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Some stochastic differential games are formulated and explicitly
solved in the special unitary group SU(3). This Lie group is prob-
ably the most elementary simple Lie group of rank two, that is, the
Cartan subalgebra has dimension two. The game is to influence
the roots of SU(3) which are directly related to the eigenvalues
of an element in SU(3). The group SU(3) has particular inter-
est in physics because the Gell-Mann matrices are generators for
SU(3) that mediate Quantum Chromodynamics (QCD) which is
also known as the Strong Force. Since the radial parts of Laplacians
for higher rank Lie groups have a similar structure as the radial
part of the Laplacian for SU(3), stochastic differential games for
SU(3) are important to understand for extensions of possible solv-
able stochastic differential games for other Lie groups.

1. Introduction

Two general methods are available for solving stochastic differential games.
The first method uses the Hamilton-Jacobi-Isaacs (HJI) equation which can
be considered as the game analogue of the Hamilton-Jacobi-Bellman equa-
tion of stochastic control and the Hamilton-Jacobi equation of deterministic
control. A number of results (e.g. Fleming and Hernandez-Hernandez [14],
Fleming and Souganidis [15]) have been obtained that provide conditions for
the existence of solutions of HJI equations for stochastic differential games.
The second method is backward stochastic differential equations that gen-
eralized the use of backward stochastic equations from stochastic control.
This approach is more recent than the HJI equation approach and fewer
results about these backward equations are available (e.g. Buckdahn and
Li [5], Hamadene et al. [17]). The approach used here for the solutions of
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stochastic differential games is more direct than the two aforementioned
methods. One family of stochastic differential games that has explicit so-
lutions is the collection of games described by linear stochastic differential
equations with Brownian motions and quadratic payoffs (LQ games) (e.g.
Basar and Bernhard [3]). Jacobson [19] showed that the solution of a lin-
ear quadratic stochastic differential game uses the same Riccati equation
as the solution of a suitable linear exponential quadratic Gaussian control
problem. A more direct method to solve the linear exponential quadratic
Gaussian control problem and thereby its relation to LQ games is given in
[6] and a stochastic differential game with an exponential quadratic payoff
is explicitly solved in [9]. This family of explicit solutions for LQ stochas-
tic differential games has been generalized by allowing the linear stochastic
differential equations to be driven by an arbitrary square integrable process
with continuous sample paths [7]. Some infinite dimensional LQ games with
fractional Brownian motions are solved in [8].

To obtain explicit optimal control strategies for nonlinear stochastic dif-
ferential games it is fairly clear that the nonlinear systems should possess
some special structure that can be exploited for the optimization solutions.
In this paper some stochastic differential games are formulated and solved
in SU(3), the special unitary group of degree three. This group is realized
as 3× 3 unitary matrices with determinant one. The payoff functionals for
these problems have some special symmetries that reduce the analysis to
a two dimensional subspace that is obtained from the radial part of the
Laplacian for SU(3). The only other work on stochastic differential games
in symmetric spaces seems to be the results for spheres in [10, 11] and some
projective spaces [12] which are all rank one symmetric spaces so the analysis
is reduced to a one dimensional subspace.

The stochastic differential game problem that is formulated and solved
in this paper is to control the roots of a process in the Lie algebra su(3).
Since SU(3) is simply connected, this game problem can be viewed in the Lie
algebra, su(3). The group SU(3) has particular interest in physics because
the Gell-Mann matrices are generators for SU(3) that mediate Quantum
Chromodynamics (QCD) [16] which is also known as the Strong Force. In
theoretical physics QCD is the theory of strong interactions that is a funda-
mental force describing the interactions between quarks and gluons which
comprise hadrons such as the proton, neutron and pion. This theory is an
important part of the Standard Model of particle physics.
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2. Some properties of SU(3)

