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FINDING REAL RATIONAL WEIGHTING FUNCTIONS FOR

ROBUST CONTROL ANALYSIS AND DESIGN; CONNECTIONS TO

BOUNDARY INTERPOLATION AND CIRCUIT SYNTHESIS∗

ROBERT R. BITMEAD†

Abstract. We consider the problem of generating a matrix transfer function with prescribed

strict bistability, biproperness, and positivity properties from a sequence of positive definite sample

values at points on the frequency axis. We show how this arises in problems from multi-input/multi-

output control analysis and design. This is a matrix interpolation problem with additional conditions,

both on the nature of the data and the function class of the interpolant solution. The main result

is to establish that it is always possible to find a solution to this problem, which has import for

the validity of using sampled experimental data in determining non-conservative multi-input/multi-

output stability margins via weighting functions. The full class of solutions in presented. The

methods of the paper make strong contact with matrix Nevanlinna-Pick interpolation theory and

with circuit theory, notably the methods of multi-port circuit synthesis.

1. Introduction. The problem addressed in this paper is to find a matrix trans-
fer function, W (z), of a complex variable z which interpolates given positive defi-
nite values, {Wk}, for a sequence of pure-imaginary data points {zk = jωk : k =
1, . . . , N}. The conditions on W (z) are that it should be strictly stable (all poles in
Re[z] < −α < 0), possess an inverse which is also strictly stable, have both limits
W (∞) and W−1(∞) positive definite, have positive definite real part for all z = jω,
and interpolate W (zk) = Wk. The requirement to find such a matrix interpolant
stems from a problem in robust stability, presented in Section 2, where the data
{zk,Wk : k = 1, . . . , N} arise from the experimental determination of the (general-
ized) stability margin of a multi-input/multi-output (MIMO) plant-controller closed
loop. Then W (z) represents the matrix weighting function required to determine non-
conservative estimates of the margin in the MIMO case. It is interesting to note that,
while the interpolation problem is meaningful, this weighting function problem does
not possess a scalar (SISO) counterpart because (as will be explained) the weight-
ing functions commute around the loop and then cancel in that case. An equivalent
MIMO weighting function calculation is applied in some approaches to µ-synthesis
control design [25] and to the development of circuit approximations [15, 24]. The
main result of this paper is that a family of such solutions W (z) always exists for this
data set. This is important because it establishes that computing sampled positive
definite weighting function values at a collection of frequencies always admits the ex-
istence of an underlying complete transfer function positive for all frequencies. Thus
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no incipient problems (akin to phase-wrapping between samples in the SISO case) are
introduced by the sampling.

The approach taken is to explore in some detail how this problem may be mapped
into the realm of Nevanlinna-Pick interpolation theory. Particularly, the books of Ball,
Gohberg and Rodman [7] and Bolotnikov and Dym [11] will be used to present the full
set of solutions to the interpolation problem when posed for points zi in the open right
half plane. A simple invertible mapping of the complex plane is amenable to convert
our interpolation problem on the imaginary axis to a related matrix Nevanlinna-Pick
problem. The positivity property of the interpolants then permits the linkage to
(strictly) positive real functions from circuit theory. This is exploited in developing
the solutions and in demonstrating that these solutions always exist for our data sets.
This should be compared to the related but more difficult problem of interpolation
of general not-necessarily-positive-definite matrix values with unit matrix transfer
functions (i.e. stable, stably invertible and biproper but without positivity) treated
in the scalar case by Dorato, Park and Li [19] and by Prasanth [35] in the matrix
case, where a solution is not always guaranteed to exist.

Drawing together these ideas from interpolation and circuit theory leads to a brief
analysis of the connections between circuit synthesis and interpolation, both in the
scalar case and in the matrix case. This is of interest because the scalar problems of
interpolation with positive real functions, circuit synthesis via reactance extraction,
and interpolation with units, all are linked through the appearance of a deflation
algorithm which yields lower-order problems by removing one point of interpolation.
In the matrix case, while both interpolation and circuit synthesis have been well
developed, it is not apparent how one might search for equivalent deflation methods.

1.1. Connection to the works of Brian D.O. Anderson. Brian Anderson
has been a pioneering figure in the fields of Circuit Theory, Control Systems, Signal
Processing and many related areas of tangency, intersection and parallel direction (to
borrow from Alan Willsky). A major factor in his influence over these very broad
domains is his capacity to identify the abstract connections and threads underpinning
all of these fields. Thus, he has been central in bringing passivity ideas to control
and stability and in porting (pun intended) state-space methods into circuit theory,
notably in matrix n-port analysis and synthesis. His skill is not just in spotting the
connections but in using them to bring into play sophisticated machinery, which helps
to demystify the subject and empower the user. This is nowhere more apparent than
in his work with John Moore in Kalman Filtering. As a student of Brian from 1976 in
Newcastle to the present day, I arrived after his heyday in circuit synthesis. Although,
my first paper with him was on Lossless Positive Real (LPR) matrix transfer func-
tions [10]. We have enjoyed joint and parallel publications mostly in control, signal
processing and estimation since then. I was drawn to Brian’s chapter [2] tying the
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Brune Synthesis, formulated by Otto Brune in 1931 [13] and “to whom we owe much
in the development of synthesis procedures” to quote Guillemin [23], to the solution
of difficult Riccati equation problems in control using the methods of Hamiltonian
matrices, spectral factorization and the synthesis approach of deflation. This wide-
ranging trawl across disciplines is indicative of the scope of his knowledge and impact.
Accordingly, I have chosen to seek to knot together the requirements of a problem
arising in robust control based on experimental data – a subject of Brian’s current
interest [16] – matrix interpolation theory, and the methods of circuit synthesis, with
their genesis ten years before Brian’s own appearance.

