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Abstract. In this paper we consider practical stabilization strategies of scalar linear systems

by means of quantized feedback maps which use a minimal number of quantization levels. These

stabilization schemes are based on the chaotic properties of piecewise affine maps and their perfor-

mance can be analyzed in terms of the mean time needed to shrink the system from an initial interval

into a fixed target interval. We show here that this entrance time grows linearly with respect to the

contraction rate defined as the quotient of the length of the initial and target interval respectively.

Estimations are obtained using denumerable Markov chains arguments.

1. Introduction and problem statement. Control problems where the in-
formation flow between the plant and the controller is an important feature to be
considered in the design, have become very popular in the last few years. See
[1, 2, 5, 6, 7, 12, 13, 14] and the reference therein. Indeed, information flow be-
comes important in situations where a channel with limited information rate has to
be used between the plant and the controller or when the controller needs to be simple
and is only allowed to process a limited number of information per time. We expect
that an information flow constraint will in general degrade the performances of the
feedback loop scheme and we also expect in general a trade-off between performances
and the amount of information exchange allowed in the loop.

The specific problem we consider in this paper is the stabilization problem for a
scalar linear system

(1) xt+1 = axt + ut .

We consider memoryless feedback maps ut = k(xt) which are quantized, namely k is
piecewise constant assuming only a finite number N of values. The number N can be
thought, in this context, as a measure of the flow of information exchanged, at every
time instant, between the system and the controller. The closed loop map

(2) Γ(x) = ax + k(x)

is a piecewise affine map with fixed slope a. As a consequence, if |a| > 1, Γ will always
exhibit local instability so that asymptotic stabilization can not be reached by means
of these type of feedbacks [5]. We here consider a sort of practical stability.
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Definition: Given two intervals J ⊆ I, we say that Γ : R → R is almost (I, J, )-stable
if

1. I is almost-invariant: for almost every x0 ∈ I (with respect to the uniform
probability on I), Γ(x0) ∈ I.

2. J is almost-invariant: for almost every x0 ∈ J , Γ(x0) ∈ J .
3. for almost every x0 ∈ I, there exists an integer t ≥ 0 such that Γt(x0) ∈ J .

A quantized feedback map k : R → R is said to be almost (I, J)-stabilizing if the
corresponding closed loop map Γ is (I, J)-stable.

The reason for the use of ‘almost’ is that in previous works [7, 8] we have also
considered the corresponding stronger definition of (I, J)-stability where the three
properties are asked to hold for every x0. In this paper we will not use this stronger
definition, however we have preferred to maintain the old terminology in order not to
create confusion with these other works.

In this paper we will restrict to the situation when both I and J are symmet-
ric intervals with respect to the 0. Notice that linearity yields the following scaling
property: if k(x) is (I, J)- stabilizing, then, ηk(η−1x) is (ηI, ηJ)- stabilizing. This
observation allows to restrict ourselves to study the almost stabilization problem for
intervals of type I = [−1, 1] and J = [−ε, ε]. The ratio C = 1/ε is called the contrac-
tion rate of the given stabilization scheme.

By varying among all the possible feedback quantized maps k, the closed loop
maps Γ which we obtain are all the possible piecewise affine maps with all branches
having fixed slope a and with only a finite number of discontinuities. From this
observation, it is easy too see [5] that, given any interval I, we can make it almost-
invariant for the closed loop map Γ by means of a quantized feedback map k which
has �|a|� quantization levels inside I and this is the minimal number of quantization
levels needed. Therefore if Γ is almost (I, J)-stable, there will be always at least
�|a|� quantization levels inside J . The real parameter of interest thus become in this
context the number of quantization intervals inside I \ J which, from now on will
always be denoted by N . In [7] it was shown that �|a|� quantization levels inside
I \ J are also sufficient, to achieve almost (I, J)-stability disregarding how large we
have chosen the contraction rate C. These stabilization schemes are based on chaotic
properties of expansive piecewise affine maps.

The performance of a stabilization scheme in this context can be measured
through the entrance time in the target interval J . The first entrance time func-
tion

TJ : I → N ∪ {+∞}

is defined by

(3) TJ(x) = inf{t ∈ N | Γtx ∈ J},
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and by TJ(x) = +∞ if Γtx 	∈ J for all t. The map TJ is almost surely finite if we
have almost (I, J)-stability. Finally, we define

T = E(TJ )

the mean value with respect to the uniform probability density on I. For the sta-
bilization schemes proposed in [7] and using �|a|� levels, we have shown that there
exists a constant K > 0, only depending on the slope a, such that for the chaotic
stabilization schemes previously considered the following bound holds true:

(4) T ≤ KC ln C .

Of course, there exist many others stabilization schemes [8] all having better
performances in terms of the entrance time. There is a scheme, for instance, where T

grows only logarithmically as a function of the contraction rate C, and others where
T is even constant (dead-beat schemes) with respect to C. These higher performances
are paid in terms of number of quantization levels N which, instead of being constant
as in these chaotic schemes, has to grow respectively, logarithmically or linearly in
C. In [8] we have established quit precise bounds showing how this trade-off between
performance and complexity can not be improved. These bounds (in the case when
|a| > 2) actually show a surprising symmetry between T and N and they forecast
that as there exist stabilization schemes with T constant (asymptotically equal to 1
for C → +∞), with a number of quantization levels growing linearly with respect to
C, in the same way there should exist stabilization schemes with a constant number
of quantization levels and entrance time T growing linearly in C. This seems to
indicate that (4) is not tight or, possibly, that there should be stabilization schemes
with the same number of quantization levels but with better time performance. In
the case when a ∈ Z and |a| ≥ 2, we have explicitely constructed such stabilization
schemes in [8]. The main goal of this paper is to extend this construction (with just
the addition of one quantization level) to the case of any a with the condition |a| > 2.
The following is the main result of this paper.