The simply connected Lie group SU(3) is the family of 3× 3 unitary matrices
with determinant one, that is, g ∈ SU(3) if gg∗ = I, det(g) = 1. This Lie
group has dimension eight as a real manifold. It is a simple Lie group. This
Lie group has rank two, that is, the dimension of the Cartan subalgebra is
two. A Weyl chamber is a special convex cone in R2. The maximal torus is all
diagonal matrices with determinant one and the Weyl group is S3 that is the
family of signed permutation matrices. The Lie algebra, su(3), is the family
of zero trace skew Hermitian 3× 3 complex matrices. SU(3) contains SO(3)
as a double cover. The two (simple) positive roots are not orthogonal and
R2 can be decomposed into six disjoint open convex cones (Weyl chambers)
and their boundaries. Some symmetries for the stochastic differential games
are considered so the strategies for the game are determined in the positive
Weyl chamber. The positive Weyl chamber is one of the six Weyl chambers
and this chamber can be arbitrarily chosen among the Weyl chambers. The
payoff functional is obtained from an eigenfunction of the radial part of the
Laplacian so that the game can be determined by its evolution in the positive
Weyl chamber.

Initially the radial part of the Laplacian is explicitly described to verify
some eigenfunctions and to determine optimal strategies for the two players.
Let the positive Weyl chamber be denoted a+ so that a+ = {t1Me1 + t2Me2 :
t1 < t2} where e1, e2 is an orthonormal basis and define the functions ϕ and
ψ as ϕ(t1, t2) = et1e1 + et2e2 and ψ(t1, t2) = sinh2( t12 )e1 + sinh2( t22 )e2.

Now the radial part of the Laplacian, R(Δ), is described. Consider the
Laplacian in SU(3) projected to the positive Weyl chamber a+. While this is
known e.g. [13], it is considered in some detail here to understand a particular
eigenfunction.

R(Δ) = ΔK =
∂2
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The simplest eigenfunction, ϕ1, is considered, that is,

ϕ1(t1, t2) = k + sinh2
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2

(2)



480 T. E. Duncan and B. Pasik-Duncan

where k = 1 + 2b+ c. Using the following elementary properties of the hy-
perbolic functions

sinh(x+ y) = cosh(x) sinh(y) + sinh(x) cosh(y)(3)

cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y)(4)

tanh(x+ y) =
tanh(x) + tanh(y)

1 + tanh(x) tanh(y)
(5)

it is verified that ϕ1(t1, t2) is an eigenfunction of ΔK . This eigenfunction is
largely the same as for the product Lie group SU(2)× SU(2), that is the
cartesian product of two rank one symmetric spaces.

Some computations are exhibited now to verify that ϕ1 is an eigenfunc-
tion and to determine the eigenvalue for ϕ1.
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From the above equalities it follows that the eigenvalue λ1 for ϕ1 is

λ1 = a+ b+ c(11)

For SU(3) it can be verified that a = b = c = 1. However these parameters
are continued to indicate the changes that are made for other Lie groups. A
coordinate transformation can be made in the Weyl chamber e.g. xi = eti so
that the eigenfunctions can be expressed as monomial symmetric functions.
Some processes are constructed from monomial symmetric functions that
are called Macdonald processes e.g. [4]. The monomial symmetric function
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that is used for the above eigenfunction is x1 + x2 so it is clearly the most
elementary case.

3. Stochastic differential game formulation and solution

The stochastic differential game is described by a stochastic differential equa-
tion that has terms from the strategies of the two players and terms from
the radial part of the Laplacian.

dX1(t) =
1

2

(
c cothX1(t)+b coth

X1(t)

2
+a

sinhX1(t)

coshX2(t)− coshX1(t)

)
dt(12)

+ αU1(t)dt+ βV1(t)dt+ dB1(t)

dX2(t) =
1

2

(
c cothX2(t)+b coth

X2(t)

2
+a

sinhX2(t)

coshX1(t)− coshX2(t)

)
dt(13)

+ αU2(t)dt+ βV2(t)dt+ dB2(t)

