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INTERNETS IN THE SKY: THE CAPACITY OF THREE
DIMENSIONAL WIRELESS NETWORKS*

PIYUSH GUPTA! AND P. R. KUMAR!

Abstract. Consider n nodes located in a sphere of volume V' cubic meters, each capable of
transmitting at a rate of W bits/sec. Under a protocol based model for successful receptions, the
entire network can carry only ©® (WV%TL%) bit-meters/sec, where 1 bit carried a distance of 1 meter
is counted as 1 bit-meter. This is the best possible even assuming the node locations, traffic patterns,
and the range/power/timing of each transmission, are all optimally chosen.

If the node locations and their destinations are randomly chosen, and all transmissions employ
the same power/range, then each node only obtains a throughput of © <%) bits/sec, if the

nlog?n)3
network is optimally operated. (o)

Similar results hold under an alternate physical model where a minimum signal-to-interference
ratio is specified for successful receptions.

The proofs of these results require determination of the VC-dimensions of certain geometric sets,
which may be of independent interest.

Keywords: Wireless networks, ad hoc networks, multi-hop radio networks, throughput, capacity,
transport capacity, Internet-in-the-sky.

1. Introduction. In [1], the capacity of multi-hop wireless networks was ana-
lyzed when nodes are located in a disk on the plane. It was shown that when n nodes
are randomly and uniformly distributed in a disk of area A m?, with each node capa-

ble of transmitting at W bits/sec and using a fixed range, the throughput obtained

by each node for a randomly chosen destination is @(\/%gn) bits/sec under a non-

interference protocol. It was shown that even when node locations, origin-destination
pair assignments, and transmission ranges are optimally chosen, the bit-distance prod-
uct that can be transported in the network is @(W\/E) bit-meters/sec.

In this paper we obtain the traffic-carrying capacity of three dimensional wireless
networks. Such wireless networks arise when the network consists of both terrestrial
and satellite-based or aircraft-based communication links, or in building networks
where nodes are located on different floors.

Consider n nodes located in a sphere of volume V' cubic meters, with each node
capable of transmitting at W bits/sec. We show that in the random case where the n

nodes are randomly located in the sphere and each node’s destination is randomly cho-
W

) bits/sec under a Protocol
og?n)s

sen, the throughput obtained by each node is @(( 1
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Model of non-interference, if the network 1s optimally operated. In the best case where
the node locations, OD-pair assignments and traffic patterns are optimally chosen, and
the network is optimally operated, i.e., the transmission ranges, routes, and sched-
ules of all transmissions are optimal, the entire network can transport @(WV%n%)
bit-meters/sec. Thus, even under optimal conditions, the throughput still decreases

as © (%) bits/sec for each node for a destination nonvanishingly far away.
n3

As in [1], we also consider an alternate Physical Model of non-interference where
a required signal-to-interference ratio is specified for successful receptions. Under this
model, the lower bounds on the capacity are the same as those above, while the upper
bounds on throughput are © (%) for the random case, and © (%) for the best

na3 nao
case, where a is the signal power path loss exponent.

In both the random and best cases, the capacity of a wireless network is higher
when the nodes are located in a sphere, than when they are located in a disk (or on
the surface of a sphere). Nevertheless, the throughput obtained by each node still
diminishes to zero as the number of nodes in the network is increased. Thus, the
implications discussed in [1] continue to hold for 3-D wireless networks. In particular,
wireless networks connecting fewer number of users, or allowing connections mostly
with nearby neighbors, may be more likely to find acceptance.

While proving the above results, we also determine the VC-dimensions of the
following geometric sets: The set of all spheres in #*, the set of all discs on the
surface of a sphere in 3%, and the collection of the sets of lines intersecting spheres in
R*. These results may be of independent interest.

The rest of the paper is organized as follows. In Section 2 we describe the model
for Arbitrary 3-D Wireless Networks. In Section 3 we obtain upper bounds on the
transport capacity of such networks, which are of the form cWn3 bit-meters/sec and
dWnT bit-meters/sec, under the Protocol and Physical Models, respectively. In
Section 4 we show that a transport capacity of 'Wn3 bit-meters/sec is also feasible
for Arbitrary 3-D Networks. In Section 5 we discuss the model for Random 3-D

Wireless Networks. In Section 6 we show that © <L1) bits/sec and © (%)

(nlog?n)s
bits/sec are upper bounds on the throughput obtainable by each node in Random
3-D Networks, under the Protocol and Physical Models, respectively. In Section 7 we

construct a scheme which provides a throughput of © <L> bits/sec with high

(nlog? n)%

probability for Random 3-D Networks.