Theorem 1. Let a be such that |a| > 2. Let I = [−1, 1] and J = [−ε, ε] where
0 < ε < 1. Then, there exists a quantized almost (I, J)-stabilizing feedback map
k : I → R with a number of quantization levels inside I \ J , N ≤ �|a|�+ 1. Moreover,
we have the following estimation for the mean entrance time

T ≤ KC,

where K is a positive constant only depending on a (and not on ε) and where C = 1/ε

is the contraction rate.
In the rest of this section we introduce the class of quantized feedback maps

we will consider throughout the paper and we outline the content of the following
sections.
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1.1. Chaotic quantized feedback strategies. Let kI be a quantized feedback
making the interval I almost invariant: there are many possibilities and, as already
mentioned, the minimal number of quantization levels needed is �|a|�. Let ΓI be
the corresponding closed loop map. Let J ⊆ I be another interval which is not in
general invariant by ΓI . Let kJ be another quantized feedback making the interval J

almost invariant and let ΓJ be the corresponding closed loop map. Consider now the
new quantized feedback k(I,J) obtained by amalgamating the previous two, formally
defined by

k(I,J)(x) =

{
kJ(x) x ∈ J

kI(x) x ∈ I \ J

and let Γ(I,J) be the corresponding closed loop map. Clearly, Γ(I,J) leaves both I

and J almost invariant. It is clear that Γ(I,J) is almost (I, J)-stable if and only if
the map ΓI possesses the following property (P): for almost every x ∈ I there exists
an integer t ≥ 0 such that Γt

I(x) ∈ J . Notice that this property (P) only concerns
the map ΓI and the subinterval J . It is not difficult to construct a feedback kI such
that the corresponding map ΓI possess property (P) whatever is J : in [7] there are
explicit constructions of such feedbacks requiring just �|a|� quantization levels. The
construction proposed here uses, in general, one level more, but it has a symmetric
structure which turns out to be very useful in the sequel. Consider the piecewise affine
map

(5) Γ(x) = ax , x ∈ (−|a|−1, |a|−1
)

extended to R by 2|a|−1-periodicity. Notice that Γ(R) ⊆ [−1, 1] so that in particular
[−1, 1] is almost invariant and on it there are only a finite number of discontinuities.
For further use we notice that the continuity partition inside [−1, 1] consists of the
following subintervals:

(6)
Ik = (−|a|−1, |a|−1) + 2|a|−1k , |k| ≤ ko =

⌊
|a|−1

2

⌋
Iko+1 = (|a|−1(1 + 2ko), 1)
I−ko−1 = (−1,−|a|−1(1 + 2ko)) .

Notice that Iko+1 and I−ko−1 do not exist if we are in the situation when a is an odd
integer. It can be shown that this map possesses property (P) for any subinterval
J ⊆ [−1, 1]: this will be a consequence of the considerations done in Section 4.

Notice that the first entrance time map inside J for Γ(I,J), coincides with the first
entrance time map inside J for ΓI (still denoted TJ as the first one). In particular,
they must have the same mean value T = E(TJ). Differently from [7] where we used
the decay of correlation results in [11], in this paper we will use symbolic dynamics and
Markov chains to estimate T . In Section 2 we will introduce the symbolic dynamics
formalism and the denumerable Markov chain associated with the piecewise affine
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maps. This will allow to reformulate the problem in terms of the entrance time for
Markov chains. Section 3 is devoted to a detailed analysis of the spectral properties of
the Markov chain associated to our piecewise affine map. Finally, Section 4 contains
the specific entrance time estimations and the application to the proof of Theorem 1.

2. Symbolic dynamics and Markov chains. We first make some comments
on our definition of quantized map. The feedback map k : R → R is piecewise
constant, more precisely, there exist open disjoint intervals I1, I2, . . . , IN whose union
is dense in R and elements u1, u2, . . . , uN ∈ R such that

k(x) = uj if x ∈ Ij .

We do not define k at the boundary points of the quantization intervals. As a con-
sequence the corresponding closed loop map Γ is also not defined at the boundary
points. To be able to consider powers of Γ we have to restrict ourselves to the subset

Ω = R \
N⋃

j=1

∞⋃
k=0

Γ−k∂Ij

which differs from R for an utmost denumerable set of points. It is clear that for
the type of properties we want to study, almost stability, mean entrance time, it is
completely satisfactory to work with Ω and in the sequel we will always assume that
Γ is evaluated at points in Ω. If the interval I is almost-invariant for the map Γ, we
will write, with little abuse of notation, Γ : I → I. Moreover, if we are only interested
in the behavior of Γ inside I, we will disregard how it is defined outside, and with N

we will denote the number of quantization intervals inside I.
The dynamical and ergodic properties of piecewise affine maps as Γ introduced

in (2) have been extensively studied in the past [10, 4, 11, 3].
Consider a piecewise affine map Γ : I → I (namely I is assumed to be almost-

invariant). Let I0 = {I1, I2, . . . , IN} be the partition of the interval I into the maximal
open subintervals on which Γ is affine (this partition is called the minimal partition).
In the sequel we will need to consider different partitions of I. A partition I of I into
open subintervals is called Γ-compatible if for every A ∈ I we have that Γ is affine on
A. Clearly, Io is Γ-compatible and all other Γ-compatible partitions are obtained by
refining the minimal partition. Starting from a given Γ-compatible partition I, we
can construct other Γ-compatible partitions by defining the so called powers of I as

It = {Ij0 ∩ Γ−1(Ij1 ) ∩ · · · ∩ Γ−t(Ijt) , j0, j1, . . . , jt ∈ {1, 2, . . . , N}} .