2. Robust control and the weighting matrix problem statement. Robust
stability analysis for MIMO control systems proceeds by building on SISO systems the-
ory concepts of margins associated with; gain, phase, modulus, or delay. A quantified
theory of robust stabilization and performance in the face of uncertainty [46, 37, 20]
associates scalar metrics of weighted matrix transfer functions. These metrics cap-
ture, in a scalar form, nominal design properties and known or presumed properties
of the uncertainty of the system. An archetypal scalar robust stability calculation
of this form is the generalized stability margin and ν-gap metric of Vinnicombe [39].
Another example is µ-synthesis and robust performance [46].

In order to ameliorate the conservatism and signal unit selection issues of de-
riving scalar measures from MIMO designs, weighting function matrices which scale
the signal magnitudes may be inserted into the calculations as illustrated in Fig-
ure 2.1. Evidently, the two loops are identical and possess the same stability and

Fig. 2.1. Two equivalent MIMO feedback loops with identical stability and internal stability

properties, provided weighting transfer function matrices, Wi and Wo, are stable and stably invert-

ible.

internal stability properties provided the input and output scaling/weighting matrix
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transfer functions, Wi(z) and Wo(z) respectively, are stable and stably invertible.
This is termed bistability. The analysis in this paper considers the selection of these
weighting matrix transfer functions, given the frequency-by-frequency specification of
their values and subject to bistability and biproperness, the boundedness of both the
transfer function and its inverse as z tends to infinity. The aim is to move from the
specification of the pointwise matrix frequency response values to the specification of
the full bistable biproper transfer function. We shall follow [30] for this issue with
the generalized stability margin. For µ-synthesis, an equivalent problem formulation
arises, see [25].

The genesis of the problem for the author lies in the certification process for air-
craft jet engine-controller pairs, where (often a new) engine is tested with its (new)
controller with the intention of verifying that the couple operates sufficiently robustly
to accommodate (future) fleet variability due to manufacturing, wear-and-tear, refur-
bishment, operating regime, etc. of engines yet to be. Normally, for SISO systems,
this is performed using specifications on the gain and phase margins measured exper-
imentally on the engine-controller combination [4]. The measurement is performed
using frequency response analysis from a closed-loop experiment with broadband ex-
citation. In the MIMO case, the replacement for the gain or phase margin is not
immediately apparent, although we advance a natural candidate immediately be-
low. What does remain is the dependence of engine-controller certification on the
experimental measurement of closed-loop (matrix) frequency response values taken
at frequencies sampled from the continuum of possible values. The introduction of
frequency-by-frequency optimized weighting matrices dramatically reduces the con-
servatism of the MIMO margin calculation, in some examples by as much as four
orders of magnitude, yielding workable values. This should be borne in mind as the
presentation develops, since it provides contact with the practical needs underpinning
the theoretical analysis.

The generalized sensitivity function of MIMO plant-controller pair (P,C) is de-
fined as

(2.1) T (P,C, z) =

[
P (I + CP )−1C P (I + CP )−1

(I + CP )−1C (I + CP )−1

]
.

For an m × p plant P (z) and corresponding p ×m controller C(z), T (P,C, z) is an
(m + p) × (m + p) transfer function matrix. When scaling is introduced via Wi(z)
(p× p) and Wo(z) (m×m), an altered generalized sensitivity function is produced;

(2.2) T (WoPWi,W
−1
i CW−1

o , z) =

[
Wo 0
0 W−1

i

]
T (P,C, z)

[
W−1

o 0
0 Wi

]
,

The frequency-dependent generalized stability margin for the pair (P,C) is a scalar
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and is defined by

(2.3) bP,C(ω) =

{
[σmax (T (P,C, jω))]−1

, if (P,C) is stable,
0, else.

and the generalized stability margin of (P,C) is then defined by bP,C = infω bP,C(ω).
The margin bP,C(ω) ∈ [0, 1], with higher margins implying greater robustness. We
note that for MIMO systems in general, but not for SISO systems,

bP,C(ω) 6= bWoPWi,W
−1
i CW−1

o
(ω).

The problem considered in [30] is to maximize bWoPWi,W
−1
i CW−1

o
(ω), the frequen-

cy-dependent margin, in order to profit, if possible, from its lower conservatism versus
bP,C(ω) and bP,C . This is performed frequency by frequency relying on the follow-
ing result from [30], which commences from the matrix frequency response sample,
T (P,C, jωk), of the generalized sensitivity function matrix.

Theorem 2.1 ([30]). At a fixed frequency, ωk, consider positive definite her-
mitian matrices Wi and Wo with Xo = W ∗

o Wo and Yi = (WiW
∗
i )−1. If a solution

(Xo, Yi) exists of the following Linear Matrix Inequality (LMI),

minimize γ2
1 ,

subject to γ2
1

[
Xo 0
0 Yi

]
− T (P,C, jωk)∗

[
Xo 0
0 Yi

]
T (P,C, jωk) > 0,

Xo > 0, Yi > 0,

(2.4)

with achieved objective value γ1, then the scaled bP,C at ωk is bounded below by γ−1
1

bWoPWi,W
−1
i CW−1

o
(ωk) > γ−1

1 .

The optimization in (2.4) can be performed iteratively using bisection on γ2
1 by

solving feasibility problems as in [12]. This positions the problem of weighting func-
tion value selection as a generalized eigenvalue problem to be solved at each sample
frequency value.

