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A FIXED-LAG SMOOTHING SOLUTION TO OUT-OF-SEQUENCE
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Abstract. Multi-sensor tracking using delayed, out-of-sequence Information (OOSI) is a prob-

lem of growing importance due to an increased reliance on networked sensors interconnected via

complex communication network architectures. In such systems, it is often the case that information

(in the form of raw or processed measurements) is received out-of-time-order at the fusion center.

Owing to compatibility with legacy sensors and limited communication bandwidth most practical

fusion systems send track information rather than raw measurements to the fusion node. This paper

presents a unified Bayesian approach to handling this out-of-sequence information problem and pro-

vides implementable sub-optimal algorithms for both cluttered and non-cluttered scenarios involving

single and multiple time-delayed measurements/tracks. Such an approach leads to a solution involv-

ing the joint probability density of current and past target states. A fixed-lag smoothing framework,

developed by John Moore and his students almost 30 years ago, forms the basis of our algorithm.

Under linear Gaussian assumptions, the Bayesian solution reduces to an Augmented State Kalman

Filter (AS-KF). Computationally efficient versions of the AS-KF are considered in this paper. Sim-

ulations are presented to evaluate the performance of these solutions.

Keywords. Target tracking, Networked sensors, Time delayed measurements, Out-of-Sequence

Measurements (OOSM), Out-of-Sequence Tracks (OOST), Out-of-Sequence Information (OOSI),
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1. Introduction. In a multi-sensor centralized tracking system, sensors produce
observations that are sent to a fusion center over communication networks which can
introduce random delays. Thus there is no guarantee that data are received in the
order they have originated. This problem has appeared in the literature under various
names such as the Out Of Sequence Measurements (OOSM) problem [1, 2, 3, 4], the
problem of tracking with random sampling and delays [5], [6], [7], and the problem of
incorporating random time delayed measurements [8].

Most sensor networks communicate tracks (processed measurements) rather than
raw measurements, owing to the prior existence of embedded trackers, and prohibitive
communication bandwidths that favor summaries of measurements, rather than the
measurements themselves. As in the case of a centralized tracking system, random
delays are introduced resulting in reception of tracks out of sequence. This paper
addresses this out-of-sequence tracking problem with equivalent measurements.

Equivalent measurements, their use and methods of extraction from track esti-
mates are discussed extensively by Blackman and Popoli [4], Frenkel [9] and Drum-
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mond [10]. Frenkel [9] demonstrates that the equivalent measurements remove all cross
correlations between sensor level tracks and the central fused tracks, enabling them
to be treated as normal sensor measurements with white measurement noise. Drum-
mond [10] uses equivalent measurements to deal with the complex cross-correlations
involved in track fusion when global tracks are fed back to sensor level tracks. In
his paper, he presents two methods that are based on Frenkel’s approach. However,
Frenkel and Drummond did not extend the use of equivalent measurements beyond
the track fusion problem, nor did they provide any Bayesian foundations for their
use. In [11], Okello and Challa present the first use of equivalent measurements to
the registration problem and exploit their Bayesian foundations in [12].

The basic problem can be formulated using a single sensor with measurements
received in incorrect time order [1]. The problem can be stated as follows.

Denoting a “standard” measurement sequence Y k = {y(t1), y(t2), · · · , y(tk)}, the
target “standard” tracking problem reduces to the problem of computing the condi-
tional mean estimate of the target state

(1) x̂(tk|k) ∆= E(x(tk)|Y k)

and its associated error covariance

(2) Pk|k
∆= E[(x(tk)− x̂(tk|k))(x(tk)− x̂(tk|k))′|Y k].

Under the assumption that the initial target state x0 is Gaussian, the conditional mean
estimate x̂(tk|k) of the target state, which is optimal in the minimum variance sense,
can be computed recursively using the Kalman filter (KF). The basic KF algorithm
can be easily extended to multi-sensor systems where the data is assumed to arrive
at known times and in correct time sequence. A key problem arising when dealing
with multiple interconnected sensors with communication links is time delay between
the sensor and tracking computer. This problem can be defined as follows: When a
measurement corresponding to time, τ , expressed as y(τ) arrives at time tk after (1)
and (2) have been computed, one faces the problem of updating the state estimate
and its covariance with the delayed measurement, i.e., to compute

(3) x̂(tτ |k) ∆= E(x(tk)|Y k, y(τ))

and

(4) Pτ |k
∆= E[(x(tk)− x̂(tk|k))(x(tk)− x̂(tk|k))′|Y k, y(τ)].

For the scenario where the delay corresponds to the time between the last two
updates (tk−1 ≤ τ < tk), an optimal solution has been proposed in the filtering
framework by Bar-Shalom[1] where it is also stated that extension to longer time
delays involves some kind of non-standard smoothing. Such an approach was later
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considered by Mallick et al. in [2]. Prior to this, the OOSM problem was solved,
approximately, in [6]. The key difference between the algorithms in [1] and [6] is
the effect of the process noise w on the filtering scheme. Although both consider
the effect of process noise, the optimal solution incorporates the non-zero conditional
mean of the process noise into the filter update equations while the approximate
filter does not. A solution that completely ignores the process noise appeared in [13]
and a numerical comparison between these various approaches was carried out on a
simulated example in [1]. Based on these simulations and the complexity issues in
tracker implementations, it was concluded in [1] that the sub-optimal solution that
assumes the conditional mean of the process noise to be zero provides a good balance
between accuracy and computational complexity especially when data association
issues (e.g., tracking in clutter) are involved. An improved solution to the OOSI
problem in clutter can be found in [14]. The following solutions and algorithms are
proposed in this paper:

• A general Bayesian solution to the OOSM and OOST problems;
• An augmented state Kalman Filter (AS-KF) for tracking with OOSM and

OOST when there is no clutter;
• Computationally efficient versions of the above algorithms like Iterative AS-

KF, Variable dimension AS-KF.