2. Arbitrary 3-D Networks. In Arbitrary 3-D Networks, n nodes are arbi-
trarily located in a sphere S of volume V' cubic meters. Each node can have traffic to
send to an arbitrary destination. Each node can transmit over any subset of M inde-
pendent channels with capacities Wy, W, ..., Wi bits/sec, where Z%ﬂ Wpn = W.
Each node can use an arbitrary transmission range for each such transmission.

Let X;, 1 < ¢ < n, denote the location of node 7 (hereafter, we will also use
X; to denote node i itself). Suppose {(Xg, Xp)) : k € T} is the set of all active
transmitter-receiver pairs at some instant over a certain channel. Then we consider
the following two models for successful reception of a transmission over one hop.
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FiG. 2.1. The Protocol Model.

The Protocol Model. The transmission from node X;, ¢ € 7, is successfully
received by its intended receiver Xp;) if

(2.1) [ Xk = Xrgp | > (14 A)[Xi — Xre)l,

for every k € T \ i (Figure 2.1).

The quantity A > 0 models situations where a guard zone is specified by the
protocol to prevent a neighboring node from transmitting on the same channel at the
same time. It also allows for imprecision in the achieved range of transmissions.

The second model that is more related to physical layer considerations is the
following:

The Physical Model. Let P;, k € 7, be the power level at which node X}
transmits. Then the transmission from node X;, 7 € T, 1s successfully received by its
intended receiver Xp(;y if

P,
5 ¢ [ Xi—Xg@l®
(2.2) > 8.
N e T
) WXl
k#i

This models a situation where a minimum signal to interference ratio (SIR) of S is
necessary for successful receptions, the ambient noise power level is NV, and signal
power decays with distance r as r% For 3-D wireless networks we will suppose that
a > 3. The reason is that if @ < 3, and nodes are uniform in space, then the
interference level everywhere is unbounded as the number of nodes in the network

Increases.

Variants of the Protocol Model. The capacity results obtained in this paper
also hold for the following two variants of the Protocol Model:
1. Node Xg(;),¢ € T, can successfully receive the transmission from node X;
if it does not lie within (1 + A) times the range of any other concurrent
transmitter, i.e., if, for every k € T \ ¢,

(2.3) | Xk — Xrey| > (14 A)[Xs — Xp)l-
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Fi1G. 2.2. Variant of the Protocol Model that allows directed transmission of nonvanishing angle
of beam spread.

This models a situation where each transmitter adjusts the power level of
its transmitted signal such that the receiver gets the signal at a prespecified
power level.
2. Each node can do separate beamforming for each of its transmission. Be-
cause of dispersion, however, the angle of beam spread is lower bounded by ¢
(Figure 2.2). The transmission from node X;,i € T, is successfully received
by Xggy if, for each k € T \ 7, either Xp(i) lies outside the beam spread of
the transmission of Xy or (2.3) holds.
The Protocol Model and its variants above satisfy a special property.
LEMMA 2.1. In all three versions of the Protocol Model, there exists a A’ >
0, dependent only on A and (possibly) §, such that spheres of radius %I times hop
length centered at the receivers over the same channel at the same time are essentially
disjoint.
Proof. First consider the original Protocol Model (Figure 2.1). From the triangle
inequality and (2.1), the following holds for each ¢, k € T

| Xrei) = Xr@| > [ Xri) — Xel = [Xre) — Xl
> (14 A)Xi = Xpy = [Xrw) — Xl
Similarly,
| Xrak) — Xr(i)| > (1+ A)|[ Xk — Xpo)| — | Xre) — Xil.

Adding the two inequalities, we obtain
A
| Xra) — Xr(y| > 5 (IXk = Xro |+ 1Xi = Xr@ ) -

Thus spheres of radius % times the lengths of hops centered at the receivers over the
same channel in the same slot are essentially disjoint.
Next consider the first variant of the Protocol Model. Again from the triangle
inequality, the following holds for each i,k € T
| Xr(i) — Xrp)| > [Xra) — Xl — [ Xrk) — Xkl
> (1+ A)| Xk — Xy — [ Xrr) — Xkl
=A|Xg — XR(k)|~
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Similarly,
| Xrk) — Xr@)| > AXs — Xpe -

Hence, here too, spheres of radius % times the lengths of hops centered at the con-
current receivers are essentially disjoint.

