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Linear Quadratic Graphon Field Games
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Linear quadratic graphon field games (LQ-GFGs) are defined to be
linear quadratic games which involve a large number of agents that
are weakly coupled via a weighted undirected graph on which each
node represents an agent. The links of the graph correspond to cou-
plings between the agents’ dynamics, as well as between the indi-
vidual cost functions, which each agent attempts to minimize. We
formulate limit LQ-GFG problems based on the assumption that
these graphs lie in a sequence which converges to a limit graphon.
First, under a finite-rank assumption on the limit graphon, the exis-
tence and uniqueness of solutions to the formulated limit LQ-GFG
problem is established. Second, based upon the solutions to the
limit LQ-GFG problem, ε-Nash equilibria are constructed for the
corresponding game problems with a very large but finite number
of players. This result is then generalized to the case with ran-
dom initial conditions. It is to be noted that LQ-GFG problems
are distinct from the class of graphon mean field game (GMFG)
problems where a population is hypothesized to be associated with
each node of the graph [6, 7].

1. Introduction

Strategic decision problems over very large-scale networks arise in applica-
tions such as 5G communication, large-scale social networks, stock market
networks, advertising networks, electrical networks and so on. However deci-
sion and control problems for such systems require tractable solutions that
are of low computational complexity.

When networks are complete and uniform, the couplings between agents
appear in their dynamics and performance functions as mean field terms. In
those cases where the population is large, Mean Field Game theory ([19, 23,
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2 S. Gao, R. Foguen Tchuendom and P.E. Caines

26, 27]) may then be applied in order to analyse the possible Nash equilibria
of the overall system. On the other hand, for a large class of non-uniform
networks progress has been made in various directions. Such work includes,
for example, mean field games with localities [20], quantilized mean field
games ([10, 12, 36]) and Graphon Mean Field Game theory [6, 7].

Graphon theory provides an important framework for the study of very
large graphs, convergent sequences of dense graphs and for the construction
and analysis of their limit objects ([4, 5, 29]). The theory has been used
in the analysis of dynamical models such as the heat equation and coupled
oscillators ([9, 30, 31]), network centrality [1], random walks over large dense
graphs [33], the Graphon Control of dynamical systems coupled over very
large-scale networks ([13–17]), and static and dynamic game problems on
graphons [6–8, 32].

The recently developed Graphon Control theory [13–17] employs the
graphon model to represent control systems on arbitrary-sized networks.
This enables the study of control problems for very large-scale network-
coupled dynamical systems and generates low-complexity approximate con-
trol solutions to otherwise intractable problems. The solutions are either
centralized solutions [17] or collaborative solutions [15]. This current work
studies the approximate solutions in a competitive situation.

Graphon Mean Field Game (GMFG) theory was proposed and developed
in [6, 7] wherein a large number of weakly coupled competitive agents are
distributed over a large non-uniform graph, and consequently each agent is
associated with a nodal mean field. Within this framework network wide
Nash equilibria and ε-Nash results have been established in both non-linear
and linear quadratic cases.

Mean field games on networks have appeared in [11, 18, 20]. In [18] the
graph is the state space of the mean-field game problem representing physi-
cal constraints on the state space. While in [11] linear-quadratic mean-field
games over Erdös-Rényi graphs are studied where the associated asymptotic
game is a classical mean field game. These formulations are different from
the current work in their assumptions concerning their finite and asymp-
totic features. We also note that, similar to [11], in the current work each
node represents an agent and this is different from [6, 7] where each node
is associated with a population of agents. However, it is worth mention-
ing that when the underlying graphons in the current paper are taken to
be step function graphons, the problems on networks with nodal popula-
tions can be equivalently formulated. This work is related to the work in
[20] where mean-field game problems with non-homogeneous dense network
weightings in the running costs are studied. But it differs from [20] in both
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Linear Quadratic Graphon Field Games 3

the problem formulation and the solution method. A very recent work [25]
studies mean field games on sparse graphs by exploring transitive properties
in graph structures.

In the current work, we explicitly solve a class of LQ-GFGs with deter-
ministic dynamics and with random initial conditions by exploiting the spec-
tral decomposition of the underlying graphon limit. Furthermore, the corre-
sponding ε-Nash results are established.

Notation

R represents the space of all real numbers. ‖ · ‖∞ denotes the standard
infinity norm for matrices and vectors, that is, for any matrix A ∈ Rn×n,
‖A‖∞ , maxi

∑
j |aij | and for any vector v ∈ Rn, ‖v‖∞ , maxi |vi|. L2[0, 1]

denotes the standard Lebesgue space over [0, 1] ⊂ R under the ‖ · ‖2-norm
defined by ‖v‖2 = (

∫ 1
0 v(α)2dα)1/2. For any P ⊂ [0, 1], 1P ∈ L2[0, 1] repre-

sents the piece-wise constant function with 1 in P and 0 elsewhere. We use
the upper bound big O notation in this paper, that is, for two functions f
and g defined on some subsets of real number, f = O(g) means that there
exists a positive real number M and a number x0 such that |f(x)| ≤Mg(x)
for all x ≥ x0.

2. Graphons and Graphon Dynamical Systems

Graphs can be considered as models for network couplings. A graph G =
(V,E) is specified by a node set V = {1, ..., N} and an edge set E ⊂ V × V .
The corresponding adjacency matrix A = [aij ] is defined as follows: aij =
1 if (i, j) ∈ E otherwise aij = 0. A graph is undirected if its edge pair is
unordered. For a weighted undirected graph, aij in its adjacency matrix is
given by the weight between nodes i and j. Furthermore an adjacency matrix
can be represented as a pixel diagram on the unit square [0, 1]2 ⊂ R2, which
corresponds to a graphon step function [29].

Graphons are formally defined as symmetric Lebesgue measurable func-
tions A : [0, 1]2 → [0, 1]. The space of graphons endowed with the cut metric
[29] allows us to define the convergence of graph sequences. In this paper,
we consider symmetric Lebesgue measurable functions A : [0, 1]2 → [−c, c]
with c > 0, the space of which is denoted by Wc. The space Wc is compact
under the cut metric after identifying points of cut distance zero [29]. A
graphon A ∈ Wc defines a self-adjoint bounded linear operator from L2[0, 1]
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Figure 1. Half graphs and its limit graphon [29]

to L2[0, 1] as follows:

[Av](γ) =

∫
[0,1]

A(γ, η)v(η)dη, ∀γ ∈ [0, 1],

where v,Av ∈ L2[0, 1].
Let L2([0, T ];L2[0, 1]) denote the Banach space of equivalence classes of

strongly measurable (in the Böchner sense [35, p.103]) mappings [0, T ]→
L2[0, 1] that are integrable with norm

‖f‖L2([0,T ];L2[0,1]) =

(∫ T

0
‖f(s)‖22ds

)1/2

The space of continuous functions from [0, T ] to a Hilbert space H is denoted
by C([0, T ];H).

An infinite dimensional time-dependent graphon linear control system
(At;Bt) is formulated as follows:

(1) ẋt = Atxt + Btut, x0 ∈ L2[0, 1], t ∈ [0, T ],

where At = αtI + A,Bt = βtI + B with α(·), β(·) ∈ C([0, T ];R), A,B ∈ Wc,
xt ∈ L2[0, 1] is the system state at time t, and u(·) ∈ L2([0, T ];L2[0, 1]) is
the control input function over time. Verifying all the conditions in [2, Part
II, Proposition 3.4, 3.6], we obtain that the system (1) is well defined and
has the unique mild (and strong) solution in C([0, T ];L2[0, 1]) given by

(2) xt = Φ(t, 0)x0 +

∫ t

0
Φ(t, τ)Bτuτdτ

where the evolution operator is given by

Φ(t, τ) , exp

(∫ t

τ
αsds

)
exp((t− τ)A).
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Linear Quadratic Graphon Field Games 5

The time-varying graphon dynamical system formulation in (1) will be
employed to support the well-posedness of the forward backward equations
in (15) in Section 3.2.

Readers are referred to [29] for a thorough exposition of graphon theory
and to [17] for a definitive exposition of graphon control systems and their
relation to finite network control systems.

3. Deterministic Linear Quadratic Graphon Field Games

In this section we introduce the deterministic linear quadratic graphon field
game model on a weighted undirected graph, demonstrate the applications
of the spectral decomposition to solve the limit problem, and then establish
the ε-Nash property for finite graphon field game problems.

3.1. Finite Population and Finite Graph Problems

Consider the following (time-invariant) linear quadratic graphon field game
problem on a weighted undirected graph with the dynamics for the ith agent
given by

(3)
ẋit = αxit + βuit + η

1

N

N∑
j=1

aijx
j
t ,

t ∈ [0, T ], α, β ∈ R, xit, uit ∈ R, i ∈ {1, ..., N},

where AN , [aij ] represents the adjacency matrix of the underlying weighted
undirected graph and {xi0}Ni=1 are initial conditions. The objective of the ith
agent is to minimize its cost given by

(4) J i(ui, u−i) =
1

2

∫ T

0

[(
xit −

1

N

N∑
j=1

aijx
j
t

)2
+ r(uit)

2
]
dt, with r > 0,

where ui ∈ U , L2([0, T ];R) for all i ∈ {1, ..., N}.
We next define the N -uniform partition {P1, . . . , PN} of [0, 1] as P1 =

[0, 1
N ] and Pk = (k−1N , kN ] for 2 ≤ k ≤ N . The step function graphon AN ∈

Wc that corresponds to AN is given by

(5) AN(ϑ, ϕ) =

N∑
i=1

N∑
j=1

1
Pi

(ϑ)1
Pj

(ϕ)aij , (ϑ, ϕ) ∈ [0, 1]2.
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Let the piece-wise constant function xN
t ∈ L2[0, 1] corresponding to xt ,

[x10, x
2
0, . . . , x

N
0 ]ᵀ ∈ RN be given by

(6) xN
t (ϑ) =

N∑
i=1

1
Pi

(ϑ)xit, ∀ϑ ∈ [0, 1].