The implementable algorithms like AS-KF and its variants are based on the fixed-
lag smoothing framework developed by Moore and Tam almost 30 years ago [15, 16].
We use this framework with a simple modification to the measurement equation to
cater for the delayed, out-of-sequence information.

The paper is organized as follows. A general Bayesian solution to the OOSM and
OOST problem is considered in Section 2. It is then compared with the existing solu-
tions in the literature in Section 3 . Filtering algorithms involving augmented states
are necessarily computationally intensive. Hence, Section 4 is dedicated to under-
standing the computational issues and presenting alternate, computationally efficient
solutions. Simulation results summarizing the best, worst and realistic performance
of the OOSI fusion algorithms are presented in Section 5. Finally, conclusions are
drawn in Section 6. Most of the detailed derivations are presented in the Appendix.

2. Bayesian Approach to OOSM and OOST Problems. Let x(tk) be the
target state at time tk, Y (τ) be the set of delayed sensor measurements, corresponding
to time τ , and Y k be the set of sensor measurement sequence received up to time tk.

Having processed all the measurements Y k, the complete information about the
target state x(tk) is described by the probability density function p(x(tk)|Y k). The
OOSM problem arises as a consequence of receiving a measurement set Y (τ) at time
tk that corresponds to time τ < tk. The solution to this OOSM problem seeks to
update p(x(tk)|Y k) with Y (τ) to obtain p(x(tk)|Y k, Y (τ)).
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Invoking Bayes rule,

(5) p(x(tk)|Y k, Y (τ)) =
p(Y (τ)|x(tk), Y k)p(x(tk)|Y k)

p(Y (τ)|Y k)
.

Consider the numerator of (5) and introducing the target state at time τ , x(τ),

p(Y (τ)|x(tk), Y k)p(x(tk)|Y k) =
∫

p(Y (τ), x(τ)|x(tk), Y k)p(x(tk)|Y k)dx(τ)

=
∫

p(Y (τ)|x(τ), x(tk), Y k)p(x(τ)|x(tk), Y k)p(x(tk)|Y k)dx(τ).

Since p(x(τ), x(tk)|Y k) = p(x(τ)|x(tk), Y k)p(x(tk)|Y k), we have

p(Y (τ)|x(tk), Y k)p(x(tk)|Y k)(6)

=
∫

p(Y (τ)|x(τ), x(tk), Y k)p(x(τ), x(tk)|Y k)dx(τ).

Substituting (7) back into (5), yields

p(x(tk)|Y k, Y (τ)) =
∫

p(Y (τ)|x(τ), x(tk), Y k)p(x(τ), x(tk)|Y k)dx(τ)
p(Y (τ)|Y k)

=
∫

p(Y (τ)|x(τ), x(tk), Y k)p(x(τ), x(tk)|Y k)
p(Y (τ)|Y k)

dx(τ).

Using the inverse form of Bayes rule

p(x(tk)|Y k, Y (τ)) =
∫

p(x(τ), x(tk)|Y k, Y (τ))dx(τ).(7)

It is thus clear that solving the OOSM problem involves consideration of the joint
density of the current target state and the target state corresponding to the delayed
measurement.

Generalizing this, the OOSM problem involving multiple delays can be stated as
follows: Let the delayed measurements received at time tk be denoted by Y (τ) =
{Y (τ1), Y (τ2), · · · , Y (τd)}, where τi < tk, ∀ i ∈ {1, · · · , d} and τd is the time corre-
sponding to the maximum time delay. Then the solution to the OOSM problem is to
determine the density

p(x(tk)|Y k, Y (τ)) =
∫

x(τ1)

∫

x(τ2)

· · ·
∫

x(τd)

p(x(tk), x(τ1), x(τ2), · · · , x(τd)|Y k, Y (τ))

dx(τ1), dx(τ2), · · · , dx(τd)(8)

which indicates that, in general, the solution involves a Bayes recursion for the joint
probability density of an augmented state vector Xk = [x(tk), x(τ1), · · · , x(τd)]

T , i.e.,

(9) p(x(tk), x(τ1), x(τ2), · · · , x(τd)|Y k, Y (τ)) = p(Xk|Y k, Y (τ)).

Consider a discrete time system where

τ1 = tk−1, τ2 = tk−2, · · · , τd = tk−d
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Note that, in general, the delayed measurement time τ need not correspond exactly
to the times

tk−1, tk−2, · · · , tk−d

i.e., τ might fall within the intervals around tk−i, i ∈ [1, d]. This situation can be
solved by approximating τ = tk. The error caused by this approximation is called the
discretization error. Usually these errors are small in most practical systems.

From Bayes rule, equation (9) becomes

p(x(tk), x(tk−1), · · · , x(tk−d)|Y k, Y (τ))

=
1
δ
p(Y (τ)|x(tk), x(tk−1), · · · , x(tk−d), Y k)p(x(tk), x(tk−1), · · · , x(tk−d)|Y k)(10)

for a normalizing constant δ.
Denoting [x(tk), · · · , x(tk−d)]T as Xd

k, the Bayes recursion for (10) becomes

(11) p(Xd
k|Y k, Y (τ)) =

1
δ
p(Y (τ)|Xd

k, Y k)p(Xd
k|Y k).

