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CONTROL AND STABILIZATION OF THE KAWAHARA

EQUATION ON A PERIODIC DOMAIN∗

BING-YU ZHANG† AND XIANGQING ZHAO‡

Abstract. In this paper, we study a class of distributed parameter control system described by

the Kawahara equation posed on a periodic domain T (a unit circle in the plane) with an internal

control acting on an arbitrary small nonempty subdomain of T. Aided by the Bourgain smoothing

property of the Kawahara equation on a periodic domain, we show that the system is locally exactly

controllable and exponentially stabilizable with an arbitrarily large decay rate.
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1. Introduction. Originally as a model for propagation of water waves with

small amplitude, the Korteweg-de Vries (KdV) equation

(1.1) ut + βu3x + uux = 0

has been extremely intensively studied from various aspects since the discovery of

solitons and inverse scattering method in the 1960’s. The equation is now commonly

viewed not only as a good model for some water waves but also a very useful approxi-

mation model in nonlinear studies whenever one wishes to include and balance a weak

nonlinearity and weak dispersive effects [6, 9, 23].

The KdV equation (1.1) admits a compressive or rarefactive steady solitary solu-

tion depending on the sign of the coefficient of third-order dispersive term β in (1.1).

However, under certain conditions, the coefficient β will become very small or even

vanish. Consequently, a higher dispersive term has to be introduced to the equation

to balance the dispersive effect and the nonlinear effect. For instance, Kakutani and

Ono [17] demonstrated that if the angle between the propagation direction and the

magnetic-acoustic wave in a cold collision-free plasma and the external magnetic field

become critical value, then the third-order dispersive term vanishes and is replaced by

the fifth-order dispersive term. Hasimoto[11] derived a fifth-order dispersive equation

to describe the shallow water near the critical value of surface tension when an effect

of the surface tension is taken into account. Kawahara [19] investigated the solitary
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waves of the general fifth-order dispersive equation:

(1.2) wt + αw5x + βw3x + 3γwwx = 0,

where α, β ∈ R and α 6= 0. He showed through numerical simulations that similar to

the KdV equation, the fifth-order dispersive equation (1.2) also admits compressive

or rarefactive steady solitary solution which is decided by the sign of the dispersive

term. In order to understand the effect of surface tension on solitary water waves

Hunter and Scheurle [14] studied the solitary behavior of (1.2). They found out that

when Bond numbers is less than 1
3 , there are branches of traveling wave solutions

to the water wave equations bifurcated from Froude number 1 and Bond number 1
3 ,

which are perturbations of supercritical elevation solitary waves. The equation (1.2)

is now usually known as Kawahara equation, or the fifth-order KdV equation in the

literature [1, 14, 18, 19].

Since the late 1980s, control theory of nonlinear dispersive wave equations have

attracted a lot of attentions because of the rapid advances of the mathematical theory

of nonlinear dispersive wave equations. Many new tools have been developed which

enable us to attack the problems that seemed untouchable before. In particular,

following the advances of mathematical theory of the KdV equation, control theory of

the KdV equation has been intensively studied and significant progresses have been

made through many people’s work (see [4, 5, 7, 22, 26, 28, 29, 32] and the references

therein). In contrast, there are relative few works on the Kawahara equation for its

control theory (cf. [8, 27]).

In this paper we consider the Kawahara equation (1.2) posed on the periodic

domain T (a unit circle in the plane)1. Without loss of generality, we may assume

α = −1, γ = 1
3 and β = −1, 0 or 1. Furthermore, by the transformation u = w − a

with

a = [w0] ≡
1

2π

∫

T

w0(x)dx, w0(x) = w(x, 0),

we find that if w solves (1.2), then [w(·, t)] ≡ a, for any t ∈ R and u satisfies the

following equation

(1.3) ut − u5x + βu3x + aux + uux = 0, x ∈ T, t ∈ R

with [u(·, t)] = 0 for any t ∈ R. The Cauchy problem of (1.3) has been intensively

studied for its well-posedness in the space Hs(T) following the footsteps of the study

1This is equivalent to impose the periodic boundary conditions over the interval (0, 2π):

wjx(0, t) = wjx(2π, t), j = 0, 1, 2, 3, 4.
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of the KdV equation in the literature (see [12, 13, 20, 3, 10, 16] and the references

therein). The best known result [16] so far is that the Cauchy problem is locally well-

posed in the space Hs
0(T) := {v ∈ Hs(T) : [v] = 0} for any s ≥ − 3

2 and is globally

well-posed in the space Hs
0 (T) for s ≥ −1.

The equation (1.3) will be studied in this paper from control point of view with

a forcing term f = f(x, t) added to the equation as a control input:

(1.4) ut − u5x + βu3x + aux + uux = f, x ∈ T, t ∈ R,

where f is assumed to be supported in a given open set ω ⊂ T. The following exact

control problem and stabilization problem are fundamental in control theory.

Exact control problem: Given an initial state u0 and a terminal state u1 in a

certain space, can one find an appropriate control input f so that the equation (1.4)

admits a solution u which satisfies

u|t=0 = u0, u|t=T = u1?