Similarly, uN , {uN
t , t ∈ [0, T ]} can be defined. Based on the construction

procedure, each agent on the finite network is associated with a partition
element in the N -uniform partition of [0, 1].

Definition 1. Define zγt ,
∫
[0,1] A(γ, α)xt(α)dα as the Local Graphon Field

for agent γ ∈ [0, 1] of a graphon dynamical system at time t ∈ [0, T ], where
A is the underlying graphon and (xγt )γ∈[0,1] is the state of the system at time
t ∈ [0, T ]. The collection of local graphon fields (zγt )γ∈[0,1] is then defined as
the Graphon Field of the system at time t ∈ [0, T ].

Clearly in an N -agent problem, the graphon field is given by the piece-
wise constant function zNt that corresponds to theN -dimensional vector zt ,
1
NANxt following (6), for all t ∈ [0, T ], and the local graphon field affecting

the agent indexed by i is given by zNγt =
∫
[0,1] A

N(γ, α)xN
t (α)dα, with γ ∈

Pi ⊂ [0, 1] and t ∈ [0, T ].

3.2. Solutions to the Limit Problems

Letting the network cardinality go to infinity, the limiting game may be
formulated. Since in the limit the effect of an individual agent on the graphon
field becomes negligible, the resulting minimization problems may be treated
as independent linear quadratic tracking problems.

For the limit problem to be well defined, we need the following assump-
tion.

Assumption 1. There exist A ∈ Wc and x0 ∈ L2[0, 1] such that

(a) lim
N→∞

‖AN −A‖op = 0, (b) lim
N→∞

‖xN
0 − x0‖2 = 0,

where ‖ · ‖op denotes the operator norm.
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Linear Quadratic Graphon Field Games 7

The convergence for the underlying graphons can also be defined in the
cut norm ‖ · ‖� (see e.g. [29]) since the following relation [24, 32] holds:

(7) ‖A‖� ≤ ‖A‖op ≤
√

8‖A‖�, ∀A ∈ W1.

The dynamics in equation (3) for all agents can be represented by an
infinite dimensional system equation as in (1) where the graph is represented
by the corresponding step function graphon and the state and the control
are respectively represented by piece-wise constant functions xN

t and uN
t in

L2[0, 1] (see [17]). Under Assumption 1 and the assumption that uN con-
verges to a limit control u in C([0, T ];L2[0, 1]) under the uniform norm, this
representation permits a well-defined limit equation where the convergence
of trajectories is in the space C([0, T ];L2[0, 1]) under the uniform norm fol-
lowing a slight extension of the result in [17, Theorem 7]. Then for almost all
γ ∈ [0, 1], we can and shall write the evolution of the γ component system
as in (8) below where the family of local mean fields satisfies (10) below.

A Nash equilibrium for the infinite population LQ Graphon Field Game
associated with a limit of the system (3) and individual performance func-
tions (4) is characterized as follows:

(C1) Best Response
For a given local graphon field trajectory (zγt )t∈[0,T ], let the best
response uγ,∗ for the agent indexed by γ ∈ [0, 1] be given by the solu-
tion to the linear tracking problem with the controlled linear dynamics

(8)
ẋγt = αxγt + βuγt + ηzγt , xγ0 = xγ0 ,

t ∈ [0, T ], α, β ∈ R, xγt ,u
γ
t ∈ R,

for almost all γ ∈ [0, 1], with the performance function

(9) J(uγ , zγ) =
1

2

∫ T

0

(
(xγt − zγt )2 + r(uγt )2

)
dt,

where uγ,∗ = arg infuγ∈U J(uγ , zγ).

(C2) Consistency or Equilibrium Condition
Given state trajectories (xγ,∗,zt )t∈[0,T ] under the best response control
uγ,∗, the local graphon field trajectories (zγt )t∈[0,T ] satisfy the consis-
tency conditions:

(10) ∀t ∈ [0, T ], zγt = [Ax∗,zt ]γ

for almost every γ ∈ [0, 1] where x∗,zt , (xγ,∗,zt )γ∈[0,1].
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We note that a related notion of a local mean field appears in [6, 7].
A procedure to find an equilibrium solution to the infinite population

infinite graphon problem presented in (C1) and (C2) above is as follows.

Best Response. The best response solution to the above linear quadratic
tracking problem is given by (see e.g. [28])

uγt = −β
r
πtx

γ
t +

β

r
sγt ,(11)

−π̇t = 2απt −
β2

r
π2t + 1, πT = 0,(12)

−ṡγt =
(
α− β2

r
πt

)
sγt + (1− ηπt)zγt , sγT = 0,(13)

for almost all γ ∈ [0, 1]. The stars in the notations are being dropped hence-
forth. Consequently the closed loop state equation for the agent indexed by
γ is given by

(14) ẋγt =
(
α− β2

r
πt

)
xγt + ηzγt +

β2

r
sγt , xγ0 = xγ0 ,

for almost all γ ∈ [0, 1].

Consistency or Equilibrium Condition. In the space L2([0, T ], L2[0, 1]),
we search for the Graphon Field z and the off-set term s that ensure the
consistency condition holds. We now invoke Assumption 1 and observe that
an application of A on each side of (14) yields that the consistency condi-
tion (10) is equivalent to the existence of a unique solution to the following
infinite dimensional ordinary differential equations over [0, T ],

(15)
żt =

(
α− β2

r
πt

)
zt + ηAzt +

β2

r
Ast, z0 = Ax0,

−ṡt =
(
α− β2

r
πt

)
st + (1− ηπt)zt, sT = 0.

Each of the two equations above given the solution to the other is well
defined following the well-posedness of (1). Assumption 1 ensures that
the solution to each of the equations in (15) is the limit of solutions in
the L2([0, T ], L2[0, 1]) sense to the sequences of equations corresponding to
the finite network problems, when all solutions exist. Based on Section 2,
if the solutions z and s exist in L2([0, T ];L2[0, 1]), they must also lie in
C([0, T ];L2[0, 1]).

Next, we derive the sufficient conditions for the existence and uniqueness
of the solutions to the joint forward backward problem in (15).
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Assumption 2. The graphon limit admits a finite spectral representation
A =

∑d
`=1 λ`f`f

ᵀ
` , where {λ`}d`=1 is the set of all the non-zero eigenvalues

and {f`}d`=1 is corresponding set of orthonormal eigenfunctions.

The graphon A(x, y) = 1 for all x, y ∈ [0, 1] is a trivial low-rank graphon
example which corresponds to the standard uniform mean field coupling, and
its rank is just 1. In general, as an operator any graphon is compact and
eigenvalues accumulate at zero [29]. Thus the above assumption corresponds
to a reasonable approximation.

Under this assumption, zγt = [Axt]
γ =

∑d
`=1 λ`〈f`,xt〉f`(γ), in the L2[0, 1]

sense and from (15) in the eigendirection f`, ` ∈ {1, ..., d}, we obtain

(16)
ż`t =

(
α− β2

r
πt + ηλ`

)
z`t +

β2

r
λ`s

`
t, z`0 = 〈z0, f`〉 = λ`〈x0, f`〉,

ṡ`t = −
(
α− β2

r
πt

)
s`t − (1− ηπt)z`t , s`T = 0,

over the interval [0, T ], where z`t = 〈zt, f`〉 and s`t = 〈st, f`〉.
From (15), it may be verified that the projections of zt and st into

the subspace S⊥ (that is, the complementary subspace orthogonal to S ,
span{f1, ..., fd}) are zero for all t ∈ [0, T ]. Therefore, for all t ∈ [0, T ],

(17) zt =

d∑
`=1

z`t f` and st =

d∑
`=1

s`tf`.

Following [3, 21, 34], we associate the solvability of problems (16) to the
solvability of Riccati equations.

Assumption 3. For any λ`, ` ∈ {1, . . . , d}, there exists a solution to the
Riccati equation

−Π̇`
t =

[
2
(
α− β2

r
πt
)

+ ηλ`

]
Π`
t +

β2

r
λ`(Π

`
t)

2 + (1− ηπt), Π`
T = 0,(18)

over the interval [0, T ], where π(·) is the solution to the Riccati equation in
(12).

Note that finite escape time may appear for the solutions to the Ric-
cati equation above depending on the parameters and the time horizon, in
particular when λ` > 0.
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Under Assumption 3, for each λ`, the solution to the Riccati equation
(18) is unique due to the smoothness of the right-hand side with respect to
Π`
t (see [34]). Let q`t , Π`

tz
`
t . Then

(19)
d
(
q`t − s`t

)
dt

= −
[(
α− β2

r
πt

)
+
β2

r
λ`Π

`
t

]
(q`t − s`t)

with the terminal condition (q`T − s`T ) = 0. Solving this ordinary differential
equation (ODE) allows us to conclude that s`t , Π`

tz
`
t for all t ∈ [0, T ] (see

also [34]). Replacing s`t in the forward equation of (16) by Π`
tz
`
t , we obtain

(20) ż`t =

[
α+

β2

r
(Π`

tλ` − πt) + ηλ`

]
z`t , z`0 = λ`〈x0, f`〉.

An alternative approach to establish the sufficient condition for the exis-
tence of a unique solution to the problem (15) is given below where the
counterpart of Assumption 3 is a contraction condition in (21). The relation
between the two sufficient conditions shall be analyzed in future work.

Proposition 1 (Appendix 7.1). Under Assumption 2, the two-point bound-
ary value problem (15) has a unique solution if the following condition holds
for all ` ∈ {1, . . . , d}:

(21)

∫ T

0

β2

r

|λ`|
B`(τ)

∫ T

τ
|(1− ηπs)|B`(s)dsdτ < 1

where B`(t) = exp
[∫ t

0

(
α− β2

r πτ + ηλ`

)
dτ −

∫ T
t

(
α− β2

r πτ

)
dτ
]

and π(·) is

the solution to the Riccati equation in (12).