Finally, consider the second variant of the Protocol Model that allows directed
transmissions. For every k € T \ i, either (2.3) holds, in which case the triangle
inequality gives

| Xr(i) — Xrp)| > Al Xk — Xl
or Xp(i) lies outside the beam spread of Xy, in which case
)
[ XRG) = Xrer| 2 sin 5|Xk = Xpe) |
Thus
. )
| Xr(i) — Xr@x)| > min{ A, sin 5 | Xk = Xrr)l-
Similarly,
. )
| Xr(k) — Xr)| > min{ A, sin 5 |Xi = Xr|-

1
2

the concurrent receivers are essentially disjoint. 0

Hence we have that spheres of radius s min {A, sin %} times hop length centered at

To give a unified treatment for the three variants of the Protocol Model in the
following, we will assume that A’ = A. This may require redefining A in the second
variant of the Protocol Model.

3. Arbitrary 3-D Networks: An Upper Bound on Transport Capacity.
Given a set of successful transmissions, we say that the network transports one bit-
meter when one bit has been transported over a distance of one meter towards its
destination. The transport capacity of a network is defined as the supremum of the
bit-distance product that can be transported by the entire network per second.

Suppose an Arbitrary Network transports a total of AnT" bits in 7" seconds. Sup-
pose the average distance between the source and the destination of a bit is L meters.
In other words, the network achieves a transport capacity of AnL bit-meters/sec.
Then, the following holds:

THEOREM 3.1. i) In the Protocol Model, the transport capacity AnlL of any
Arbitrary 3-D Wireless Network is bounded by

3V

™

. S
AnL <2 < ) ZW?ﬁ bits-meters/sec.
(ii) In the Physical Model,

2ﬂ+2>
B

Q=

<£) Wns bit-meters/sec.

AnL < <
- 47
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(iii) If the ratio J;m‘” between the marimum and minimum powers that transmitters
can employ s stmctly bounded above by 3, then

3V
4

- 3 1 2
Anl <2 ( ) (71/1/713 bit-meters/sec.

BPminyL
Pmax )a 1

Proof. Let h(b) be the number of hops taken by bit b for 1 < b < AnT, and 7’{; be
the distance traversed by b in hop hA. Then

AnT h(b

(3.1) Z Z > AnTL.

b=1

For simplicity in exposition, suppose that transmissions in the network are slotted
into synchronized slots of length 7 secs. Then, in any slot s, at most n/2 nodes can
transmit over any channel m. Hence, we have

AnT A(b) Womn
Z Z 1(The h-th hop of bit b is over channel m in slot s) < T; .
b=1 h=1

Summing over the channels and the slots, and noting that there can be no more than
% slots in T secs, we get

anT
. . WTn
(3.2) H = ;_1: h(h) < =

Consider now the Protocol Model. Let {(Xg, Xp(x)) : k € Trn(s)} denote the set
of all active transmitter-receiver pairs in slot s over channel m. From Lemma 2.1,
we have that spheres of radius % times the lengths of hops centered at the receivers
{XRrx) : k € Tm(s)} are essentially disjoint. Taking edge effects into account and
noting that a range greater than the diameter is unnecessary, we deduce that at least
a quarter of such a sphere is within sphere S. Since at most W,,, T bits can be carried
in slot s from a transmitter to a receiver over the channel m, we have

AnT k() 147 [ Arh 3
1(The h-th hop of bit b is over channel m in slot S)Z? < 26 >
b=1 h=1
(3.3) < W, V.

AnT h(b) 3
TA
—(ry)° <WTYV,
b=1 h=1 24
which can be rewritten as
AnT h(b)
1, hs  24WTV
(34) 2 g < e
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Now z? is a convex function over z > 0. Hence
AnT h(b) 1 AnT h(b) 1

(3.5) ( 77)° < 7 ()",
b=1 h=1 b=1 h=1

UWTVH?\ *
(3.6) e (B

TA3

Now substituting (3.1) in (3.6) gives,

UWTVH?\ 3
TA3 '

(3.7) AnTL < <

Substituting (3.2) in (3.7) yields the result.
Proofs of (ii) and (iii) proceed along similar lines as in Theorem 2.1 [1], with the

only difference arising due to the diameter 2 (%) * of sphere S. 0

4. Arbitrary 3-D Networks: A Constructive Lower Bound on Trans-
port Capacity. We will now show that the O(ng) order of the upper bound on the
transport capacity in the previous section is tight, by exhibiting a scenario where it
is achieved.

