ o(1).(12)

where the term o(1) tends to 0 exponentially fast as k →∞, and Rv,ϕ, Rω are
two constant matrices depending on F,Rv,ϕ and Rω. The explicit expressions
can be found in Section 3.

Remark 16. Note that σ(μ) tends to zero as μ approaches to zero. Thus,
it follows from (12) that for all small μ and large k

E[Θ̃k+1Θ̃
τ
k+1] ∼ μRv,ϕ +

γ2

μ
Rω.

Consequently, the “best” choice for μ is a tradeoff between the noise sensi-
tivity and the parameter variation. In particular, we can choose μ = μ∗ =
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γ
√

trRω/trRv,ϕ, which minimizes the trace of the right-hand-side, and gives

n∑
i=1

E‖θ̃ik‖2 ∼ μtr(Rv,ϕ) +
γ2

μ
tr(Rω).

3. Proof of Theorems 13 and 15.

In order to prove Theorems 13 and 15, we first present some preliminary
results.

The following lemma plays a key role in the stability analysis of the
homogeneous part of the DLMS algorithm, and will be used in the proof of
the main theorems in this paper.

Lemma 17. [15] Suppose that Assumption 5 holds, and that {Φk = (Φij
k ) ∈

R
m×m, k = 1, . . . , n} is a sequence of symmetric matrices satisfying 0 ≤

Φk ≤ Im, k = 1 · · ·n. Then we have

λmax

[
A · diag(Im − Φ1, . . . , Im − Φn) ·A

] ≤ 1− (1− λgap)δ,

where δ = 1
nλmin(Φ1 + · · ·+Φn).

In order to prove Theorem 13, we define a new sequence Θk = col{θ̄1k, . . . ,
θ̄nk} by

(13) Θk+1 = (Imn − μE[Fk])AΘk + μLkVk − γWk+1,

with Θ0 = Θ̃0. It is clear that E[ΘkΘ
τ
k] = Π̂k, which is recursively defined

by Equation (10). We will show that the homogeneous part of (13) is expo-
nentially stable; See the following lemma.

Lemma 18. Let Assumptions 5 and 6 hold, then there exist positive con-
stants M and β ∈ (0, 1) only depending on {Fk}, such that for any μ ∈
(0, 1/e) and any k ≥ i ≥ 0, we have

(14)

∥∥∥∥∥∥
k∏

j=i+1

(Imn − μE[Fk])A

∥∥∥∥∥∥ ≤M(1− μβ)k−i.

To prove Lemma 18, we first introduce a lemma.
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Lemma 19. [19] For a sequence of scalars {ai ∈ (0, 1), i ≥ 1}, the following
two assertions are equivalent:

i) There exist positive constants M and λ ∈ (0, 1) such that for any i
and j,

∏j
k=i+1(1− ak) ≤Mλj−i.

ii) There exists an integer h > 0 such that

inf
j

j+h∑
i=j+1

ai �= 0.(15)

Proof of Lemma 18. Denote

Ak � E

[
(1− λgap) · 1

n

n∑
i=1

ϕi
k+1(ϕ

i
k+1)

τ

1 + ‖ϕi
k+1‖2

∣∣∣∣Fk

]
.(16)

By the definition of ρk, we have ρk = λmin(Ak) ∈ (0, 1). Using Assumption 6,
we know that there exist positive constants M and λ ∈ (0, 1) such that

E

k∏
j=i+1

(1− ρj) ≤Mλk−i.(17)

Choosing an integer h0 large enough such that the left hand side of (17) is
smaller than 1

2 , i.e., for any i ≥ 0,

1− (2h0 − 1)

⎛⎝ i+h0∑
j=i+1

Eρj

⎞⎠(18)

< 1−
i+h0∑
j=i+1

E[ρj ] +
∑

i+1≤j1,j2≤i+h0

E[ρj1ρj2 ]

+ · · ·+ (−1)h0E[ρi+1 · · · ρi+h0
] <

1

2
,

where the fact that ρj ∈ (0, 1) is used. By (18), we have

i+h0∑
j=i+1

Eρj > σ, ∀i ≥ 0,(19)

where σ = 1/
(
2(2h0 − 1)

)
> 0. Note that

λmin(E(Aj)) ≥ Eλmin(Aj),(20)
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Combining this with (19), we have

i+h0∑
j=i+1

λmin(E(Aj)) > σ.