Particularly important will be the powers of the minimal partition It
o.

Fix a partition I. With the pair (Γ, I), we can associate the language Σ∗(Γ, I)
which is the subset of I∗ (the set of all finite words over the finite alphabet I)
consisting of all the finite words ω0ω1 · · ·ωn ∈ I∗ such that

ω0 ∩ Γ−1ω1 ∩ · · · ∩ Γ−nωn 	= ∅ .
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Consider now the directed graph with set of vertices Σ∗(Γ, I) and set of edges E
given by

(7) (ω0ω1 · · ·ωn → ω0ω1 · · ·ωnωn+1) ∈ E ⇐⇒ ω0ω1 · · ·ωnωn+1 ∈ Σ∗(Γ, I).

Consider moreover the following labelling ξ on the edges

ξ(ω0ω1 · · ·ωn → ω0ω1 · · ·ωnωn+1) = ωn+1.

Notice that Σ∗(Γ, I) coincides with the set of all the labelled sequences associated
with the finite paths on the graph starting from the empty word ε. We have thus
obtained a Markov representation of our subshift. This representation can be sim-
plified by introducing an equivalence relation on the vertices. With each finite word
ω0ω1 · · ·ωn ∈ Σ∗(Γ, I), we associate its symbolic future

futΣ(ω0ω1 · · ·ωn) = {ω0ω1 · · ·ωk | ω0 = ωn and ω0ω1 · · ·ωnω1 · · ·ωk ∈ Σ∗(Γ, I)}

which is a subset of Σ∗(Γ, I). More roughly, the symbolic future of a word ω0ω1 · · ·ωn

is the set of words whose concatenation with ω0ω1 · · ·ωn is in the language Σ∗(Γ, I).
Consider also the geometric future which is

fut(ω0ω1 · · ·ωn) = Γn(ω0 ∩ Γ−1ω1 ∩ · · · ∩ Γ−nωn) .

The following result is in [3], see [8] for a detailed proof.
Proposition 1. Let ω0ω1 · · ·ωn and ν0ν1 · · · νm be two words in Σ∗(Γ, I). Then

fut(ω0ω1 · · ·ωn) = fut(ν0ν1 · · · νm)

⇐⇒ futΣ(ω0ω1 · · ·ωn) = futΣ(ν0ν1 · · · νm).(8)

Now define XI to be the quotient of the set Σ∗(Γ, I) by the equivalence relation

(9) ω′
0 · · ·ω′

n ≡ ω′′
0 · · ·ω′′

m ⇔ futΣ(ω′
0 · · ·ω′

n) = futΣ(ω′
0 · · ·ω′

m).

The elements of XI will be called states. The symbol 〈ω0ω1 · · ·ωn〉 represent the state
coinciding with the equivalent class associated with the word ω0ω1 · · ·ωn ∈ Σ∗(Γ, I).
The equivalence relation defining XI ensures that any state x has a well defined
geometric future fut(x).

Edges and labels can be naturally redefined on XI to obtain a new labelled graph
which is still a Markov representation of Σ∗(Γ, I) and so with the property that the
labelled sequences associated to the finite paths on this graph, starting from empty
word, correspond to all the possible sequences in Σ∗(Γ, I). Elements in XI will be
denoted, from now on, with bold faces letters like x or y.

We now introduce few notation which will used later on.

x ∈ XI , ν(x) = min{n ∈ N | ∃ω0ω1 · · ·ωn ∈ Σ∗(Γ, I) with x =< ω0ω1 · · ·ωn >}
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XI,P = {x ∈ XI | ν(x) = 1} = {< ω > | ω ∈ I}.

XI,P is called the set of principal states. It will also be useful to consider the transition
matrix associated with the graph over XI : if x and y are in XI , we define txy equal
1 if there is an edge connecting x to y, 0 otherwise.

For the sake of simplicity, whenever the partition I is fixed and clear from the
context, we will use the simplified notation X and XP .

2.1. The canonical Markov chain. Suppose the partition I has been fixed.
We now introduce a transition probability matrix (namely a Markov chain) indexed
by the vertices of X = XI by defining Pxy as the probability that Γ(x) is in fut(y)
assuming that x is uniformly distributed over fut(x). More formally,

Pxy =
P(fut(x) ∩ Γ−1(fut(y))

P(fut(x))
= txy

P(fut(y))
|a|P(fut(x))

,

where P denotes the uniform probability on I. The pair (X, P ) is called the Markov
chain associated with (Γ, I). With a slight abuse of notation with the symbol P we
will also denote the isometric positive operator induced by the Markov chain P :

P : l1(X) → l1(X)

π ∈ l1(X) �→ (Pπ)(y) =
∑
x∈X

π(x)Pxy .

Given any probability measure π on X, we obtain a stochastic Markov process
Xπ

n on X whose finite distributions are

Pπ(Xπ
0 = x0, X

π
1 = x1, · · · , Xπ

n = xn) = π(x0)Px0x1Px1x2 · · ·Pxn−1xn .

π is called the initial probability distribution. From now on, we will speak of Markov
process when the initial probability distribution has been fixed reserving the term
Markov chain for the pair (X, P ).