The eigenvalues represent the amplitude of the network influences, which
relate directly to the sufficient condition (21) for the existence of a unique
solution to the fixed-point equation (15).

Theorem 1 (Finite-Rank LQ-GFG Equations for Limit Problems).
Under Assumptions 1, 2 & 3, the equilibrium solution to the limit graphon
field game problem is explicitly given by

(22) uγt = −β
r
πtx

γ
t +

β

r

d∑
`=1

s`tf`(γ), for almost all γ ∈ [0, 1],
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where for all ` ∈ {1, ..., d}, t ∈ [0, T ],

s`t = Π`
tz
`
t ,(23)

−π̇t = 2απt −
β2

r
π2t + 1, πT = 0,(24)

−Π̇`
t =

[
2
(
α− β2

r
πt
)
− ηλ`

]
Π`
t +

β2

r
λ`(Π

`
t)

2 + (1− ηπt), Π`
T = 0,(25)

ż`t =
[
α+

β2

r
(Π`

tλ` − πt) + ηλ`

]
z`t , z`0 = λ`〈x0, f`〉.(26)

Sequentially solving (24), (25) and (26) yields the offest term as in (23).
Thus this procedure provides an explicit hierarchical decoupling (from π(·)
to Π` to z`) of the joint equations in (16).

Remark 1. The initial condition for z`0 depends on the labeling of the
network, since it is given by z`0 = λ`〈x0, f`〉. This means that s` and hence
the best response depend on the labeling. Therefore, the labeling should be
fixed in the first step to generate the best response law.

Remark 2. Although the rank of the underlying graphon limit is assumed
to be finite, the limit graphon field game problem still involves an infinite
number of agents.

It it worth mentioning that any finite graph can be represented by a
step function graphon (which is a special case of finite-rank graphons) and
hence any finite agent problem can be reformulated in an infinite dimensional
space based on graphons and L2[0, 1] functions. However, the exact solution
cannot be given by the Finite-Rank Graphon Field Game Equations (22),
(23), (24), (25) and (26) (with a simple replacement of the graphon limit by
a step function), since in this case each individual is no longer negligible to
the evolution of the graphon field. One needs to differentiate a limit graphon
which happens to be a step function and a finite network step function based
on the number of agents in the game problem.

3.3. ε-Nash Property for Finite Problems

In this section, ε-Nash equilibrium is constructed from the limit LQ-GFG
solution for the corresponding large (but finite) population games.
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Definition 2. An N -tuple of strategies (u1, ..., uN ) generates an ε-Nash
equilibrium (ε > 0) if the following holds

J(ui, u−i) ≤ inf
vi∈U

J(vi, u−i) + ε

for each i ∈ {1, ..., N}, where U , L2([0, T ],R), J(ui, u−i) denotes the cost
for agent i when all the agents employ the strategies in (u1, ..., uN ), and
J(vi, u−i) denotes the cost for agent i when it deviates unilaterally by taking
response law vi.

Let xN
0 be the piece-wise constant function with the N -uniform partition

of [0, 1] corresponding to x0 = [x10, . . . , x
N
0 ]ᵀ.

Strategy 1 (Finite Problem Strategies: Deterministic Case). Let
the N -tuple (uo1, ..., uoN ) of strategies be constructed as follows: for any
agent i ∈ {1, ..., N},

(27)

uoit = −β
r
πtx

oi
t +

β

r
s̄it

s̄it ,
1

µ(Pi)

∫
Pi

sγdγ =

d∑
`=1

s`t
1

µ(Pi)

∫
Pi

f`(γ)dγ,

where π(·) and {s`t}d`=1 are generated from the limit LQ-GFG solutions (23),

(24), (25) and (26), the initial conditions for (26) are given by z`0 = λ0〈xN
0 , f`〉,

` ∈ {1, . . . , d}, xoit denotes the state of agent i at time t, and µ(Pi) denotes
the size of Pi (which is 1/N for the case with the N -uniform partition).

We now present sufficient conditions under which the N -tuple of strate-
gies (uoi)Ni=1 indeed generates an ε-Nash equilibrium, for the corresponding
large (but finite) population games.

Assumption 4. For all i, j ∈ {1, 2, . . .}, aii = 0, and there exists c > 0 such
that |aij | ≤ c.

Let AN be the corresponding step function of the N ×N adjacency
matrix AN = [aij ] of the underlying graph, 1 ≤ i, j ≤ N.
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Assumption 5. The sequence {AN}∞N=1 and its limit graphon A satisfy

(28) max
i∈1,...,N

1

µ(Pi)

∥∥(A−AN)1Pi
∥∥
2
→ 0, as N →∞,

where {P1, . . . PN} forms an N -uniform partition of [0, 1].

We now present the ε-Nash property for the finite problem which is
established in Appendix 7.2 following the procedure in [22].

Theorem 2 (Appendix 7.2). Under Assumptions 1, 2, 3 & 4, the fol-
lowing holds for any agent i ∈ {1, ..., N}

(29) J(uoi, u−oi)− inf
ui∈U

J(ui, u−oi) = max
{
O(EN ), O(E2

N )
}

where

EN , max
i∈{1,...,N}

1

µ(Pi)

∥∥(A−AN)1Pi
∥∥
2

;

furthermore, if Assumption 5 also holds, then for any ε > 0 there exists N0

such that for any N > N0 the following holds

(30) J(uoi, u−oi) ≤ inf
u∈U

J(ui, u−oi) + ε,

that is (uo1, ..., uoN ) generates an ε-Nash equilibrium for N > N0.

4. Random Initial Conditions

An N -agent game problem with network interactions is formulated as fol-
lows:

(31) ẋit = αxit + βuit + η
1

N

N∑
j=1

aijx
j
t , t ∈ [0, T ], α, β ∈ R, i ∈ {1, ..., N}

where xi0 ∼ N(µ, σ2) and {xi0}Ni=1 are independent. The objective of the ith
agent is the minimization of the performance function given by

(32) J i(ui, u−i) =
1

2
E

∫ T

0

[(
xit −

1

N

N∑
j=1

aijx
j
t

)2
+ r(uit)

2
]
dt

where r > 0 and [aij ] is the adjacency matrix of the underlying weighted
undirected graph.
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4.1. Limit Function for Initial Conditions

Definition 3. Consider a sequence of Gaussian random variables {x10, x20, ...}.
Let xN

0 be the stochastic piece-wise constant function corresponding to the
vector (x10, x

2
0, . . . , x

N
0 )ᵀ. A function x0 ∈ L2[0, 1] is the limit function of the

sequence {xN
0 }∞N=1 if

∀v ∈ L2[0, 1], 〈x0,v〉 = lim
N→∞

〈xN
0 ,v〉

in the mean square sense, which we denote by x0 , limN→∞ xN
0 .

For any basis function f` in an orthonormal base system for L2[0, 1], we
obtain

lim
N→∞

〈xN
0 , f`〉 = lim

N→∞

1

N

N∑
i=1

v̄`(i)x
i
0

where

v̄` ,
[ 1

µ(P1)
〈1P1

, f`〉, ...,
1

µ(PN )
〈1PN , f`〉

]ᵀ
=
[ 1

µ(P1)
〈1P1

, f̄`〉, ...,
1

µ(PN )
〈1PN , f̄`〉

]ᵀ
with f̄` as the stepfunction approximation of f` based on N -uniform parti-
tions of [0, 1]. By the contraction property in [17, Proposition 3], we obtain
‖f̄`‖2 ≤ ‖f‖2 = 1. Therefore ‖v̄`‖2 ,

√
v̄ᵀ` v̄` =

√
N‖f̄`‖2 ≤

√
N.

Let SN , 〈xN
0 , f`〉 = 〈xN

0 , f̄`〉 = 1
N

∑N
i=1 v̄`(i)x

i
0. Clearly,

SN ∼ N

(
µ

1

N

N∑
i=1

v̄`(i), σ
2 1

N2

N∑
i=1

(v̄`(i))
2

)
.

The expectation satisfies

(33) lim
N→∞

E
[
SN
]

= lim
N→∞

1

N

N∑
i=1

f̄`(i)µ = 〈µ1, f〉

and the variance satisfies var(SN ) = O
(

1/N
)

. Therefore, limN→∞〈xN
0 , f`〉 =

〈µ1, f`〉, in the mean square sense, that is, limN→∞ xN
0 , µ1.

A natural choice for the limit of the initial condition is µ1. Recall that
f̄` is the approximation of f` based on N -uniform partition of [0, 1] with N
as the size of the finite population game. Hence it is obvious that 〈µ1, f`〉 =
〈µ1, f̄`〉.
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4.2. The ε-Nash Property

Based on the solution to the limit LQ-GFG problem with random initial
conditions, the following strategy can be constructed.

Strategy 2 (Finite Problem Strategies: Random Initial Condi-
tions). Let the N -tuple (uo1, ..., uoN ) of strategies be constructed as follows:

(34)

uoit = −β
r
πtx

oi
t +

β

r
s̄it

s̄it ,
1

µ(Pi)

∫
Pi

sγdγ =

d∑
`=1

s`t
1

µ(Pi)

∫
Pi

f`(γ)dγ,

where s`t = Π`
tz
`
t ,

−π̇t = 2απt −
β2

r
π2t + 1, πT = 0, t ∈ [0, T ],(35)

−Π̇`
t =

[
2
(
α− β2

r
πt

)
− ηλ`

]
Π`
t +

β2

r
λ`(Π

`
t)

2 + (1− ηπt), Π`
T = 0,(36)

ż`t =

[
α+

β2

r
(Π`

tλ` − πt) + ηλ`

]
z`t , z`0 = λ`〈µ1, f`〉,(37)

and µ(Pi) denotes the size of Pi (which is 1/N for the case with the N -
uniform partition).

