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We consider two-player zero-sum differential games (ZSDGs), where
the state process (dynamical system) depends on the random ini-
tial condition and the state process’s distribution, and the objective
functional includes the state process’s distribution and the random
target variable. Unlike ZSDGs studied in the existing literature, the
ZSDG of this paper introduces a new technical challenge, since the
corresponding (lower and upper) value functions are defined on
P2 (the set of probability measures with finite second moments)
or Lo (the set of random variables with finite second moments),
both of which are infinite-dimensional spaces. We show that the
(lower and upper) value functions on Py and Lo are equivalent
(law invariant) and continuous, satisfying dynamic programming
principles. We use the notion of derivative of a function of proba-
bility measures in Py and its lifted version in L5 to show that the
(lower and upper) value functions are unique viscosity solutions
to the associated (lower and upper) Hamilton-Jacobi-Isaacs equa-
tions that are (infinite-dimensional) first-order PDEs on P2 and
Lo, where the uniqueness is obtained via the comparison principle.
Under the Isaacs condition, we show that the ZSDG has a value.

1. Introduction

In this paper, we consider a class of nonlinear two-player zero-sum differen-
tial games (ZSDGs), where the state process (dynamical system) depends on
the random initial condition and the state process’s distribution (the law of
the state process), and the objective functional includes the state process’s
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distribution and the random target variable. The main objectives of this
paper are to establish dynamic programming principles (DPPs) for lower
and upper value functions of the ZSDG, show that the value function is
the unique viscosity solution of the associated Hamilton-Jacobi-Isaacs (HJI)
equation, and prove that under the Isaacs condition, the ZSDG has a value.

(Deterministic and stochastic) ZSDGs and their applications have been
studied extensively in the literature; see [I-i] and the references therein.
Specifically, Rufus Isaacs |6] was the first who considered (deterministic)
ZSDGs with applications to pursuit-evasion games. Elliott and Kalton [7]
introduced the concept of nmonanticipative strategies for the players, which
was used in [, 9] to obtain DPPs for lower and upper value functions of the
ZSDG, and show that the value functions are viscosity solutions to associated
(lower and upper) HJI equations. The existence of the value of ZSDGs and
the existence of saddle-point solutions were studied in |7, [10, [11].

Later, the results of |8, |9] were extended to various other settings for
ZSDGs. We mention here a few references that are relevant to our paper.
The papers [12, [13] considered the class of games where the state and the
objective functional are described by coupled forward-backward stochastic
differential equations (SDEs). They used the so-called backward semigroup
associated with the backward SDE to obtain DPPs and the viscosity solution
property of the HJI equations. ZSDGs with unbounded controls were consid-
ered in [14]. The weak formulation of ZSDGs and the mean field framework
of ZSDGs were studied in [15-18], where in |15] path-dependent HJI equa-
tions and their viscosity solutions were considered. Reference 18] used the
feedback approach to construct a suboptimal solution and prove the exis-
tence of the value function. (Deterministic and stochastic) linear-quadratic
ZSDGs with Riccati equations were studied in [19-23] and the references
therein. Maximum principles for risk-sensitive ZSDGs were established in
[24], and for nonzero-sum DGs in [25].

There are numerous applications of ZSDGs. Pursuit-evasion games and
their applications to characterization of reachable sets for dynamical systems
were considered in [4, 15, 126, 27]. Optimal resource allocation, distributed
control problems and their applications can also be considered within the
framework of ZSDGs |5, 28]. For particular applications of ZSDGs considered
in this paper, see the discussion in Examples 2.TH2.3] of Section

We should note that for the (lower and upper) value functions of ZSDGs
and the associated HJI equations studied in |2, 8, |9, [12-15], the state space
is the standard finite-dimensional space. In our formulation, however, the
random initial condition and the law of the state process affect the dynamical
system, and the objective functional includes the state process’s distribution
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as well as the random target variable. Hence, unlike [2, 8, |9, [12-15], in this
paper the state arguments of the (lower and upper) value functions and
the associated HJI equations belong to P, (the set of probability measures
with finite second moments) and Lo (the set of random variables with finite
second moments) that are infinite-dimensional spaces. This inherent infinite-
dimensional feature introduces a new technical challenge, which has not
arisen in |2, 8,19, [12-15]. This is the challenge we tackle in this paperE

The first main objective of the paper is to show that the (lower and
upper) value functions defined on [t,T] x Py and [t,T] X Lo, where [t,T]
is a fixed time horizon, are equivalent to each other. This leads to the law
invariant property between the value functions on [t,T] X P2 and [t,T] x Lo,
which were not considered in the finite-dimensional case in [2, 8, 19, [12-15].
The (lower and upper) value functions on [t,T] x Lo are called the lifted
value functions. We also show that the (lower and upper) value functions on
[t,T] x Py and their lifted version on [t,T] x Ly are continuous. The proof
of the continuity utilizes properties of the 2-Wasserstein metric and the flow
(semigroup) property of the state distribution, which are not needed in the
finite-dimensional cases studied in [2, 8, |9, 12-15, 29].

The second main objective of the paper is to establish lower and upper
dynamic programming principles (DPPs) for the (lower and upper) value
functions. This provides a recursive relationship of the (lower and upper)
value function. Due to the law invariant property, the (lower and upper)
DPPs on [t,T] x Py and the lifted (lower and upper) DPPs on [t,T] x Lo
are identical. For the proof, we need to consider the interaction between
admissible control and nonanticipative strategies between the players.

The third main objective of the paper is to show that (lower and upper)
value functions are viscosity solutions of the associated (lower and upper)
Hamilton-Jacobi-Isaacs (HJI) equations that are first-order partial differ-
ential equations (PDEs) on [t,T] x Py and [t,T] x L2. Hence, unlike |2, 8,
9, 12-15], the HJI equations of this paper are infinite-dimensional. We use
the notion of derivative of a function of probability measures in Py and its
lifted version in L9 with the associated chain rule introduced in [30, 131] to
characterize the (lower and upper) HJI equations and the viscosity solution
property of the (lower and upper) value functions. Furthermore, when the
dynamics and running cost are independent of time, by constructing the

IThe ZSDG of the paper is closely related to mean field type games studied in [16-
18] (see Example 2.1l in Section 2.2)). However, [16-118] considered weak and open-
loop formulations, where the DPPs, the HJI equations, and the viscosity solution
property of the value functions naturally do not arise. The problem formulation,
the approach used, and the main results of this paper are different from [16-18].
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test function and using the law invariant property, we prove the comparison
principle of viscosity solutions, which leads to uniqueness of the viscosity
solution. In addition, under the Isaacs condition, the lower and upper value
functions coincide. This implies that the ZSDG has a value, which is further
characterized by the viscosity solution of the HJI equation.

Finally, we provide numerical examples to illustrate the theoretical results
of the paper. In particular, we observe that the value of ZSDGs considered
in this paper is determined by the laws (distributions) of random initial
and target variables, whereas the value of classical deterministic ZSDGs is
obtained by explicit values of initial and target variables.

We note that different versions of the problem treated in this paper were
considered earlier in [32,133]. However, in [32], the notion of nonanticipative
strategies with delay was used, which is hard to implement in practical situa-
tions. Moreover, the objective functional does not have the running cost, and
the state distribution and the random target variable were not considered
in [32]. The stochastic version of the problem of this paper was considered
in [33]. However, the comparison principle and therefore the uniqueness of
viscosity solutions were not shown. Hence, there is no guarantee that the
solution of the corresponding HJI equations characterizes the value function
in [33]. In summary, the problem formulation, the approach used, and the
main results of this paper are different from those of |32, 133].