THEOREM 4.1. Nodes can be placled wn sphere S, and traffic patterns assigned,

wv3s

such that the network can achieve mn§ bit-meters/sec under the Protocol Model,

and w3 - n bit-meters/sec under the Physical Model.
(168 (21425 +2222)) @

Proof. First consider the Protocol Model. Let r = 1K§A l% With the center of
sphere S taken as the origin, place transmitters at locations (le(l +2A)r £ Ar k(1 +
2A)r (14 2A)7r), (G(1 4 2A)r k(1 4+ 2A)r £ Ar, (1 4 2A)r) and (5(1 + 2A)r, k(1 +
2A)r l(1 + 2A)r + Ar) where |j + k + {| is odd. Also place receivers at (j(1 +
2A)r + Ar k(14 2A)r 11+ 2A)r), (J(1 + 2A)r k(1 + 2A)r £ Ar (1 + 2A)r) and
(F(14+2A)r k(14 2A)7, l(14 2A)r + Ar), where |j+ &k + 1] is even. Each transmitter

can transmit to 1ts nearest receiver, which is at a distance r away, without interference

from any other transmitter. Furthermore, the above allows for 7 transmitter—receiver
pairs to be placed within S. Under this placement of nodes, there are a total of 5
concurrent transmissions, each of range r, and each at W bits/sec. This achieves the
transport capacity indicated.

For the Physical Model, a calculation of the SIR under the above placement shows
that it is lower bounded at all receivers by (1++A)aa_2. Choosing A to make

16 (21+2 = 407)

this lower bound equal to 8 yields the result. O

5. Random 3-D Networks. Above we have determined the best case behavior
where nodes can be optimally placed and traffic patterns optimally designed. We now
address a scenario when the network 1itself is random.
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In a random scenario, there are n nodes uniformly and independently distributed
in a sphere S of volume 1 cubic meter. Each node sends data at A(n) bits/sec to
a randomly chosen destination node. This destination node is picked as follows. A
uniformly and independently distributed point in S is chosen, and the node nearest to
this location is chosen as the destination node. Thus, the average separation between
source-destination pairs is on the order of 1 meter.

In this random setting, we assume that all transmissions employ the same nominal
range 7 or power level P. As in Arbitrary 3-D Networks, we consider two models for
successful reception of a transmission.

The Protocol Model. All nodes employ a common range r for all their trans-
missions. Let {(Xg, Xr)) : k& € T} be the set of all active transmitter-receiver pairs
at some time instant over a certain channel. Then transmission from X;,i € 7T, 1s
successfully received by Xg(;) if:

(i) The distance between X; and Xp(;) is no more than r, i.e.,

(5.1) | X — Xgey| <.
(i) For every other node Xy, k € T,
(5.2) | Xe — Xpu)l > (L+A)r.

As for Arbitrary Networks, the capacity results obtained in the following also hold
under two variants of the model above. These variants are similar to those given in
Section 2 except that all nodes now employ a common range r, which may however
depend on n, the number of nodes in the network.

The Physical Model. All nodes transmit at a common power level P. A
transmission from a node X;, i € 7, is successfully received by node Xg(;) if

P

. [Xi=X g
(5.3) vz > p.
N — 5 —— 2
+ 2 Wl
k#i

We say that the throughput capacity of Random 3-D Wireless Networks is of order
O(f(n)) bits/sec if there are deterministic constants ¢ > 0 and ¢/ < 400 such that

li_)m Prob(A(n) = c¢f(n) is feasible) = 1,
li_}rn Prob(A(n) = ¢/ f(n) is feasible) = 0.

We next obtain an O <Ll) upper bound on the throughput capacity of

(nlog?n)s
random 3-D wireless networks. In Section 7 we will construct a scheme which achieves
the same order of throughput capacity.

6. Random 3-D Networks: An Upper Bound on Throughput Capacity.
An essential requirement for any positive throughput level to be feasible is that there
exists a path between each node and its chosen destination. In particular, every node
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must have at least one node in its range with which it can communicate. We therefore
first obtain a necessary condition on the transmission range r(n) such that every node
in the network has at least one node in its range with probability approaching one as
the number of nodes n — +oco.

We recall two results from [2].

LEMMA 6.1. (i) For any p € [0, 1]

(I—=p) < e7P.

(ii) For any given § > 1, there exists po € [0, 1], such that
e™ < (1-p), forall 0<p<po.

If 0 > 1, then pg > 0.
LEMMA 6.2. If A(n) = lﬂg:—%, then, for any fired 6 < 1 and for all sufficiently
large n

n(l— A(n))"~1 > fe".

Given the n nodes in S, denote by G(n,r(n)) the graph which results from con-
necting by an edge nodes separated by a distance of at most r(n). Let P(l)(n7 r(n))
denote the probability that a graph G(n,r(n)) has at least one isolated node. Then
the following holds.