For a sequence of sampled frequency response values {T (P,C, jωk); k = 1, 2, . . . ,

N}, the solution of LMI (2.4) yields a sequence of positive definite solutions, {Xo(ωk),
Yi(ωk)}, and their corresponding sequence of weighting matrix values, {Wo(jωk),
Wi(jωk)} defined to be the positive definite square roots of Xo and Y −1

i respec-
tively. We pose the following problem associated with the application of these sampled
weighting matrices.

Problem statement W©:

Given a sequence of distinct positive frequencies, {ωk; k = 1, 2, . . . ,

N}, and a corresponding sequence of positive definite square weight-
ing matrix samples, {Wk = W (jωk)}, satisfying

0 < W ≤ Wk ≤ W < ∞I,
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prove that there always exists a matrix transfer function W (z) satis-
fying the following conditions.
interpolation: W (jωk) = Wk for each k = 1, . . . , N .
(strict) bistability: W (z) and its inverse, W (z)−1, are analytic in

the half-plane Re[z] > −α for some α > 0.
(strict) positivity: W (jω) > 0 and W−1(jω) > 0 for all real ω.
biproperness: W (∞) > 0 and W (∞)−1 > 0.

The problem statement is clearly one of finding bistable biproper matrix transfer
functions, Wi(z) and Wo(z), which interpolate the positive definite sample values
on the imaginary axis. We remark that the positive quantity α in the bistability
condition above is related to the smoothness of the frequency response W (jω) between
the sample frequency values. Next we move on to present some classical and more
recent results from interpolation theory before drawing some parallels to circuit theory
and the properties of positive real functions in circuit synthesis. To foreshadow this
discussion, we remark that strictly positive real (SPR) transfer functions satisfy the
positivity and bistability properties of the problem statement and that these transfer
functions represent the driving-point immittances of strictly passive linear circuits.
Connections between passive circuit synthesis and interpolation problems have been
known at least since Belevitch [9, 43].

3. Nevanlinna-Pick interpolation background. The weighting matrix
transfer function problem enunciated in Section 2 is one of matrix interpolation in
the complex plane. The results in this field consider a number of differing function
classes and two distinct domains of interpolation. Denote by D the open unit disk
|z| < 1 and by Π+ the open right half plane Re[z] > 0. Further, denote the p × p

matrix-valued function F (z) of complex variable z as belonging to;

Class C (Carathéodory): if F (z) is analytic and He[F (z)] ≥ 0 for all z in the open
unit disk D,

Class S (Schur): if F (z) is analytic and contractive, i.e. σmax(F (z)) ≤ 1, for all z

in the open unit disk D,
Class BR (Bounded real): if F (z) satisfies F (z) = F̄ (z̄) and is analytic and con-

tractive for all z in the open right half plane Π+, Re[z] ≥ 0.

Class PR (Positive real): if F (z) satisfies F (z) = F̄ (z̄) and is analytic and
He[F (z)] ≥ 0 for all z in the open right half complex plane Π+, Re[z] ≥ 0.

Class SPR (Strictly positive real): if F (z − α) is class PR for some real α > 0.

Here the overbar (¯) denotes complex conjugation, the superscript star (?) indicates
conjugate transpose, and He[X] represents the hermitian part, 1

2 (X + X?). When
applied to a function, complex conjugation is applied to the coefficients of the function
and not to its independent variable. A function F belongs to class C if and only if
G(z) = [Ip − F (z)] [Ip + F (z)]−1 belongs to class S. Function F (z), real-valued for
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real z, belongs to class C if and only if H(s) = F ( z−1
z+1 ) is class PR. Function F (z)

belongs to PR if and only if G(z) = [Ip − F (z)] [Ip + F (z)]−1 belongs to class BR.
Our focus will be on the classes PR and SPR and on the domain Π+, the open right
half plane, and its closure Π+.

Positive real functions are well known from circuit theory associated with the
immittances of circuits composed of passive elements and from the study of passive
linear systems. This function class PR almost captures the requirements of Problem

W©, except that PR-functions may possess poles and zeros on the imaginary axis pro-
vided these are simple and provided the residue at the imaginary pole is nonnegative
definite. Similarly, PR-functions may possess a simple zero or pole (with nonnegative
residue) at infinity, such as occurs with capacitive or inductive impedances respec-
tively. The presence of infinite or pure imaginary poles or zeros would violate both
the strict positivity and the bistability conditions. Accordingly, the interest is in
determining interpolants W (z) in class SPR with biproper behavior at infinity.

Recall [3] that if W ∈ PR then W−1 ∈ PR. Accordingly, if W ∈ SPR then
W−1 ∈ SPR and consequently W and W−1 are then strictly positive for finite z ∈ Π+.
If further W (∞) is finite and positive definite, and thus so is W−1(∞), then both W

and W−1 are bounded on the imaginary axis. This leads to the following result.
Lemma 3.1. If F (z) ∈ SPR satisfies the interpolation condition of Problem W©

and has F (∞) finite and invertible, then it also satisfies the bistability, biproperness,
and strict positivity conditions and, thus, F (z) is a solution of W©.

We shall rely on this lemma to focus attention firstly on achieving the interpolation
in class PR and then in class SPR – a problem associated with interpolation by units
in RH∞ [19, 35] – and then establish a simple procedure from [35] for ensuring the
biproperness of the interpolant. We begin by first considering the interpolation in
class PR, which is well studied.