The rest of the paper is organized as follows. Notations including the
notion of derivative in P, and its lifted version in Lo, and the problem
formulation are provided in Section 2l The DPPs and the properties of
the (lower and upper) value functions are given in Section Bl The (lower
and upper) HJI equations and their viscosity solutions (including existence
and uniqueness) are given in Section [4l Numerical examples are provided in
Section [0l Several potential future research problems are discussed in Section
Five appendices include proofs of the main results.

2. Problem Statement

In this section, we first describe the notation used in the paper, along with
some notions and properties. The precise problem formulation then follows.

2.1. Notation
The n-dimensional Euclidean space is denoted by R", and the transpose

of a vector x € R"® by x'. The inner product of z,y € R” is denoted by
(z,y) := 2"y, and the Euclidean norm of z € R™ by |z| := (z,z)2.
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Let C([0,7] x R™) be the set of all real-valued continuous functions
defined on [0,7] x R™. Let C11([0,7] x R™) be the set of real-valued func-
tions defined on [0, T] x R™ such that for f € C1([0,T] x R™), 0, f(t,x) (the
partial derivative of f with respect to t) and 0, f (¢, ) (the partial derivatives
of f with respect to z) are continuous and bounded. Let .4 and B be Banach
spaces with the norms || - | 4 and || - || 5, respectively. A function f : A — Bis
Frechet differentiable at x € A |34, page 172] if there exists a bounded linear
operator D, f : A — B such that lim, o ”f(mth)*f(”mfzﬁAD’“f(m)(h)”B = 0.

Let (Q, F,P) be a complete probability space, and E be the expectation
operator with respect to P. We denote by P, the distribution (or law) of a
random variable z. Let E,p, be the expectation for which the underlying
distribution (or law) is P,. Let £2(€2, R™) be the set of R™-valued random vec-
tors such that for z € L2(2,R"), E[|z]?] < co. L2(2,R") is a Hilbert space,
with inner product and norm denoted by E[(z,y)] and |z|z, := E[|z|?]'/2,
respectively [34, 135].

Let P(R™) be the set of probability measures on R", and P, := P,(R") C
P(R™) be the set of probability measures with finite p-th moment, p > 1,
ie., for any p € P,(R") with p > 1, we have (. [z[Pdu(z))Y/P < co. We
note that = € L2(2,R") if and only if u =P, € P2(R"™). For z € L2(Q2,R")
with the associated law p € P2(R™), we can write E[z] = [, xdu(z). The
p-Wasserstein metric is defined by (see [36, page 40] and [37, Chapter 6]):

W) = (_int [ o= ypdna) ',
mell(py,p2) JRn xR

where 11, p2 € Pp, and (1, p2) is the collection of all probability measures

on R™ x R™ with marginals p; and po, i.e. (A X R™) = pu1(A) and w(R™ x

A) = p2(A) for any Borel sets A C R™ [36]. Note that Wy can equivalently

be written as [37, Chapter 6]

Wa(p1, p2) = inf{||z1 — z2lz, | 21,22 € L2(Q,R™)
with P, = p1 and Py, = ,ug}.

One can easily show that W), is a metric; hence, P,(R") endowed with W),
p > 1, is a metric space. For p € P2(R™), let £5(R™) be the set of square-
integrable functions with respect to u.

We next provide the notion of derivative in Po, and its lifted derivative
in Lo, which are introduced in [30, 131]. Let = € Lo(2,R™), which implies
p =Py, € Po(R™). Let f: Pa(R™) — R. We introduce the lifted (extended)
version of f, F': L2(Q,R™) — R, that is, for x € L5(2,R™) (note that P, €
Pa2(R™)), F(x) = f(P;). While F' is a function of the random variable, f is
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a function of the distribution (law) of z. We say that f is differentiable at
P, € Po(R™), if its lifted version F is Frechet differentiable at z € L£o(€2, R™).
Let D, F(z) : £2(£2,R") — R be the corresponding Frechet derivative. Then
D, F(x) is a bounded linear functional. Since £5(£2,R") is a Hilbert space
and its dual space is L£2(€2,R"™), in view of Riesz representation theorem [35,
Theorem 3.4], for any y € L2(2,R™), there is a unique D, F(x) € Lo(2,R"™)
such that D, F(z)(y) = E[(D,F(z),)]. This implies that the Frechet deriva-
tive can be viewed as an element of £5(€2,R™). In view of [30, Theorem 6.2],
D, F(z) does not depend on z, but depends on the law (distribution) of
x. Also, from [30, Theorem 6.5], there exists a function 9, f(u) : R* — R"
with d,u(p) € L5(R™) such that 9, f(u) € L5(R™) is a derivative of f in
P2(R™), which can be represented as D,F(x) = 0d,f(p)(x). Finally, con-
sider the dynamical system #(t) = f(z(t)) with x(0) =z € L2(R"™). Let
pt = Pypy € Po(R™) be the state distribution (or law) of the dynamical sys-
tem. Let v € C11([0,T] x Po(R™)). From the notion of derivative in Py, the
chain rule in Py is dv(t, py) = Opv(t, pe)dt + [5., (Buv(t, pe) (), f(2))dp (2)dt.
Note that for the lifted chain rule in Lo with V € CHL([0,T] x L2(92, R™)),
we have dV (t,z(t)) = 0,V (¢, x(t))dt + E[(D;V (¢, z(t)), f(x(t)))]dt.

2.2. Problem Formulation
Consider the dynamical system on [¢,T] with the initial time ¢t € [0,T):

dz(s)

(1) #(s) = — = f(s,2(s), B¢, u(s), v(s)),

where z € R" is the state with the random initial condition z(t) =z €
L2(2,R™) having the law v, := P, € P2(R"), u € U C R™ is the control
of Player 1, and v € V. C R™? is the control of Player 2. We assume that
U and V are compact. The set of admissible controls for Player 1, U[t, T,
is defined such that for v € U[t,T], u: [t,T| — U is a measurable function.
The set of admissible controls for Player 2, V[t,T], is defined in a similarly
way. Let U :=U[0,T] and V := V[0, T]. In (@), PY""" € Po(R") denotes
the law (equivalently distribution) of the dynamical system at time s that is
dependent on the law of the initial condition v, (see Remark[A.Ilin Appendix
[A]), as well as v and v. We introduce the following assumption:

(H.1) f:]0,T] x R* x P(R™) x U x V' — R™ is bounded, where f is con-
tinuous in (¢, u,v) for each v € P(R™), and satisfies the Lipschitz con-
dition: for t € [0,T],u € U,v € V, z1, 21 € R" and 11,5 € P(R™) and



“ZSDGs Probabilty Space’051920” — 2020/5/26 — 1:30 — page 7 — #7

Zero-Sum Differential Games on the Wasserstein Space 7

for K > 0, it holds that |f(t,x1,v1,u,v) — f(t, z2,v2,u,v)| < K(|z1 —
xg’ +W1(V1,V2)).

Then, for 9 € R", () admits a unique solution on [0, 7] |38, 39].

Let z € L2(Q,R™) with the law v, := P, € P2(R"), which is independent
of xy. Here, z is the target variable in the objective functional (see (2)) and
Remark 2.T)). Let y := (z0,2) € L2(Q2, R™) x L2(2,R") =: (L2(2,R™))? with
the law given by v = (v, v,) = P, € Po(R") x Po(R™) =: (P2(R"))2. The
objective functional for the two-player ZSDG of this paper is then given by

(2) J(t,vg, vy u,v) = J(t, v u,v)
= J(t,xo,z;u,v) = J(t7ya u,’l})

= E(y,2)0 [/tT I(s,2(s), PLY=%Y (s),v(s))ds + m(x(T), z)] ,

where J is cost to Player 1 (minimizer) and payoff to Player 2 (maxi-
mizer). The notation in the first line of (2)) indicates that J is defined on
[0,T] x (P2(R™))? x U x V, whereas the notation in the second line of (2
stands for J as a functional on [0,7] x (L2(Q2,R?))? x U x V, and the two
are equivalent because of the correspondence between Lo and Py discussed
in Section 21l Let J(u,v) := J(0, vy, vs;u,v) = J(0,x0, 2; u,v). We have the
following assumption:

(H.2) 1:]0,T] x R" x P(R™) x U x V — R is bounded, where [ is contin-
uous in (¢,u,v) for each v € P(R™) and satisfies the Lipschitz condi-
tion: for t € [0,7], u e U, v € V, x1,x2 € R" and 11,15 € P(R") and
for K >0, it holds that |I(t,z1,v1,u,v) — (¢, 2,12, u,v)| < K(|z) —
xa| + Wi(vy,12)). Also, m : R" x R™ — R is bounded, which is Lips-
chitz continuous in (z, z) with Lipschitz constant K > 0.