X1(0) = x10(14)

X2(0) = x20(15)

The process ((B1(t), B2(t)), t ∈ [0, T ]) is an R2-valued standard Brownian
motion that is defined on the complete probability space (Ω,F ,P) and
(F(t), t ∈ [0, T ]) is the filtration for the Brownian motion (B1, B2), x10 and
x20 are constants and α, β are strictly positive constants. Player I has the
control pair (U1, U2) and player II has the control pair (V1, V2). It is assumed
that the positive real numbers α, β satisfy α2 − β2 > 0. The symmetry of
the two scalar equations for X1 and X2 is inherited from the coordinate
symmetry for the radial part of the Laplacian.

The payoff functional, J(U, V ), is

J0(U, V ) =
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(
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2
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2
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2

)
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J(U, V ) = EJ0(U, V )(17)



482 T. E. Duncan and B. Pasik-Duncan

The families of admissible strategies for (U1, U2) is U and for (V1, V2) is
V and are defined as follows

U =

{
U = (U1, U2) : U is progressively measurable with respect to

(F(t), t ∈ [0, T ]) and

∫ T

0
|U |2dt < ∞ a.s.

}

V =

{
V = (V1, V2) : V is progressively measurable with respect to

(F(t), t ∈ [0, T ]) and

∫ T

0
|V |2dt < ∞ a.s.

}

To determine optimal control strategies for the two players, the posi-
tive solution of the the following scalar Riccati equation and the solution
of the following linear differential equation are used. The occurrence of a
Riccati equation is natural from the symplectic geometry property of the
optimization, e.g. [1, 2].

dg

dt
= −1

2
λ1g +

1

4
g2(α2 − β2)− 1(18)

g(T ) = 0(19)

dh

dt
= −k

2
g(t)(20)

h(T ) = 0(21)

The following theorem provides optimal strategies for the two players. These
strategies form a Nash equilibrium [20], that is, the optimal strategy of one
player is not influenced by the strategy of the other player.

Theorem 3.1. The stochastic differential game given by (12), (13), and (16)
has the following optimal strategies, (U∗, V ∗), that form a Nash equilibrium
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2
(24)

V ∗
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2
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2
(25)
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The optimal payoff is

(26) J(U∗, V ∗) = g(0)
(
sinh2

x10
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+ sinh2
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2

)
+ h(0)

Proof. Let f(t, x1, x2) = g(t)(sinh2 x1
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2 ) + h(t) and define Y (t) =
f(t,X1(t), X2(t)). Apply the Ito differential rule to the process (Y (t), t ∈
[0, T ]) and integrate it to obtain the following equality.
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This equality used the fact that k + sinh2 x1

2 + sinh2 x2

2 = ϕ1(x1, x2) is an
eigenfunction of R(Δ) with eigenvalue λ1.

Using the definition of J0 the following equality is satisfied, that is, add
the terms from J0 that contain the strategies for the two players to both
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sides of the above equation and transpose the terms from the state in J0

from the RHS to the LHS. The following equality is obtained.
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The two stochastic integrals are martingales by comparison of their inte-
grands with integrands formed by replacing X1 and X2 by Brownian mo-
tions. Thus
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J(U, V ) = g(0)
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It follows from this equality that the optimal strategies for the two players
are

U∗
1 (t) = −1

2
αg(t) tanh

X1(t)

2
(30)
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2
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It is clear that the optimal strategies form a Nash equilibrium. It is ele-
mentary to verify that the solution of the optimal system does not hit the
walls of the Weyl chamber almost surely by comparison with a scalar Bessel
process. Thus the optimal payoff is

(31) J(U∗, V ∗) = g(0)
(
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x10
2
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x20
2

)
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�

4. Concluding remarks

This stochastic differential game is a special case of games in Lie groups and
symmetric spaces. The group SU(3) has some well known applications espe-
cially to physics and it provides a basis to consider more general stochastic
differential games because it has rank greater than one.
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