By Lemma 17, we have

(21)

∥∥∥∥∥∥
k∏

j=i+1

(Imn − μE[Fj ])A

∥∥∥∥∥∥ ≤
k∏

j=i+1

(1− μλmin(EAj−1))1/2 .

By (21) and Lemma 19, we see that there exist positive constants M and
β ∈ (0, 1) such that (14) holds. This completes the proof of the lemma. �

In the the following lemma, we provide an estimation for the upper
bound of the L2−norm of Θk defined by (13).

Lemma 20. Let Assumptions 5, 6 and 10 be satisfied. Then for μ ∈ (0, 1/e),

‖Θk+1‖L2
= O

((√
μ+

γ√
μ

)
log

1

μ
+ (1− αμ)k

)
,(22)

where α ∈ (0, 1) is a constant only depending on {Fk, k ≥ 0}.

The proof of Lemma 20 is similar to that of Theorem 2.2 given in [15].
We omit it to save space.

The following property concerning the contraction property of the er-
godic matrix will be used in the proof of Theorem 13.

Lemma 21. Assume that P = [Pij ] ∈ R
n×n is an ergodic matrix, and Y =

col{y1, . . . , yn} ∈ R
nh with yi being an h-dimensional vector for 1 ≤ i ≤ n.

If Z � col{z1, . . . , zn} = (P ⊗ Ih)Y with zi ∈ R
h, then

(23) max
s,s′

‖zs − zs′‖ ≤ τ(P )max
j,j′

‖yj − yj′‖,

where 0 < τ(P ) < 1 is a constant only depending on P .

The above lemma can be obtained by following the proof of Theorem 3.1
in [20], and the details are omitted.

By the above lemma, we can derive the following result.
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Lemma 22. Let Assumptions 5, 6 and 10 be satisfied. Then for μ ∈ (0, 1/e)
and k ≥ 0,

(24) max
i,j
‖θ̃ik+1 − θ̃jk+1‖L2

= O

(
μ+

√
μγ log

1

μ

)
+O(τk+1(A)),

where τ(A) ∈ (0, 1) is determined by the matrix A.

Proof. By (6), we have for i �= j,

(25) θ̃ik+1 − θ̃jk+1 =

n∑
l=1

ailθ̃
l
k −

n∑
l=1

ajlθ̃
l
k +O(μ‖Θ̃k‖+ μ‖LkVk‖).

Using Lemma 21, we have

(26) max
i,j

∥∥∥∥∥
n∑

l=1

ailθ̃
l
k −

n∑
l=1

ajlθ̃
l
k

∥∥∥∥∥ ≤ τ(A)max
i,j
‖θ̃ik − θ̃jk‖.

Thus, we have

max
i,j
‖θ̃ik+1 − θ̃jk+1‖ ≤ τ(A)max

i,j
‖θ̃ik − θ̃jk‖+O(μ‖Θ̃k‖+ μ‖LkVk‖)

= τk+1(A)max
i,j
‖θ̃i0 − θ̃j0‖

+

k∑
i=0

τk−i(A)O(μ‖Θ̃i‖+ μ‖LiVi‖).

By Assumptions 5 we have τ(A) < 1. Combining this with Lemma 12, it can
be seen that

max
i,j
‖θ̃ik+1 − θ̃jk+1‖L2

≤ τk+1(A)max
i,j
‖θ̃i0 − θ̃j0‖L2

+O

(
μ+

√
μγ log

1

μ

)
.

�

We are now in a position to estimate the difference between Θ̃k+1 and
Θk+1 defined by (6) and (13), respectively.

Lemma 23. Under conditions of Theorem 13, the following equality holds:

‖Θ̃k+1 −Θk+1‖L2
= O

([√
μ log

1

μ
m∗ + φ(m∗, μ)

]
εk(

α

2
)

)
,(27)
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where m∗ = m∗(μ) is defined by

m∗(μ) = argminm̃≥1

[
m̃
√
μ log3

1

μ
+ φ(m̃, μ)

]
.(28)

and

εk(α) =

(√
μ+

γ√
μ

)
log

1

μ
+ (1− αμ)k.(29)

In order to prove Lemma 23, we need to introduce the following two
lemmas.