Remark 2.1. The random variable z included in the terminal cost m of
@) is called the target variable, which captures the constraint of the state
process at the terminal time. Specifically, given z, m can be used such that
the distance between the law of the state process and the target distribution
(the law of z) can be optimized via the control processes v and v.

We next introduce the notion of nonanticipative strategies for Player 1
and Player 2; see also [2, &, 19, 12, [21].

Definition 2.1. A strategy for Player 1 is a mapping o : V — U. A strategy
for Player 1 is nonanticipative if for any s € [¢t,T], and v1,vy € V, v1(5) =
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vo(8) for § € [t,s] implies that a(v1)(5) = a(v2)(5) for 5 € [t, s, this being
true for each ¢ € [0, T]. The set of nonanticipative strategies for Player 1 on
[t,T] is denoted by A[t,T]. Let A := A[0,T]. A strategy for Player 2 is a
measurable mapping 8 : U4 — V. A nonanticipative strategy for Player 2 is
defined in a similar way as Player 1’s. The set of nonanticipative strategies
for Player 2 on [t,T] is denoted by Bl[t,T]. Let B := B[0,T].

Using Definition 2.1 for t € [0, T] and v = (v, v.) € (P2(R™))?, the lower
value function for @) is defined by L : [0,T] x (P2(R"))? — R with

) L) =Ltw)= i swp J(tvia()w),
a€A[LT] yeV[t,T)

and the upper value function is defined by M : [0,T] x (P2(R"))? — R with

(4) M(t,vy,v,) = M(t,v):= sup inf J(t,v;u,B(u)).
BeB(t,T) wEU[L,T]
Note that L(T,v) = M(T,v) = [g. . m(z, z)dv(z, z). Unlike the determin-
istic case, ([B) and (@) are parametrized by the initial time, the initial distri-
bution (law) of (), and the target distribution in (2]).
For t € [0,T] and y = (z,2) € (L2(2,R™))2, define the lifted lower value
function, L : [0,7] x (£L2(2,R"))? — R with

() Lt, 2z, z) = L(t,y) == inf = sup J(t, y;(v),v),
a€A[LT] yeVit,T)

and the lifted upper value function, M : [0, T] x (L2(22,R"))? — R with

(6) M(t,z,z) = M(t,y) := sup inf J(t,y;u,S(u)).
BeB(t,T) wEU[t,T]

Note that L(T,y) = M(T,y) = Ey,[m(z, z)]. As mentioned in Section 2T
the lifted value functions depend on only the law of y = (z, z)

Remark 2.2. Unlike ZSDGs in [2, ], |9, 12-15], the lower and upper value
functions in (3))-(@) are defined on infinite-dimensional spaces P2 and Ls.

2The value functions and their lifted versions are defined based on the notation
in ([2). Note that the value functions and their corresponding lifted versions are
deterministic and identical, where the detailed proof of the latter is given in Lemma
Bl As stated in Section 2] and [30, 131], the motivation for introducing the lifted
value functions on L5 is to utilize the notion of derivative in Lo, which allows us
to characterize the explicit derivative of the (inverse-lifted) value function on Ps.
Note that Lo is a Hilbert space, but Ps with the Wasserstein metric is not.
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Before concluding this section, we provide a few examples of ZSDGs that
fit into the framework laid out above.

Example 2.1. The state dynamics in (Il) can be regarded as a McKean-
Vlasov dynamics, where the evolution of the state process depends on its
distribution. This is closely related to mean-field games and mean-field
type control, which have been studied extensively in the literature, particu-
larly, for reducing variation of random effects on the controlled process and
macroscopic analysis of large-scale interacting multi-agent systems [17, [18,
30, 131, 138, 140-47]. For example, we may take f(¢,z(t),E[x(t)],u(t),v(t)),
U(t,z(t), Elx(t)],u(t),v(t)) and m(z(T),E[x(T)]) to optimize the objective
functional under the mean-field effect. Notice that if [ =0 and J(u,v) =
E[z2(T)] — (E[z(T)])?, then what we have is a class of mean-variance opti-
mization problems.

Example 2.2. In statistical learning theory and its applications, we often
need to optimize the worst-case empirical criterion (or risk) [48]. Specifically,
assume that (xf), z%),i=1,...,N,is ani.i.d. random pair sampled according
to v = (g, v.) € (P2(R"))2. Consider

N T
JW%®=%§ILzm¢%mmmwmm+mw%ﬂwmﬂ

1=

1
i) = f(t,20(0),u,0), 2D(0) =2, i=1,.. N

Note that we have limy_,oc & SN 2i(t) = E['(t)] almost surely in view of
the law of large numbers, which, together with (H.1) and (H.2) implies that
im0 JV (u,v) = J(u,v). Hence, from the minimization point of view,
the class of ZSDGs of this paper can be viewed as worst-case empirical
optimization when the sample size N is arbitrarily large.

Example 2.3. Consider the two adversarial vehicles model:

J(u’ U) = E(mg,z)Nu “:C(T) - Z”

Z1(t) —vq + vp cos z3(t) + v(t)z2(t)
z(t) = |22(t) | = vpsinxs(t) — v(t)z1(t) ,
a3(t) u(t) — w(t)

where 2(0) = z¢ is the random initial condition, z is the random target
variable, vy, v, > 0 are constants of the two vehicles and u, v are velocities of
the two vehicles [26]. When specialized to this setting, the class of ZSDGs in
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this paper can be seen as a pursuit-evasion game of two vehicles with random
initial and target pair. Its deterministic version with different settings and
applications to characterization of reachable sets were studied in [4, |5, 126,
27|, and the references therein.

3. Dynamic Programming Principles

In this section, we obtain the dynamic programming principles (DPPs) for
the lower and upper value functions.
We first provide some properties of the value functions. The following

lemma shows that the value functions are law invariant. The proof can be
found in Appendix [Al

Lemma 3.1. Suppose that (H.1) and (H.2) hold. Then we have L(t,v) =
L(t,y) and M(t,v) = M(t,y) for any y = (z,2) € (L2(Q,R™))? with the law
of y being v = (vg,vz) € (P2(R™))?, ice., v :=Py = P, ,) € (P2(R™))?.

The next lemma shows the continuity of the value functions. The proof
is provided in Appendix [Al

Lemma 3.2. Suppose that (H.1) and (H.2) hold. Then the lifted value
functions in (3) and (@) are continuous in (t,y) € [0,T] x (L2(, R™))2.
Furthermore, the value functions in (3) and (4)) are continuous in (t,v) €

[0, 7] x (Pa(R™))?.