LEMMA 6.3. If the range r(n) of each transmission is such that 2r3(n) =
@% with lim, o, k, = k < 400, then

liminf PY)(n, r(n)) > " (1—e").

n— o0

Proof. In the following, we will neglect edge effects. A proof similar to the one in
[2] can be given to show that the edge effects do not alter the result.

Consider first the case where 4?”7'3(71) = lﬂgﬁ—% for a fixed k. The probability
that G(n,r(n)) has at least one isolated node, satisfies

PY(n, r(n)) > nP({iis isolated in G(n,r(n))}) —
(6.1) n(n — 1)P({i and j are isolated in G(n,r(n))}).

Let V(r) := %Tr?’ be the volume of a sphere of radius r. Neglecting edge effects
(6.2) P({Node i is isolated in G(n,r(n))}) ~ (1 — V(r(n)))* 1,

P({Nodes 7 and j are isolated in G(n,r(n))}) < (V(2r(n)) — V(r(n))) -

(6.3) (1- gV(r(n)))"_zﬂL (1= V(2r(n)(1 =2V (r(n)))" 7,

where the first term on the RHS above takes into account the case where the distance
between 7 and j is between r(n) and 2r(n). Substituting (6.2) and (6.3) in (6.1), and
using the definition of V(r), we get

1 am 3 n-1
PO(m,r(n) > (1 = —r(m)"~" = n(n = 1)(
o4 3 n—2
+ (1- 2 (n)) )

287 4 34w 4

) (1= S )
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Using Lemmas 6.1 and 6.2, for &-73(n) = logn+r and any fixed 6 < 1 and € > 0, we

n
have

P (n,r(n)) >0 —n(n—1) (—r (n)e_("_Q)%Twra(”) + e_(”_2)2%r3(”))
> 0™ — (14 €)e” 2% for all n > N(e, 0, k).

Now consider the case where the range r(n) satisfies 4r3(n) = @%, with
limy, 00 K = kK < +00. We have to replace k by k, in the above. Note that for
any € > 0, k, < &k + € for all n > N'(€). Also, the probability of an isolated node is

monotone decreasing in x. Hence
PW(n,r(n)) > =5+ — (1 4 ¢)e=2x—¢)
for n > max{N (¢, 0, & + €), N'(¢)}. Taking limits,

liminf PO (n, r(n)) > 6 () — (14 )27,
Since this holds for all € > 0 and # < 1, and since P(l)(n,r(n)) < Pa(n, r(n)), the
result follows. ]

The following corollary is immediate.
COROLLARY 6.1. The asymptotic probability that graph G(n,r(n)) has an isolated
node is strictly positive i 4%r?’(n) = lﬂg% and lim sup &, < 4o0.

n
As in (3.3), under the non-interference protocol requirement, spheres of radius

%r(n) around concurrent receivers on a channel are disjoint. Hence there can be at

most R(n) = (1/4)(4/3W(1Ar(n)/2)3) concurrent receptions on any channel. Thus the
total transmission rate in the network at any time can be at most W R(n) bits/sec.

On the other hand, if L denotes the mean length of the random line from a source to

Lr_((;()l) bits/sec,

is a lower bound on the mean number of hops traversed by a packet. For

its destination, then the total traffic in the network is at least nA(n)
L—o(1)
rn

stability, we therefore need

since

(L — o(1))nA(n) o uw
r(n) = wA3r3(n)’
Thus,
An) < 24W

7rA3(Ii —o(1))nr2(n)’

From Corollary 6.1, r(n) > (%‘iﬂ)% is necessary to ensure that every node has at
least one node in its range. Hence we obtain the following:
THEOREM 6.1. For Random 3-D Wireless Networks under the Protocol Model,

there is a deterministic constant ¢’ < +oo, not depending on n, A or W, such that

/
lim Prob(A(n) = # bits/sec is feasible) = 0.
n—oo A3(nlog“n)3

For the Physical Model, the following upper bound follows from Theorem 3.1 and
an argument similar to that used in Theorem 5.2 of [1].
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THEOREM 6.2. For Random 3-D Networks under the Physical Model, there is a
deterministic sequence e(n) — 0, not depending on N,a, 3 or W, such that

N )
lim Prob | A(n) = 2 <i) — II/V + i(n) bits/sec is feasible | = 0.
n—oco 47 L(f=—1) n3

7. Random 3-D Networks: A Constructive Lower Bound on Through-
put Capacity. In this section we describe a constructive scheduling and routing

scheme similar to the one in [1], which shows that in a random 3-D wireless network

each node can obtain a throughput of © (Ll) bits/sec with high probability.

nlog2n)3s

For this purpose, we need to compute the (I/C-gdiniensions of certain geometric sets.