Lemma 24 ([16]). Let α ∈ (0, 1) be a constant. Then ∀μ ∈ (0, 1),

i) sup
k≥0

(1− αμ)k
√
k = O(μ−1/2),

sup
k≥0

(1− αμ)kk = O(μ−1),

ii)

∞∑
k=0

(1− αμ)kk = O(μ−2),

iii)

∞∑
k=0

(1− αμ)k
√
k = O(μ−3/2).

Lemma 25. [22] Assume that {At ∈ R
N×N , t = 1, 2, . . . , n} is a sequence of

stochastic matrices, with a common stationary distribution π = (π1, π2, . . . ,
πN ). Set A � AnAn−1 · · ·A1, then for i = 1, 2, . . . , N ,

N∑
j=1

1

πj
(Aij − πj)

2 ≤
(

1

πi
− 1

) n∏
t=1

σ2
2(At),

where σ2(A) is the second largest singular value of the matrix A and σ2(A) <
1 if A is ergodic.

Proof of Lemma 23. By (6) and (13), it is seen that

Θ̃k+1 −Θk+1 = (Imn − μE[Fk])A(Θ̃k −Θk) + μ(E[Fk]− Fk)AΘ̃k.

Define

Φ0(k + 1, i) = (Imn − μE[Fk])AΦ0(k, i),
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Φ0(i, i) = Imn, ∀k ≥ i.

Then for k ≥ 0

Θ̃k+1 −Θk+1 = μ

k∑
i=0

Φ0(k + 1, i+ 1)(E[Fi]− Fi)AΘ̃i(30)

= μ

m∗−1∑
i=0

Φ0(k + 1, i+ 1)(E[Fi]− Fi)AΘ̃i

+ μ

k∑
i=m∗

Φ0(k + 1, i+ 1)(E[Fi]− Fi)A

· {Θ̃i−m∗ + (Θ̃i − Θ̃i−m∗)}

where m∗ = m∗(μ) has been defined in (28). Thus,

√
μm∗(μ) ≤ √μ log3

1

μ
+ φ(1, μ),

which implies that for μ ∈ (0, 1/e),

m∗(μ) ≤ log3
1

μ
+

φ(1, μ)√
μ

≤ c√
μ

holds for some positive constant c. Consequently, for any α ∈ (0, 1)

(1− αμ)−m
∗(μ) ≤ (1− αμ)

− c√
μ → 1, as μ→ 0.

Hence, the function (1− αμ)−m∗(μ) is bounded for any α ∈ (0, 1). In the
sequel, we will frequently use this fact without further explanations and will
drop the variable μ from m∗(μ) in what follows.

From Assumption 10, it can be deduced that {LkVk} and {γWk+1} are
two martingale difference sequences and then by Remark 4, we have

{LkVk} ∈ M8 ⊂M4, {γWk+1} ∈ M8 ⊂M4.(31)

Using Lemma 12, we have ‖Θ̃i‖L4
= O(εi−1(α)). Furthermore, using the

inequality ‖E[Fi]− Fi‖ ≤ 2 and Lemma 18, we obtain that

(32) μ

∥∥∥∥∥
m∗−1∑
i=0

Φ0(k + 1, i+ 1)(E[Fi]− Fi)AΘ̃i

∥∥∥∥∥
L2

= O(μm∗εk(α)).



468 C. Chen, Z.-X. Liu and L. Guo

Now, we consider the last term of (30). Note that

Θ̃i − Θ̃i−m∗ = [Θ̃i − Θ̃i−1] + · · ·+ [Θ̃i−(m∗−1) − Θ̃i−m∗ ](33)

=

i−1∑
j=i−m∗

([
(A− Imn)− μFjA

]
Θ̃j + μLjVj − γWj+1

)
.