We now obtain in the following theorem the DPPs, whose proof is given
in Appendix [Bl

Theorem 3.1. Suppose that (H.1) and (H.2) hold. Then for anyy = (x,z) €
(L2(2,R")? with v := (vg,v,) =Py € (P2(R™))? and t,t+7 €[0,T] with
t <t+ 7, the lifted lower and upper value functions in [{3) and (@), respec-
tively, satisfy the following DPPs:

t+1
(7) L(t,z,2)= inf sup  E(p ) {/ (s, zhovme®)w,
a€A[LIAT veV[t 4] t
Phy=a)v o (v)(s), v(s))ds + Lt + 7, ﬂ:i’f’:z;a(v)’v, z)]
t+T1
(8) M(t,xz,z) = sup inf By [/ I(s, abveiBl)
6€B[t7t+ﬂ uEu[t,t+T] t

PLY ) (s), B(u)(s))ds + M(E+ 7, 2y, 2)]
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Equivalently, for any y = (z,2) € (L2(2,R™))? with the law v = (vg,v,) =
P, € (P2(R™))? and t,t + 7 € [0,T] witht < t + 7, the lower and upper value
functions in (3) and (4), respectively, satisfy the following DPPs:

(9)  L(t,vg,vy)

t+1
— inf / / s, xt z,vz5a(v), v, PZ’VI’Q(U)’U,
€At t+7] vGV t t+7— n

a(v)(s), v(s))dPE= @2 (2)ds + L(t + 7, Phr @ uz)}
(10) M(t,vg,vs)

t+71
= sup inf / / s, xtﬂwm u,B(u) IP’t Va3t ,B(U)
BeBt, t+r] ueU[t,t+r] n

u(s), B(u) ($))APL""00) (@)ds + M (¢ + 7, By, ) .
4. HJI Equations and Viscosity Solutions

In this section, we address the issue of the lower and upper value functions
being unique viscosity solutions of the associated Hamilton-Jacobi-Isaacs
(HJI) equations, which are first-order partial differential equations defined
on infinite-dimensional spaces, particularly Ps and Ls.

The lower HJI equation on [0, 7] x (Py(R™))? is given by
an {@L(t,ux,uz) + H(t,1,8,, L(t,vy,1.)) =0

L(T,vg,v,) = fRann m(z, z)dv(z, 2)

and the upper HJI equation on [0,7] x (P2(R™))? is as follows:

(1) {@M(t, Ve Vy) + HY (80,0, M(t,vz,v,)) =0

M(T,ve,v2) = [gnygn m(, 2)dv(z, 2)

where H—, H* : [0,T] x (P2(R"))? x L£5*(R™) — R are the Hamiltonians:

(13)
H™ (t,v,p) = 51615 greltf]{/n[(p,f(t,x,ux,u,v» + l(t,x,ux,u,v)]dux(x)}
H*(t,v,p) := 525325{/ [(p, f(t,x, vy, u,v)) +l(t,x,ux,u,v)]dux(x)}.

Viscosity solutions to (1) and ([I2]) are defined as follows; see also [2, 8,
9,112, 13, 29, 49] and the references therein:
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Definition 4.1. (i) A real-valued function L € C([0,7] x (Po(R™))?) is
said to be a viscosity subsolution (resp. supersolution) of the lower HJI
equation in (L) if L(T,v) < [guype m(x, 2)dv(z, 2) (resp. L(T,v) >
Jgnsgn m(z, 2)dv(z, 2)) for v € (P(R™))?, and if further for all test
functions ¢ € C11([0,T] x (P2(R™))?) and (t,v) € [0,T) x (Pa(R™))?,
the following inequality holds at the local maximum (resp. local mini-
mum) point (¢,v) of L — ¢:

8t¢(t, V) +H™ (t, v, 8Vm¢(t7 V))
(resp. Oyp(t,v) + H™ (t,v,0,,¢(t,v))

IN IV

0
0).

(ii) A real-valued function L € C([0,T] x (P2(R™))?) is said to be a viscos-
ity solution of (1) if it is both a viscosity subsolution and a viscosity
supersolution. The viscosity subsolution, supersolution, and solution of
the HJI equation in (I2)) are defined in similar ways.

The following theorem, whose proof is given in Appendix C, now estab-
lishes the viscosity solution property of the value functions in () and ().

Theorem 4.1. Suppose that (H.1) and (H.2) hold. Then, the lower value
function L is a viscosity solution to the lower HJI equation (I1l). The upper
value function M is a viscosity solution to the upper HJI equation (13).

With the lifted value functions, the lifted lower and upper HJI equations
are given by

14 {@L(t,m, 2) +H(t,y, DyL(t,z,2)) = 0

L(T,z,z) = E[m(z, 2)]

(15) OMI(t, , z) + HT (t,y, DuM(t, z, 2)) = 0
M(T, z,z) = E[m(z, 2)]

where H™,H™ : [0, T] x (L2(Q,R"))? x L5(Q,R") — R are the (lifted) Hamil-
tonians defined by

(16) H™(t,y,p) := sup in[ij[(p,f(t,x,uw,u,v» + l(t,x,ugc,u,v)]
veV ue

H*(¢,9,p) := inf supE[(p,f(t,x,ym,u,v» + l(t,x,l/m,u,v)].
uel yey
See Section 211 for the notion of derivative in L9 and its relationship with
the derivative in Py. As stated in Section [2.2] from the definition of the value
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functions (Bl) and (@), the lifted HJI equations (I4]) and (I5) are dependent
on the law of (z, z).

Remark 4.1. (i) From Remark 2.2 the HJI equations in (III), (I2)), (I4)

and (I8 are defined on infinite-dimensional spaces.

(ii) The definition of the viscosity solution for the lifted HJI equations in
(@) and (I5)) (the solution belongs to C([0, 7] x (L2(2,R™))?)) is iden-
tical with Definition 1], except that we need to use the test function

¢ € CHL([0,T) x (L2(22,R™))?) and (I4)-(I6) instead of (II])-(T3).

We have the following result, whose proof is similar to that of Theorem

A1l

Proposition 4.1. Suppose that (H.1) and (H.2) hold. Then, the (lifted)
lower value function L is a viscosity solution to the (lifted) lower HJI equa-

tion in (I4). The (lifted) upper value function M is a viscosity solution to
the (lifted) upper HJI equation in (13).

Next, we state the comparison results of the viscosity solutions in The-
orem [£.1] and Proposition 1] with the proofs relegated to Appendix [Dl We
need the following assumption:

(H.3) f and [ are independent of t.

Theorem 4.2. Assume that (H.1)-(H.3) hold. Then:

(i) Suppose that Ly (resp. Mi) and Lo (resp. Ms) are bounded and Lip-
schitz continuous wviscosity subsolution and viscosity supersolution of

(I1l) (resp. (I2)), respectively. Then, the following result holds:

a7 {Ll(t,u) < Lo(t,v), Y(t,v) € [0,T] x (Py(R™))2

My (t,v) < Ms(t,v), Y(t,v) € [0,T] x (P2(R"))?

(ii) Suppose that Ly and (resp. My) and Ly (resp. My ) are bounded and
Lipschitz continuous viscosity subsolution and viscosity supersolution
of (I) (resp. (13)), respectively. Then, the following result holds:

as) Li(t,y) < La(t,y), Y(t,y) € [0,T] x (L2(Q,R™))?
My (t,y) < Ma(t,y), Y(t,y) € [0,T] x (L2(22,R"™))?

Based on Theorem 42l we have the following uniqueness result. The
proof is given in Appendix [El
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Corollary 4.1. Suppose that (H.1) and (H.2) hold, and that the (lower
and upper) value functions are bounded. Then, the lower (resp. upper) value
function in [B]) (resp. (@) is the unique viscosity solution to the lower (resp.
upper) HJI equation in (1) (resp. (I2)). Also, the lifted lower (resp. upper)
value function in (Bl (resp. (@) is the unique viscosity solution to the lifted

lower (resp. upper) HJI equation in (I4) (resp. (I3))).

Remark 4.2. In view of Corollary ], by solving the lower (resp. upper)
HJI equation in (II]) or (I4) (resp. (I2) or (IH))), we can characterize the
lower (resp. upper) value function of the ZSDG of this paper.

