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Automatic thread painting generation

Xiao-Nan Fang, Bin Liu, and Ariel Shamir∗

ThreadTone is an NPR representation of an input image by half-
toning using threads on a circle. Current approaches to create
ThreadTone paintings greedily draw the chords on the circle. We
introduce the concept of chord space, and design a new algorithm
to improve the quality of the thread painting. We use an optimiza-
tion process that estimates the fitness of every chord in the chord
space, and an error-diffusion based sampling process that selects
a moderate number of chords to produce the output painting. We
used an image similarity measure to evaluate the quality of our
thread painting and also conducted a user study. Our approach
can produce high quality results on portraits, sketches as well as
cartoon pictures.

1. Introduction

Non-photorealistic rendering (NPR) aims at creating various styles of dig-
ital art. Different from photorealism, NPR generates artistic renderings in
various styles such as impressionist [15], watercolor [2], pen-and-ink [21],
line-art [13] and animation [17]. Such techniques can be utilized to render
3D scenes [19], to change the style of an image [20], or to provide users an
interactive tool for digital painting [6].

Previous NPR algorithms usually produce an output picture as a collec-
tion of basic elements. Such elements include, for example, brush strokes [8],
streamlines [7] or stipples [3]. Recently, Petros Vrellis, a new-media artist,
introduced ThreadTone [24] as a special type of line art. In ThreadTone,
the creator puts a number of pins on the circumference of a circular board,
and winds a long thread through the pins to approximate an image of some
object (see Fig.1). Our goal is to provide an automatic implementation for
this kind of art with high quality results.

∗This work was supported by the National Key Technology R&D Pro-
gram(Project Number 2016YFB1001402) and the Joint NSFC-ISF Research Pro-
gram (project number 61561146393).
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256 X. Fang, B. Liu, and A. Shamir

(a) Original image (b) 16 lines (c) 64 lines (d) 256 lines

Figure 1: Illustration of the thread painting process. The algorithm draws
connected chords between the pins on the border of the circle. (a): The
original image; (b)-(d): The drawing process, the number of chords increases
from 16, 64 to 256.

Suppose that there are P pins p0, p1, . . . , pP−1 uniformly placed on the
circumference of the circle, and that k chord lines are used for the paint-
ing, then given an image I, the complete process of the thread painting
generation involves the following steps:

1) Crop a circular region from the input image I.

2) Compute an appropriate ordered sequence of pins {pi0 , pi1 , pi2 , . . . , pik}
to cross with the thread.

3) Draw the line chords pi0pi1 , pi1pi2 , . . . , pik−1
pik inside the circle (or wind

a thread through the sequence of pins).

The strategy of cropping a region of interest can dramatically effect the
output result. Automatically choosing the region of interest is a challenging
issue. In this work, we leave this task to the user. If a circular region is not
specified, we simply crop the maximal circle region at the middle of input
image I. The main challenge in this process lies in the second step: how
to compute the sequence of pins so that the chords connecting them will
approximate the appearance of the cropped circular region of the image I?
The requirement that the end of each chord is the beginning of the next one
is called the connectivity requirement and means that the painting can be
created by winding a single long thread on the pins.

The most significant difference between this artistic style and previous
ones is that the basic elements in a ThreadTone painting, namely the chords,
are long straight lines (they may be as long as the diameter of the circle) that
cannot bend or twist, while the strokes of other styles are flexible and have
a limited size. Therefore, the properties of strokes or dots can be determined
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Automatic thread painting generation 257

only within a small area of the input image, while to form chords we have
to consider more global information. For example, if a chord crosses both
a dark region and a bright region, it is not simple to judge whether it is
suitable for drawing. Moreover, a single pixel in an image can be covered
by many chords, which means that the number of chord intersections can
be large, so the interrelations among chords must be carefully dealt with by
the algorithm.

Our algorithm treats the drawing generation as a two-stage process:
chord fitness computation and chord sampling. In the first stage, we solve
a quadratic optimization problem to get the fitness value for every possible
chord. A linear combination of the fitness values of all chords should recover
the original image as accurately as possible. In the second stage, we calculate
the sequence of chords by sampling k chords with high fitness value, utilizing
error diffusion to simulate the mutual impact between neighboring chords.
The number of drawn chords k could be either automatically determined or
provided by the user.

We evaluated the performance of our algorithm by calculating SSIM in-
dex [26] between the image and the painting, and performing a user study.
Our approach produces high-quality thread paintings and could reproduce
the details of input objects although the form and element of such Thread-
Tone painting are strictly limited.