By the Hölder inequality and (31), we have for any i ≥ m∗ and μ ∈ (0, 1),

‖Θ̃i − Θ̃i−m∗‖L2

≤
i−1∑

j=i−m∗

(∥∥∥(A− Imn)Θ̃j

∥∥∥
L2

+ μ ‖FjA‖ ·
∥∥∥Θ̃j

∥∥∥
L2

)

+

∥∥∥∥∥∥
i−1∑

j=i−m∗

(μLjVj − γWj+1)

∥∥∥∥∥∥
L2

=

i−1∑
j=i−m∗

O

(
max
l1,l2

‖θ̃l1j − θ̃l1j ‖L2
+ μεj(α)

)
+O

(√
m∗[μ+ γ]

)

= O

(
m∗

(
μ+

√
μγ log

1

μ
+ τ i−m

∗
(A)

)
+ μ

i−1∑
j=i−m∗

εj(α)

)
(34)

+O(
√
m∗[μ+ γ])

= O

(√
μm∗

[√
μ+

γ√
μ

]
log

1

μ
+ μm∗(1− αμ)i−m

∗
)

(35)

+O(m∗τ i−m
∗
(A)),

where Lemma 22 is used in the inequality (34). Hence, by (35) we have for
k ≥ m∗ and μ ∈ (0, 1/e)

μ

∥∥∥∥∥
k∑

i=m∗

Φ0(k + 1, i+ 1)(E[Fi]− Fi)A(Θ̃i − Θ̃i−m∗)

∥∥∥∥∥
L2

(36)

= O

(
μ

k∑
i=m∗

‖Φ0(k + 1, i+ 1)‖ · ‖Θ̃i − Θ̃i−m∗‖L2

)

= O

(√
μm∗

[√
μ+

γ√
μ

]
log

1

μ
+ μ2m∗(k −m∗)(1− αμ)k−m

∗
)

+O

(
μm∗

k∑
i=m∗

(1− μα)k−iτ i−m
∗
(A)

)

= O

(√
μm∗

[√
μ+

γ√
μ

]
log

1

μ

)
,
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where i) of Lemma 24 is used in the last relationship.
Following the idea of [16], we set for j ≥ 0 and i ≥ m∗

δij � E[Fi|Fi−j ]− E[Fi|Fi−j−1].(37)

Then for i ≥ m∗

Fi − E[Fi] =

m∗−1∑
j=0

δij + E[Fi|Fi−m∗ ]− EFi.(38)

For any fixed 0 ≤ j ≤ m∗ − 1, denote ei = δijAΘ̃i−m∗ . It is clear that {ei,
Fi−j , i ≥ m∗} is a martingale difference sequence and

‖ei‖L2
≤ 2‖Θ̃i−m∗‖L2

= O(εi−m∗(α)), i ≥ m∗.(39)

Denote S(k, i) �
∑k

j=i ej . Using the properties of the martingale difference
sequence, we have for i �= j, Eeiej = 0. Thus, for k ≥ i > m∗,

‖S(k, i)‖L2
=

{ k∑
j=i

Ee2j

}1/2

(40)

= O

(
(1− αμ)i−m

∗
μ−1/2 +

√
k − i+ 1

(√
μ+

γ√
μ

)
log

1

μ

)
.

Denote Fi = Imn − (Imn − μEFi)(A⊗ Im∗). Thus, we have

μ

∥∥∥∥∥∥
k∑

i=m∗

Φ0(k + 1, i+ 1)

m∗−1∑
j=0

δj(i)AΘ̃i−m∗

∥∥∥∥∥∥
L2

(41)

≤ μ

m∗−1∑
j=0

∥∥∥∥∥
k∑

i=m∗

Φ0(k + 1, i+ 1)ei

∥∥∥∥∥
L2

≤ μ

m∗−1∑
j=0

∥∥Φ0(k + 1,m∗ + 1)S(k,m∗)
∥∥
L2

+ μ

m∗−1∑
j=0

∥∥∥∥ k−L∑
i=m∗+1

Φ0(k + 1, i+ 1)FiS(k, i)

∥∥∥∥
L2

+ μ

m∗−1∑
j=0

∥∥∥∥ k∑
i=k−L+1

Φ0(k + 1, i+ 1)FiS(k, i)

∥∥∥∥
L2

� S1 + S2 + S3,
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where L is an integer taken as L = � log μ
log σ2(A)�+ 1. By Lemma 25, it is clear

that maxi,j |(AL)ij − 1
n | ≤ {

∑n
j=1((A

L)ij − 1
n)

2}1/2 ≤ (σ2(A))
L < μ.