To proceed further, we now introduce the Isaacs conditions:
H(t = H*(t,v,

(19) 7(,V,p) +( v,p)

H™(t,y,p) =H"(t,y,p)

Note that due to the law invariant property, the conditions in (I9]) are equiv-
alent. Then under the Isaacs condition, we have the following result, whose
proof can be found in Appendix [El

Corollary 4.2. Suppose that (H.1)-(H.3) and (I39) hold. Assume that the
(lower and upper) value functions are bounded. Then, the ZSDG has a value,
ie., L(t,v) = L(t,y) = M(t,y) = M(t,v) for (t,v) € [0,T] x (P2(R"))? and
(t,y) € [0,T] x (L2(£2,R™))2. Moreover, the value function is the unique vis-
cosity solution to the HJI equation with H := H~ = H™' in () and (I2),
and H := H~ = H" in (I4) and (5.

Remark 4.3. Corollary implies that the viscosity solution to the HJI
equation characterizes the value of the ZSDG formulated in Section

5. Numerical Examples

This section provides two numerical examples. For the HJI equations in Sec-
tion M, assume that T =1, f(t,z,v,,u,v) = H% + fgsin(z)dvy(z) +u —
0.1v, I(t, 2, Vg, u,v) = sin(z) + [ 2dvy(x) +u — v and m(z, z) = sin(z) — 2.
Also, U =10,1], V =10,1], and z and z are independent Gaussian random
variables with mean zero and variance one (equivalently, v, and v, are Gaus-
sian measures). Note that the target variable z is included in the terminal
cost m. The ZSDG formulated in this section can be regarded as a class of
mean-field type control (Example 2.1]) and pursuit-evasion games (Example
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2.3). Due to the random initial and target variables, and the dependence of
f and [ on v,, the problem cannot be solved using the existing theory for
ZSDGs.

Note that (H.1)-(H.3) hold. Since the corresponding Hamiltonian is sep-
arable in u and v, the Isaacs condition in (I9) holds. Hence, from Corollary
[£2] the ZSDG has a value that can be characterized by solving the following
HJI partial differential equation (PDE) in (I4]) and (EII)])E:

{@G(t,x, 2) + E[D.G(t, 2, 2) 3= + DoG(t, 7, 2) [ sin(z)dv,(z)] =0
G(1,z,z) = E[sin(z) — 2] =0

Moreover, from (III) and (I2)), the HJI PDE above is equivalent tcl]

OG(t, vy, vz) + [ 00, G(8, ux,uz)(x)ﬁg(x)dx
+ Jo O, G(t, Ve, v2)(2) [psin(z)dvg(z)¢(z)dz =0
G(1,vg,v.) = [psin(x)((z)dz — [ 2((z)dz =0

where ( is the Gaussian probability density function. Here, we have utilized
the fact that for any mean zero and variance one Gaussian random variable
x with the law v, = P, E[sin(z)] = [; sin(z)dv,(z) = [ sin(z)((x)dz =0
and E[z] = [ xdv,(2z) = [ #¢(x)dz = 0. We can easily see that G(t,z, z) =
G(t,vy,v,) = 0 is the unique solution to the above PDE, which is the value
of the ZSDG. This shows that the value of the ZSDG of this example is
zero, which is determined by the laws (distributions) of random initial and
target variables. Note that, in this example, the game value is independent
of explicit values of initial and target variables.

For the second example, with the same f, [ and m as in the first example,
assume now that v, and v, are Dirac measures. Then the associated ZSDG
is reduced to the classical deterministic ZSDGs studied in [1, 12, |8], where
the state argument of the value function is in R”. The HJI equation then
becomes

0,G(t,x, z) + D,G(t,x, z)(ﬁ + sin(x)) + sin(z) + 2 =0
G(1,x,z) =sin(z) — 2z

31t is the lifted HJI equations in (I4) and (&) when H := H~ = H". From the
definitions of H™ and H™, the PDE is obtained after carrying out the maximization
with respect to v and the minimization with respect to u.

Tt is the HJI equations in (1)) and (I2) when H := H- = H™.
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value

Figure 1: The value of the ZSDG for the second example when z = 0.

Its solution is depicted in Fig. [l when z = 0, which is defined on [0,1] X
[—2,2]. In this example, we have used the finite-difference method to approx-
imate the viscosity solution @]

As seen from the two examples above and the results in the previous
sections, the value of the class of ZSDGs considered in this paper depends
on the laws (distributions) of random initial and target variables, whereas
the values of the classical deterministic ZSDGs are determined by explicit
values of initial and target variables.

6. Concluding Remarks

We have studied, in this paper, a class of two-player zero-sum differential
games, where the dynamical system depends on the random initial condi-
tion and the distribution of the state process, and the objective functional
includes the latter as well as a random target variable. The (lower and upper)
value functions are defined on two infinite-dimensional spaces, Py and Lo,
which satisfy the dynamic programming principles. By using the notion of
derivative in P, and its lifted version in Lo, the (lower and upper) value
functions are shown to be unique (continuous) viscosity solutions to associ-
ated (lower and upper) HJI equations that are first-order PDEs on infinite-
dimensional spaces. Under the Isaacs condition, the lower and upper value
functions are identical, which implies that the ZSDG has a value.
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One possible future research topic would be to study the stochastic
framework of ZSDGs in this paper as an extension of [33], in which there
is an additive Brownian noise in ({I]) and the corresponding diffusion term
depends on the state, the law of the state process, and the control variables.
This requires the notion of the second-order derivative in Py and its lifted
version in L9 to obtain DPPs, second-order HJI equations, and their vis-
cosity solutions. Another direction would be the risk-sensitive ZSDGs. The
problem of characterization of reachable sets, which can be viewed as an
application of ZSDGs in this paper (see Example 2.3]), would also be an
interesting avenue to pursue. In this case, the major challenge would be to
solve the HJI equation numerically in the infinite-dimensional space. Finally,
the extension of the rational expectations models considered in [51] to the
continuous-time framework is an interesting problem to study.

Appendix A. Proof of Lemmas [3.1] and

Remark A.1. (i) For (), let (t) = x be the initial condition of (I]) at
the initial time ¢ € [0,7"). Assume that = is distributed according to
Ve € Po(R™). Then the law of the state process is denoted by Py"""
for s € [t,T]. Then we can easily show that PL"*"" € P,(R") satisfies

tvgiu,v.
ke b

(A1) Pyyestt = PRI 0 <t <p < s < T,
for any v, € P2(R"), u € U and v € V. That is, the law of the state
process ([A.]]) satisfies the semigroup or flow property.

(ii) We use the notation z5™"**" = x(s), s € [t, T], with z0™"* """ = z(t) =

x to emphasize the initial condition and the initial time.

Proof of Lemma[31. We prove (i) only, since the proof of (ii) is similar to
that of (i). Consider the two initial pairs of random vectors y = (z,z), § =
(z,2) € (L2(Q,R™))? having the same law (distribution), i.e., v =P, . =
P(z,5) € (P2(R™))?. Since the objective functional in (2) does not depend on
the random variables, but depends on the law of the initial random pair, we
have J(t,y;u,v) = J(t,y;u,v) = J(t,v;u,v) for u € U[t,T] and v € V[t, T].
This, together with the fact that o € A[t,T] and v € V[t,T] are not depen-
dent on the law of the initial random pair, implies that J(¢,y;a(v),v) =
J(t,g;a(v),v) = J(t,v;a(v),v) for a € A[t,T] and v € V[t,T]. Then, from
the definitions in (3] and (&), we have the desired result. O

Proof of Lemma[32. We prove here the continuity of only the lower value
functions (L and L), since the proof for the upper value functions (M and
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M) follows along similar lines. In the proof below, a constant ¢ > 0 can vary
from line to line, which depends on the Lipschitz constant ((H.1) and (H.2)).