Let F be a collection of sets. A set A is said to be shattered by F if for every
B C A there is a set F' € F such that ANF = B. The VC-dimension of F, denoted
by VC-dim(F), is defined as the largest integer m such that there exists a set A of
cardinality m that is shattered by F [3, 4].

For a collection of sets with finite VC-dimension, the following uniform conver-
gence in the weak law of large numbers holds:

THEOREM 7.1. The Vapnik—Chervonenkis Theorem. If F is a collection of
sets of finite VC-dimension, VC-dim(F), and {X;} is an i.i.d. sequence with common
probability distribution P, then for every e,d > 0,

N

1
Prob(sup |—ZI(Xj EF)—P(F)|<¢)>1-34,
Fex Nj:l B
whenever
-di 1 4 2
N > max{wlog E’ _log g}
€ € ¢

Above I(-) is the indicator function.

We next determine the VC-dimensions of certain collections of sets associated
with our constructive scheme.

THEOREM T7.2. Let S(k) be the set of all spheres in R*. Then VC-dim(S(k)) =
k+1.

We prove the result through a sequence of lemmas. We first obtain a close upper
bound on VC-dim(8(k)) by mapping the problem into one for which the solution is
already known.

LEMMA 7.1. VC-dim(S(k)) < k + 2.

Proof. Let S be a sphere in R* of radius r and centered at z = (Z1,Z2,...,2g).
Then

S={zeR:|x—z<r}
k

k k
(7.1) :{me%k:Zm?—QZiimiSTQ—ZE?::?.
i=1 i=1

i=1
We now map the sphere S in R* to the affine halfspace H in R5*! given by {(z1, z2,

k
T, Tpp1) € R mpy — 23 72, < 7). Note that z € R* belongs to
i=1
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S if and only if (z,|z|?) € RN**+! belongs to H. Hence, if a set of p points, say
{2 23 2P)} c B is shattered by S(k), then the set of points {(a:(l), |:13(1)|2)7
(@) |22, (20, |2))2)} € RFF! is shattered by H(k + 1), the collection of
all affine halfspaces in #**!. It is known that the VC-dimension of H(l) is [ + 1 [3].
Hence p < k + 2, which proves the result. 0

The above argument can also be used to show finiteness of VC-dimensions of more
general collections of sets. For instance, using the same reasoning we can deduce that
the collection of all closed sets in R#* enclosed by order-I polynomials, has a finite VC-
dimension (in fact, upper bounded by (k+1)!). More generally, we have the following
result, which 1s not only of independent interest, but is also specifically useful in what
follows.

THEOREM 7.3. Let B be some subset of R%. The VC-dimension of the set of
closed sets in B* given by {{x € B : i aifi(z) < b} : (a1,as,...,am,b) € R™MT1},

i=1

K3

where the mapping x € B — (f1(z), fz(;), ooy fm(2)) € R™ is one-to-one, is at most
m+ 1.

We next obtain a lower bound on the VC-dimension of S(k).

LEMMA 7.2. VC-dim(S(k)) > k + 1.

Proof. As mentioned above, VC-dim(#(k)) = k+1, i.e., there exists a set of k+1
points, {:L‘(l), A ,:L‘(k‘*'l)}, which 1is shattered by the set of all affine halfspaces in
RN, Clearly, these points are in “general” positions: for each 2 < | < k, any subset
of { 4+ 1 points does not lie in an (I — 1)-dimensional affine subspace of R#*. Hence
there exits a unique sphere, say Sy, whose boundary includes these k& + 1 points.
Let the center of Sy be (%) and the radius be rg. Now choose a new coordinate
system in which the origin is 2(®). For simplicity in notation, continue to denote the
k + 1 points by z(1), 2z ... z*+1)  Now consider an affine halfspace H4 which
contains A C {&(M) 2 . 2*+DY but not {«(M) 22 . 2E+DI\ A, Specifically,
suppose H,4 is given by {x € ®* : za” < b}. Now define the sphere S4 C R* by

Sa = {z: z2T 4+ 2zaT + aa” < rZ+2b+ aa”}. Then, since zzT = r2 for z € S,
x € HyN Sy if and only if 2 € Sy N Sp. Hence, {2z 22 . 2#+D} is shattered
by the set of all spheres in #* | which proves the result. 0

Note that the intersection of an affine halfspace in #* with a spherical shell S¥=1
(i.e., the boundary of a sphere in #*) is a disk. Conversely, given a disk D on S¥~1,
there exists an affine halfspace in #** such that its intersection with S¥~!is D. Hence,
the above argument also leads to the following:

THEOREM 7.4. The VC-dimension of the set of all disks on S*~1 is k + 1.