For the first term of (41), using Lemma 24, we have

S1 ≤ μ

m∗−1∑
j=0

‖Φ0(k + 1,m∗ + 1)‖ · ‖S(k,m∗)‖L2
(42)

= μm∗(1− αμ)k−m
∗

·O
(√

k −m∗ + 1

(√
μ+

γ√
μ

)
log

1

μ
+ μ−

1

2

)
= O

(
μ1/2m∗εk−m∗(α)

)
.

For the second term of (41), using the same way as (25) in [15] , we have

S2 = μ

m∗−1∑
j=0

∥∥∥∥ k−L∑
i=m∗+1

Φ0(k + 1, i+ L+ 1)(43)

· Φ0(i+ L+ 1, i+ 1)FiS(k, i)

∥∥∥∥
L2

= O

(
μ2m∗ log

1

μ

) k−L∑
i=m∗+1

‖Φ0(k + 1, i+ L+ 1)S(k, i)‖L2

= O

(
μ2m∗ log

1

μ

k−L∑
i=m∗+1

[
(1− μα)k−L−m

∗
μ−

1

2

+ (1− μα)k−i−L
√
k − i+ 1 ·

(√
μ+

γ√
μ

)
log

1

μ

])

= O

(
μ3/2m∗ log

1

μ
(k −m∗)(1− μα)k−m

∗

+ μ1/2m∗
(√

μ+
γ√
μ

)
log2

1

μ

)
,

where the boundedness of (1− μα)−L is used. By i) of Lemma 24, we have

(
1− αμ

1− α
2μ

)k−m∗

(k −m∗) = O(μ−1).
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Thus,

S2 = O

(
μ1/2m∗ log

1

μ
εk−m∗

(α
2

))
.(44)

For the third term, we have by (40)

S3 ≤ μmL sup
k,i
{‖Φ0(k + 1, i+ 1)‖‖S(k, i)‖L2

}(45)

= O

(
μ1/2m∗ log

1

μ
εk−m∗(α)

)
.

Substituting (42), (44) and (45) into (41), we obtain that

μ

∥∥∥∥ k∑
i=m∗

Φ0(k + 1, i+ 1)

m∗−1∑
j=0

δj(i)AΘ̃i−m∗

∥∥∥∥
L2

(46)

= O

(√
μm∗ log

1

μ
εk

(α
2

))
.

Moreover, by Assumption 9 and Lemma 12(with p = 4), we have

μ

∥∥∥∥ k∑
i=m∗

Φ0(k + 1, i+ 1){E[Fi|Fi−m∗ ]− EFi} ·AΘ̃i−m∗

∥∥∥∥
L2

(47)

≤ μ

k∑
i=m∗

‖Φ0(k + 1, i+ 1)‖ · ‖E[Fi|Fi−m∗ ]− EFi‖L4
· ‖Θ̃i−m∗‖L4

= O
(
φ(m∗, μ)εk

(α
2

))
,

where the boundedness of ‖Vk‖L8
+ ‖Wk‖L8

is used to estimate ‖Θ̃i−m∗‖L4
.

By (46) and (47), we have

μ

∥∥∥∥ k∑
i=0

Φ0(k + 1, i+ 1)[Fi − EFi]AΘ̃i−m∗

∥∥∥∥
L2

(48)

= O

([√
μ log

1

μ
m∗ + φ(m∗, μ)

]
εk

(α
2

))
,

which in conjunction with (36) and (32) yields Lemma 23. �
Proof of Theorem 13. By (13) and Assumption 10 it is evident that

Π̂k+1 = E[Θk+1Θ
τ
k+1], ∀k ≥ 0.(49)
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Hence by Schwarz inequality

‖E[Θ̃k+1Θ̃
τ
k+1]− Π̂k+1‖(50)

= ‖E[Θ̃k+1Θ̃
τ
k+1 −Θk+1Θ

τ
k+1]‖

= ‖E[(Θ̃k+1 −Θk+1)Θ̃
τ
k+1] + Θk+1(Θ̃k+1 −Θ

τ
k+1)]‖

≤ ‖Θ̃k+1 −Θk+1‖L2
(‖Θ̃k+1‖L2

+ ‖Θk+1‖L2
).