We now show how the entrance time problem can be reformulated in terms of the
Markov chain. We denote by πu ∈ l1(X) the probability corresponding to the uniform
probability on I, precisely defined as:

πu(< ω >) = P(ω)
πu(x) = 0 if ν(x) > 1 .

Let now J = fut(x) ⊆ I be a subinterval, not necessarily invariant by Γ. Put

XJ = {y ∈ X | fut(y) ⊆ J}.

Notice that

P(Γnx ∈ J) = Pπu(X
πu
n ∈ XJ) .
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Hence, if we denote by TXJ and Tx the first entrance time of the Markov process Xπu

inside, respectively, XJ and {x}, we have that

(10) T = E(TJ ) = Eπu(TXJ ) ≤ Eπu(Tx) .

Our goal will be to estimate the last term in (10) in order to obtain an estimation of
T .

3. The spectral properties of the Markov chain P . In order to be able
to fruitfully use the discrete symbolic viewpoint we first need to recall a number of
concepts from the theory of denumerable chains and to establish a number of specific
results for this particular type of Markov chains.

We refer to [9] for the results that we will use. First we recall few definitions.
Two states x and y are said to be related iff there exist t1 and t2 such that P t1

xy > 0
and P t2

yx > 0. P is said to be indecomposable if any pair of states are related to
each other. Moreover, given two states x and y we denote by H̄xy the probability of
reaching state y at some time t ≥ 1, starting from the initial probability distribution
δx at t = 0, and by Nxy the mean number of times we hit state y, starting from the
initial probability δx, which is the delta probability concentrated on the state x. The
following formula holds true

N =
+∞∑
k=0

P k.

A state x ∈ X is said to be recurrent iff H̄xx = 1, transient otherwise. In a indecom-
posable Markov chain there are only two possibilities: either all states are recurrent,
or all states are transient. In the first case the Markov chain is said to be recurrent.
It can be shown that in the first case Nxy = +∞ for every pair of states, while in the
second case Nxy < +∞ for every pair of states. Moreover in the recurrent case we
have that H̄xy = 1 for every pair of states x and y. Recurrent states can be of two
different types: a state x is said to be positively recurrent if the mean time of its first
return to x is finite, null recurrent if instead it is infinite. Again, in a recurrent inde-
composable chain, either all states are positively or null recurrent. It can be shown
that if P is positively recurrent (namely consisting of positively recurrent states),
then, there exists exactly one invariant probability measure π0 for the Markov chain
P . On the other hand if a Markov chain P admits an invariant probability measure,
then this probability is concentrated on the positively recurrent states; in particular,
if P is indecomposable, then it must necessarily be positively recurrent.

Finally, P is said to be non-cyclic if it is positively recurrent and, moreover, given
any state x, we have that P k

xx > 0 if k is large enough. If P is non-cyclic, we have
convergence to the unique probability measure. Namely, if π is any finite measure,
we have that

lim
n→+∞ ||Pnπ − (π · e)π0||1 = 0,
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where e denotes the sequence in l∞(X) identically equal to 1 and where ( , ) denotes
the usual duality pairing between l1 and l∞.

For finite non-cyclic Markov chains the above convergence is of exponential type
and this yields explicit well known formulas to express the mean first entrance time
into a target state. These formulas can be generalized to the case of denumerable
Markov chains as long as we can recover a type of exponential convergence to the
equilibrium probability measure. This of course would hold if we could prove the
following structure on the spectrum of the operator P : 1 is a simple eigenvalue and
the rest of the spectrum is contained inside a ball of radius r < 1. Unfortunately,
in general P will not have such properties at least on the space l1(X). We will
need to work on a smaller subset and use the spectral theorem of Ionescu-Tulcea and
Marinescu recalled below [4].

Theorem 2. Let (B1, || · ||) and (B2, ||| · |||) be two Banach spaces with B2 ⊆ B1

and B2 dense in B1 (for the norm of B1). Assume also that the unit ball of B2

is contained in the unit ball of B1 and it is compact (for the norm of B1). Let
P : B1 → B1 be a linear bounded operator with ||P || ≤ 1 and P (B2) ⊆ B2 (and
therefore automatically bounded as an operator on B2). Assume moreover that there
is an integer q, a number α ∈ [0, 1[ and a number β > 0 such that

(11) |||P qh||| ≤ α|||h||| + β||h|| ∀h ∈ B2.

Then,
(i) The set σ1 of eigenvalues of P of modulus 1 in B1 is a finite group (in

particular it contains 1). Each of these eigenvalue has a finite dimensional
eigenspace contained inside B2.

(ii) There exist in B2 finite rank operators Qλ for λ ∈ σ and an operator R such
that |||Rn||| ≤ Cγn where C is a positive constant and γ ∈]0, 1[, and such
that for every λ, λ′ ∈ σ1 we have

Qλ ◦ Qλ′ = Qλδλ,λ′ , Qλ ◦ R = R ◦ Qλ = 0,

P =
∑
λ∈σ1

λQλ + R.

An important consequence of the above result is that the spectrum of P in B2

is composed of a finite set of eigenvalues on the unit circle (with finite dimensional
eigenspaces) and of another part contained in a disk of radius smaller than 1.

We now introduce a subspace of l1(X) which will play the role of B2 in the above
theorem. First define, if π ∈ l1(X),

∨
π =

∑
x∈X

|π(x)| ν(x)
P(fut(x))

.
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Now put

BV(X) =
{
π ∈ l1(X) |

∨
π < +∞

}
.