Compared to the deterministic case, the only difference in the strategies
is the choice of the initial conditions. In this case, each agent only needs to
take into account the expectation of the initial conditions in (37) to compute
the offset terms {s`}d`=1. Thus this provides a decentralized solution.

Theorem 3 (Appendix 8.1). Under Assumptions 1(a), 2, 3 & 4, the
following holds for any agent i
(38)

J(uoi, u−oi)− inf
ui∈U

J(ui, u−oi) = max

{
O
( 1√

N

)
, O
(
EN

)
, O
(
E2
N

)}
based on Strategy 2, where

EN , max
i∈{1,...,N}

1

µ(Pi)

∥∥(A−AN)1Pi
∥∥
2

;
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furthermore, if Assumption 5 also holds, then for any ε > 0 there exists N0

such that for any N > N0 the following holds

(39) J(uoi, u−oi) ≤ inf
u∈U

J(ui, u−oi) + ε,

that is (uo1, ..., uoN ) generates an ε-Nash equilibrium for N > N0.

5. Numerical Examples

The following values will be adopted for the parameters: α = −0.5, β =
1, η = 0.1, r = 10, T = 4. The initial conditions {x10, x20..., } are chosen as
independent Gaussian random variables with variance 1 and mean 10.

5.1. Example on Multipartite Graphs

We consider multipartite graphs (with no self-loops) where the connection
weights are specified by the following matrix

(40)

0.25 0 0.02
0 0 0.07

0.02 0.07 0.40

 .
The sizes of the sequence of graphs are given by 3n where n ∈ {1, 2, ...} is the
number of nodes in each community. Since n may vary, the underlying graph
could be of arbitrary size. Clearly Assumptions 1(a), 4 and 5 are satisfied.
Since the graphon limit has rank 3, Assumption 2 holds. Furthermore, the
specific values for the parameters in the example allow Assumption 3 to hold.
Hence, the result in Theorem 3 applies. A simulation result on a network of
size 90 is shown in Figure 2.

5.2. Example on Graphs Generated from a Sinusoidal Graphon

To generate a graph of size N from the graphon limit A(x, y) = 0.5 cosπ(x−
y) + 0.5 with x, y ∈ [0, 1], we first get the uniform grid in [0, 1] with grid
points p1, ..., pN and then connect i and j (i 6= j) with weight A(pi, pj).
Clearly this generation procedure ensures Assumptions 1(a), 4 and 5 are
satisfied.

The normalized L2[0, 1] eigenvectors of the graphon limit A(x, y) =
0.5 cosπ(x− y) + 0.5 associated with nonzero eigenvalues are 1[0,1],

√
2 sinπ(·)

and
√

2 cosπ(·), and the corresponding nonzero eigenvalue are 1
2 , 1

4 and 1
4
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(a) State (b) GFG best response (c) Offset process s

(d) Graphon field z (e) Empirical graphon
field

(f) Graphon field estimate
error

(g) Graph structure and its pixel representation

0 20 40 60 80 100

Individual Index

1000

1500

2000

2500

3000

3500

C
o
s
t

LQ-GFG Individual Cost

(h) Individual cost

Figure 2. Graphon field game simulation for systems on weighted multi-
partite graphs of size 90 with weights among and within the communities
given by (40), where each community contains 30 nodes. We choose a prob-
lem with 90 nodes in this example for the convenience of illustrating the
network structure, but the method could deal with problems of much large
sizes.

(see e.g., [16]). Hence the graphon limit A has rank 3 and Assumption
2 holds. Furthermore, the specific values for the parameters in the exam-
ple allow Assumption 3 to hold. Hence, the result in Theorem 3 applies. A
simulation result is shown in Figure 3.
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(a) State (b) GFG best response (c) Offset process s

(d) Graphon field z (e) Empirical graphon
field

(f) Graphon field estimate
error

(g) Graph structure and its pixel representation

0 20 40 60 80 100

Individual Index

1

1.5

2

2.5

3

C
o
s
t

10
4 LQ-GFG Individual Cost

(h) Individual cost

Figure 3. Graphon field game simulation for systems on weighted graphs
of size 90 with weights generated from the graphon A(x, y) = 0.5 cos(π(x−
y)) + 0.5 for all x, y ∈ [0, 1] based on the 90-uniform partition of [0, 1].

6. Conclusions

Future work will be focused on the following LQ-GFG problem aspects:
(1) LQ-GFG problems where the agent dynamics include stochastic dis-
turbances; (2) LQ-GFG problems based on sampling procedures; (3) less
restrictive conditions for the LQ-GMG ε-Nash property; (4) an LQ-GFG
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methodology for sparse networks; (5) convergence properties of finite equi-
libria to the limit equilibrium; (6) general approximate solution methods to
relax the finite-rank restrictions on graphon limits.
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7. Appendix

7.1. Proof of Proposition 1

The proof follows immediately from the standard fixed point method and
we include it here for convenience of reference.
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Proof. Consider the following transformation:

z̃`t = z`texp

[
−
∫ t

0

(
α− β2

r
πτ + ηλ`

)
dτ

]
s̃`t = s`texp

[
−
∫ T

t

(
α− β2

r
πτ

)
dτ

]
.

(41)

From (16), we obtain

(42)
˙̃z`t =

β2λ`
r

1

B`(t)
s̃`t, z̃`0 = z`0

˙̃s`t = −(1− ηπt)B`(t)z̃`t , s̃`T = s`T = 0

where B`(t) , exp
[∫ t

0

(
α− β2

r πτ + ηλ`

)
dτ −

∫ T
t

(
α− β2

r πτ

)
dτ
]
. Note that

B`(t) > 0 holds for all t ∈ [0, T ]. In a compact form, we have

(43)

[
˙̃z`t
˙̃s`t

]
=

[
0 β2

r
λ`

B`(t)

−(1− ηπt)B`(t) 0

][
z̃`t
s̃`t

]
,

[
z̃`0
s̃`T

]
=

[
z`0
s`T

]
.

Let Tg and Tb be linear mappings from C([0, T ];R) to C([0, T ];R) defined
as:

(44)

Tg(x)(t) = z`0 +

∫ t

0

β2

r

λ`
B`(τ)

x(τ)dτ,

Tb(x)(t) = 0 +

∫ T

t
(1− ηπτ )B`(τ)x(τ)dτ, t ∈ [0, T ]

for all x ∈ C([0, T ];R).
Consider the mapping M : C([0, T ];R)→ C([0, T ];R) defined by the com-

position of Tg and Tb as follows: M : x 7→ Tg(Tb(x)), x ∈ C([0, T ];R). We
consider the Banach space of continuous functions C([0, T ];R) endowed with
the sup norm ‖x‖∞ = supt∈[0,T ] |x(t)| for any x ∈ C([0, T ];R). To show the
existence of a unique fixed point to (42), we shall identify a condition for
which the following holds:

(45) ‖M(x)−M(y)‖∞ ≤ L‖x− y‖∞, L < 1.
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For t, τ ∈ [0, T ],

(46)

|M(x)(t)−M(y)(t)| =
∣∣∣∣∫ t

0

β2

r

λ`
B`(τ)

(
Tb(x)(τ)− Tb(y)(τ)

)
dτ

∣∣∣∣
≤
∫ t

0

β2

r

|λ`|
B`(τ)

(∣∣Tb(x)(τ)− Tb(y)(τ)
∣∣)dτ,

(47)

∣∣∣Tb(x)(τ)− Tb(y)(τ)
∣∣∣ =

∣∣∣∣∫ T

τ
(1− ηπs)B`(s)(x(s)− y(s))ds

∣∣∣∣
≤
∫ T

τ
|(1− ηπs)|B`(s)ds‖x− y‖∞.

Therefore,
(48)

‖M(x)−M(y)‖∞ ≤
∫ T

0

β2

r

|λ`|
B`(τ)

(∫ T

τ
|(1− ηπs)|B`(s)ds

)
dτ‖x− y‖∞.

Hence we obtain the following sufficient condition for a unique fixed point:

(49)

∫ T

0

β2

r

|λ`|
B`(τ)

∫ T

τ
|(1− ηπs)|B`(s)dsdτ < 1.

For (15), the fixed point condition needs to be satisfied for all eigendi-
rections. Therefore we obtain the result. �

7.2. Proof of Theorem 2

We define the following functions: for t, τ ∈ [0, T ],

ANc (t) ,
[
(α− β2

r
πt)I +

η

N
AN

]
(50)

Φ(t, τ) , exp

(∫ t

τ
ANc (s)ds

)
(51)

Γ(t, τ) , exp

(∫ t

τ
(α− β2

r
πs)ds

)
.(52)

Clearly Φ(t, τ) = Γ(t, τ)exp
(
η(t−τ)
N AN

)
, where the first part Γ(t, τ) is just

a scalar and the second part exp
(
η(t−τ)
N AN

)
is a N ×N matrix. The same

definitions are also used in Appendix section 8.1.
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Proof. Let zγt ,
∑d

`=1 z
`
t f`(γ), γ ∈ [0, 1], be the local graphon field calcu-

lated based on (26) and zγ denote its trajectory over time [0, T ]. Denote the
N -uniform partition of [0, 1] by {P1, ..., PN}. For Pi ⊂ [0, 1], let

z̄it ,
1

µ(Pi)

∫
Pi

zγt dγ ∈ R and z̄γt , z̄it, γ ∈ Pi

Their trajectories over time [0, T ] are respectively denoted by z̄i and z̄.
Similarly we define s̄t, s̄it, s̄ and s̄i.