2. Related works

NPR covers many artistic styles. Haeberli presented a tool to generate an
abstract image representation [6]. Users could draw strokes on a canvas to
obtain an impressionist style of the source image. The brush-stroke repre-
sentation was then extended for impressionist video synthesis by Litwinow-
icz [15]. Salisbury et al. focused on pen-and-ink illustrations [21]. Deussen et
al. represented images with a collection of stipples [3]. In particular, many ef-
forts have been devoted to the generation of line representations for images.
Kang et al. used streamlines to illustrate the vector field on images [4]. Al-
gorithms were proposed to generate line drawings from input images [12] or
smooth surfaces [5, 11], and to mimic a specific artist line-drawing style [23].
Style transfer algorithm by Hertzmann et al. [10] searches for similar patches
from the reference pair to fill a target image. Such algorithm could be ap-
plied on a large variety of tasks. Recently, Chen et al. [1] and Yang et al. [27]
made contribution to modeling embroidery, a traditional Chinese art style,
that synthesized the picture with stitches.
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258 X. Fang, B. Liu, and A. Shamir

One topic of NPR is to produce an output picture as a collection of
basic elements. The approaches for obtaining a suitable collection of basic
elements can generally be divided into three types: greedy method, trial-and-
error method and Voronoi-based method [9]. The greedy method collects the
basic elements one by one. In every step, the element that has the maximum
value of some heuristic function is selected [14]. The trial-and-error method,
also called relaxation, is a randomized optimization method. It iteratively
generates some small change suggested by the algorithm of the current state,
and this new placement is accepted if it reduces some total measured energy.
This method was adopted by [6, 18]. The Voronoi-based method forces the
elements to be evenly placed on the canvas. The dot size or dot spacing
could be adjusted according to the gray level of the original pixels [25]. The
placement of elements is optimized via an iterative update process similar to
the K-means clustering. Our work also produces a picture using a collection
of chords. We first use a global optimization to get the weight for each
possible chord element. Then, we use error-diffusion-based method to sample
the elements, which will be discussed in Section 3.3.

A recent algorithm to create ThreadTone painting from a given grayscale
image I was proposed in [22]. The algorithm selects chords that fulfill the
connectivity requirement to form the painting in a greedy manner. For conve-
nience, the pixel values are reversed as Ii ← (255− Ii), so that larger values
represent higher priority for drawing.

The first pin is chosen at random or by the user. Next, given the current
pin pcurr in the sequence of pins, the next pin pnext is chosen as the pin
whose chord pcurrpnext has maximum covering of pixel values, from all chords
originating at pcurr and ending at all possible pins. The covering of a chord
is the sum of the values of the pixels it covers. To simulate the effect of
the previously drawn chords, the value of each pixel covered by a chord is
reduced by a certain amount (15 in their implementation). To avoid drawing
chords among several pins back and forth, small loops are excluded from the
possible selection.

Although this greedy method could achieve reasonable result, it cannot
handle difficult cases and the drawbacks are obvious. First, the selection of
chords lacks global control. Therefore, the algorithm tends to extensively
draw chords over dark areas and to leave other area unpainted. Second,
the reduction of pixel values brings dramatic change to the original image.
As the number of chords increases, the structure of the main object will
be destroyed. Moreover, the importance of pixels in the input image whose
values are the same are usually not identical. For example, viewers usually
focus on the eyes, nose and mouth of a portrait, while focusing less on the
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Figure 2: An illustration of the Chord space. The upper triangle is the valid
parameter region. Two neighborhoods of points p1 and p2 are illustrated.
Note that p2 is equivalent to p′2.

background. Hence, the accuracy of covering the face is more important than
the background. Our approach solves these problems and provides users with
more freedom to adjust the sharpness of chords and the region of interest. In
all our results we compare our approach to this baseline greedy algorithm.

3. Method

Given the image I, if it is not a grayscale image, we use the method proposed
in [16] to convert it from color to grayscale. Next, we either crop it to a
circle denoted by the user or find the maximum circular region whose center
is at the center of the image. Given the number of chords k, instead of
choosing the chords one by one greedily, we formulate the problem as a
global optimization problem of choosing k best chords while adhering to the
connectivity requirement to creates the sequence of pins defining the chords.
In the following subsections, we formulate the space of chords, then define
the optimization that calculates the fitness function of all possible chords,
and then describe our method to select the chords for painting based on the
fitness of chords.