(The reason of the symbol BV(X) is that this space will play the role of the space
of bounded variation functions when the spectral theorem is directly applied to the
piecewise affine maps [10, 4]).

On the subspace BV(X) we can consider the stronger norm |||π||| = ||π||1 +
∨

π.
We have the following result:

Proposition 2. If |a| > 2, then, the triple ((l1(X), || · ||1), (BV(X), ||| · |||), P )
satisfies the assumption of the Ionescu, Tulcea, and Marinescu theorem.

Proof. In the case when X is finite, everything becomes trivial; from now on we
will thus assume that X is countable. We now fix a bijection of X with N: n �→ xn

in such a way that n �→ ν(xn) is increasing. Write

αk =
ν(xk)

P(fut(xk))
.

αk diverges to +∞ for k → +∞. If π ∈ l1(X), we can write

∨
π =

+∞∑
k=1

|π(xk)|αk.

The fact that BV(X) is dense inside l1(X) is obvious since sequences in l1(X)
which are definitely equal to zero, are clearly in BV(X). We now prove that the
embedding of BV(X) inside l1(X) is precompact, namely, that any sequence in BV(X)
which is bounded in the norm ||| · |||, contains a convergent (in the sense of || · ||)
subsequence. Let πn be a sequence in BV(X) such that |||πn||| ≤ M for all n. Since,
in particular, πn is bounded in the norm ||·||, a standard diagonal technique shows that
there exist a subsequence πnh

converging to some sequence π, pointwisely, namely,
for any k ∈ N we have that limh→+∞ πnh

(xk) → π(xk). From now on, for the sake of
simplicity of notation we will denote nh as n. It is easy to see that

∨
π =

+∞∑
k=1

|π(xk)|αk ≤ M

so that, in particular, π ∈ BV(X). Notice now that

(12)

+∞∑
k=N

|πn(xk) − π(xk)| =
+∞∑
k=N

|πn(xk)−π(xk)|αk

αk

≤
[
sup
k≥N

1
αk

]
+∞∑
k=N

|πn(xk) − π(xk)|αk

≤
[
sup
k≥N

1
αk

]
2M.
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Fix now ε > 0 and choose N in such a way that the last term in (12) is smaller than
ε/2. Then choose n0 ∈ N such that

N−1∑
k=1

|πn(xk) − π(xk)| < ε/2 ∀n ≥ n0.

This implies that

+∞∑
k=1

|πn(xk) − π(xk)| < ε ∀n ≥ n0.

Finally we need to prove inequality (11). Notice that

P q
xy = tqxy

P(fut(y))
|a|qP(fut(x))

.

Let π ∈ BV(X). We have that

(13)

∨
Pπ =

∑
x∈X

|(Pπ)(x)| ν(x)
P(fut(x))

≤ ∑
x∈X

∑
y∈X

|π(y)|tyx
P(fut(x))

|a|P(fut(y))
ν(x)

P(fut(x))

= 1
|a|
∑

y∈X

|π(y)|
P(fut(y))

∑
x∈F(y)

ν(x),

where

F(y) = {x ∈ X : tyx = 1} .

Put

δ = min
A∈I

P(A)

and recall that N is the cardinality of I. Fix moreover ν ∈ N and define

(14)

Xo = {y ∈ X | ν(y) ≤ ν}

X′ = {y ∈ X \ Xo | P(fut(y)) < δ/|a|}

X′′ = {y ∈ X \ Xo | P(fut(y)) ≥ δ/|a|}

Notice now that all the elements x ∈ F(y) will satisfy the condition ν(x) = 1 with
exception of utmost two of them for which it will however hold ν(x) ≤ ν(y) + 1.
Moreover, if y ∈ X′, then, |F(y)| ≤ 2. With these considerations we can now continue
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the estimation (13):

1
|a|
∑
y∈X

|π(y)|
P(fut(y))

∑
x∈F(y)

ν(x)(15)

=
1
|a|

⎡
⎣ ∑

y∈Xo

|π(y)|
P(fut(y))

∑
x∈F(y)

ν(x) +
∑
y∈X′

|π(y)|
P(fut(y))

∑
x∈F(y)

ν(x)

+
∑

y∈X′′

|π(y)|
P(fut(y))

∑
x∈F(y)

ν(x)

⎤
⎦

≤ 1
|a|

⎡
⎣N(ν + 1) max

y∈X o
I

1
P(fut(y))

∑
y∈Xo

|π(y)| +
∑
y∈X′

|π(y)|
P(fut(y))

(2ν(y) + 2)

⎤
⎦

+
1
|a|

⎡
⎣ ∑

y∈X′′

|π(y)|
P(fut(y))

(2ν(y) + 2) +
|a|
δ

N
∑

y∈X′′
|π(y)|

⎤
⎦

≤ 2(1 + 1/ν)
|a|

∨
(π) + N

(
1
δ

+
ν + 1
|a| max

y∈Xo

1
P(fut(y))

)
||π||1

=
2(1 + 1/ν)

|a| |||π||| + N

(
1
δ

+
ν + 1
|a| max

y∈Xo

1
P(fut(y))

)
||π||1.

To complete the proof it is now sufficient to notice that since |a| > 2, then there
exists ν ∈ N such that

2(1 + 1/ν)
|a| < 1 .