In order to complete the proof of Theorem 7.2, we next close the gap between the
upper and lower bounds given in Lemmas 7.1 and 7.2.

LEMMA 7.3. The VC-dimension of the set of all affine halfspaces in R* of the
type {z € R* 1 2(1,aq,...,a5)T < b}, denoted by H%(k), s k.

Proof. By restricting to the subspace {z1 = 0}, it is clear that the VC-dimension
of %%(k) is at least k. To prove that it is exactly k, we observe that {z(1) 2(*)
..., z(P)} is shattered by H%(k) if and only if the set of p halfspaces in the normal
space {{(a1,as,...,ax, —b) € R+ . (20) 1)(ay,aq,... a5, —b)T < 0},1 < i< p}
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partition the k-dimensional affine subspace {a; = 1} into 2P distinct cells. Now it is
well known (see for example [5]) that p hyperplanes in general position partition R4
into Cy4(p) cells, where

72 @@zg@)

For d = k and p = k + 1, (7.2) gives that Cy(p) = 28*' — 1 < 2P. Hence the
VC-dimension of H%(k) can be at most k, which completes the proof of the result.

Next let S(k) be the set of all spheres in #*. Also, let £(S) denote the set of all
lines in ?* which intersect a sphere S € S(k). Then the following holds.

THEOREM 7.5. VC-dim({L(S): S € S(k)}) < E43k+d

Proof. Let S be a sphere in #* of radius r and centered at z = (Z1,29,...,2g).
Given a line L in R#* there exist &, d € R* such that

|d| =1,
zd’ =0,
(7.3) L={i+ld:leR).

Now L € £(S) if and only if the distance between L and Z is at most r, i.e.,
min |z — (& + Id)| <,
leR -

& min|(z — &) —ld|* < r?,
leRr -

(7.4) & |z—i2— (zd7) <2
Thus, £(S) = {(&,d) © Yo, @2 file,d) + Y0 Yimiyy &85 06(2,d) + i
z;hi(z,d) +1(z,d) < r?}, where
fi(g,d)y=1-d?
g”(:i‘,d) = _Zdzd]a
hi(:i*,d) = —2z;,
I(z,d) = |2]*.

Clearly, distinct lines lead to distinct (f;, gij, hi,{) vectors. The result now follows
from Theorem 7.3. 0

We are now ready to show that a constructive scheme similar to the one in [1]
achieves the same order of throughput capacity as upper bounded by Theorem 6.1.

THEOREM 7.6. (i) For Random 3-D Wireless Networks under the Protocol Model,
there is a determinuistic constant ¢ > 0 not depending on n, A or W, such that

c w

Aln) = (I+ A)3 (nlog2 n)%

bits/sec

s feasible with probabiity approaching 1 as n — oco.
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(ii) For Random 3-D Wireless Networks under the Physical Model, there is a

deterministic constant ¢’ > 0 not depending on n,a, 8 or W, such that

¢ %%

A(n) = - bits/sec

(2 (196 (3+ 2+ 25 + ﬁ))g - 1)3 (nlog® n)3

15 feasible with probability approaching 1 as n — oo.

Proof. The proof proceeds along lines similar to the one given in [1] for the 2-D

case. In the following we give the main steps involved in the proof without repeating

the detailed arguments of [1], except where they do not exactly carry over to the 3-D

case.

First consider the Protocol Model.

Construct a Voronoi tessellation V, of sphere S (similar to the one in Section
IV.A of [1], but now in 3-D) such that each cell V' contains a ball of radius p(n)

and is contained in a ball of radius 2p(n), where p(n) is such that %p%(n) =

100logn

Chgose the range of each node to be r(n) = 8p(n).

This range allows any two nodes in neighboring cells to directly communicate
(Lemma 4.2 in [1]).

As in Lemma 4.3 [1], every cell in V, has at most a constant number ¢; =
O((1 4+ A)3) of interfering neighbors.

Using a result from graph theory on vertex coloring, the above allows us to
construct a transmission schedule such that each cell gets to transmit at least
once in every (e1 + 1) consecutive slots (Lemma 4.4(i) [1]).

Let {Y;}/_, be independently and uniformly distributed (i.i.d.) points in S
chosen independently of {X;}7_;. The destination node Xdest (i) for the traffic
generated at source node X; is chosen as the node closest to Y;.

Let L; be the line joining X; and Y;. Then, {L;}_, are i.i.d.