Let y = (z,2) € (L2(2,R™))? be the initial and target pair having the
distribution (law) v = (14, v;) = P(, .y € (P2(R™))%. We apply a similar argu-
ment to the notation y; = (x;,2;) and v; = (vy,,v,,) for i =1,2. Let t €
[0,T], with ¢1,t2 € [t,T]. Then by using (H.1), Gronwall’s lemma, and the
fact that Po(R™) C P1(R™) and Wi (va,, va,) < Wa(vg,, Ve, ) |37, Chapter 6],
we have

E[sup,es, 7y \x” Y] < e(1+ Efl]])

() JEEDcnn o ] < Bl — )
E[ txl/muv ;xum,uvﬂ §C|t1—t2|,

[Supse[t ) g™ $Z’x2’yx2;u’v|] < Wa(ve,, Va,)

In view of the definition of the Wasserstein metric, Holder inequality, and
the definition of the norm || - ||,, the preceding estimates in ([A.2]) imply that

(A.3) Wo(PL¥"v 1)
= inf R [[al ey — o 212 |

z1,29 € L2(Q,R") with P, = v, and Py = v, } < cft — s,
where the inequality follows from (A2]). Moreover, we have

(A.4) W (LYY phreit?y
< cinf{E[jz; — a2}/ |
z1, 2 € L2(Q,R") with Py, = vy, and Py, = vy, }

- CW2(V:131;V:B2)5

where the inequality follows from (A.2)), the definition of the 2-Wasserstein
metric, and Holder’s inequality. Then using (A1), (A.4) and (A.3), together
with the distance property of Ws, we have

o, vy iu,v

(A5) W2( tl,uzl,u U,P?,uw;u,v) W2( tl,uzl,u v’ PthP ,Uﬂ’)
< Wa(vg, P72 ™)
to, Vg
< Wa(Va,, V) + Walve,, B %) < cWalvg,, ve,) + cltn — tal.

Furthermore, with the estimates in (A.2), and (H.1) and (H.2), for any
t €[0,T), t1,t2 € [t,T] and y,y1,y2 € (L2(2,R™))2, we have for u € U[t, T]
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and v € V[t,T],
(AG) |J(t1’ ysu, U) - J(tQ’ ysu, U)| < C|t1 - t2|
(A7) ’J(t7y1;uav) - J(uy%“ﬂ))‘

<cllz1 — w2z, +cllz1 — 22llc, + Wa(ve,, Vay)-

The convergence in L£5(€2, R™) implies convergence in Py (R™) with respect
to Wo, ie., ||z, — x|z, — 0 as n — oo implies W (v, v) — 0 as n — oo |37,
Theorem 6.9]. Also, | sup h(z) —sup g(z)| < sup|h(xz) — g(x)| and | inf h(z) —
inf g(x)| < sup |h(z) — g(z)|. Then, from (A6) and (A7), and the definition
of L, we can easily see that L is continuous in (¢,y) € [0,T] x (L2(02,R™))2.

For the continuity of L, we consider the following equivalent notation of
the objective functional in terms of v € (Pa(R"))?:

J(t,v;u,v) / / s, ﬂ:t“’z’“” IP’t Vet u(s), v(s))dP’;’”’“;“’v(x)ds
/ m(x ;I Vet z)d(IP’tTVI’uv,VZ) (z,2).
R” xR™

Then, with (H.1), (H.2), (A.2) and (A.5]), we apply the definition of the

Wasserstein metric and |32, Lemma 3] to show that

(A.8) |J(t, v1;u,0) — J(t, vo;u,0)| < c(Wo(Vg,, V) + Walvz,, v2,)).

Note that (A.6) and (A.8) imply that J is continuous in (¢,v) € [0,7] x
(P2(R™))? for any u € U[t,T] and v € V[t,T]. Then, by following the proof
for the continuity of IL, we can show that L is continuous in (t,v) € [0,T] X
(P2(R™))2. This completes the proof. O

Appendix B. Proof of Theorem [3.1]

We prove (@) only, since the proofs for (7)), ([8) and (I0) are similar to that
for (A). Let t,t + 7 € [0,T] with ¢ < t + 7. For any v € (P2(R"))?, let

_ t+1
L(t,vg,v,) := inf / / s, xt zvaa(v), v [P?Vm%a(v)yv,

(XE.A[t t"r’T UEV[t t+7’]
0(0)(s), ()AL 002 (2)ds + Lt + 7,500,

We need to show that L(t, vy, v,) = L(t, vy, vs).
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For any e > 0, there exists o/ € AJt,t + 7] such that

(B.1) L(t,vg,vs)

t+T7
sup / / 8 xta: Vg (v),v ]P)t,um;o/(v),v
- 7 S )
veV t,t+7] n

o ()(5), v(s))dPL 0 (w)ds + L(t + 7, PO v b — e

Similarly, in view of the definition of the value function, for any € > 0, there
exists o € A[t + 7,T] such that for any x € R" with v, € Py(R"),

(B2)  L(t+7,Plyse

. "
sup / / t+T T Va0 (v),v’ [P;z;JrT,uI,a (v),v,
vGV t+7,7T t+1 n

o' () (s), v(s)) AP (10 () ds

+/ m(x;—l—r,awm;a (v)’v7Z)d<P31+T7VI;aN(U)7U7Vz) (m,z)}
R™xXR™

Define o € Alt, T'] such that for v € V[t,T], a(v)(s) = o/ (v)(s) on s € [t, t +
7) and a(v)(s) = a”’(v)(s) on s € [t + 7,T]. Then, from (AJ), (BJ) and
(B.2), we can show that

t Vs Vy) + 2€
/ [ s atmeme@re pee, afo)(s) ofs)) AL 0 (2)ds
/ m(xitrz WVaia(v), v’ Z) d (P;“VI,&(U) v’ Vz) (x’ Z),
R™ xR"™
which implies
(B.3) L(t,v) < L(t,v) + 2e.

On the other hand, for any € > 0 and v € V[t, T, there exists o’ € Alt, T
such that

(B.4)
T
L(t’ Vg, VZ) +e> sup {/ / l(S, mgyiv,l/z;a’(v),U’ I[Dl;,l/z;a/(v)m’ (XI(’U)(S),
t n

veV[t,T]

v(s))d[[”';’”w;o‘/(”)’”(z)ds} +/ m(m?gﬁ’ym;a/(v)’v, z) d<IP’§LV“;O/(U)’U, I/z> (z,2),

R" xR™
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and by restricting o' to [t,t + 7], we have
(B.5)  L(t,vs,vs)

t+7
< sup {L(t—i—T Pi:ﬁ v )U,I/z) +/ / I(s, ah®vee SO
veEV[t,t+7] t n

Pts,yx;a’(v)7’l}’ O/(U)(S), v(s))dpg,vx;a’(v)m (m)ds}

The inequality in (B.3]) implies that for each € > 0, there exists v’ € V[t,t +
7] such that

T e/ / t+7-
(B.6) L(t,vy,v.) < L(t + 7, Lo 0 / / (s, 2l veie )0
IP’I;’V’“;O"(U')W,,O/(vl)(s)a '(s))d Pt Vaio! (v),0" (x)ds + €.