3.1. Scalar Nevanlinna-Pick Interpolation. The Pick problem [1, 33] is to
determine a class C function, f(z), which interpolates a sequence of complex values,
{w1, w2, . . . , wN}, at specific points, {z1, z2, . . . , zN} inside D. The condition for the
solubility of this problem is the positive semi-definiteness of the Pick Matrix,

(3.1) Pi,j =
wi + w̄j

1− ziz̄j
.

Moreover, the solution is unique if this matrix possesses zero determinant. Nevanlinna
[27] considered a similar problem and provided a characterization of the complete set
of solutions including the problem with a countably infinite set of interpolation points
[28]. This problem is known as the Nevanlinna-Pick Interpolation Problem and often
is alternatively stated in terms of the function f(z) belonging to class S for which
case the associated Pick matrix is then given by

(3.2) P̄i,j =
1− wiw̄j

1− ziz̄j
.
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For scalar (one-port) circuit problems, Youla and Saito [43] develop positive real
impedance synthesis based on reformulation of Nevanlinna-Pick interpolation to ad-
dress interpolation and analyticity in Π+, the open right-half complex plane, and
nonnegativity of the matrix

(3.3) Ai.j =
wi + w̄j

zi + z̄j
.

We shall return to the connections between these circuit synthesis problems and the
approach to solution of Nevanlinna-Pick interpolation problems later in Section 5.

3.2. Extension to matrix-valued functions. The extension of Nevanlinna-
Pick interpolation problems to include matrix-valued functions over the complex plane
is usually attributed to work by Fedčina [21, 22], although here we shall follow the
development of [7]. We shall present these results in some detail for completeness.
That is, we shall consider two-sided tangential interpolation – an encoding of matrix
interpolation to be clarified shortly – but restrict analysis to the domain Π+ and
interpolant class PR because this allows us to present the results in their generality.
The extension to domain D and class S is available in [7]. Subsequently, we shall
specialize just to left interpolation of square matrix values, since this suffices for our
purposes, and then restrict this further to bounded positive definite interpolation
values.

The expression of the matrix generalization of Nevanlinna-Pick interpolation in-
volves a data set of seven matrices ω = (C+, C−, Aπ;Aζ , B+, B−;S), with the subsets
of matrices; (C+, C−, Aπ) associated with right tangential interpolation, (B+, B−, Aζ)
associated with left tangential interpolation, (S, B+, C−, Aπ, Aζ) associated with two-
sided interpolation. The eigenvalues of Aπ and Aζ lie in Π+. It is assumed that the
set ω is admissible.

Interpolation data admissibility
The data set ω = (C+, C−, Aπ;Aζ , B+, B−;S) is admissible if;

i. C+, C−, Aπ, Aζ , B+, B−, S have dimensions p×nπ, m×nπ, nπ×nπ, nζ×nζ ,
nζ × p, nζ ×m, nζ × nπ, respectively,

ii. (C−, Aπ) is observable and (Aζ , B+) is controllable,
iii. the eigenvalues of Aπ and of Aζ all lie in Π+, and
iv. S satisfies the Sylvester equation

(3.4) SAπ −AζS = B+C+ −B−C−.

The generalized (PR) Nevanlinna-Pick interpolation problem is to find a matrix
function of class PR, i.e.

F (z) is analytic and satisfies He[F (z)] ≥ 0 for z in Π+,
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such that ∑
z∈Π+

Res
{
(zI −Aζ)−1B+F (z)

}
= −B−,(3.5)

∑
z∈Π+

Res
{
F (z)C−(zI −Aπ)−1

}
= C+,(3.6)

∑
z∈Π+

Res
{
(zI −Aζ)−1B+F (z)C−(zI −Aπ)−1

}
= S.(3.7)

Here the matries Aζ and Aπ have eigenvalues in Π+ and the residue formula is used
to capture the interpolation conditions such as B+,iF (zi) = −B−,i, for specific sub-
matrices of B+ and B−. In the later analysis, left interpolation will suffice and we
shall take

(3.8) Aζ =


z1Ip 0p . . . 0p

0 z2Ip . . . 0p

...
. . .

...
0p 0p . . . zNIp

 , B+ =


Ip

Ip

...
Ip

 , B− = −


W1

W2

...
WN

 ,

together with vacuous matrices

C− = C+ = Aπ = S = ( ).

The admissibility of the data (Aζ , B+, B−) then reduces to the correct dimension of
the matrices, the controllability of (Aζ , B+), and the eigenvalues of Aζ lying in Π+,
each of which conditions is evidently satisfied by the choice in (3.8) for F (zk) = Wk

with zk ∈ Π+.
Ball, Gohberg and Rodman provide the following solution to this problem.
Theorem 3.2 ([7] Theorem 22.2.2). Let ω = (C+, C−, Aπ;Aζ , B+, B−;S) be an

admissible data set where C− and C+ have p rows and B+ and B− have p columns.
Define matrices Λ1 sand Λ2 as the unique solutions of the respective Lyapunov equa-
tions

(3.9) Λ1Aπ + A?
πΛ1 = C?

+C− + C?
−C+,

and

(3.10) Λ2A
?
ζ + AζΛ2 = −B+B?

− −B−B?
+,

and set

Λ =

(
Λ1 S?

S Λ2

)
.

Then there exists a rational square matrix function F (z) analytic with positive definite
hermitian part on the closed right half plane Π+ which satisfies the interpolation
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conditions (3.5-3.7) if and only if the matrix Λ is positive definite. Moreover, in
this case the set of all such matrix functions F (z) is given by

(3.11) F (z) = (Θ11(z)G(z) + Θ12(z)) (Θ21(z)G(z) + Θ22(z))−1
,

where G(z) is an arbitrary rational p × p matrix function analytic and with positive
definite hermitian part on the closed right half plane Π+ and

Θ(z) =

(
Θ11(z) Θ12(z)
Θ21(z) Θ22(z)

)
,

= I2p +

(
C+ B?