For agent i corresponding to Pi ⊂ [0, 1], the cost induced by following
the infinite population and graphon limit Nash law in Strategy 1 is given by

J(uoi, u−oi) =
1

2

∫ T

0

(
(xoit −

1

N

N∑
j=1

aijx
oj
t )2 + r(uoit )2

)
dt

= J(uoi, z̄i) +
1

2

∫ T

0

[
(z̄it −

1

N

N∑
j=1

aijx
oj
t )
]2
(uoi,u−oi)

dt

+

∫ T

0

[
(xoit − z̄it)(z̄

i
t −

1

N

N∑
j=1

aijx
oj
t )
]
(uoi,u−oi)

dt

, J(uoi, z̄i) +
1

2
I2 +

1

2
I3,

where xoit and uoit represent respectively the state and the action for agent i
at time t under the prescribed ε-Nash law. We use (uoi, u−oi) in the subscript
to indicate the underlying strategy. By the Cauchy-Schwarz inequality, we
obtain

(53) |I3| ≤ 2
√
I2

[∫ T

0
(xoit − z̄it)

2dt

] 1

2

(uoi,u−oi)

.
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Similarly, we obtain

J(ui, u−oi) =
1

2

∫ T

0

(
(xit −

1

N

N∑
j=1

aijx
j
t )

2 + r(uit)
2
)
(ui,u−oi)

dt

=
1

2

∫ T

0

[
(xit − z̄it)

2 + r(uit)
2
]
dt+

1

2

∫ T

0

[
(z̄it −

1

N

N∑
j=1

aijx
j
t )
]2
(ui,u−oi)

dt

+

∫ T

0

[
(xit − z̄it)(z̄

i
t −

1

N

N∑
j=1

aijx
j
t )
]
(ui,u−oi)

dt

, J(ui, z̄i) +
1

2
I ′2 +

1

2
I ′3.

and

(54) |I ′3| ≤ 2
√
I ′2

[∫ T

0
(xit − z̄it)

2dt

] 1

2

(ui,u−oi)

.

Therefore, we obtain the following:
(55)
J(uoi, u−oi)− J(ui, u−oi)

= J(uoi, u−oi)− J(uoi, z̄i) + J(uoi, z̄i)− J(ui, z̄i) + J(ui, z̄i)− J(ui, u−oi)

≤1

2
(|I2|+ |I3|) + |

(
J(uoi, z̄i)− J(ui, z̄i)

)
|+ 1

2
(|I ′2|+ |I ′3|).

We will establish the following asymptotic estimates for I2, I3, I
′
2 and I ′3:

for fixed T > 0,

(56)
|I2| = O

(
E2
N

)
, |I3| = max

{
O
(
EN

)
, O
(
E2
N

)}
,

|I ′2| = O
(
E2
N

)
, |I ′3| = max

{
O
(
EN

)
, O
(
E2
N

)}
,

where EN , max1≤i≤N
1

µ(Pi)

∥∥(A−AN)1Pi
∥∥
2
. These estimates, together with

Lemma 1 and (55), imply that

(57) J(uoi, u−oi)− inf
ui∈U

J(ui, u−oi) = max
{
O(EN ), O(E2

N )
}
.

The rest of the proof will be devoted to establishing the asymptotic
estimates for I2, I3, I

′
2 and I ′3.
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1) Estimate for I2. The next step is to show the upper bound for the
term I2:

(58) I2 ,
∫ T

0

[
(z̄it −

1

N

N∑
j=1

aijx
oj
t )
]2
(uoi,u−oi)

dt.

Based on (15), we obtain

˙̄zit =
(
α− β2

r
πt

)
z̄it + η

1

µ(Pi)

∫
Pi

[Azt]
γdγ(59)

+
β2

r

1

µ(Pi)

∫
Pi

[Ast]
γdγ, z̄i0 =

1

µ(Pi)

∫
Pi

[AxN
0 ]γdγ,

ṡit = −
(
α− β2

r
πt

)
s̄it − (1− ηπt)z̄it, s̄iT = 0.(60)

The closed loop dynamics for the ith agent under Strategy 1 in the finite
population problem is given by

ẋoit =
(
α− β2

r
πt

)
xoit + η

1

N

N∑
j=1

aijx
oj
t +

β2

r
s̄it.(61)

Let zoNt ∈ L2[0, 1] denote the step function that corresponds to the vector
[zo1t . . . zoNt ]ᵀ. Let ∆Ni

t , z̄it − zoit . Then

∆̇Ni
t =

(
α− β2

r
πt

)
∆Ni
t +

β2

r

1

µ(Pi)

∫
Pi

[
Ast −ANs̄t

]γ
dγ,

+ η
1

µ(Pi)

∫
Pi

[
Azt −ANzoNt

]γ
dγ

=
(
α− β2

r
πt

)
∆Ni
t +

β2

r

1

µ(Pi)

〈
1Pi , (A−AN)st

〉
+ η

1

µ(Pi)

〈
1Pi , (A−AN)zt

〉
+ η

1

N

N∑
j=1

aij∆
Nj
t .

Therefore,

(62) ∆̇N
t =

[
(α− β2

r
πt)I +

η

N
AN

]
∆N
t +

β2

r
DNs
t + ηDNz

t
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where

DNs
t =

(
1

µ(Pi)

〈
1Pi , (A−AN)st

〉)N
i=1

∈ RN ,

DNz
t =

(
1

µ(Pi)

〈
1Pi , (A−AN)zt

〉)N
i=1

∈ RN .

The initial condition is given by ∆N
0 = [∆N1

0 , . . . ,∆NN
0 ]ᵀ where

(63) ∆Ni
0 = z̄i0 − zoi0 =

1

µ(Pi)

〈
1Pi , (A−AN)xN

0

〉
.

We want to ensure that ‖∆N
t ‖∞ , maxi{|∆Ni

t |} is bounded and establish
the rate of convergence with respect to N . The solution {∆N

t , t ∈ [0, T ]} to
(62) with the initial condition specified by (63) is given as follows:

(64) ∆N
t = Φ(t, 0)∆N

0 +

∫ t

0
Φ(t, τ)

(β2
r
DNs
τ + ηDNz

t

)
dτ.

By the definition of ‖ · ‖∞, we obtain
(65)

‖∆N
t ‖∞ ≤ ‖Φ(t, 0)‖∞ ‖∆

N
0 ‖∞ +

∫ t

0

∥∥∥∥Φ(t, τ)
(β2
r
DNs
τ + ηDNz

τ

)∥∥∥∥
∞
dτ

≤
∥∥∥Φ(t, 0)

∥∥∥
∞
EN‖xN

0 ‖2 +

∫ t

0
‖Φ(t, τ)‖∞EN

(β2
r
‖sτ‖2 + |η|‖zτ‖2

)
dτ

where EN , max1≤i≤N
1

µ(Pi)

∥∥(A−AN)1Pi
∥∥
2
. Furthermore, ‖Φ(t, τ)‖∞ with

t ≥ τ is uniformly bounded in N since

(66) ‖Φ(t, τ)‖∞ = Γ(t, τ)
∥∥∥e(t−τ) ηNA∥∥∥

∞
≤ Γ(t, τ)e(t−τ)|η|c

where |aij | ≤ c as in Assumption 4. Since ‖Φ(t, τ)‖∞, ‖xN
0 ‖2, ‖sτ‖2 and

‖zτ‖2 are all uniformly bounded in N , (65) implies

(67) ‖∆N
t ‖∞ = O

(
EN

)
.

Hence, by the definition of I2, for fixed T > 0,

(68) |I2| = O
(
E2
N

)
.
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2) Estimate for I3. Similarly, letting δNit , z̄it − xoit we obtain

(69)

δ̇Nit =(α− β2

r
πt)δ

Ni
t +

β2

r

[
1

µ(Pi)

∫
Pi

[
Ast

]γ
dγ − s̄it

]

+ η

 1

µ(Pi)

∫
Pi

[Azt]
γdγ − 1

N

N∑
j=1

aijx
oj
t


=(α− β2

r
πt)δ

Ni
t +

β2

r

1

µ(Pi)
〈(A− I)1Pi , st〉

+ η
1

µ(Pi)
〈(A− I)1Pi , zt〉+ η∆Ni

t .

Therefore,

δNit = Γ(t, 0)δNi0 +

∫ t

0
Γ(t, τ)

β2

r

1

µ(Pi)
〈(A− I)1Pi , sτ 〉dτ

+

∫ t

0
Γ(t, τ)

η

µ(Pi)
〈(A− I)1Pi , zτ 〉dτ +

∫ t

0
Γ(t, τ)η∆Ni

τ dτ

≤ Γ(t, 0)‖A− I‖op‖xN
0 ‖2

+

∫ t

0
Γ(t, τ)‖(A− I)‖op

(β2
r
‖sτ‖2 + η‖zτ‖2

)
dτ +

∫ t

0
Γ(t, τ)η∆Ni

τ dτ

with the initial condition

δNi0 = z̄i0 − xoi0 =
1

µ(Pi)
〈(A− I)1Pi ,xN

0 〉.

Furthermore, since xN
0 , zt, st, A, ‖A− I‖op are uniformly bounded in N

and ∆Ni
t is of the order EN for all i, we obtain |δNit | = max {O(1), O(EN )} .

This together with (53) and (68) implies

(70) |I3| = max
{
O
(
EN

)
, O
(
E2
N

)}
.

3) Estimates for I′
2 and I′

3. By Assumption 4, I ′2 = I2. Thus

(71) |I ′2| = O(E2
N )

Similar to (70), we obtain

(72) |I ′3| = max
{
O(EN ), O(E2

N )
}
.

�
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Lemma for Theorem 2.

Let xoi, i ∈ {1, ..., N}, denotes the state trajectory of agent j when all
agents are following Strategy 1. Assume the following trajectories are given
to an arbitrary agent indexed by i:

• the reference trajectory z̄it ,
1

µ(Pi)

∫
Pi

zγt dγ for all t ∈ [0, T ] with z as
the graphon filed of the corresponding limit graphon field game prob-
lem satisfying (15)

• the dynamic offset zoit ,
1
N

∑
j∈Ni aijx

oj
t for all t ∈ [0, T ] where Ni

denotes the set of neighours for agent i excluding itself.

Then consider the following linear quadratic tracking problem for agent i:

(73)

ẋit = αxit + βuit + η
1

N

∑
j∈Ni

aijx
oj
t

J(ui, z̄i) =
1

2

∫ T

0

[
(xit − z̄it)

2 + r(uit)
2
]
dt.