3.1. The space of chords

Let L denote the set of all chords on a unit circle. Every element in L can
be represented by two parameters (i, j), where i, j ∈ R represent the polar
angle of the two endpoints. Since the direction of chords is not important,
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we can impose a requirement that i ≤ j. Then, we can map a chord to an
equivalence class [(i, j)] formed by an equivalent relationship ∼ defined by
the following rules:

• (i, j) ∼ (j, i)

• (i, j) ∼ (i+ 2π, j)

• (i, j) ∼ (i, j + 2π)

This means that we can concentrate on i, j ∈ [0, 2π), and the parameter
space forms a right triangle {(i, j)|0 ≤ i ≤ j < 2π} which could be regarded
as an identification topology deriving from the plane R2. Each chord in
this space is represented by a point (i, j). The distance between two chords
l1 = (i1, j1) and l2 = (i2, j2) in this parameter space is defined as:

(1) d(l1, l2) = min
(i,j)∈[i1,j1]

{max(|i− i2|, |j − j2|)}

which is the minimal L∞ distance between the two equivalence classes. An
illustration of the chord space and the neighborhoods of chords is provided
in Fig.2.

In our problem, the parameter space is discretized so that the endpoints
can only be chosen in a finite set {p0, p1, . . . , pP−1} which represents the
angles of the pin positions on the circumference of the circle. Thus, we obtain
the corresponding discrete chord set L̃ = {(i, j)|i, j ∈ N, 0 ≤ i ≤ j < P}.

3.2. Fitness computation

With the formulated chord set L̃, our goal is to sample k elements from this
set in order, with the requirement that the end point of one chord is the
start point of the next one. We seek a function F : L̃→ R that represents
the fitness value for all of the possible chords. Suppose that there are m
chords in the set L̃ = {l1, l1, . . . , lm}. The fitness value fi for each chord li
is estimated by solving an optimization problem, and then k chords will be
sampled with priority for higher fitness values.

The fundamental thought is to reproduce the input image by assigning
appropriate gray levels to each chord. Although our thread painting algo-
rithm outputs two-value image, namely each pixel is either 0 or 255, at this
stage, we loosen this restriction so that each chord can be assigned a real
value defining its gray level, which will also serve as its fitness value.

The value of a reconstructed pixel is defined as the sum of gray-values
of all chords covering it. For each pixel Ii in the reversed circular image (we
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use a similar method of reversing black and white of the original image), we
have:

(2) Ii = fi1 + fi2 + · · ·+ fis

where fi1 , fi2 , . . . , fis are the gray-values of the chords li1 , li2 , . . . , lis that
cover pixel Ii.

We can now define an overdetermined set of equations

(3) Af = b

where b = (I1, I2, . . . , In) is the vector of original (reversed) pixel values, f =
(f1, f2, . . . , fm) are the fitness values to be determined, and A is an m× n
matrix where A(i, j) = 1 if the jth chord covers the ith pixel, otherwise
A(i, j) = 0.

In some cases, the contrast of the input images are far from satisfactory,
and sometimes users want to focus on the outlines and edges of the object in
the picture. We modify the definition of the vector b to accommodate this:

(4) bi = (1− α)Ii + α|gi|

where gi is the gradient vector at pixel Ii and the parameter α controls the
balance between gray level and gradient magnitude of the pixel that define
the edge constraint. By default, we set α = 0 in our experiment. When α > 0,
the algorithm enhances the edges of the original image.

This formulation provides the same importance to every pixel. This
means pixels with the same gray level and gradient magnitude will have sim-
ilar importance, no matter where they appear in the original image. To allow
for content-based importance, we extend our method by assigning different
weights to each equation. Larger weights that are given to important regions
in the image, will force the solver to provide more accurate reconstruction
on the selected pixels, while sacrificing the accuracy of others. We define
W = diag(w1, w2, . . . , wn) as the weight matrix, where each wi denotes the
weight of pixel i in the image. The objective function now becomes

(5) E(f) = ||W · (Af − b)||2

In our implementation, we use

(6) wi =

{
2.0, on important regions

1.0, otherwise
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Minimizing the objective function to get the fitness vector with only per-
pixel constraints can give unstable results. Therefore, it is necessary to add
regularization. We can achieve better results by giving a different weight to
each chord. Let V be a diagonal matrix diag(v1, v2, . . . , vm), we define two
terms related to chords:

(7) vi = β exp(−si/P ) + γdi/max(di)

The first term relates to the length of the chord and the second to the
consistency between the chord and the edges in the original image. β and γ
are weighting parameters.