If the two densities on the right hand side of (11) are Gaussian, then the posterior
density on the left hand side of (11) is also Gaussian and the solution reduces to a
standard KF with an augmented state [17].

In order to simplify the derivation/implementation of a number of algorithms
proposed in this paper, it is desirable to include the current measurement along with
the delayed measurements even if it is not delayed, and thus the measurement vector
becomes

(12) Yk = [y(tk), y(tk−1), · · · , y(tk−d)]T .

Hence, by changing notation, (11) can be rewritten as

(13) p(Xd
k|Y k−1, Yk) =

1
δ
p(Yk|Xd

k, Y k−1)p(Xd
k|Y k−1).

Equation (13) is a fundamental relationship which leads to the development of the
AS-KF algorithm. Now let us consider the realistic scenario of multi-sensor tracking.
We illustrate the exposition of the Bayesian solution for the case of two sensors. If
yi(tk) is the sensor measurement from sensor i = 1, 2 at time tk, then let Y k

i =
{yi(j) : j = 1, ..., k} be the set of sensor measurements up to time tk generated by
sensor i and Yk(i) be the set of measurements received at time k including the delayed
measurements received at time k, thus

(14) Yi(tk) = [yi(tk), yi(tk−1), · · · , yi(tk−d)]T .

By invoking Bayes’ rule at the central location,

p(Xd
k|Y k

1 , Y k
2 )

= p(Xd
k|Y1(tk), Y2(tk), Y k−1

1 , Y k−1
2 )

=
1

δ12
p(Y1(tk), Y2(tk)|Xd

k, Y k−1
1 , Y k−1

2 )× p(Xd
k|Y k−1

1 , Y k−1
2 ),(15)
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where δ12 is a normalising constant.
Owing to legacy systems or existing trackers and bandwidth constrained commu-

nication links, measurements are usually not available. However, summary of these
measurements (i.e., track estimates) in the form of posterior probability density func-
tions are available as shown in the Figure 1. In such a case track to track fusion at the
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p(x(k)|Y k
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Fig. 1. A distributed sensor fusion scenario.

fusion center can be performed using the augmented state approach as follows. Let
the augmented state at time tk at the fusion center be X(tk) ∆= [x(tk), · · · , x(tk−r)]

T .
Thus, the fusion problem reduces to the problem of finding a solution to the joint
density p(x(tk), · · · , x(tk−r)|Y k

1 , Y k−r
2 ). Using Bayes’ rule, we have

p(x(tk), · · · , x(tk−r)|Y k
1 , Y k−r

2 )

=
1
δ
p(y1(tk), y2(tk−r)|Xd

k, Y k−r−1
2 )

× p(Xd
k|Y k−1

1 , Y k−r−1
2 )

=
1
δ
p(y1(tk)|Xd

kp(y2(tk−r)|X(tk))

× p(Xd
k|Y k−1

1 , Y k−r−1
2 )

=
1
δ∗

p(u1(tk)|Xd
kp(u2(tk−r)|Xd

k)

× p(Xd
k|Y k−1

1 , Y k−r−1
2 )

=
1
δ∗

p(u1(tk), u2(tk)|Xd
k)p(Xd

k|Y k−1
1 , Y k−r−1

2 ),(16)

where δ∗ and δ are normalizing constants. In obtaining the last equation of (16),
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we use the result in (74) obtained in the Appendix. Under Gaussian assumptions,
a solution to (16) can be obtained using the Augmented State Kalman Filter (AS-
KF) structure at the fusion node [3]. Let Y(tk) = [u1(tk), u2(tk−r)]T , be the set
of equivalent measurements received from the two sensors in the network and the
system dynamics involving the augmented past states. The equivalent measurements
are given by

ui(tk) = A−1(tk)b(tk)

=
[
P−1

i (tk|k)− P−1
i (tk|k−1)

]−1

[
P−1

i (tk|k)x̂i(tk|k)− P−1
i (tk|k−1)x̂i(tk|k−1)

]
(17)

Ui(tk) = A−1 =
[
P−1

i (tk|k)− P−1
i (tk|k−1)

]−1

.(18)

Thus, in centralized fusion one uses the combined measurement vector formed by
augmenting the measurements into Y(tk). On the other hand, in distributed fusion
one uses the combined measurement vector formed by augmenting the equivalent
measurements into Y(tk).

3. Implementable Solutions to OOSM Problems.

3.1. OOSM with Single Delay. An exact solution for the OOSM problem
with single delay, proposed in [1] and referred to as the Y-algorithm, considers the
process noise between the time of the delayed measurement and the current time,
and the correlation of the current state with the delayed measurement y(τ). The key
contribution of this approach, when compared to other suboptimal approaches such
as [4, 6, 2], is consideration of the non-zero mean of the process noise which modifies
the expression for the backward predicted state x̂(τ).