In the case when 1 is a simple eigenvalue and there is no other eigenvalue on
the unit circle, the decomposition of the transition probability operator P assumes a
particular simple form. The projection operator Q1 on the subspace generated by π0

takes the form Q1π = (π · e)π0. We thus have

P = Q1 + R,

where

|||Rn||| ≤ Cγn

for some C ≥ 0 and γ ∈ [0, 1[. This implies that, if π ∈ BV(X), we have that

|||Pnπ − Q1π||| ≤ Cγn|||π||| ,

namely, exponential convergence to the invariant measure.
Non-cyclicity is the property needed to have such a spectral structure:
Proposition 3. Assume that the Markov chain is non-cyclic. Then, there exists

exactly one π0 ∈ BV(X) which is a probability measure and such that Pπ0 = π0.
Moreover, P does not have any further eigenvalue on the unit circle.
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Proof. First part follows from previous considerations on non-cyclic Markov
chains. To prove the last assertion, recall that Pnπ → Q1π in norm l1 for every
π ∈ l1(X). This immediately shows that there can not be either eigenvalues of norm
equal to 1.

4. Expected entrance times for non-cyclic Markov chains. Consider the
Markov chain (P,X) associated with (Γ, I). Assume the Markov chain to be non-
cyclic. Let π ∈ BV(X) and let Xn = Xπ

n be the Markov process on the set of states
X with initial distribution π as defined above. Let x ∈ X be a fixed target state. We
want to give estimations of Eπ(Tx).

It follows from Proposition 3 and previous considerations that there exists a one-
dimensional projection operator Q1 : l1(X) → l1(X) defined by Q1π = (π ·e)πo where
π0 is the only invariant probability measure for P (with π0(x) > 0 for every x ∈ X),
numbers C > 0 and γ ∈ (0, 1) such that for every π ∈ BV(X) we have

(16) |||Pnπ − Q1π||| ≤ Cγn|||π||| ∀n ∈ N.

Standard considerations show that, if π ∈ BV(X), then

(17) Eπ(Tx) =

+∞∑
n=0

[Pn
xx − π0(x)] −

+∞∑
n=0

[(Pπ)n
x − π0(x)]

π0(x)
.

It follows from (16) that the numerator of (17) can be bounded above by

c

1 − γ
(|||δx||| + |||π|||) .

On the other hand, we have that

|||δx||| ≤ ν(x)
P(futx)

+ 1

(we recall that δx is the probability measure concentrated on the state x). We thus
obtain

Eπ(Tx) ≤
c

1 − γ

[
ν(x)

P(fut(x)
+ 1 + |||π|||

]
π0(x)

.

The above formula presents a number of problems: in particular, it is not clear if the
numerator can be bounded by a constant. To overcome these difficulties we will take
a slightly different road and we will work with the family of Markov chains associated
with the family of partitions Ir+1 and we will concentrate on particular subsets of
their respective principal states. It can be shown that the set of states XIr+1 can be
identified with the subset of Xr+1

I consisting of the (r + 1)-uples (x0, . . . ,xr) such
that the word x0 · · ·xr ∈ Σ∗(Γ, I), equivalently such that

fut(x0) ∩ Γ−1(fut(x1) ∩ · · · ∩ Γ−r(fut(xr) 	= ∅)).
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Moreover, we have that

fut(x0, . . . ,xr) = fut(x0) ∩ Γ−1(fut(x1)) ∩ · · · ∩ Γ−r(fut(xr)) .

The transition probability is given by

(18) P(x0,...,xr) , (y0,...,yr) =

{
Pyrxr if xk = yk+1 k = 0, . . . , r − 1
0 otherwise.

It is a standard fact that this new Markov chain is still non-cyclic. If π ∈ l1(X), define
π(r) ∈ l1(Xr+1) by

π(r)(x0, . . . ,xr) = π(x0)Px0x1Px1x2 · · ·Pxr−1xr .

It is easy to see that the unique invariant probability measure is given by π
(r)
0 . More-

over, we have that

BV(Xr+1) = {π(r) ∈ l1(Xr+1) | π ∈ BV(X)} .

Fix now as initial probability measure π(r). The associated Markovian process Xπ(r)

n

is simply the (r + 1)-th power of the Markovian process Xn. Namely,

Xπ(r)

n = (Xπ
n , Xπ

n+1, . . . , X
π
n+r).

Fix

x = (x0,x1, · · · ,xr) ∈ Xr+1 .

We will still have exponential convergence to the invariant probability measure so
that we can use the same formula (17) to calculate the expected entrance time of the
Markov process Xπ(r)

n in the state x. We obtain

(19) Eπ(r)(Tx) =

+∞∑
n=0

[(
P (r)

)n

xx
− π

(r)
0 (x)

]
−

+∞∑
n=0

[(
P (r)

)n

π(r))x − π
(r)
0 (x)

]
π

(r)
0 (x)

.

Simple algebraic manipulation permits to transform (19) into

(20)

Eπ(r)(Tx) =

r−1∑
n=0

[(
P (r)

)n

xx
− π

(r)
0 (x)

]
−

r−1∑
n=0

[(
P (r)

)n

π(r))x − π
(r)
0 (x)

]
π

(r)
0 (x)

+

+

+∞∑
n=0

[
Pn

xrx0
− π0(x0)

]− +∞∑
n=0

[(Pnπ)x0 − π0(x0)]

π0(x0)

≤

r−1∑
n=0

(
P (r)

)n

xx

π
(r)
0 (x)

+

+∞∑
n=0

[
Pn

xrx0
− π0(x0)

]− +∞∑
n=0

[(Pnπ)x0 − π0(x0)]

π0(x0)
.
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We will assume that the state x belongs to the following subclass of principal states:

X(r+1)
P = {(x0,x1, · · · ,xr) ∈ Xr+1 | x0,xr ∈ XP , Pxh,xh+1 > 0 h = 0, . . . , r − 1} .