Similarly, for any € > 0, there exists v” € V[t 4+ 7, T] such that for any = € R™
with v, € Po(R™)

(B.7)  L(t+r, ooy o)

t m; ’ 1" , 1 t , ‘T; ’ 1" , 1
</ m(x-l-’rxu o' (v'"),v ,Z)d(PT+TV o' (v'"),v ,I/z>(1‘,z)
R"XR"

t+7’,a:,um;a/(v”),v” Pt—l—’r,um;a/(v”),v”
syl s )
t+1 JR™

0")(s), 0" (s))dPEFTV (VD0 (1) ds 4 e

We define © € V[t, T] such that 5(s) = v'(s) on s € [t,t + 7) and 9(s) = v"(s)
on s € [t+7,T]. Consider o € A[t,T]| with v, i.e., ¢/ (0)(s) =/ (v')(s) on
s€t,t+7) and /(v)(s) =a/(v")(s) on s € [t +7,T]. Then, from (A,
(B.6) and (B.2),

L(t,vg,v,) < /

R xR"»

/ / Smta}uza (v),0 PtVT (U)v

o (0)(s), 0(s))dPE= (07 (1) ds 4 2e.

m(xt:vuz, (v)v )d<P;uI, (U)U,I/Z) (,I,Z)

This, together with (B.4]), implies that

(B.8) L(t,v) < L(t,v) + 3e.
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Since € was arbitrary, in view of (B.3) and (B.8), L(¢,v) = L(t,v); hence,

we have the desired result.

Appendix C. Proof of Theorem [4.1]

In view of Lemma32 L € C([0,T] x P2(R™)). We now prove that the value
function L in (@) is a viscosity supersolution of (III). From the definition of
the value function and (@) in Theorem Bl we have ¢(T',v) = L(T,v).

From the definition of the viscosity supersolution (Definition EII(i)),
for any ¢ € CY1([0,T] x P2(R™)), L(t,v) — ¢(t,v) < L(t', V") — ¢(t', ) for
all (¢,v) with |t — /| + Wa(v,v') < § with some 6 > 0. Let ¢ = ¢+ 7 and
V' = (V,v,) satisfying || + Wa(v,, v,) < 0. Moreover, without loss of gen-
erality, we may assume L(t,v) = ¢(t,v).

Then in view of the DPP of (@) in Theorem B.1]

¢(t, Vg, Vz) = L(t, Vg, Vz)

t+7
= inf / / (s, xt x,vq;0(v),0 I[Dt l/m,oz(v)7
a€A[tt+7] UEV[t t+7'] n

a(v)(s), v(s))dIP)';’”’”;a(”)’v(x)ds + L(t+, Pi’f;;a(v)’v, yz)},

and

t+T1
C1 f txum,a(u)7 Pt Vﬂ)7a(v)7
(©1) QEJ‘I\E t+7] UEV[t t+r] / /n ¥ alv)(s),

v(s))dPL= 00 (2)ds + ¢(t + 7, LV yz)} — (t, g, vs) < 0.

Fora € A[t,T] and v € V[t, T, infycyer) J(t, v;u,v) < supyepp ) J (¢ v a(v), v),
which implies that

sup inf J(t,v;u,0) < inf - osup J(t,v;a(v),v) = L(t,v).
veV[t,T] weUtT] ( ) a€A[LT] weV[t,T] ( (v).v) t:v)

Hence, with (CJl), we have

t+7
sup inf / / 8 .%'t T,V 53UV I[pt ViU, v ( )

vEVI[t t+7] uEU[LI+T]

o()ABL 0 () ds + 3t 4+ 7 L5, w) b = 0(t, v, ) <0
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For each € > 0 and small 7 with |7| < 4, there exists v’ € U[t,t + 7] such
that for v € V[t,t + 7],

t+71
/ /l(s,fﬂ’;’x’”’“;”"”,P’;’”’““””,u/(S),U(S))dP?%”,’v(fﬂ)dS
\ .
O+ T, PR ) — Bt v, vs) < e

We multiply the above expression by %, and let 7 | 0 and € | 0. Then, with
the chain rule in Py in Section 21|

(CQ) 8t¢(t, Vg, Vz) + sup inf {/RnKaugﬂs(ta Vg, Vz)(x)’ f(t,$, V:mu’v»

veV uelU
+ Ut z, l/m,u,v)]dux(x)} <0,

which, together with (I3]), shows that L is a viscosity supersolution to (ITI).

We now prove, by contradiction, that L is a viscosity subsolution of ([LII).
From the definition of the viscosity subsolution (Definition F.1J(i)), for any
¢ € CHL([0,T] x Po(R™)), L(t,v) — ¢(t,v) > L', V') — ¢(¥',v/) for all (¢',/)
with |t — t'| + Wa(v,v') < 6 withsome § > 0. Let t/ =t + 7, and v/ = (v}, v,)
satisfying |7| + Wa(vy, V) < 6. Moreover, without loss of generality, we may
assume L(t,v) = ¢(t,v).

Let us assume that L is not a viscosity subsolution of (IIl). Then, there
exists a constant 6 > 0 such that

8t¢(t, Vg, Vz) + H_(t, v, allmqs(ta Vg, Vz)) < -0 <0.

Define H (t, v, p,u,v) := Jgo (0, f(t, 2, v, u,0)) + 1(t, 2, v, u, v)]dvg (). From
(@3), note that H~(t,v,p) = sup,ey infycy H(t,v,p,u,v). Since f and [ are
(uniformly) continuous on [0,7] x U x V, so is H, which implies that there
is a measurable function n:V — U and 719 € [0,T — ¢] such that for v € V

and |s —t| < 79,
3t(b(s,ux,yz) + }_I(s71/7 aym¢(t7 V$7VZ)777(U)7U) S _0/2

On the other hand, the DPP in (@) of Theorem B.Iland the definition of
the viscosity subsolution imply that

t+7
inf sup {/ / l(s7x?m,um;a(v),v’Pé,ux;a(v)m’ a(v)(s),
]/t "

QEA[L+T] ye V[t t+T

0(s))APE O (@) s + (1 + 7 Byl ) | ot v ) 20,
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and by defining o/ (v(s)) := n(v) for s € [t,t + 7], we have o/ (v) € A[t,t + 7]
and

t+1
sup }{/ / 1(8’xé,:v,vx;a’(v)w’Pé,vz;a’(v),v’ o/(v)(s),
t n

veEV[t t+T

U(S))dpg”’z;a'(”)’”(x)ds + ot +, Pi,:;;a'(v)m’yz)} — (t,va, 1) > 0.
Then, for each € > 0, there exists v’ € V[t,t 4+ 7] such that

/

t+7
/ / l(s, x?w,um;a’(v),v’ , ]P)?VI;O/(U)7U” O/(U/)(S), v/(s))dP?um;a’(v’),v (m)ds
t n

vzl (V)0

+ ot +1,P. 7 V) — Ot Vg, vy) > —e€T.

Multiplying the above expression by %, and letting 7 | 0, together with the
chain rule in Py in Section 2] yield

—€ <Ot v, vn) + H(t,v,0,, d(t, vy, 1), m(v"),0") < —0/2,

and by letting € | 0, we must have 6 < 0, which leads to a contradiction.
This implies that

(C.3) Od(t, v, v2) + H™ (t,v,0,,¢(t, v, 1)) > 0.

Hence, (C.2) and (C.3) taken together show that L is a viscosity solution
to (). The proof of M being a viscosity solution to (I2) is similar. This
completes the proof.

Appendix D. Proof of Theorem

In the proof of Theorem .2, we need the following lemma, which follows
from (H.1)-(H.3).