−

C− B?
+

)(
(zI −Aπ)−1 0

0 (zI + A?
ζ)
−1

)
Λ−1

(
C?
− C?

+

B+ B−

)
.(3.12)

The conditions for existence of solutions for the left interpolation data (3.8) follow
simply from Theorem 3.2.

Corollary 3.3. Let the left interpolation data be given by (3.8) with zi ∈ Π+ for
i = 1, . . . , N . Then there exists a solution for F (z) analytic and obeying He[F (z)] > 0
on Π+ and satisfying F (zi) = Wi if and only if the matrix Λ with (i, j)th block

(3.13) Λi,j =
Wi + W ?

j

zi + z̄j
,

is positive definite. In this case, the set of solutions is given by

(3.14) F (z) = (Θ11(z)G(z) + Θ12(z)) (Θ21(z)G(z) + Θ22(z))−1
,

where G(z) is an arbitrary rational p×p matrix function analytic and obeying He[G(z)]
> 0 on Π+ and

Θ(z) =

(
Θ11(z) Θ12(z)
Θ21(z) Θ22(z)

)
,

= I2p +

(
B?
−

B?
+

)
(zI + A?

ζ)
−1Λ−1

(
B+ B−

)
,

(3.15)

= I2p +

(
−W ?

1 −W ?
2 . . . −W ?

N

Ip Ip . . . Ip

)
blkdiag

[
(z + z̄i)−1Ip

]
Λ−1


Ip −W1

Ip −W2

...
...

Ip −WN



(3.16)

The proof of this result follows directly by showing by substitution that Λ in
(3.13) satisfies the sole Lyapunov equation (3.10) associated with (3.8),

ΛA?
ζ + AζΛ = −B+B?

− −B−B?
+.
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Delsarte, Genin and Kamp [17] develop a condition equivalent to Λ > 0 (in the domain
D, class S case) and show that a solution via Nevanlinna’s algorithm is related to the
Cholesky decomposition of matrix Λ. An iterative solution then evolves by using this
Cholesky decomposition to compute Λ−1.

We remark, since it will arise shortly, that when the condition He[G] > 0 is
relaxed to He[G] ≥ 0 on Π+, but we still have Λ > 0, then the analyticity of F (z)
is still guaranteed on Π+, as is the nonnegativity and interpolation. Indeed, taking
G = 0 is one such circumstance. The only-if part of the statement then becomes more
difficult.

4. Main result. The forward interpolation problem, i.e. that of moving from
the interpolation points and matrix values {zk,Wk} in Π+ to a class PR interpolating
matrix function, W (z), is covered by the preceding results. The zeros of W (z) or
poles of W−1(z) are also implicitly managed by the property that the inverse of a
PR function is also of class PR, although there is no prohibition on the interpolants
possessing either zeros or poles in the immediate neighborhood of the imaginary axis.
Further, the behavior at infinity is unspecified. Accordingly, to move further towards
the requirements of a solution of Problem W© will necessitate examination of three
modifications to these results, each of which we undertake in this section; movement
of the interpolation points to the imaginary axis (the boundary of Π+), establishment
of SPR interpolants, and management of the biproperness.

Recent attempts to apply Nevanlinna-Pick interpolation in the passive approxima-
tion of microwave components to be used in circuit design [15] illustrate the problem
with localizing system zeros. Sampled frequency response data are used as the basis
of the interpolation. The larger the number of points used in the interpolation the
more erratic the interpolation functions response becomes between the sample points.
Further, nulls and the presence of phase wrapping between sample points of the fre-
quency response are evident. The authors apply a convex optimization algorithm
to assist in the management of sample points used in the approximation, eventually
achieving a smooth, low-order and accurate approximation. Our aim is to establish
that it is always possible, for the weighting function data set from Problem W©, to find
a bistable and biproper solution with a correspondingly smooth frequency response of
a biproper SPR function. In doing so, the positivity of the weighting function sam-
ples themselves will play an important role in guaranteeing the existence of suitable
interpolants.

4.1. Extension to boundary interpolation and SPR. Evidently, there is a
difficulty with the matrix Λ of (3.13) when the interpolation points zi are permitted
to lie on the imaginary axis in the z complex plane. However, it is also apparent
that, by taking limits as the points zi tend towards the imaginary axis, the positivity
condition on Λ becomes trivially satisfied sufficiently close to the axis. [Recall that
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necessarily the interpolation data values must satisfy Wi + W ?
i > 0 for class PR in

order for a solution to exist and that, further, our weighting function data values
from Problem W© are positive definite by construction.] Thus, the detailed solution
really only becomes of interest when these strict inequalities fail on the boundary.
This problem is known as Löwner interpolation and has been considered by a number
of researchers [6, 36]. The results of [7] in matrix Nevanlinna-Pick interpolation are
extended to boundary problems in Chapter 21 of that book. Also, Bolotnikov and
Dym [11] devote a chapter to the Nevanlinna-Pick boundary problem for the class
S problem. As expected, the results carry through subject to regularity conditions
arising from the points on the boundary or frequency axis.