As short chords cover fewer pixels, they are less restricted in matrix A.
Thus, their coefficients tend to be larger, resulting in excessive drawing on
the marginal area of the circle, which is undesirable. We suppress the short
chords by using the first term that depends on si, the length of the chord
li. If li = pi1pi2 , where i1, i2 are indices of pins, then si is defined as the
distance of two endpoints on the circle:

(8) si = min(|i1 − i2|, P − |i1 − i2|)

The parameter di reflects the consistency between the chord and the
edges in the original image. We first calculate the unit direction vector ei
for the chord li. Then, for each pixel p covered by li, we compute the gradient
vector gp, and define an average consistency of chord li as:

(9) di =

∑
p∈li |gp × ei|
|li|

The cross product gives larger result if the chord is not aligned with the
edges. Such chords are suppressed by our algorithm.

The complete formulation of the optimization problem is therefore de-
fined as follows:

(10) E(f) = ||W · (Af − b)||2 + ||V · f ||2

where f = (f1, f2, . . . , fm) are the unknowns representing the fitness values
of all possible chords.
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3.3. Chord sampling

With the fitness vector f computed, a greedy sampling process can be de-
fined. First, we set the number of chords k by default to be:

(11) k = 500 + 10 · (255− avg(I))

where avg(I) is the average gray level value of the input image. This is
intuitive since the darker the picture is, the more chords are needed to
paint it. However, this estimation is not always appropriate, so we allow the
number of chords k to be chosen by the user as well.

Next, given a starting pin p0, the next pin p1 in the sequence can be cho-
sen as the one that maximizes the fitness of the chord p0p1. This procedure
can be repeated to collect all k chords.

This greedy procedure tends to produce excessive chords over dark re-
gion. To relieve this accumulative effect, we leverage an error diffusion pro-
cedure. First, we map the fitness value into the range [0, 1] by using:

(12) fi ←
1

2
(tanh(fi/T ) + 1)

Note that the raw coefficient for each chord can also be negative, as this is not
prohibited in the optimization step. Thus, a normalization step is necessary.
The error created by li is 1− fi. This error value will be evenly diffused to
the ε-neighbourhood of li : Nε(li) = {lj |d(li, lj) ≤ ε}, i.e., the fitness value of
each element in Nε(li) is decreased by (1− fi)/|Nε(li)− 1|. The parameter
T controls the amount of error to be propagated. if T is smaller, the chosen
fitness value will be closer to 1, so less error will be diffused, leading to more
intensive result. If T is larger, the value of the neighboring chords will be
significantly reduced so the selected chords tend to be separately distributed.
The value of T is adjustable by the user.

4. Experiment

We collected 15 pictures for evaluation, including portraits, sketches and
cartoons (see Table 1). To reduce the computational workload, we resize the
input square region to be 401× 401 (i.e. radius 200 for the circle) and set
the number of pins P = 300. By default we fix α = 1.0, β = 5.0, γ = 10.0,
T = 30.0, and ε = 2. Some examples of the results are displayed during the
following discussion, and others are shown in Fig.8.
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SSIM (original) SSIM (blurred)

Image Name Greedy Ours
Ours

Greedy Ours
Ours

(disconnected) (disconnected)

Jerry 0.216 0.266 0.261 0.376 0.383 0.384
Winnie 0.205 0.258 0.256 0.434 0.388 0.405
Girl 1 0.331 0.373 0.358 0.539 0.576 0.565
Girl 2 0.311 0.348 0.352 0.506 0.522 0.542
Poetin 0.281 0.308 0.302 0.458 0.473 0.478
Trump 0.221 0.257 0.255 0.414 0.433 0.436
Van Gogh 0.268 0.360 0.346 0.418 0.475 0.463
Du Fu 0.265 0.310 0.303 0.433 0.445 0.451
Leaf 0.251 0.313 0.302 0.447 0.481 0.468
Flower 0.220 0.251 0.248 0.427 0.399 0.408
Nuclear 0.250 0.274 0.260 0.339 0.345 0.330
Leonardo 0.275 0.309 0.299 0.428 0.474 0.469
Jobs 0.206 0.248 0.247 0.326 0.329 0.326
Mario 0.229 0.274 0.267 0.374 0.384 0.384
Mushroom 0.236 0.271 0.256 0.416 0.441 0.425

Table 1: SSIM index of different methods. See details in text.