3.1.1. Y–Algorithm. This approach assumes that the measurement delay is
less than one sampling period, i.e., tk−1 ≤ τ < tk. Define a joint Gaussian random
variable z(tk)

(19) z(tk) =

[
x(tk)
y(τ)

]
with covariance Pz =

[
Pxx Pxy

Pyx Pyy

]
,

where

(20) Pxx = E[(x(tk)− x̂(tk|k))(x(tk)− x̂(tk|k))T |Y k] = Pk|k,

(21) Pyy = E[(y(τ)− ŷ(τ))(y(τ)− ŷ(τ))T |Y k] = Sτ |k,

(22) Pxy = E[(x(tk)− x̂(tk|k))(y(τ)− ŷ(τ))T |Y k] = PT
yx.
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The solution to the OOSM problem requires the conditional density p(x(tk)|y(τ),
Y k). Using the results in [18], this density is known to be Gaussian with mean

(23) x̂(tk|τ,k) = x̂(tk|k) + PxyP−1
yy (y(τ)− ŷ(τ))

and covariance

(24) P (tk|τ,k) = Pxx − PxyP−1
yy Pyx,

where the backward predicted measurement is expressed as

(25) ŷ(τ) = HτFτ |k[x̂(tk|k)−Qk(τ)HT
τ S−1

τ |k(y(tk)− ŷ(tk|k−1))].

In this expression, Hτ is the observation matrix at time τ , Fτ |k is the system backward
transition matrix1 from tk to τ , the last term, which is ignored in [4, 6, 2], accounts
for the effect of process noise (with covariance Qk(τ)) on the estimate x̂(tk|k).

The cross covariance Pxy in (22) is given by

(26) Pxy = [Pk|k − Pxỹ]FT
τ |kHT

τ ,

where

(27) Pxỹ
∆= Cov{x(tk), wk(τ)|Y k} = Qk(τ)− P (tk|k−1)HT

τ S−1(tk)HτP (tk|k−1).

The Y-algorithm, as pointed out in [1], requires storage of the last innovation and
can be interpreted as a type of non-standard smoothing.

3.1.2. Augmented State Kalman Filter. The OOSM problem with single
delay assumes that the delayed measurement y(τ) is received at time tk in addition
to the current measurement y(tk). Let [x(tk), x(τ)]T be the augmented state. Then
we can easily establish the following equations based on system and measurement
equations,

[
x(tk)
x(τ)

]
=

[
Ftk|τ 0

I 0

][
x(tk−1)
x(τ)

]
+

[
w(tk|τ )

0

]
,(28)

[
y(tk)
y(τ)

]
=

[
Hk 0
0 Hτ

][
x(tk)
x(τ)

]
+

[
v(tk)
v(τ)

]
,(29)

where Ftk|τ is derived from the system dynamic equation, and tk−1 = τ .
The standard KF recursion can then be employed to obtain the augmented state

estimate which is updated using both delayed measurement y(τ) and current mea-
surement y(tk). When there is no delayed measurement, the measurement equation
becomes

(30) y(tk) = Hkx(tk) + v(tk).

1Although τ represents time, it also is used to indicate corresponding time index whenever no

confusion arises.
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In this approach, the correlation of target state and process noise is implicitly handled
as opposed to the explicit handling in the Y-algorithm. In later sections, we show
that this method can be easily extended to problems involving multiple delays and
clutter.

3.2. OOSM with Multiple Delays. When at time tk, multiple delayed mea-
surements corresponding to known previous times, are received, the problem of updat-
ing the current state using these delayed measurements is called the OOSM problem
with multiple delays. Mallick et al. [2] addressed this problem as summarized below
and Mallick’s algorithm is referred to as the M-algorithm.

3.2.1. M–Algorithm. The M-algorithm, proposed in [2, 19], extends the Y-
algorithm, in an approximate way, to account for multiple delays. The key idea of this
approach is to determine the cross covariance of (22) for each delayed measurement
and at each time interval. By expressing the delayed measurement y(τ) as a function
of the current state x(tk), the multiple lag OOSM problem can be solved by computing
the cross covariance Pxy in a recursive manner for each time delayed measurement.
For example, when the delay time τ is more than n sampling intervals, we have

Pxy|n = −Mk−n+1Q(k − n + 1, k; k − n + 1, k)(31)

−
n∑

i=1

Mk−i+1Q(k − i + 1, k − i; k − i + 1, k),

where

(32) Mk−i+1 =

{
Bk, i = 1,

CkCk−1 · · ·Ck−i+2Bk−i+1, i = 2, · · · , n,

(33) Bi = I −KiHi,

(34) Ci = BiFi−1|i

and the covariance of process noise

Q(k − i + 1, k − i; k − i + 1, k)(35)
∆= E{w(k − i + 1, k − i; k − i + 1)wT (k − i + 1, k − i; k − i + 1)}.

Clearly, in the calculation of the covariance in (32), one needs to evaluate the process
noise from the time when measurement delay occurs to the current time and all time
steps in between. One also has to evaluate all corresponding filter gains. The AS-KF
solution presented below does not need to evaluate the process noise explicitly. All
that is needed is an augmented state and the standard KF computing steps.
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3.2.2. Augmented State Kalman Filter for the Multiple Delay OOSM

Problem. For multiple delays, the measurement vector has the form (14), and the
Bayes’ recursion of (13) reduces to the AS-KF with an augmented state Xd

k. The sys-
tem dynamics model using the augmented state can be constructed based on methods
in [20],

Xd
k = FkXd

k + Wk,

Yk = HkXd
k + Vk,(36)

where

(37) Fk =




Ftk|τ 0 · · · 0 0
I 0 · · · 0 0

0
. . . 0

...
...

... 0
. . . 0 0

0 · · · 0 I 0




.