However, because we are interested only in the case of positive definite interpo-
lation values on the imaginary axis, we can get by with modifying the earlier results.
The approach we shall take with Problem W© and the boundary interpolation of
weighting function matrices will be to use a simple invertible linear mapping of the
complex plane and then to rely on the earlier results of generalized Nevanlinna-Pick
interpolation. Indeed, this is countenanced as an approach to well-behaved boundary
interpolation problems in [7, 11, 43]. We shall rely on the strict positivity of the
frequency samples Wk ≥ W > 0 to make this simple modification to the interpolation
in the right half plane.

Lemma 4.1. Consider the matrix valued function F ◦(z) analytic in Π+ and
interpolating the values {Wk : k = 1, . . . , N} at the complex values {α + jωk}, for
α > 0 and therefore with α + jω ∈ Π+, and satisfying He[F ◦(z)] ≥ 0 in Π+. Then

(4.1) F (z) = F ◦(z + α)

is analytic and satisfies He[F (z)] > 0 in Re[z] > −α + ε (for some small ε) and
interpolates F (jωk) = Wk. Thus, F (z) and F−1(z) are SPR.

Theorem 4.2. For frequency values {ωk} and positive definite weighting matrix
samples {Wk} from Problem W©, there always exists a real positive value α > 0 such
that the matrix Λ with (i, `)th block

(4.2) Λi,` =
Wi + W ?

`

2α + jωi − jω`
,

is positive definite.
Thus, by Corollary 3.3 and Lemma 4.1, there exists a matrix function W (z),

analytic in Re[z] > −α, obeying He[W (z)] > 0 in Re[z] > 0, and interpolating
W (jωk) = Wk.

Corollary 4.3. If there exists a solution to the weighting function interpolation
problem W©, then there exists an hermitian solution to W©.

Proof. Take solution W (z) to W©, then W̃ (z) = 1
2 [W (z) + W ?(z)] is hermitian

and interpolates the hermitian values Wk, has the same hermitian part as W (z), and
is analytic in Re[z] > 0. 2
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These results demonstrate the capacity to solve the weighting function forward
interpolation problem. That is, given {ωk,Wk} find stable interpolating W (z). They
also indicate that, by restricting attention to the SPR class, we can simultaneous
solve the strict stability properties on W−1(z). What remains is to deal with the
behavior at infinity, which we now do.

4.2. Biproperness. The formula (3.14) delivers the complete set of PR inter-
polants. Since a family of solutions exists, it is clear that some solutions (or choices
of G(z)) might provide better properties than others. As we know from Lemma 3.1,
if we can find an interpolant in class SPR which also satisfies the biproperness con-
dition, then this is a solution to Problem W©. We consider below how choices for free
variable function G(z) in (3.14) can ensure biproperness of F (z).

4.2.1. A straightforward transcendental solution. If rationality of the so-
lution is not required, then the positivity of the interpolating values together with
Nevanlinna-Pick interpolation on shifted zi may be used directly to yield a transcen-
dental interpolant with the property that it is bistable, biproper, and has no zeros
closer to the frequency axis than it has poles. However, we are able to manage directly
the lower bound on the interpolant using matrix logarithms.

For positive definite matrices Wk it is possible to define their matrix logarithm,
lnWk, as follows.

Definition For matrix W > 0 with eigenvalue decomposition W = UDU? with
U unitary and D = diag[di] di > 0, we define the logarithm of W as; lnW =
U diag[ln(di)]U?.

Note that lnW has the same dimensions as W and that the matrix exponential
is the inverse function of the logarithm, exp (lnW ) = W.

We may now take the interpolation values Wk from W© and replace them by their
matrix logarithms, since each value is positive definite. Denote these logarithms,

(4.3) Lk = ln Wk.

Now form the Nevanlinna-Pick interpolant L(z) of the matrix data {ωk, Lk : k =
1, . . . , N}, using a shifting property detailed in the proof to keep the interpolation
values positive definite. Denote this PR interpolant as L(z).

Theorem 4.4. Problem W© always has a solution, satisfying the interpolation,
positivity, bistability, and biproperness conditions, of the following form

(4.4) W (z) = exp [L(z)] ,

where L(z) is an interpolant of {Lk = ln Wk} at the points {jωk} for k = 1, . . . , N .
Proof. The matrix W from Problem W© is a lower bound on the interpolation

values Wk. Take any real number γ < ln [λmin(W )]. Then e−γWk > I for all k and,
hence Lk − γI > 0. Using Theorem 4.2 and Corollary 3.3, we may compute a class
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PR interpolant, L̃(z), for the data points {Lk − γI}. Taking G(z) = 0 in (3.14), we
see from allowing z → ∞ in (3.15) that L̃(∞) = 0. [This is permissible even though
G > 0 is presented in the Theorem, since we shall no longer require strict positivity.
See the comment following Corollary 3.3.] Then apply the construction from (4.1) to
yield

W (z) = exp [L(z)] = exp
[
L̃(z) + γI

]
= exp(γ) exp

[
L̃(z)

]
,

which is analytic and strictly proper in Re[z] > −α. The matrix function W (z) from
(4.4), with corresponding

W−1(z) = exp [−L(z)] = exp(−γ) exp
[
−L̃(z)

]
,

interpolates {Wk}, is analytic and bounded in Π+, as is W−1(z). Further, He[W (z)] >

0 and He[W−1(z)] > 0 in Re[z] > −α and so this W (z) solves Problem W©. 2

4.2.2. Rational solutions. The approach in Theorem 4.4 is facile and direct,
relying on the positivity properties of the interpolating values. However, the solu-
tion is irrational and, hence, unamenable to incorporation into computational pack-
ages, which might rely on providing a finite-dimensional state-space realization of the
weighting function W (z). Having established the existence of a solution to Prob-
lem W©, the next question is to ask whether there also exists a rational solution
and to provide guidance to finding it. As stated earlier, the core hardship is that
Nevanlinna-Pick interpolation does not directly address the location of the zeros of
the interpolants, which conflicts with the bistability requirement. Using Corollary 3.3
we may achieve biproperness while preserving rationality, as was noted in [35].