4.1. Similarity comparison

We use SSIM [26] to quantitatively assess the quality of the chord repre-
sentation. Although the resolution of our output image is 1001× 1001, we
resized both the input and output to be 201× 201. To reduce the difference
between the gray level input and the binary-valued output, we conducted
an additional test on a blurred version of all samples. The number of chords
to be drawn by all of the compared methods were the same. However, the
greedy method (proposed in [22]) sometimes terminated earlier because the
sum of pixel values on the next chord became negative. Moreover, in this
test all of the pixels in the image had the same weights (i.e., we set W to
be an identity matrix in Eq.(10)).

Table 1 compares the SSIM index of the outputs of different sampling
strategies. We illustrate the result of 4 examples in Fig.8. Our sampling
method achieved higher similarity than the greedy sampling method. We also
tested another sampling strategy that loosens the connectivity requirement.
If we do not require the chords to be connected in sequence, we can use
a priority queue to choose the best chords. In each iteration, we select the
chord with highest fitness value and remove it from the queue. Then, we
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(a) (b) (c) (d) (e)

Figure 3: Example of the effect of adding weights on important region (row
1: Girl 1, row 2: Girl 2). (a) the region marked with the green rectangle is
emphasized as important; (b) result with uniform weights; (c) result with
importance based weights (Eq. 6); (d) error map with uniform weights; (e)
error map with importance weights. The error maps are computed between
the input and the reconstruction of the whole chord set L̃. The error in the
maps is amplified by a factor of 5 for visibility.

update the fitness vector by decreasing the value of its neighboring chords
according to the diffused error. These two sampling strategies (connected
vs disconnected) are also compared in Table 1. Interestingly, removing the
connectivity requirement actually reduces the SSIM value most of the time
(for the test without blurring). This is because in this setting, the algorithm
tended to select shorter chords that have larger fitness value. Therefore, the
central area is inadequately painted. In this setting the user must increase
the number of drawn chords to complete the thread painting. In the blurred
comparison, all of the similarity values increase and the gap between the
different methods is narrowed.

It should be noted that a thread painting is an abstract representa-
tion of the original image with dramatic differences. Hence, the traditional
similarity measuring indices such as SSIM and PSNR for these images are
relatively low. Therefore, we conducted a user study to judge the quality of
the resulting images, which is described in Section 4.7.



i
i

“ms” — 2018/2/14 — 1:23 — page 266 — #12 i
i

i
i

i
i

266 X. Fang, B. Liu, and A. Shamir

(a) (b) (c) (d)

Figure 4: Illustration of the effect of the regularization term on the Jerry
example. (a) original image; (b) result without the regularization term mea-
suring direction; (c) result with identical weight on all chords (V is the
identity); (d) result with all regularization terms.

4.2. Effect of user specified weights

In many circumstances, the user may put more emphasis on a certain part
of the image. The quality of approximation on this part becomes more im-
portant than other parts. For example, the face region in a portrait is more
important than the background. Using different weights on pixels of different
regions (Eq.(6)) allows the optimization to put more emphasis on these re-
gions. Fig.3 provides some results with weighted input. The eyes and glasses
of the people were enhanced after marking the important region in the face.

We computed the error map measuring the difference between input
image and the reconstruction from the fitness vector of chords. As shown in
Fig.3, the error in the marked region is reduced, while the error outside this
region is increased. Transferring error from salient region to unimportant
region can improves the perceived visual quality.

4.3. Effect of regularization

We conducted experiments on the effect the regularization terms. Fig. 4 dis-
plays an example. When we removed the term that measures the fitness of
the chord direction, the edges in the original image are preserved less. If the
matrix of weights of chords is set to be the identity, the optimization solver
tends to give high fitness value to the short chords, resulting in excessive
drawing near the circumference of the circle. The short chords have less
restrictions in the linear system, so it is essential to apply stronger regular-
ization on them to balance the distribution of fitness value. Another positive
effect of the regularization term is to accelerate the optimization process.
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(a) (b) (c)

(d) (e) (f)

Figure 5: The effect of edge enhancement by increasing the α parameter
on the Flower (top) and Leaf (bottom) examples. (a) and (d) are the input
images; (b) and (e) are the results without edge enhancement (α = 0); (c)
and (f) are the results with edge enhancement (α = 0.5).