F is the system transition matrix in discrete form, the observation matrix is

(38) Hk =




Hk 0 · · · 0

0 Hτ1 0
...

... · · · . . . 0
0 · · · 0 Hτd




and the noise covariance matrix

(39) Rk =




Rk 0 · · · 0

0 Rτ1 0
...

... · · · . . . 0
0 · · · 0 Rτd




.

The predicted density and the likelihood are given by

p(Xd
k|Yk−1) = N (Xd

k; X̂d
k|k−1,P

d
k|k−1),(40)

p(Yk|Xd
k,Yk−1) = N (Yk;HkX̂d

k|k−1,S
d
k),(41)

and the updated density [17] is given by

(42) p(Xd
k|Yk) = N (Xd

k; X̂d
k|k,Pd

k|k)

with mean and covariance

X̂d
k|k = X̂d

k|k−1 + KkỸk,(43)

Pd
k|k = (I−KkHk)Pd

k|k−1,(44)
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where the innovation is

(45) Ỹk = Yk −HkX̂d
k|k−1

with covariance

(46) Sk = HkPk|k−1HT
k + Rk

and Kalman gain matrix

(47) Kk = Pd
k|k−1H

T
k S−1

k .

Clearly, (40)-(47) are the standard Kalman filter equations for an augmented
state space model. The Augmented State KF for single delay described previously is a
special case. This approach solves the problem of incorporating delayed measurements
and also provides smoothed outputs [20] which are not available in the Y-algorithm
and M-algorithm.

4. Computational Issues. A naive implementation of the AS-KF is computa-
tionally inefficient. Significant computational gains can be achieved by focusing on
some of the key properties of these filters. Based on these observations, we now pro-
pose efficient versions of the AS-KF. First we propose an iterative version of AS-KF,
where the measurements corresponding to different time indices are used one at a
time - not as an augmented measurement vector. The iterative AS-KF is identical to
AS-KF in its optimality and it is more efficient. Then a variable dimension AS-KF
(VDAS-KF) algorithm that augments only the essential past states as opposed to
augmenting all the past states up to a maximum delay is presented. Compared to the
standard AS-KF we expect VDAS-KF to be less accurate as it trades-off some of the
smoothing benefits for reduced computational complexity.

4.1. Iterative AS-KF. Apart from direct computation via the augmented vec-
tor and associated matrix form, the AS-KF can also be implemented in a nested
form, i.e., iteratively computing (43)-(47) using measurements corresponding to dif-
ferent delays independently. This is because the gain matrix is column independent
with respect to the time indices, i.e.,

(48) Kk =
[

Kk Kk−1 · · · Kk−d

]
.

Then, given the measurement set Yk = [y(tk), y(tk−1), · · · , y(tk−d)]T received at
time tk, the update equations of the AS-KF state estimate and its covariance are
given by (43) and (44). These can be simplified into an iterative form given by

X̂d
k|k = X̂d

k|k−1 +
k−d∑

i=k

KiỸi,(49)

Pd
k|k = Pd

k|k−1 −
k−d∑

i=k

KiHiPd
k|k−1,(50)
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where Hi is given by (38) with zero everywhere except for the ith partition component.
Ỹi is the same dimension as Yk but produced by assuming only the ith component
of Yk is received and Ki is the Kalman gain produced using Hi, i.e.,

(51) Ki = Pd
k|k−1H

iT

S−1
k .

The above equations provide an equivalent but efficient implementation of (43) and
(44). The equivalence is shown in [14].

4.2. Variable Dimension Augmented State Kalman Filter. The AS-KF
presented in Section 3 uses an augmented state involving past states up to the maxi-
mum delay. However, augmenting all the past states up to the maximum delay leads
to increased computational complexity. A more efficient solution can be obtained by
adaptively augmenting only essential past states and removing the states that need
not be a part of the augmented state. This variable dimension AS-KF (VDAS-KF) is
considered in this section.

The idea of the VDAS-KF is that the augmented state only carries the current
state and the past state for which there was a missing measurement. The filter will
reduce to a normal Kalman filter if there is no OOSM. The VDAS-KF processes

X(k)

X(k-d)
( )
State Vector
Augmented 

Normal State

X(k)
D

A

B C

Fig. 2. The process of an VDAS-KF

measurements, as shown in Figure 2, in following four cases:
• Case A: Target state is augmented if current measurement is delayed.
• Case B: The augmented state reduces to the standard state vector if the

delayed measurement y(τ) is received and has been processed.
• Case C: The augmented state will keep its dimension unchanged when either

– the delayed data y(τ) has not arrived yet; or
– the delayed data has been received but the current data is delayed.

• Case D: No augmented state (standard KF) if there is no measurement delay.
For all the above cases changes to the state dimension will lead to changes in the
associated covariance matrix.

The VDAS-KF algorithm is computationally more efficient than the standard
AS-KF. However it is more complicated to implement and has comparable tracking
performance and computational load comparable with the Y-algorithm.
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5. Simulation Results. In this section three numerical examples are presented.
Algorithm performance for OOSM and OOST is studied. The tracking performance
is characterized by the Root Mean Square (RMS) error over 500 Monte Carlo runs
for each specific scenario. In Example 1, it is assumed that the OOSM has only one
lag delay. The performance of the Y-algorithm, the VDAS-KF and a two lag AS-KF
are compared. In Example 2, a more general scenario is considered where OOSM
tracking with multiple delays is allowed and the performance is compared between
the M-algorithm and the standard AS-KF. The OOST problem is presented in the
final example, where the performance of the proposed equivalent measurement based
AS-KF is investigated.