Theorem 4.5 (Biproperness). If there exists a solution to the weighting function
matrix interpolation problem W©, then there exists a biproper solution to W©.

Proof. Suppose we have a solution W (z) for the interpolation problem. Then,
by Corollary 3.3, the matrix Λ in (3.13) is positive definite and the complete set of
solutions is given by the linear fractional transformation (3.14). Note that, letting
z →∞, in the definition of the matrix function Θ (3.15) we have Θ11(z) → I, Θ22 → I,
Θ12 → 0 and Θ21 → 0. Thus, from (3.14), limz→∞ F (z) = limz→∞G(z) and G(z)
is an arbitrary PR function. Choosing biproper G(z) yields a biproper interpolant
W (z) from W ◦(z) via (3.14) and (4.1). 2

4.3. Main theorem. Stable transfer functions inRH∞ with stable inverses also
inRH∞ are known as units. Because of the role played by both units and interpolation
in robust control theory [18, 42, 46], there have been a number of papers focused on
interpolation with units as an extension of Nevanlinna-Pick interpolation to include
restriction to unit interpolants [19, 26, 29, 31, 32, 35]. However, we are dealing solely
with systems satisfying positive definite interpolation values on the imaginary axis.
As Lemma 3.1 shows, we may restrict our attention to SPR rational interpolants,
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which are a subset of the set of the units in RH∞. Note that Prasanth [35] shows
that all units are products of sequences of SPR functions, even in the matrix case.
We have the following main result which builds in an obvious way on the preceding
material.

Theorem 4.6. There always exists a family of real rational hermitian solutions
to Problem W©.

The proof of this theorem is constructive.

• Given the sequence of positive frequency values and their corresponding pos-
itive definite matrices {ωk,Wk : k = 1, . . . , N}, select a real positive value
α such that matrix S in (4.2) is positive definite, as is assured possible by
Theorem 4.2.

• Using the formulæ of Corollary 3.3 with G(z) an arbitrary biproper PR
function – G(z) = ρI would do – construct the biproper rational interpolating
function F ◦(z) to the data points {α + jωk,Wk : k = 1, . . . , N} using (3.14).

• Extend this solution to be hermitian, using the construction of Corollary 4.3,
yielding F ◦H(z).

• Next shift this solution back to the SPR biproper rational interpolating func-
tion W (z) = F ◦H(z + α).

This W (z) is the required solution to W©.

5. Connections to circuit synthesis. As indicated earlier, PR and SPR
functions arise as immittances of passive and strictly passive circuits. Lossless Positive
Real (LPR) transfer function matrices describe the immittances of p-port circuits
comprised exclusively of lossless elements; capacitors, inductors, transformers, and
gyrators. LPR transfer functions are also PR but have their poles and zeros restricted
to the imaginary axis. The problem of passive circuit synthesis is that of commencing
with a PR transfer function, Y (z), and systematically constructing a circuit composed
of passive elements whose p-port driving-point immittance is given by Y (z). This is
a classical circuit theory problem, which underpins many parts of Linear Systems
Theory, since its formal analysis from the 1930s onwards.

Many of the methods of circuit synthesis, such as Brune and Darlington synthe-
ses, concentrate on the extraction of lossless sections and components followed by
termination in a single resistive load [23]. Youla’s approach [41] unifies much of this
for one-ports and develops an algorithm for order-reduction through the successive
insertion of lossless two-ports terminated by a resistor. Youla and Saito [43] in their
seminal paper tying PR (1-port) circuit synthesis to Nevanlinna-Pick interpolation
also focus on the generation of PR circuits whose impedances interpolate specific
values at points zk ∈ Π+. The positivity of the appropriate Pick matrix from (3.3)
naturally arises as the condition for this, but the synthesis approach concentrates on
the calculation of so-called Foster (i.e. LPR) circuits which achieve the interpolation.
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The emphasis on lossless realizations derives from the desire to minimize the noise
figures of the circuits by managing the number of resistors.

The work of Youla and Saito was preceded by studies of the problem of interpo-
lation on the real frequency axis, which connects strongly with the weighting function
interpolation statement W© in that it involves the synthesis of a PR circuit whose
impedance matches specified values at given points on the imaginary axis – real fre-
quencies. The approaches were iterative and reminiscent of Lagrange interpolation
[14], where a common annihilating polynomial possessing zeros at each interpolation
point has one zero cancelled to achieve each interpolation. While Youla in [41] floats
the idea of using his methods for interpolation in Π+, it appears that Wohlers [40]
was the first to refine the method to use as a frequency response interpolation process
and showed how this yielded a PR interpolant. Smilen’s paper [38] and its successors
due to Zeheb and Lempel [45] and Beccari [8] develop these ideas of the Youla con-
struction further in producing transformerless circuit sections yielding syntheses for
impedances interpolating frequency response values in a very systematic procedure.
Particularly, the work of Zeheb and Lempel [45] yields a lossless two-port terminated
by a single resistor. Their approach is quite elegant and connected to both Darlington
synthesis and Lagrange interpolation, since it results in the construction of a lossless
two-port consisting of multiple parallel branches of cascaded simple lossless two-ports
with carefully located poles and zeros, effectively constructing a common annihila-
tor polynomial, followed by L and C components, which determine the interpolation
value associated with each branch, and terminated in a single resistor. It should be
remarked that some of these synthesis approaches, while elegant, can yield highly
non-minimal circuits in terms of the number of reactive elements used. It is also
worthy of note that these frequency response interpolation problems always admit a
solution; the Pick matrix does not arise as part of the analysis.