Lemma 1. Under Assumptions 1, 2, 3 and 4, the following estimate for
the difference between costs based on different control laws for the problem
in (73) holds

(74) J(uoi, z̄i)− inf
ui∈U

J(ui, z̄i) = O
(
EN

)
,

where uoi is generated based on Strategy 1, U , L2([0, T ];R) and EN ,
max1≤i≤N

1
µ(Pi)

∥∥(A−AN)1Pi
∥∥
2
.

Proof. The optimal control law for the problem (73) is given by

u∗it = −β
r
πtx
∗i
t +

β

r
s∗it ,(75)

−π̇t = 2απt −
β2

r
π2t + 1, πT = 0,(76)

−ṡ∗it =
(
α− β2

r
πt

)
s∗it + z̄it − ηπtzoit , s∗iT = 0,(77)
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The dynamics and cost under the optimal control are respectively given by

ẋ∗it = αx∗it + βu∗it + η
1

N

∑
j∈Ni

aijx
oj
t(78)

J(u∗i, z̄i) =
1

2

∫ T

0

[
(x∗it − z̄it)

2 + r(u∗it )2
]
dt.(79)

On the other hand, the control following Strategy 1 is given by

(80) uoit = −β
r
πtx

oi
t +

β

r
s̄it

with s̄i defined as in (27) and π(·) given by (76). Assumptions 1, 2 and 3
ensure that s̄i always exists. The associated dynamics and cost for agent i
are then respectively given by

ẋoit = αxoit + βuoit + η
1

N

∑
j∈Ni

aijx
oj
t(81)

J(uoi, z̄i) =
1

2

∫ T

0

[
(xoit − z̄it)

2 + r(uoit )2
]
dt.(82)

Based on the definition of s̄it in (27) and that of z̄it, it is obvious that

(83) ˙̄sit = −
(
α− β2

r
πt

)
s̄it − (1− ηπt)z̄it, s̄iT = 0.

This together with (77) yields

(84)
d(s̄it − s∗it )

dt
= −

(
α− β2

r
πt

)
(s̄it − s∗it ) + ηπt(z̄

i
t − zoit ).

Let ∆Ni
t , z̄it − zoit . Then (s̄it − s∗it ) =

∫ t
T Γ(t, τ)ηπτ∆Ni

τ dτ and

(85) (s̄it − s∗it ) = O
(
EN

)
, i ∈ {1, ..., N}.

By comparing the following closed-loop dynamics under these two different
control laws, we obtain

d(xoit − x∗it )

dt
=
(
α− β2

r
πt

)
(xoit − x∗it ) +

β2

r
(s̄it − s∗it ), xoi0 − x∗i0 = 0.
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Therefore, the difference is explicitly obtained as

(86) xoit − x∗it =
ηβ2

r

∫ t

0
Γ(t, τ)

(∫ τ

T
Γ(τ, q)ηπq∆

Ni
q dq

)
dτ.

Under Assumption 4,
∑N

j=1 aijx
oj =

∑
j∈Ni aijx

oj for all i ∈ {1, . . . , N}. Then

the result from (67) applies here, that is, ∀t ∈ [0, T ], |∆Ni
t | = O

(
EN

)
. Hence

for any t ∈ [0, T ], |(xoit − x∗it )| = O
(
EN

)
. This, together with (85), implies

|(uoit − u∗it )| = O
(
EN

)
. Hence

∣∣J(uoi, z̄i)− J(u∗i, z̄i)
∣∣ = O

(
EN

)
, that is, we

obtain (74).
�

8. Appendix II

8.1. Proof of Theorem 3

Proof. Let zγt ,
∑d

`=1 z
`
t f`(γ), γ ∈ [γ, γ] ⊂ [0, 1], be the Local Graphon Field

calculated based on Strategy 2 and zγ denote its trajectory over time [0, T ].
For Pi ⊂ [0, 1], let z̄it ,

1
µ(Pi)

∫
Pi

zγt dγ and z̄γt , z̄it, γ ∈ Pi. Let z̄i and z̄

respectively denote their trajectories over time [0, T ]. Similarly we define
s̄t, s̄it, s̄ and s̄i.

For agent i that corresponds to Pi ⊂ [0, 1], the cost induced by following
the limit control law is given by

J(uoi, u−oi) =
1

2
E

∫ T

0

(
(xoit −

1

N

N∑
j=1

aijx
oj
t )2 + r(uoit )2

)
dt

= J(uoi, z̄i) +
1

2
E

∫ T

0

[
(z̄it −

1

N

N∑
j=1

aijx
oj
t )
]2
(uoi,u−oi)

dt

+ E

∫ T

0

[
(xoit − z̄it)(z̄

i
t −

1

N

N∑
j=1

aijx
oj
t )
]
(uoi,u−oi)

dt

, J(uoi, z̄i) +
1

2
I2 +

1

2
I3,

where xoit and uoit represent respectively the state and control for agent i at
time t under the prescribed ε-Nash law. By the Cauchy-Schwarz inequality,
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we obtain

(87) I3 ≤ 2
√
I2

[
E

∫ T

0
(xoit − z̄it)

2dt

] 1

2

(uoi,u−oi)

.

Let J(ui, u−oi) denote the cost for agent i by unilaterally deviating from
the prescribed ε-Nash law where all other agents following the prescribed
ε-Nash law. Then

J(ui, u−oi) =
1

2
E

∫ T

0

(
(xit −

1

N

N∑
j=1

aijx
j
t )

2 + r(uit)
2
)
(ui,u−oi)

dt

= J(ui, z̄i) +
1

2
E

∫ T

0

[
(z̄it −

1

N

N∑
j=1

aijx
j
t )
]2
(ui,u−oi)

dt

+ E

∫ T

0

[
(xit − z̄it)(z̄

i
t −

1

N

N∑
j=1

aijx
j
t )
]
(ui,u−oi)

dt

, J(ui, z̄i) +
1

2
I ′2 +

1

2
I ′3.

Similarly,

(88) |I ′3| ≤ 2
√
I ′2

[
E

∫ T

0
(xit − z̄it)

2dt

] 1

2

(ui,u−oi)

.

Therefore, we obtain the following:
(89)
J(uoi, u−oi)− J(ui, u−oi)

= J(uoi, u−oi)− J(uoi, z̄i) + J(uoi, z̄i)− J(ui, z̄i) + J(ui, z̄i)− J(ui, u−oi)

≤1

2
(|I2|+ |I3|) + |

(
J(uoi, z̄i)− J(ui, z̄i)

)
|+ 1

2
(|I ′2|+ |I ′3|).

We will establish the following asymptotic estimates for I2, I3, I
′
2 and

I ′3: for fixed T > 0, for any i ∈ {1, ..., N},
(90)

|I2| = max
{
O
( 1

N

)
, O(E2

N )
}
, |I3| = max

{
O
( 1√

N

)
, O
(
EN

)
, O
(
E2
N

)}
,

|I ′2| = max
{
O
( 1

N

)
, O(E2

N )
}
, |I ′3| = max

{
O
( 1√

N

)
, O
(
EN

)
, O
(
E2
N

)}
,
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where EN , max1≤i≤N
1

µ(Pi)

∥∥(A−AN)1Pi
∥∥
2
. These estimates, together with

Lemma 2 and (89), imply that

J(uoi, u−oi)− inf
ui∈U

J(ui, u−oi) = max

{
O
( 1√

N

)
, O
(
EN

)
, O
(
E2
N

)}
.

The rest of the proof will be devoted to establishing the asymptotic
estimates for I2, I3, I

′
2 and I ′3.

i) Estimate for I2. The next step is to show the upper bound for the
term I2:

(91) I2 , E
∫ T

0

[
(z̄it −

1

N

N∑
j=1

aijx
oj
t )
]2
(uoi,u−oi)

dt.

Similar to the deterministic case, we obtain

˙̄zit =
(
α− β2

r
πt

)
z̄it + η

1

µ(Pi)

∫
Pi

[Azt]
γdγ +

β2

r

1

µ(Pi)

∫
Pi

[Ast]
γdγ,(92)

z̄i0 =
1

µ(Pi)

∫
Pi

[Aµ1]γdγ,

˙̄sit = −
(
α− β2

r
πt

)
s̄it − (1− ηπt)z̄it, s̄iT = 0.(93)

The closed loop dynamics for the finite population problem is given by

ẋoit =
(
α− β2

r
πt

)
xoit + η

1

N

N∑
j=1

aijx
oj
t +

β2

r
s̄it,(94)

Let zoNt ∈ L2[0, 1] denote the step function that corresponds to the vector
[zo1t . . . zoNt ]ᵀ via N -uniform partition. Then

(95) żoNt =
(
α− β2

r
πt

)
zoNt + ηANzoNt +

β2

r
ANs̄it, zoN0 = ANµ1.

Let ∆Ni
t , z̄it − zoit .

∆̇Ni
t =

(
α− β2

r
πt

)
∆Ni
t +

β2

r

1

µ(Pi)

〈
1Pi , (A−AN)st

〉
,

+ η
1

µ(Pi)

〈
1Pi , (A−AN)zt

〉
+ η

1

N

N∑
j=1

aij∆
Nj
t .



i
i

“Linear˙Quadratic˙Graphon˙Field˙Games” — 2020/10/1 — 0:51 — page 35 — #35 i
i

i
i

i
i

Linear Quadratic Graphon Field Games 35

Therefore,

(96) ∆̇N
t =

[
(α− β2

r
πt)I +

η

N
A
]
∆N
t +

β2

r
DNs
t + ηDNz

t

where

DNs
t =

(
1

µ(Pi)

〈
1Pi , (A−AN)st

〉)N
i=1

∈ RN ,

DNz
t =

(
1

µ(Pi)

〈
1Pi , (A−AN)zt

〉)N
i=1

∈ RN .