Note that the output of an augmented state filter can be taken either from the
first component of the augmented state, or from the last component of the augmented
state. The former involves “filtering ” only and the corresponding algorithm is denoted
using a suffix “F”, while the later involves smoothing and is denoted using a suffix
“S”. For example, AS-KF2-F denotes an AS-KF with 2 lags and its output are taken
from the first component of the augmented state.

5.1. Example 1. This numerical example has been extensively used in many
target tracking algorithm comparisons such as [18, 1, 2, 19], because it involves the
most commonly used motion model in tracking with values of the maneuvering indices
that cover the entire motion range of practical interest.

The discrete time system equation is

(52) x(tk) =

[
1 T

0 1

]
x(tk−1) + v(tk)

where T = 1 is the sampling interval, v(tk) is a zero-mean white Gaussian noise with
covariance

(53) Cov{v(tk)} = Q(tk) =

[
T 3/3 T 2/2
T 2/2 T

]
q

and the observation is given by

(54) y(tk) =
[

1 0
]
x(tk) + w(tk)

where w(tk) is also a zero-mean white Gaussian noise with covariance

(55) Cov{w(tk)} = R(tk) = 1.

Based on the above model, we have developed a 2-dimensional target state model
which is used for simulation. The maneuvering index is defined (in [21]) by

(56) λ =

√
qT 3

R
.
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Table 1

Computational Comparison for Example 1

Pr Y-Algorithm VDAS-KF AS-KF2-F AS-KF2-S

0 1 1 5.57 5.57

0.25 2.26 2.60 5.57 5.57

0.5 2.30 2.68 5.57 5.57

0.75 4.41 5.47 5.57 5.57

Following [1], two cases (process noise q = 0.1, and 4) corresponding to λ = 0.3, and
2 are examined, i.e., the underlying target performs straight line motion, or is highly
maneuvering. Data is generated randomly for each run starting with a initial state

(57) x(0) =
[

200 Km, 0.5 Km/Sec, 100 Km, −0.08 Km/Sec
]
.

A two data point method [18] is used to initialize the filters with

(58) P (0|0) =

[
P0 0
0 P0

]
where P0 =

[
R R/T

R/T 2R/T 2

]

for a priori error covariance or to form the initial error covariance for augmented state.
In this example, we assume that the OOSM can only have a maximum of one lag

delay, and the data delay is uniformly distributed within the whole simulation period
with a probability Pr that the current measurement is delayed.

Figures 3 and 4 show the simulation results for Example 1 where, the perfor-
mance of the Y-algorithm, VDAS-KF and AS-KF2 are compared over 500 runs. A
computational load comparison for these algorithms is listed in Table 1 in terms of
number of floating point operations normalized to that of a standard Kalman filter.

The following observations can be drawn:
1. The Y-algorithm and VDAS-KF have similar RMS error performance within

the whole range of the maneuvering indices.
2. The AS-KF2-F always outperforms both the Y-algorithm and VDAS-KF.

When the probability of measurement delay (Pr) increases, this performance
difference is observed to be greater.

3. The AS-KF2-S (smoothed AS-KF output) is superior to all other methods
tested and has the least RMS error.

4. As shown in Table 1, the computational load of the VDAS-KF is comparable
to the Y-algorithm and the AS-KF algorithm needs twice the computation.

5.2. Example 2. This example is the same as Example 1, except that multiple
delays are allowed for an OOSM. The delayed measurement sequence is generated
randomly by assuming they can be delayed by up to a maximum 3 sampling periods,
i.e., tk − τmax = 3T . The distribution of the delayed measurements is assumed to be
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Fig. 3. RMS performance comparison in the case of a straight line motion target (λ = 0.3)

with single delay OOSM (Pr = 0.25 and 0.5) for 1) Y-algorithm, 2) VDAS-KF, 3) AS-KF2.

uniform in 1, 2, 3 lags with a probability Pr that the measurements at time k will be
delayed.

Simulation results are shown in Figures 5 and 6. It is observed that

1. As shown in Figure 5, for none maneuvering target tracking, both AS-KF4-F
and M-algorithm have similar RMS performance regardless OOSM. In other
words, the OOSM problem is not critical. This can also be seen from Figure
3 in Example 1.

2. AS-KF-F overall outperforms the M-algorithm, while the performance of AS-
KF-S is better than both because AS-KF-S corrects all components of its aug-
mented state vector using each delayed measurement rather than M-algorithm
which can only make a correction to the current state.

3. For maneuvering target tracking (λ = 2), the average RMS error of the M-
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Fig. 4. RMS performance comparison in the case of a highly maneuvering target (λ = 2) with

single delay OOSM (Pr = 0.25 and 0.5) for 1) Y-algorithm, 2) VDAS-KF, 3) AS-KF2.

algorithm is larger than AS-KF4. Such performance difference is large when
the data delay probability (Pr) increases as shown in Figure 6.

4. The computational load of standard 4 lag AS-KF is about 11 times that of
the M-algorithm in the case of Pr = 0.25. While the AS-KF remembers
past states, the M-algorithm needs to compute past gain sequences and non-
standard process noises in order to make a correction to the current state.

The performance of the M-algorithm as presented in [2], is expected to be improved
if the conditional mean of the process noise is appropriately calculated.