Packets originating at source node X; are routed to their destination node
Xdest(i) to follow L;. That is, the packets from X; are relayed from one cell
to another in the order in which the cells intersect L;. On reaching the cell
containing Y;, the packets are sent on to their final destination Xdest(z’)’ which
is within one hop of ¥; with high probability.

By Theorem 7.2, the VC-dimension of the set of all spheres in 3 is 4. Hence,
as in Lemma 4.8 [1], every cell in the Voronoi tessellation V,, contains at least
one node with probability approaching one as n — 4o0.

We next obtain a uniform bound on the amount of traffic that needs to be
carried by each cell V' of V,. For this, we first bound the expected number
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7.1. Computing the probability that a line L; intersects cell V. Note that d + z < 2rg.

of lines intersecting cell V' as follows
E[Number of lines in {L;}}_; intersecting cell V]
= n Prob(Line L; intersects V)
< n(Prob(d(Xi, V) < egp(n)) + Prob(L; intersects V ‘ d(X;,V) > cop(n)))

4
< (5o + 200 +
2ra
(7.5) / Prob(L; intersects V' | | X; — ¢(V)| = ) 471'1‘25[:5),
(cot+1)p(n)

where we have used the facts that V' contains a ball of radius p(n) and is
contained in a ball of radius 2p(n), ¢q is a constant to be specified later, ¢(V)
is the center of the ball containing the cell V, and ro = (3/(47))3 is the radius
of the unit-volume sphere S. For the conditional probability in the second
term, we upper bound the volume of the cone at X; and touching the ball of
radius 2p(n) containing V', by that of a cylinder as shown in Figure 7.1.

Prob(L; intersects V | |X; — ¢(V)| = z) <my*(d + z)

2
(7.6) <m 2r0.22p(n)) 27y,

E[Number of lines in {L;};-; intersecting a cell V]
47
< (4o + 2p0))? + mltp(m))? - am(2re) )

< negp?(n)

(7.7) < cz(nlog? n)%,
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for some constants ¢s and c3, and sufficiently large n.

Next, from Theorem 7.5, the Vapnik-Chervonenkis Theorem is applicable to
the collection of sets of lines intersecting spheres in 13, {£(S) : S € S(3)}.
Thus, for some d(n) — 0,

Prob < sup (Traffic needing to be carried by cell V) < caA(n)(n log? n)%
VeV,

>1—4(n).

e Since each cell can transmit at WW/(e; + 1) bits/sec, while it needs to trans-
mit at most 64/\(n)(nlog2 n)% bits/sec with high probability, A(r) can be
accommodated in the network with probability approaching one as n — +o0,
if
w

1 + c1

W=

cad(n) (nlog”n)® <

bl
1.e,

Aln) <

=

(14 c1)ea(n log? n)

Next consider the Physical Model. An argument similar to the one used in Lemma
4.4(i1) [1] shows that if the transmitters in the above constructive scheme use power
level P, the SIR at each receiver is lower bounded by

10 1
N+ Z::Oi ((k+2)3 — (k— 1)3)ka(1+%P)ara(n) Nr;(n) + (1+9%)a Z—z k2.|[;12+1 .

1
o—3
o

P =28r*(n)max{N, 1} and A =2 <(18ﬂ (3 + = ﬁ)) - 1), ensures
that the lower bound on the SIR at each receiver is at least 3. The result follows.

For @ > 3, the sum in the denominator is smaller than (3+ ﬁ—l— ﬁ

). Choosing

8. Conclusions. We have obtained the capacity of three dimensional wireless
networks. We have shown that under a Protocol Model of non-interference, in a
random 3-D network of n nodes randomly located in a sphere, with each node capable
of transmitting at W bits/sec and using a common range, the throughput that each

node can obtain for a randomly chosen destination is © ﬁ bits/sec. Even
nlog?n)3

under optimal choices for node locations, traffic patterns, and origin-destination pairs,
and optimal operation by choosing transmission schedules, ranges and routes, each
node cannot obtain a throughput of more than © (%) bits/sec for a destination on
the order of 1 meter away. Under a Physical Mocfeei of non-interference, the lower
bounds are the same as those above for the Protocol Model, while the upper bounds
on throughput are © (%) for Random 3-D Networks and © (%) for Arbitrary 3-D
Networks. " "

In both the random and best case scenarios, 3-D wireless networks have higher
capacity than 2-D networks. However, the throughput obtained by each node still
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diminishes to zero as the number of nodes in the network is increased. Hence, wire-
less networks connecting fewer number of users, or allowing connections mostly with
nearby neighbors, may be more likely to find acceptance.
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