Define

δ1 = min{π0(x0) | x0 ∈ XP } δ2 = min{P(fut(x0)) | x0 ∈ XP }.

We then obtain, using (16), that the second fraction in (20) can be bounded by a
constant only depending on π as follows∣∣∣∣∣∣∣∣∣∣

+∞∑
n=0

[
Pn

xrx0
− π0(x0)

]− +∞∑
n=0

[(Pnπ)x0 − π0(x0)]

π0(x0)

∣∣∣∣∣∣∣∣∣∣
≤ C

δ1(1 − γ)
[
δ−1
1 + 1 + |||π|||] .

It remains to be shown that the numerator of the first fraction can also be bounded
by a constant. In order to see this, we first need to develop some combinatorics. Given
a vector (x0,x1, · · · ,xr) ∈ Xr+1, we define the set of its periods as

Q(x0,x1, · · · ,xr) = {n ∈ N \ {0}; | xn+k = xk, k = 0, . . . , r − n}.

If Q(x0,x1, · · · ,xr) is empty, we will say that the vector is aperiodic. If it is not
empty, we define the first principal period as

n1 = minQ(x0,x1, · · · ,xr).

A vector having principal period equal to n1 consists of s1 equal consecutive blocks
of length n1:

(21) (x0,x1, · · · ,xn1−1)

and an eventual final one of length r1 < n1:

(22) (x0,x1, · · · ,xr1−1) .

We thus have

r = s1n1 + r1, r1 < n1 .

Clearly,

{n1, 2n1, . . . , s1n1} ⊆ Q(x0,x1, · · · ,xr).

Consider now the last block (22) and let n2 be its first principal period. We will have

r1 = s2n2 + r2, r2 < n2.
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Going on in this way, we finally determine positive integers, n1, n2, . . . , nl (called prin-
cipal periods) and s1, s2, . . . , sl called multiplicities) having the following properties:

(23) 0 ≤ r −
k∑

j=1

sjnj < nk, k = 1, . . . l

(24) Q(x0,x1, · · · ,xr) =

⎧⎨
⎩

k−1∑
j=1

sjnj + snk | 1 ≤ k ≤ l 0 ≤ j ≤ sk

⎫⎬
⎭ .

Notice that in (24) for k = l we may have equality or strict inequality: this last case
happen when, following the procedure above illustrated, at a certain point we end up
with an aperiodic block. We are now ready to begin the estimation of the numerator
of the first addend of (20). Assume that x = (x0,x1, · · · ,xr) has principal vectors
n1, n2, . . . , nl and multiplicities s1, s2, . . . , sl. We then have

(25)
r−1∑
n=0

(
P (r)

)n

xx
=
∑
n∈P

(
P (r)

)n

xx
=

l∑
k=1

sk−1∑
j=0

(
P (r)

)(k−1∑
i=1

sini+jnk

)

xx
.

We now need to estimate the right hand side inner summation. Notice that, if j > 0,

(26)
(
P (r)

)jn1

xx
≤

⎧⎪⎪⎨
⎪⎪⎩

Pn1−r1+1
xrx0

(
Pn1

x0x0

)j−1
P r1

x0xr
, if r1 > 0

Pxrx0

(
Pn1

x0x0

)j−1
Pn1

x0xr
, if r1 = 0.

More generally, we obtain, if j > 0,
(27)

(
P (r)

)(k−1∑
i=1

sini+jnk

)

xx
≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Pnk−rk+1
xrx0

(
Pnk

x0x0

)j−1

P rk

x0xr

(
P (r)

)
(

k−1∑
i=1

sini

)

xx , if rk > 0

Pxrx0

(
Pnk

x0x0

)j−1

Pnk

x0xr

(
P (r)

)
(

k−1∑
i=1

sini

)

xx , if rk = 0

Therefore,

(28)
sk−1∑
j=0

(
P (r)

)(k−1∑
i=1

sini+jnk

)

xx
≤
⎡
⎣αk

sk−2∑
j=0

(
Pnk

x0x0

)j

+ 1

⎤
⎦(P (r)

)(k−1∑
i=1

sini

)

xx
,

where

(29) αk =

⎧⎪⎨
⎪⎩

Pnk−rk+1
xrx0

P rk

x0xr
, if rk > 0

Pxrx0P
nk

x0xr
, if rk = 0.
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In any case we can estimate αk as follows

(30) αk ≤ Pnk+1
x0x0

.

By induction, using (25) and (28), we thus obtain

r−1∑
n=0

(
P (r)

)n

xx
≤
⎡
⎣1 + α1

s1−2∑
j=0

(
Pn1

x0x0

)j

+ α1

(
Pn1

x0x0

)s1−1

⎡
⎣1 + α2

s2−2∑
j=0

(
Pn2

x0x0

)j
+ α2

(
Pn2

x0x0

)s2−1
[· · · ]

⎤
⎦
⎤
⎦ .(31)

We now make use the following simple lemma.
Lemma 1. There exists q ∈ (0, 1) such that

Pn
x0,x0

< q, ∀n ≥ 1, ∀x0 ∈ XP .

Proof. Notice that Pn
x0,x0

→ π0(x0) < 1 for any x0 ∈ XP . Hence, if we fix

q ∈ (max{π0(x) | x ∈ XP }, 1)

we have that, if n is sufficiently large,

Pn
x0,x0

< q ∀x0 ∈ XP .

Notice now that if Pn
x0,x0

= 1 for some i and some n ≥ 1, then, P kn
x0,x0

= 1 for every
k ∈ N and this is impossible for previous considerations. This implies the result.