5.3. Example 3. In our simulation, the scenario involves two local track nodes
and a central fusion node. The central fusion node always receives track updates from
Tracker 1 in real time. The root mean squared (RMS) error is used to compare the
fusion performance in the following cases:
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Fig. 5. RMS performance comparison in the case of a straight line motion target (λ = 0.3)

with multiple delay OOSM (Pr = 0.25 and 0.5) for 1) AS-KF4-F, 2) AS-KF4-S, 3) M-algorithm.

1. The fusion node receives tracks from both trackers without delay.
2. The fusion node does not receive any tracks from Tracker 2, i.e., it treats the

delayed tracks as missed information.
3. The fusion node receives delayed tracks from Tracker 2, with appropriate

delay in receiving the measurements.
The basic target model is described by a discrete time system

(59) x(tk) =

[
1 T

0 1

]
x(tk−1) + v(tk)

where T = 1 is the sampling interval, v(tk) is a zero-mean white Gaussian process
noise with covariance

(60) Cov{v(tk)} = Q(tk) =

[
T 3/3 T 2/2
T 2/2 T

]
q,
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Fig. 6. RMS performance comparison in the case of a highly maneuvering target (λ = 2) with

multiple delay OOSM (Pr = 0.25 and 0.5) for 1) AS-KF4-F, 2) AS-KF4-S, 3) M-algorithm.

with q = 0.01. The observation model for the sensors is given by

(61) yi(tk) = Hx(tk) + wi(tk), i ∈ 1, 2,

where wi is a zero-mean white Gaussian process with covariance Cov{wi(tk)} = Ri =
1

(62) Cov{wi(tk)} = Ri =

[
1 0
0 1

]
, i ∈ 1, 2.

An initial state

(63) x(0) = [200 km, 0.5 km/s]

is assumed for the tracker of sensor 1 and an initial state of
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(64) x(0) = [100 km,−0.08 km/s]

is assumed for the tracker of sensor 2. The two sensors are separated by about 100 km.

An ASKF is formed at the central fusion node with r states, where r = 4 and
allows for a fixed time delay of 3 steps for the equivalent measurements of sensor 2,
while it assumes no delay for sensor 1. The target state estimate x̂i(tk|k) and its error
covariance Pi(tk|k) are obtained by each tracking node. These are then converted
into the equivalent measurements ui(tk) with variance Ui(tk) using (71) and (72) at
the local nodes and are sent to the central fusion node (the ASKF). The equivalent
measurement sequences from the tracking nodes consist of both position and velocity
components. Thus, the measurement model required by the centralized fusion node
(13) is

[
u1(tk)

u2(tk−r)

]
=

[
H1 0 0 0
0 0 0 H2

]
Xd

k +

[
n1(tk)

n2(tk−r)

]
(65)

where

H1 = H2 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




and n1 and n2 are independent, zero mean, white noise processes with covariances
U1(tk) and U2(tk−r) respectively. The system transition matrix at fusion node is given
by (37).

The results from averaging 1000 Monte Carlo runs is shown in Figure 7. Through
this simulation, the following observations can be made.

1. There is a significant performance gain when tracks are fused, compared to
the one obtained from only one sensor and treating the delayed tracks as lost
tracks.

2. The optimal fusion of a track that has been delayed by three time steps with
an up-to-date track gives a result that is close to that obtained when there is
zero delay.

6. Conclusion. In this paper, we formulate and solve the OOSM and OOST
problems in the Bayesian framework. We establish that the solution involves the joint
probability density of current and past states. Based on this, AS-KF is proposed as
the key building block for solutions to these problems in the linear Gaussian case.
Computationally efficient algorithms, like VDAS-KF are also presented in this paper.
Simulation results are used to demonstrate the effectiveness of these algorithms. The
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Fig. 7. RMS error comparison for an ASKF fusion of two tracks when (1) there are no delays;

(2) track 2 is missing; (3) track 2 has a delay of 3 lags.

performance of the algorithms for the OOSM problem is compared with existing
solutions in terms of RMS errors and computational complexity. There are no existing
solutions to the OOST problem, hence the algorithm performance is evaluated under
varying real-life conditions. The results show that the proposed OOSM solutions are
computationally expensive when compared to some of the existing solutions but are
straightforward to implement and yield significant performance improvements.

7. Appendix.

7.1. Track-to-Track Fusion and Equivalent Measurements. Let x(tk) be
the target state at time tk for a target that is visible to two non-collocated sensors 1
and 2. If yi(tk) is the sensor measurement from sensor i = 1, 2 at time tk, then let
Y k

i = {yi(j) : j = 1, ..., k} be the set of sensor measurements up to time tk generated
by sensor i. At the central location,

p(x(tk)|Y k
1 , Y k

2 ) = p(x(tk)|y1(tk), y2(tk), Y k−1
1 , Y k−1

2 )

=
1

δ12
p(y1(tk)|x(tk), Y k−1

1 ) p(y2(tk)|x(tk), Y k−1
2 )

× p(x(tk)|Y k−1
1 , Y k−1

2 )(66)

=
1

δ12
p(y1(tk)|x(tk)) p(y2(tk)|x(tk))

× p(x(tk)|Y k−1
1 , Y k−1

2 )(67)
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where δ12 is a normalising constant and (67) follows from (66) under the assumption
of white measurement noise. If the network has insufficient bandwidth such that only
track outputs p(x(tk)|Y k

i ), i = 1, 2, rather that sensor outputs p(yi(tk)|x(tk)), i = 1, 2,
can be transmitted to the fusion centre at each processing stage tk, then the fusion
algorithm must carry out track-to-track fusion based only on p(x(tk)|Y k

i ), i = 1, 2.
Since registration is not considered to be a problem here, the target state variable
employed by the fusion algorithm can be identical to that employed by the peripheral
trackers. Thus, at sensor i,

p(x(tk)|Y k
i )) = p(x(tk)|yi(tk), Y k−1

i )