4.4. Enhancing the edges

In some images, the contrast between the main object and the background
is not very distinct. Therefore, direct optimization using per-pixel gray-level
value could not produce the clear outline of the object. To alleviate this
problem, we increase the parameter α in Eq.(4) from 0 in previous experi-
ments to 0.5. Fig. 5 illustrates two examples with edge-enhancement. Note
that in these cases the overall similarity measure between the inputs and
the outputs was decreased, but the clarity of the objects was increased, and
better visual quality was achieved.

4.5. Variation of sharpness

The parameter T controls the amount of diffused error and hence sparsity
of thread painting. Fig.6 illustrates the trend of outputs when increasing T .



i
i

“ms” — 2018/2/14 — 1:23 — page 268 — #14 i
i

i
i

i
i

268 X. Fang, B. Liu, and A. Shamir

(a) (b) (c) (d)

Figure 6: The effect of changing the sharpness factor T on the Van Gogh
example. (a) original image; (b)-(d) outputs corresponding to varying T =
10, 20, 40.

(a) (b) (c) (d)

Figure 7: Examples of square thread paintings. (a), (c): Input image; (b),
(d): Square painting.

As T is increases, the chords become more separated. An appropriate value
of T leads to having both distinct edges and a good reconstruction of the
whole image.

4.6. Changing the border shape

In the examples above, as well as the original work of Petros Vrellis, the
shape of the canvas is a circle. However, there is no reason to constrain the
boundary shape to one shape. In fact, we can use other boundary shapes,
such as squares, to generate various results (see Fig. 7). In this case, because
some pins lie on a straight line, we exclude the chords lying on these lines
from the optimization process as they do not contribute to the painting.
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average rank

Image Name Greedy Ours
Ours average Expected number

(disconnected) gray level of chords

Jerry 2.95 1.43 1.62 205 1250
Winnie 3.00 1.52 1.48 217 1155
Girl 1 2.48 1.29 2.24 110 1857
Girl 2 2.81 1.24 1.95 109 1869
Poetin 2.33 1.38 2.29 157 1607
Trump 2.86 1.24 1.90 191 1607
Van Gugh 2.62 1.86 1.52 146 1583
Du Fu 2.76 1.14 2.10 173 1595
Leaf 2.86 1.14 2.00 134 1285
Flower 2.95 1.33 1.71 208 1202
Nuclear 2.05 1.52 2.43 76 1595
Leonardo 2.81 1.29 1.90 134 1667
Jobs 2.86 1.38 1.76 188 1345
Mario 3.00 1.48 1.53 217 1297
Mushroom 1.52 2.43 2.04 175 1690

Table 2: Columns 2-4: Average user labelled rank (1 is best, 3 is worst) for
the three different methods. Columns 5-6 compare the average gray level
of input image to the average number of cords for best ranked ThreadTone
painting. The correlation is around −0.7, meaning that the darker the image
is, the more chords are needed.

4.7. User study

We invited 20 student volunteers to evaluate the quality of the thread paint-
ings. The original images, as well as the results of three approaches (greedy,
ours, and ours without connectivity requirement) were provided to the eval-
uators, who were required to rank the quality of the three paintings. The
results of the study are shown in Table 2. Overall, our method with connec-
tivity requirement was regarded as the best one.

Moreover, we presented paintings produced by our method with different
number of chords (750, 1000, 1250, 1500, 1750, 2000) and then asked the
evaluators to select the best one. Result given in Table 2 indicates that, in
general, the appropriate amount of chords is proportional to the darkness of
the input image. However, the complexity of describing the structure differs
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(a) (b) (c) (d)

Figure 8: More examples of thread painting (Row 1-4: Du Fu, Winnie,
Trump, Poetin). (a) Original image; (b) Results of greedy method; (c) Re-
sults of our method; (d) Results of our method (without connectivity re-
quirement).

from one image to the other, and there is no simple rule that can suit all
the different cases.

5. Conclusion

In this work, we formulated the thread painting problem and provided an
automatic solution to produce such painting from input images. The pro-
posed algorithm consists of two parts. First, we compute the fitness function
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of the chord space by solving a least square minimization problem. The ob-
jective function is a combination of per-pixel reconstruction loss and a reg-
ularization term on the chord fitness value. Different weights are assigned
to emphasize the quality of important regions, and to provide preference to
chords with suitable length and direction. After acquiring the fitness values
of chords, a sampling process is conducted to form a sequence of connected
chords to be drawn in the circle. Error diffusion is applied in the neigh-
bourhood of selected chords during sampling to control the sharpness of
the result. We evaluated the thread paintings results with SSIM index and
a user study. Results show that our approach can create thread paintings
with high quality on various inputs.
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