Lemma D.1. Assume that (H.1)-(H.3) hold. Then, the following result
holds: there is a constant c, dependent on the Lipschitz constant, such that

fOT any 'y = (x’z)a Y1 = (231,21), Y2 = ('I2’Z2) € (52(Q’Rn))2 Cmdp,plapz €
Lo(Q,R™), we have [H™ (y1,p) — H™ (y2,p)| < c(1+ |[pllc.) |z — 22z, and

|H_(y,p1) - H_(yap2)| < Cle _p2||l:2‘

The proof of Theorem now proceeds as follows.
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Proof of Theorem [{.3. We first prove L (t,y) < La(t,y) for (¢t,y) € [0,T] x
(L2(2,R™))2. Note that both L; and Ly are bounded by some constant c.
In the proof below, a constant ¢ can vary from line to line, depending on
the bounds of L.y and Ly, and the Lipschitz constant in (H.1) and (H.2).
By a possible abuse of notation, we reverse the time by defining t; :=
T —t;, where t; € [0,T], i = 1,2. Then L;(0,y) = E[m(z, 2)], i = 1,2. With
the time reverse notation and Remark [4.1](ii) (see [52, Chapter 10]), for the
lifted HJT equations, the inequality in Definition [£1] has to be modified by

Od(t,y) —H™ (t,y, Dpo(t, z,2))
Od(t,y) —H™ (t,y, Dpd(t, z,2))

For (e,0,a) € (0,1), define

<0 (subsolution)
>0 '

(D.1) .
(supersolution)

D (t1,y1,t2,y2) :=Li(t1,y1) — La(t2,y2)

1 Q
— 5 (1= t2)? + llyy — v2ll2,) — §(Hy1\|%2 + llv2llZ,) — ot1,

where y1, y2 € (£2(£2,R™))2. We can see that ® is continuous on X = ([0, T] x
(L2(2,R™))?)2, where X is a Hilbert space and its dual space X* is X* = X

[34’ 35] For <t1 ) Ct2 € [0’ T] and Cyn Cyz € (‘62(9’ Rn))Qa i-e-a (Ctl ) Cy1 ) th Cy2) €
X*, let us define the linearly perturbed map of ®:

' (t1,y1, b2, y2) :==P(t1, Y1, t2, y2) — Gt — oo
- E[<Cy1,yl>] - EKCyw y2>]

Then in view of Stegall’s theorem [53, [54] and Riesz representation theorem
[35], there exist (Ct,, Cyrs Gtas Cyo) € X* such that |G| <6, ||Cylle, <6, 1=
1,2, with 6 € (0,1), and " has a maximum at a point (¢1,71,%2,72) € X
This implies that

(bl(t_hght_QagZ) Z ¢/(0707070) - ¢(070707O)7

which, together with Cauchy-Schwarz inequality and the fact that a + b <
V2(a® 4+ b*)'/? for a,b > 0, implies (note that I; and Ly are bounded)

€

) ) 1, o
a(lgalz, + 192Z,) + =t — £2)* + 91 — 521Z,)
< (L +6(|3l1Z, + ImllZ,) ).

°In fact, —® is continuous, coercive and —® : X — [0, oo|; hence, in view of |54],
—®' admits a minimum, i.e., ®' admits a maximum.
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We apply the quadratic analysis to the above inequality. Then

1) 1
— 2 — 112 \1/2
(02) (a2, + 19202, < e + )
- 51\
(D3) ((tl —t2)2 + H§1 _232”%2)1/2 < 061/2 +c€1/251/2 (_ + 1/2)
(0] (0]

We show that either 1 =0 or t, = 0 by contradiction. Assume that
t; > 0 for : = 1,2. By defining

1(t1,y1) :=Lo(t1,92) + %((751 — )%+ |lyr — ??2“%2)
+ 5 (nliz, + I72l12,) + ot
+ Gutt + Gtz + E[(Cyrs y1)] + E[(Cyar 72)],
we have ®'(t1,91,t2,72) = L1(t1,91) — ¢1(t1,y1), which admits a maximum

at (t1,71). Note that L is the viscosity subsolution and H™ is independent
of t (see (H.3)). This, together with (D.IJ), implies

1 _ _ I _ _
(D.4) (t1 —t2) + 0+ G, — H (71, E(yl —¥2) + ayi + (y,) <0.

€
The inequality is reversed due to the time reverse notation. Similarly, we
have ®'(t1, 91,12, y2) = ¢a(ta, y2) — La(ta, y2), where

_ 1 _
P2(t2,y2) :=Li(t1, 1) — i((tl —t2)? + ||l71 — y2?)
a _
- §(|lylllf:2 + ly2lZ,) — oty

— Gttt — Groto — E[{Cyy, 71)] — E[(Cyas 42)],

which admits a maximum at (f2,92), i.e., Lo(ta,y2) — ¢d2(t2,y2) admits a
minimum at (2, 2). Then, from (D.I]), we have

1

€

(D.5) %(t_l —t2) — G, — H™ (72,

(D.4) and (D.5)) imply that

(U1 — ¥2) — aga — (y,) > 0.

.1 N _
o+ Gy + G, —H (yl,g(yl—y2)+ay1+Cyl)

1, _ N
+H™ (g2, = (g1 — ¥2) — ay2 — (y,) < 0.

€
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From (H.1)-(H.3), (D.2)), (D.3), and Lemma [D.T]

., 1 N _,_ 1 i _
0§26+‘H (y1,g(y1—y2)+ay1+cyl)—H (y1,z(y1—y2)—ay2—4y2)
R B 3 R _ _
+‘H (yl,g(yl_y2)_ay2_<yz)_H (y2,z(y1—y2)—04y2—§y2)

§25+0a<a+m) +C(5 +C€+C€5(a+m>+05€ .

First, let § | 0 and then a | 0 and € | 0. Then, we can easily get a contra-
diction, since o > 0. This shows that we can select small positive J, « and ¢
such that either £; = 0 or t = 0.

Let us assume that ¢; = 0. Then, the maximum property of ® and its
definition yield

q)l(t’ Y, ta y) < ‘1)(0, gl, 52’ g2) - CtQEQ - E[(C@h ’ g1>] - EKCyz ) g2>]’
which implies

(D.6) O(t,y,t,y) <P(0,71,t2,¥2) — G2 — E[(Cyy, 71)] — E[(Cy,, T2)]
+ (Ch + Ctz)t + EKCyl + Cyw y>]

Since 1 = 0 and L1(0,y) = L2(0,y), we have

B h) 1 \1/2
_ _ 1/2 1/2¢1/2
(D.7) @(0,51,12,52) < ce'/? + ce'/?5" <5+—a1/2) )

where the inequality follows from the Lipschitz property and (D.3]). On the
other hand, in view of (D.2)) and Cauchy-Schwarz inequality,

_ 0
D8)  1Gub + ElG,, 3] + Bl @]l < 5 + (S + =)
(D.9) (G + Gt + El{ Gy, + G| < .

By first letting € | 0, and then § | 0 and « | 0 in (D.7)-(D.9), from (D.6)
and the definition of ®, we have

IL’l (t7 y) - ]L‘Q(ta y) < Oa

which leads to the desired result in (I8]). Then L, (t,v) < Lo(t,v) for (t,v) €
[0, T] x (P2(R™))? in (I7) follows from Lemma Bl The proofs for M; < My
in (I8) and M; < Mj in (I7)) are similar. This completes the proof. O



“ZSDGs Probabilty Space’ 0519207 — 2020/5/26 — 1:30 — page 28 — #28

28 Jun Moon and Tamer Bagar

Appendix E. Proof of Corollaries [4.1] and

Proof of Corollary [{.1l Suppose that L; and Ly are value functions that
are viscosity solutions to (I4]). In view of (8] in Theorem .2, Lemma [3.2]
and the definition of the viscosity solution, we have L.y < ILs and Lo < Ly,
which implies that I := IL; = LLy. By Proposition[4.1] L is the corresponding
lifted lower value function. The proof of the remaining part is similar. This
completes the proof. O

Proof of Corollary[{.2 Set H := H- = H" in (1)) and (I2), and H := H~ =
H* in (I4) and (IH). Then, (II) and (I2) become identical HJI equa-
tions, and so do (I4]) and (I&). From Lemmas Bl and B2l Proposition
41 and Theorem ATl together with the uniqueness result in Corollary [41]
we have L(t,v) = L(t,y) = M(t,y) = M(t,v) for (t,v) € [0,T] x (Pa(R"))?
and (t,y) € [0,T] x (L2(£2,R™))2, which is the value of the ZSDG and is the
unique solution to the HJI equation. This completes the proof. O
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