By the Cauchy-Schwartz inequality,

(97)

DNi
s (t) ,

1

µ(Pi)

〈
1Pi , (A−AN)st

〉
≤ EN‖st‖2,

DNi
z (t) ,

1

µ(Pi)

〈
1Pi , (A−AN)zt

〉
≤ EN‖zt‖2.

The initial condition is given by ∆N
0 = [∆N1

0 , . . . ,∆NN
0 ]ᵀ where

(98)

∆Ni
0 = z̄i0 − zoi0 =

1

µ(Pi)
〈1Pi ,Aµ1−ANxN

0 〉

=
1

µ(Pi)
〈1Pi ,A(1µ− xN

0 )〉+
1

µ(Pi)
〈1Pi , (A−AN)xN

0 〉.

The solution {∆N
t , t ∈ [0, T ]} to (98) is given by

(99) ∆N
t = Φ(t, 0)∆N

0 +

∫ t

0
Φ(t, τ)

(β2
r
DNs
τ + ηDNz

t

)
dτ.

Taking the expectation of (98) yields

E∆Ni
0 =

1

µ(Pi)
〈1Pi , (A−AN)µ1〉 =

1

µ(Pi)
〈(A−AN)1Pi , µ1〉,

Hence by the Cauchy-Schwarz inequality

(100) |E∆Ni
0 | ≤

1

µ(Pi)
‖(A−AN)1Pi‖2|µ| = |µ|EN .

Taking the expectation of (99) yields

(101) E∆N
t =Φ(t, 0)E∆N

0 +

∫ t

0
Φ(t, τ)

(β2
r
DNs
τ + ηDNz

t

)
dτ.
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Following a similar argument in the deterministic case in (65),

(102) ‖E∆N
t ‖∞ = max

i
E∆Ni

t = O(EN ).

The variance of ∆Ni
0 , i ∈ {1, ..., N}, satisfies the following

var(∆Ni
0 ) = E

[
1

µ(Pi)
〈1Pi ,AN(µ1− xN

0 )〉
]2

= E

 1

N

N∑
j=1

aij(x
j
0 − µ)

2

≤ 1

N
σ2c2

where c = maxi,j |aij |. Furthermore,

E(∆Ni
0 − E∆Ni

0 )(∆Nj
0 − E∆Nj

0 ) ≤ 1

N
σ2c2, ∀i, j ∈ {1, . . . , N}.

Note that

(103) var(∆N
0 ) =

AN
N

var(xN0 )
AN
N

ᵀ

=
AN
N

diag(σ2, . . . , σ2)
AN
N

ᵀ

and

(104) E
[
∆N

0 ∆N
0

ᵀ]
= var(∆N

0 ) + E∆N
0 E∆N

0

ᵀ
.

From (99) and (104), we obtain
(105)

E
[
∆N
t ∆N

t

ᵀ]
= Φ(t, 0)

(
var(∆N

0 )
)

Φ(t, 0)
ᵀ

+ Φ(t, 0)
(
E∆N

0 E∆N
0

ᵀ
)

Φ(t, 0)
ᵀ

+ E∆N
0 ·
[∫ t

0
Φ(t, τ)

(β2
r
DNs
τ + ηDNz

t

)
dτ

]ᵀ
+

[∫ t

0
Φ(t, τ)

(β2
r
DNs
τ + ηDNz

t

)
dτ

]
· E∆N

0

ᵀ

+

[∫ t

0
Φ(t, τ)

(β2
r
DNs
τ + ηDNz

t

)
dτ

] [∫ t

0
Φ(t, τ)

(β2
r
DNs
τ + ηDNz

t

)
dτ

]ᵀ
, Y1 + Y2 + Y3 + Y4 + Y5.
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The first part of (105) sastisfies:

(106)

|[Y1]ii| =
∣∣∣∣[Φ(t, 0)

AN
N

diag(σ2, . . . , σ2)
AN
N

ᵀ

Φ(t, 0)
ᵀ
]
ii

∣∣∣∣
= σ2

[
Γ(t, 0)

]2 ∣∣∣∣[e( ηtN AN)AN
N

AN
N

ᵀ

e(
ηt

N
AN)ᵀ

]
ii

∣∣∣∣
≤ σ2

[
Γ(t, 0)

]2 N∑
k=1

( c
N
ec|η|t

)2
(by Lemma 5)

=
σ2

N

[
Γ(t, 0)

]2
c2e2c|η|t.

The second part of (105) sastisfies:

|[Y2]ii| =
[
Γ(t, 0)

]2 ∣∣∣[e( ηtN AN)
(
E∆N

0 E∆N
0

ᵀ
)
e(

ηt

N
AN)ᵀ

]
ii

∣∣∣ ,
where

∣∣∣[e( ηtN AN)
(
E∆N

0 E∆N
0

ᵀ
)
e(

ηt

N
AN)ᵀ

]
ii

∣∣∣
≤
∣∣∣∣[(e ηtN AN − I)(E∆N

0 E∆N
0

ᵀ
)(

e
ηt

N
AN − I

)ᵀ]
ii

∣∣∣∣
+
∣∣∣[(E∆N

0 E∆N
0

ᵀ
)
e
ηt

N
A

N

ᵀ
]
ii

∣∣∣+
∣∣∣[e ηtN AN (E∆N

0 E∆N
0

ᵀ
)]

ii

∣∣∣+
∣∣∣[E∆N

0 E∆N
0

ᵀ
]
ii

∣∣∣
(by Lemma 3 and Lemma 6)

≤ (e|η|ct − 1)2µ2E2
N + 2(e|η|ct)µ2E2

N + µ2E2
N = µ2E2

N (e2|η|ct + 2)

By Lemma 4 and equation (97), the third part of (105) satisfies:

(107)

∣∣[Y ᵀ3 ]ii∣∣ =
∣∣∣[ ∫ t

0
E∆N

0 Γ(t, τ)e(
η(t−τ)
N

AN)
(β2
r
DNs
τ + ηDNz

τ

)]ᵀ
dτ
]
ii

∣∣∣
≤ |µ|E2

N

∫ t

0
Γ(t, τ)

[
e|η|(t−τ)c

(β2
r
‖sτ‖2 + η‖zτ‖2

)]ᵀ
dτ.
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This same bound holds for the fourth part Y4 of (105). The last part Y5 of
(105) sastisfies:
(108)∣∣∣[Y5]

ii

∣∣∣ =

∣∣∣∣[ ∫ t

0

∫ t

0
Φ(t, τ)

(β2
r
DNs
τ + ηDNz

t

)
dτ
(β2
r
DNs
θ + ηDNz

θ

)ᵀ
Φ(t, θ)

ᵀ
dθ
]
ii

∣∣∣∣
(similar to proof for the second part Y2)

≤
∫ t

0

∫ t

0

{
(
β2

r
‖sτ‖2 + |η|‖zτ‖2)(

β2

r
‖sθ‖2 + |η|‖zθ‖2)

·
[
(e|η|c(t−τ) − 1)(e|η|c(t−θ) − 1)µ2E2

N + (e|η|c(t−τ))µ2E2
N

+ (e|η|c(t−θ))µ2E2
N + µ2E2

N

]}
dτdθ

= µ2E2
N

∫ t

0

∫ t

0

{
(
β2

r
‖sτ‖2 + |η|‖zτ‖2)(

β2

r
‖sθ‖2 + |η|‖zθ‖2)

·
[
(e|η|c(t−τ) − 1)(e|η|c(t−θ) − 1) + (e|η|c(t−τ)) + (e|η|c(t−θ)) + 1

]}
dτdθ

The above analysis for Y1, Y2, Y3, Y4 and Y5 implies that for all i ∈ {1, ..., N}

(109)
[
E
[
∆N
t ∆N

t

ᵀ]]
ii

= max
{
O
( 1

N

)
, O(E2

N )
}
.

Since by definition I2 =
∫ T
0

[
E
[
∆N
t ∆N

t

ᵀ]]
ii
dt, we obtain

(110) |I2| = max
{
O
( 1

N

)
, O(E2

N )
}
, ∀i ∈ {1, ..., N}.

ii) Estimate for I3. Setting δNit , z̄it − xoit yields

δ̇Nit = (α− β2

r
πt)δ

Ni
t +

β2

r

1

µ(Pi)
〈1Pi ,Ast − st〉+ η

1

µ(Pi)
〈1Pi ,Azt − zoNt 〉

= (α− β2

r
πt)δ

Ni
t +

β2

r

1

µ(Pi)
〈(A− I)1Pi , st〉

+ η
1

µ(Pi)
〈(A− I)1Pi , zt〉+ η

1

µ(Pi)
〈1Pi , z̄t − zoNt 〉

= (α− β2

r
πt)δ

Ni
t +

β2

r

1

µ(Pi)
〈(A− I)1Pi , st〉

+ η
1

µ(Pi)
〈(A− I)1Pi , zt〉+ η∆Ni

t .
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Therefore,

δNit =Γ(t, 0)δNi0 +

∫ t

0
Γ(t, τ)

β2

r

1

µ(Pi)
〈(A− I)1Pi , sτ 〉dτ

+

∫ t

0
Γ(t, τ)η

1

µ(Pi)
〈(A− I)1Pi , zτ 〉dτ +

∫ t

0
Γ(t, τ)η∆Ni

τ dτ

≤Γ(t, 0)‖A− I‖op‖xN
0 ‖2 +

∫ t

0
Γ(t, τ)‖(A− I)‖op

(β2
r
‖sτ‖2 + η‖zτ‖2

)
dτ

+

∫ t

0
Γ(t, τ)η∆Ni

τ dτ

with the initial condition δNi0 = z̄i0 − xoi0 = 1
µ(Pi)

1
ᵀ
Pi

A1µ− xi0. Since EδNi0 =

z̄i0 − µ and E(δNi0 )2 = (z̄i0 − µ)2 + σ2, they are uniformly bounded in N .
Then
(111)

E[δNit ]2 =E
(

Γ(t, 0)δNi0 +

∫ t

0
Γ(t, τ)(

β2

r
Di

s(τ) + ηDi
z(τ)) + η

∫ t

0
Γ(t, τ)∆Ni

τ dτ
)2
.