=
1
δi

p(yi(tk)|x(tk)) p(x(tk)|Y k−1
i ), i = 1, 2,(68)

where δi is a normalising constant. This equation together with equation (67) yields

p(x(tk)|Y k
1 , Y k

2 ) =
δ1δ2

δ12

p(x(tk)|Y k
1 )

p(x(tk)|Y k−1
1 )

× p(x(tk)|Y k
2 )

p(x(tk)|Y k−1
2 )

p(x(tk)|Y k−1
1 , Y k−1

2 ).(69)

Thus, at each time tk, the fusion center requires the state estimate and state prediction
from each sensor. Assuming Gaussian distributions,

p(x(tk)|Y k−1
i ) = N [x(tk); x̂i(tk|k−1), Pi(tk|k−1)]

and

p(x(tk)|Y k
i ) = N [x(tk); x̂i(tk|k), Pi(tk|k)]

at sensor i = 1, 2. The quotient of probability density functions from sensor i, for
i = 1, 2, therefore takes the form

p(x(tk)|Y k
i )

p(x(tk)|Y k−1
i )

= Kexp

{
−1

2

[(
x(tk)− x̂i(tk|k)

)T

P−1
i (tk|k)

(
x(tk)− x̂i(tk|k)

)

−
(
x(tk)− x̂i(tk|k−1)

)T

P−1
i (tk|k−1)

(
x(tk)− x̂i(tk|k−1)

)]}

= Kexp

{
−1

2

[
xT (tk)

(
P−1

i (tk|k)− P−1
i (tk|k−1)

)
x(tk)

− 2xT (tk)
(
P−1

i (tk|k)x̂i(tk|k)− P−1
i (tk|k−1)x̂i(tk|k−1)

)

+ x̂T
i (tk|k)P−1

i (tk|k)x̂i(tk|k)− x̂T
i (tk|k−1)P−1

i (tk|k−1)x̂i(tk|k−1)

]}
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= Kexp

{
−1

2

[
xT (tk)A(tk)x(tk)− 2xT (tk)b(tk) + c(tk)

]}

= Kexp

{
−1

2

[(
x(tk)−A−1(tk)b(tk)

)T

A(tk)
(
x(tk)−A−1b(tk)

)

− bT (tk)A−1(tk)b(tk) + c(tk)

]}
,(70)

where

K =
|2πPi(tk|k−1)| 12
|2πPi(tk|k)| 12 .

Denoting

ui(tk) = A−1(tk)b(tk)

=
[
P−1

i (tk|k)− P−1
i (tk|k−1)

]−1

[
P−1

i (tk|k)x̂i(tk|k)− P−1
i (tk|k−1)x̂i(tk|k−1)

]
,(71)

Ui(tk) = A−1 =
[
P−1

i (tk|k)− P−1
i (tk|k−1)

]−1

,(72)

(70) can be rewritten in the form

p(x(tk)|Y k
i )

p(x(tk)|Y k−1
i )

= Kexp

{
−1

2

[(
x(tk)− ui(tk)

)T

U−1
i (tk)

(
x(tk)− ui(tk)

)

− bT(tk)A−1(tk)b(tk) + c(tk)

]}

= K1exp

{
−1

2

[(
x(tk)− ui(tk)

)T

U−1
i (tk)

(
x(tk)− ui(tk)

)]}

= N (
ui(tk); x(tk), Ui(tk)

)

= p(ui(tk)|x(tk)).(73)

Hence,

(74) p(yi(tk)|x(tk)) ∝ p(x(tk)|Y k
i )

p(x(tk)|Y k−1
i )

∝ p(ui(tk)|x(tk)).

The variable ui(tk) in equation (71) is the equivalent measurement vector from
sensor i at time tk and Ui(tk) in (72) is its covariance matrix. These expressions
are identical to the equivalent measurements derived by inverting the Kalman filter
equations when H = I, i.e., when the equivalent measurements are expressed in state
space variables [9]. It may be noted that these equivalent measurements are no longer
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correlated with each other and the target state at the fusion node. Hence they may be
treated as conventional measurements in a standard KF. Substituting equation (73)
into (69), the probability density function at the fusion centre takes the form

(75) p(x(tk)|Y k
1 , Y k

2 ) =
δ1δ2

δ12

[ 2∏
1=1

p(ui(tk)|x(tk))
]
p(x(tk)|Y k−1

1 , Y k−1
2 ).

This is the same as a centralised Kalman filter with equivalent measurements
expressed in state space variables, i.e., u(tk) =

[
uT

1 (tk), uT
2 (tk)

]T is the combined
equivalent measurement vector,

U(tk) =

[
U1(tk) 0

0 U2(tk)

]

is the associated covariance matrix, and H = [I, I]T is the measurement matrix, where
I is the identity matrix with dimension equal to that of the state vector. In other
words, ui(tk) can be expressed in terms of the standard measurements equation

(76) ui(tk) = Ix(tk) + ηi(tk).

This is equivalent to

(77) ui(tk) = [I 0 · · · 0 ]Xd
k + [ηi(tk) 0 · · · 0 ]T .

Thus

(78) p(ui(tk)|x(tk)) = p(ui(tk)|Xd
k).
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