We are now ready to prove the key result.
Proposition 4.

r−1∑
n=0

(
P (r)

)n

xx
≤ (1 − q)−1, ∀x ∈ X(r)

P .

Proof. Since αk < q and Pnk

x0x0
< q for every k, it follows from (31) that

r−1∑
n=0

(
P (r)

)n

xx
≤

s1−1∑
j=0

qj + qs1

⎛
⎝s2−1∑

j=0

qj + qs2 [·]
⎞
⎠ .

It remains to be shown that the above right hand side expression in q is smaller
than (1 − q)−1. This can be proven by induction on l. Call β(s1, · · · , sl) the above
expression. If l = 1 we have that

β(s1) =
s1∑

j=0

≤ (1 − q)−1

Assume it to hold for l − 1 and notice that

β(s1, · · · , sl) =
s1−1∑
j=0

qj + qs1β(s2, · · · , sl) ≤ 1 − qsk

1 − q
+ qsk

1
1 − q

=
1

1 − q
.
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We thus obtain the following result.
Corollary 1. For every π ∈ BV(X), there exist constants A, B > 0 such that

Eπ(r)(Tx) ≤ A

π
(r)
0 (x)

+ B

for every x ∈ X(r)
P and for every r. Moreover, A can be chosen to be independent of

π, while B can be chosen of the type B = B1 + B2|||π||| with B1 and B2 constants
independent of π.

4.1. Proof of the main Theorem. As a concrete application of the bound we
have found, we now prove Theorem 1.

Consider the piecewise affine map Γ on [−1, 1] defined in (5). Let (X, P ) be the
Markov chain associated with Γ and with the canonical partition. The principal states
< Ik > with |k| ≤ ko will be called central states; notice that from any central state
there is a non-zero probability edge to any other principal state.

We now prove the following result.
Proposition 5. If |a| > 2, the Markov chain (X, P ) associated with Γ on [−1, 1]

and with the canonical partition is non-cyclic.
Proof. First, we show that given any x1 ∈ X, there is a non-zero probability path

in the direct graph on X which connects the state x1 to a central state. Notice that if
there are more than two edges exiting x1, then, from the one-dimensional structure of
Γ, it follows that one of them will surely lead to a central state. If there are one or two
exiting edges, then for sure we can find a state x2 such that x1x2 is a possible path and
fut(x2) ≥ (|a|/2)fut(x1). Since |a| > 2, it easily follows, by an inductive argument,
that there must be a path in the graph x1x2 · · ·xn with xn central state. Notice now
that, since from xn we can reach in one step every other principal state and since by
definition any state is reachable in a finite number of steps by some principal state
it follows that the chain is indecomposable. Moreover, since P k

xn,xn
> 0 for every

k ∈ N and there exists m ∈ N such that P k
xn,x1

> 0. We obtain that P k
x1,x1

> 0 for
every k ≥ n + m. To prove that the chain is non-cyclic it only remains to be proven
that it is positively recurrent. Since, invariant probability measures surely exist, it
is actually sufficient to prove that it is recurrent. This will be done by showing that
Nx,y = +∞ for any pair of states x,y ∈ X (we recall that the matrix N has been
defined in Section 3). Recall the decomposition

P =
∑
λ∈σ1

λQλ + R.

Since σ1 is a finite group, we have that there exists n0 ∈ N such that

P kn0 = Q + Rkn0 , ∀k ∈ N,
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where we have posed

Q =
∑
λ∈σ1

Qλ .

Fix any pair of states x0,y0 ∈ X such that Qx0,y0 	= 0 . We thus obtain

lim
n→+∞

n∑
k=0

P kn0
x0,y0

= lim
n→+∞[(n + 1)Qx0,y0 + Rkn0

x0,y0
] = ∞.

This implies that necessarily

Nx0,y0 = lim
n→+∞

n∑
k=0

P k
x0,y0

≥ lim
n→+∞

n∑
k=0

P kn0
x0,y0

= +∞ .

Hence, Nx0,y0 = +∞. Since the chain is indecomposable, it follows that Nx,y = +∞
for any x,y ∈ X. This completes the proof.

Consider now the principal state < I0 > and notice that ΓI0 ⊇ I0. Hence, the
(r + 1)-uple < I0 >< I0 > · · · < I0 > is in X(r+1)

P . Notice moreover, that

fut(< I0 >< I0 > · · · < I0 >) = I0 ∩ Γ−1(I0) ∩ · · · ∩ Γ−r(I0)

=
(
−|a|−(r+1), |a|−(r+1)

)
.

Using Corollary 1, we obtain

E(T(−|a|−(r+1),|a|−(r+1))) ≤ E
π

(r)
u

(T<I0><I0>···<I0>) ≤ A

π
(r)
0 (<I0><I0>···<I0>)

+ B

= A
π0(<I0>)(P<I0><I0>)r + B = A

π0(<I0>)|a|−r + B.

Fix now any ε > 0 and choose

r =
⌊

ln ε−1

ln |a|
⌋

.

Clearly,
(−|a|−(r+1), |a|−(r+1)

) ⊆ (−ε, ε) and

E(T(−ε,ε)) ≤ E(T(−|a|−(r+1),|a|−(r+1))) ≤ A
π0(<I0>)|a|−r + B

≤ A

π0(<I0>)|a|−
ln ε−1
ln |a| +1

+ B = A
π0(<I0>)|a|

1
ε + B .

Corollary 1 shows that A and B only depend on the Markov chain P but not on ε.
From this, Theorem 1 immediately follows.
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