Recall from (100) that |E∆Ni
0 | ≤ |µ|EN . Therefore,

(112) E∆Ni
t ∆Ni

t

ᵀ
= max

{
O
( 1

N

)
, O(E2

N )
}
, ∀i ∈ {1, ..., N}.

By expanding and evaluating all the terms in (111), we obtain E(δNit )2 =
max

{
O(1), O(E2

N )
}

. Therefore, we obtain

(113) |I3| = max

{
O
( 1√

N

)
, O
(
EN

)
, O
(
E2
N

)}
.

iii) Estimates for I′
2 and I′

3. Next we obtain the rate of convergence for
I ′2 and I ′3. Under Assumption 4,

(114)

I ′2 = E

∫ T

0

[
(z̄it −

1

N

N∑
j=1

aijx
j
t )
]2
(ui,u−oi)

dt

= E

∫ T

0

[
(z̄it −

1

N

N∑
j=1

aijx
j
t )
]2
(uoi,u−oi)

dt.

Hence for fixed T > 0,

(115) |I ′2| = max
{
O
( 1

N

)
, O(E2

N )
}
, ∀i ∈ {1, ..., N}.
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Similarly to (70), we obtain

(116) |I ′3| = max

{
O
( 1√

N

)
, O
(
EN

)
, O
(
E2
N

)}
.

�

Lemmas for Theorem 3.

Let xoi, i ∈ {1, ..., N}, denote the state trajectory of agent i when all
agents are following Strategy 2. The initial states of all agents are indepen-
dent and identically distributed N(µ, σ2). Assume the following information
is given to an arbitrary agent indexed by i:

• the reference trajectory z̄it ,
1

µ(Pi)

∫
Pi

zγt dγ for all t ∈ [0, T ] with z as
the graphon filed of the corresponding limit graphon field game prob-
lem satisfying (15) where the initial condition is replace by z0 = µ1

• the dynamic offset zoit ,
1
N

∑
j∈Ni aijx

oj
t for all t ∈ [0, T ] where Ni

denotes the set of neighours for agent i excluding itself.

Then consider the following linear quadratic tracking problem for agent i:

(117)

ẋit = αxit + βuit + η
1

N

∑
j∈Ni

aijx
oj
t

J(ui, z̄i) =
1

2
E

∫ T

0

[
(xit − z̄it)

2 + r(uit)
2
]
dt.

where the random initial condition is distributed N(µ, σ2).

Lemma 2. Under Assumptions 1(a), 2, 3 and 4, the following estimate for
the costs in problem (117) holds when uoi is generated based on Strategy 2:

(118) J(uoi, z̄i)− inf
ui∈U

J(ui, z̄i) = O
(
E2
N

)
,

where U = L2([0, T ];R) and EN , max1≤i≤N
1

µ(Pi)

∥∥(A−AN)1Pi
∥∥
2
.
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Proof. The proof is similar to that of Lemma 1. The optimal control law for
the problem in (118) is given by

u∗it = −β
r
πtx
∗i
t +

β

r
s∗it ,(119)

−π̇t = 2απt −
β2

r
π2t + 1, πT = 0,(120)

−ṡ∗it =
(
α− β2

r
πt

)
s∗it + z̄it − ηπtzoit , s∗iT = 0.(121)

Then the corresponding dynamics and cost are given by

ẋ∗it = αx∗it + βu∗it + η
1

N

∑
j∈Ni

aijx
oj
t(122)

J(u∗i, z̄i) =
1

2
E

∫ T

0

[
(x∗it − z̄it)

2 + r(u∗it )2
]
dt(123)

On the other hand, following Strategy 2, the response is as follows:

(124) uoit = −β
r
πtx

oi
t +

β

r
s̄it

where s̄i is defined according to (34). Note that under Assumptions 1(a), 2
and 3, s̄i always exists. The corresponding dynamics and cost are given by

ẋoit = αxoit + βuoit + η
1

N

∑
j∈Ni

aijx
oj
t ,(125)

J(uoi, z̄i) =
1

2
E

∫ T

0

[
(xoit − z̄it)

2 + r(uoit )2
]
dt(126)

Based on (15) and the definitions of s̄i and z̄i, we obtain

˙̄sit = −
(
α− β2

r
πt

)
s̄it − (1− ηπt)z̄it, s̄iT = 0.(127)

This together with (121) yields

(128)
d(s̄it − s∗it )

dt
= −

(
α− β2

r
πt

)
(s̄it − s∗it ) + ηπt(z̄

i
t − zoit ).

Let ∆Ni
t , z̄it − zoit . Then for all i ∈ {1, ..., N},

(129) (s̄it − s∗it ) =

∫ t

T
Γ(t, τ)ηπτ∆Ni

τ dτ.
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Under Assumption 4,
∑

j∈Ni aijx
j
t =

∑N
j=1 aijx

j
t and hence the result in

(112) applies here. That is, for any t ∈ [0, T ],

(130) E(∆Ni
t )2 = max

{
O
( 1

N

)
, O(E2

N )
}
.

This together with (129) implies

(131) E(s̄it − s∗it )2 = max
{
O
( 1

N

)
, O(E2

N )
}
.

Comparing closed-loop dynamics under the two different control laws yields

d(xoit − x∗it )

dt
=
(
α− β2

r
πt

)
(xoit − x∗it ) +

β2

r
(s̄it − s∗it ), xoi0 − x∗i0 = 0.

The difference is explicitly given by

(132)

xoit − x∗it =

∫ t

0
Γ(t, τ)

β2

r
(s̄iτ − s∗iτ )dτ

=
ηβ2

r

∫ t

0
Γ(t, τ)

[∫ τ

T
Γ(τ, q)ηπq∆

Ni
q dq

]
dτ.

Under Assumption 4,
∑

j∈Ni aijx
j
t =

∑N
j=1 aijx

j
t and the result from (102)

applies here, i.e.,

∀t ∈ [0, T ], ‖E∆N
t ‖∞ = max

i
|E∆Ni

t | = O(EN ).

This together with (132) and (129) implies

(133) |E(xoit − x∗it )| = O(EN ) and |E(s̄it − s∗it )| = O(EN ).

Therefore, by the construction of the two control laws, we obtain

(134) |E(uoit − u∗it )| = O(EN ).

Equations (130), (131) and (132) imply that

(135) E(xoit − x∗it )2 = max
{
O
( 1

N

)
, O(E2

N )
}
.

This together with (131) implies

(136) E(uoit − u∗it )2 = max
{
O
( 1

N

)
, O(E2

N )
}
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by the construction of the two control laws. We observe that

(137)

J(u∗i, z̄i) =
1

2
E

∫ T

0

[
(x∗it − xoit + xoit − z̄it)

2 + r(u∗it − uoit + uoit )2
]
dt

= J(uoi, z̄i) +
1

2
E

∫ T

0

[
(x∗it − xoit )2 + r(u∗it − uoit )2

]
dt

+

∫ T

0

[
E[x∗it − xoit ](xoit − z̄it) + rE[u∗it − uoit ](uoit )

]
dt.

Therefore, based on (133), (134), (135), (136) and (137), we obtain

(138)
∣∣J(uoi, z̄i)− J(u∗i, z̄i)

∣∣ = max
{
O
( 1

N

)
, O(EN ), O(E2

N )
}

that is, (118) holds.
�

Lemma 3. If |aik| ≤ ca and |bkj | ≤ cb for all i, k ∈ {1, 2 . . . , N}, j ∈ {1, . . . ,M}
with N,M ∈ {1, 2, . . .}, then the following inequality

∣∣∣[eη ANB]ij∣∣∣ ≤ cbeca|η|
for all i ∈ {1, . . . , N}, j ∈ {1, . . . ,M}, where A = [aik] and B = [bkj ].

Proof.

(139)

∣∣∣[eη ANB]ij∣∣∣ =
∣∣∣[(eη AN − I)B +B

]
ij

∣∣∣
≤
∣∣∣[(η A

N
+ η2

A2

N2

1

2!
+ . . .)B

]
ij

∣∣∣+ cb

=
∣∣∣ N∑
k=1

[
η
A

N
+ η2

A2

N2

1

2!
+ . . .

]
ik
bkj

∣∣∣+ cb

≤ cb
N∑
k=1

∣∣∣[η A
N

+ η2
A2

N2

1

2!
+ . . .

]
ik

∣∣∣+ cb

≤ cbN
(
|η|ca
N

+ |η|2 c
2
a

N

1

2!
+ . . .

)
+ cb

= cb(e
ca|η| − 1) + cb = cbe

ca|η|.

�

Applications of Lemma 3 yield the following results.

Lemma 4. If |aij | ≤ ca and |vi| ≤ cv for all i, j ∈ {1, . . . , N}, where v ∈
RN , then |[eη

A

N v]i| ≤ cve|η|ca for all i, j ∈ {1, . . . , N}, where A = [aij ].
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Lemma 5. If |aij | ≤ c for all i, j ∈ {1, 2 . . . , N}, then

∣∣∣∣[eη AN A
N

]
ij

∣∣∣∣ ≤ c
N e

c|η|

for all i, j ∈ {1, 2 . . . , N}, where A = [aij ].

Lemma 6. Let W = [wij ], A = [aij ] ∈ RN×N . If |wij | ≤ cw and |aij | ≤ ca
for all i, j ∈ {1, . . . , N}, then the following inequalities hold:

(140)

∣∣∣∣[(eη AN − I)W]ij
∣∣∣∣ ≤ (e|η|ca − 1)cw,∣∣∣∣[(eη AN − I)W (eη AN − I)ᵀ]ij

∣∣∣∣ ≤ (e|η|ca − 1)2cw.
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