By Lemma 12 and Lemma 20, we know that

‖Θ̃k+1‖L2
+ ‖Θk+1‖L2

= O(εk(α)).(51)

This completes the proof of Theorem 13. �
Proof of Theorem 15. By Lemma 18 and the conditions of Theorem 15, it
can be deduced that both (I − μF )(A⊗ Im) and (I − μF ) are exponentially
stable. Thus, Π̂k converges to some matrix Π with the exponentially rate
and Π satisfies

Π = (I − μF )(A⊗ Im)Π(A⊗ Im)(I − μF ) + μ2Rv,ϕ + γ2Qω.(52)

Then we have

AaveΠAave = Aave(I − μF )AΠA(I − μF )Aave(53)

+ μ2AaveRv,ϕAave + γ2AaveQωAave,

whereAave � Aave ⊗ Im and Aave = limk→∞Ak with (Aave)ij = 1/n. By the
assumption that F i = F j(i �= j), we have Aave(I − μF ) = (I − μF )Aave.
Furthermore, using the fact that Aave(A⊗ Im) = (A⊗ Im)Aave = Aave, we
can rewrite the Equation (53) into the following equivalent form,

AaveΠAave = (I − μF )AaveΠAave(I − μF )(54)

+ μ2AaveRv,ϕAave + γ2AaveQωAave,

or another form

FAaveΠAave +AaveΠAaveF(55)

= μFAaveΠAaveF + μAaveRv,ϕAave +
γ2

μ
AaveQωAave.

According to Lemma 20, we have Π̂k = O(μ+ γ2

μ ) log2 1
μ + (1− μα)k, which

is followed by Π = O(μ+ γ2

μ ) log2 1
μ . Thus, the Equation (55) can be further
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rewritten as

FAaveΠAave +AaveΠAaveF(56)

= μAaveRv,ϕAave +
γ2

μ
AaveQωAave +O

(
(μ2 + γ2) log2

1

μ

)
.

Now, the solution of the above Lyapunov equation is

(57) AaveΠAave = μRv,ϕ +
γ2

μ
Rω +O

(
(μ2 + γ2) log2

1

μ

)
+ o(1).

where

Rv,ϕ �
∫ ∞

0
e−FtAaveRv,ϕAavee

−Ftdt and

Rω �
∫ ∞

0
e−FtAaveQωAavee

−Ftdt.

Note that for any i �= j, we have

lim
k→∞

E[θ̃ik(θ̃
j
k)

τ ] = lim
k→∞

E[
(
θ̃i1k + (θ̃ik − θ̃i1k )

)(
θ̃j1k + (θ̃jk − θ̃j1k )

)τ
],

where 1 ≤ i1, j1 ≤ n can be chosen arbitrarily. Using the proof of Lemma 22,
we can deduce that ‖θ̃jk − θ̃ik‖L2

= O(μ+ γ). By Lemma 20 and Hölder in-
equality, we can obtain that

(58) lim
k→∞

E[θ̃ik(θ̃
j
k)

τ ] = lim
k→∞

E[θ̃i1k (θ̃
j1
k )τ ] +O

((√
μ+

γ√
μ

)
(μ+ γ) log

1

μ

)
.

By the construction of Π and AaveΠAave, it can be seen that the i, jth
m×m block of Π is limk→∞E[θ̃ik(θ̃

j
k)

τ ], while the term in the corresponding

position of AaveΠAave is the linear combination of {limk→∞E[θ̃ak(θ̃
b
k)

τ ], 1 ≤
a, b ≤ n} with the summation of coefficients equal to 1. Then by (58), it can
be computed that

(59) AaveΠAave = Π+O

((√
μ+

γ√
μ

)2√
μ log

1

μ

)
.

Combining (59) and (57) with Lemma 13, we complete the proof of Theo-
rem 15. �
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4. Concluding remarks

In this paper, we investigated a class of DLMS algorithms, and evaluated
the tracking performance without requiring the regression signals to satisfy
the previously used stationarity and independency assumptions. Compared
with the existing work, we presented an approximate formula for the tracking
error covariance matrices of the DLMS algorithm, which can be described
by a simple, linear and deterministic matrix equation. Of course, there are
still many problems need to be further investigated, for example, how to
analyze the distributed Kalman filtering-based algorithms? How to study
the distributed control problem using distributed estimation or filtering al-
gorithms?
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