From the perspective of Problem W© however, the emphasis of these synthesis
methods on lossless interpolation fails to recognize the requirements for strict posi-
tivity, bistability and biproperness. Further, it is not always apparent how one might
move from the scalar one-port synthesis to a matrix p-port approach, since, for ex-
ample, the interpolation values Wk may no longer be ordered in the matrix case. In
their paper [19] on the interpolation in Π+ by scalar transfer functions which are
units in RH∞, Dorato, Park and Li demonstrate that the Youla and Saito recursion
preserves not just the PR property of successive cascaded sections but also preserves
their SPR properties. This is then applied to develop an algorithm for unit interpo-
lation, noting that biproper SPR functions are a (strict) subset of the set of units.
Prasanth’s [35] extension of the interpolation problem with units from the scalar case
to the matrix case relies on Theorem 22.2.2 from [7] as above. He also explores inter-
polation with biproper SPR functions and shows inter alia that all units in RHp×p

∞

can be written as the product of SPR factors. However, the iterative nature of the
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Youla and Saito approach is lost in the matrix case. There is an intriguing comparison
between the structure and the SPR free parameter G(z) in (3.14) and the Youla and
Saito recursion. Likewise, the observation [17], that the scalar Nevanlinna algorithm
coincides with the Cholesky decomposition of the Pick matrix, points towards a re-
cursive solution, as does the association with Lagrange interpolation. In the matrix
case, Blaschke products from scalar interpolation have a generalization in Blaschke-
Potopov products. A simple approach to the matrix interpolation problem using such
products is given in [34]. The full extension remains a prospect for future work.

Another issue alluded to in [15] and reflected in earlier works is that the order of
the interpolants can become very large. We note that the order of the interpolating
solution is governed by the parameter G(z) in Corollary 3.3. The formula (3.14)
delivers the complete set of interpolants, although it is in no way clear how to find
the minimal degree interpolant. A feature of the scalar circuit synthesis approaches
is that it is frequently possible to establish that a particular realization is minimal,
in terms of the number of required reactive elements for the synthesis. In the matrix
case, the concepts of minimality persist and are tied to the degree of the state-variable
realization, as in the scalar case. The prospect of reactance extraction or deflation
procedures being ported from n-port circuit synthesis to the matrix interpolation
problem in order to achieve an interpolant of manageable order also is a subject
worthy of future consideration.

6. Conclusion. We have proven that a solution to Problem W© always exists.
That is, a finite set of sampled positive definite weighting function values from distinct
frequencies suffices to determine a biproper SPR transfer function matrix providing
weighting function values at all frequencies, including infinity. The importance of this
result is that it rules out the possibility of inadvertently introducing phase problems
due to zeros or poles between samples, as commonly occurs in fitting digital filter co-
efficients using just the FFT. This should give some confidence to the application of
these methods in determining the stability margin for MIMO control systems. Recent
practice in the aerospace industries has seen the adoption of the minimal weighted
generalized stability margin, described in Section 2, as the appropriate MIMO replace-
ment for the gain and phase margin-based certification criteria for single-loop-closure
plant-controller combinations of earlier years. Because of this linkage to practice, the
results of this paper are necessary in providing confidence that the overall approach
is sound.

There are a number of areas for development of these results. The most pressing
would be to try to manage the order of the solutions as the number of interpolation
points increases. It is clear that stable pole-zero cancellations are possible in F (z)
from (3.14), as is even clearer from iterative approaches based on Youla and Saito,
where the cancellations occur on the imaginary axis by construction. However, it
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is not apparent how one might use the formulæ to search for low-order weighting
functions. Certainly, the operator-theoretic connections between matrix interpolation
and transfer function approximation suggest that some headway might be made in
finding approximate low-order weighting functions.

Wherever the subject moves, it is clear that the linkages between control, circuits,
and operator theory will be central. See [5] and especially the chapter from Young
[44]. Brian Anderson’s contributions will be evident throughout such an investigation.

REFERENCES

[1] J. Agler and J.E. McCarthy, Pick Interpolation and Hilbert Function Spaces, American

Mathematical Society, Providence, RI, 2002.

[2] B.D.O. Anderson, Riccati Equations, Network Theory and Brune Synthesis: old solutions for

contemporary problems, in Dynamical Systems Control, Coding, Computer Vision, G. Picci

and D.S. Gilliam, eds., vol. 25 of Progress in Systems and Control Theory, Birkhäuser
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[28] , Über beschränkte analytische Funktionen, Ann. Acad. Sci. Fenn., A32 (1929), pp. 1–75.

[29] Y. Ohta, H. Maeda, and S. Kodama, Unit interpolation in H∞: bounds of norm and degree

of interpolants, Systems & Control Letters, 17 (1991), pp. 251–256.

[30] J. Park and R.R. Bitmead, Simultaneous scaling for MIMO controller certification, in Pro-

ceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, 2007.

[31] V.V. Patel and K.B. Datta, A counter example for the conjecture in ‘an algorithm for

interpolation with units in H∞’, Automatica, 31 (1995), p. 165.

[32] , A note on direct interpolation algorithm for a strictly positive real function, IEEE

Trans. Automatic Control, 40 (1995), pp. 1960–1962.
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