Stabilization problem: Can one find a feedback control law: f = Ku so that the

resulting closed-loop system

ut − u5x + βu3x + aux + uux = Ku, x ∈ T, t ∈ R
+

is asymptotically stable as t→ +∞?

Note that for solution u of the system (1.4) for the Kawahara equation, its mass
∫
T
u(x, t)dx is conserved:

d

dt

∫

T

u(x, t)dx =

∫

T

f(x, t)dx = 0

for any t ∈ R when no control is in action (f ≡ 0). In applications, one would also like

to keep the mass conserved while conducting control. For that purpose, it is sufficient

to put the following constrain on our control input f :
∫

T

f(x, t)dx = 0, ∀ t ∈ R.

Thus, as in [28], the control input f(x, t) is chosen to be of the form

(1.5) f(x, t) = [Gh](x, t) := g(x)

(
h(x, t) −

∫

T

g(y)h(y, t)dy

)

where h is considered as a new control input, and g(x) is a given nonnegative smooth

function such that {g > 0} = ω and

2π[g] =

∫

T

g(x)dx = 1.
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The resulting control system is of the form

(1.6) ut − u5x + βu3x + aux + uux = Gh, x ∈ T, t ∈ R.

The following two theorems, which address the exact controllability problem and

stabilizability problem for the system (1.6), are main results of this paper.

Theorem 1.1 (Exact controllability). Let T > 0 and s ≥ −1 be given. There

exists a δ > 0. For any u0, u1 ∈ Hs(T) with

‖u0‖Hs(T) ≤ δ, ‖u1‖Hs(T) ≤ δ,

one can find a control function h ∈ L2([0, T ];Hs(T)) such that the system:

ut − u5x + βu3x + aux + uux = Gh, x ∈ T, t ∈ (0, T )

admits a solution u ∈ C([0, T ];Hs(T)) satisfying

u|t=0 = u0, u|t=T = u1.

Theorem 1.2 (Stabilizability). Let s ≥ 0 and λ > 0 be given. There exists

bounded linear operator Mλ : Hs(T) → Hs(T) such that if one chooses the feedback

control

h = Kλu

in the system (1.6), then the resulting closed-loop system

(1.7)

{
ut − u5x + βu3x + aux + uux = GKλu, x ∈ T, t ∈ R,

u(x, 0) = u0(x), x ∈ T

is locally exponentially stable in the space Hs(T):

There exists δ > 0 such that for any u0 ∈ Hs(T) with ‖u0‖Hs(T) < δ, the corre-

sponding solution u of (1.7) satisfies

‖u(·, t)− [u0]‖Hs(T) ≤ Ce−λt‖u0 − [u0]‖Hs(T),

for any t > 0.

The paper is organized as follows. In Section 2, we consider the associated linear

system (dropping the nonlinear term uux). The controllability of the linear open loop

system is established through solving a moment problem. Then the linear system is

shown to be exponentially stabilizable with arbitrarily large decay rate. In Section

3 we show the nonlinear system is locally exactly controllable in the space Hs(T)

for any s ≥ −1. The Bourgain smoothing properties of the Kawahara equation on a

periodic domain will play a key role in the proof. In Section 4, the nonlinear feedback

system is first shown to be globally well-posed in the space Hs(T) for any s ≥ 0 and

then it is shown to be locally exponentially stabilizable with arbitrarily large decay

rate.
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2. Linear systems. Consideration is first given to the associated linear open

loop control system

(2.1) vt − v5x + βv3x + avx = Gh, v(x, 0) = v0(x), x ∈ T, t ∈ R

where the operator G is as defined in Section 1 and h = h(x, t) is the applied control

input.

Let A denote the operator

Aw =
d5w

dx5
− β

d3w

dx3
− a

dw

dx

with the domain D(A) = H5(T). It generates a strongly continuous group W (t)

on the space L2(T) and its eigenfunctions are simply the orthonormal Fourier basis

functions in L2(T),

φk(x) =
1√
2π
eikx, k = 0, ±1, ±2, ±3, · · · .

The corresponding eigenvalue of φk is

λk = (−k5 + βk3 − ak)i, k = 0,±1,±2, · · · .

For any l ∈ Z, let

m(l) = #{k ∈ Z; λk = λl}.

Then m(l) ≤ 5 for any l and m(l) = 1 if l is large enough. Moreover,

lim
|k|→∞

|λk − λk+1| = ∞.

The solution v of the system (2.1) can be expressed in the form

(2.2) v(x, t) =

∞∑

k=−∞

(
eλktv0,k +

∫ t

0

eλk(t−τ)Gk[h](τ)dτ

)
φk(x)

where v0,k and Gk[h] are the Fourier coefficients of v0 and G[h], respectively,

v0,k = (v0, φk)L2(T), Gk[h] = (Gh, φk)L2(T) = (h,Gφk)L2(T)

for k = 0,±1,±2, · · · . Furthermore, for given s ∈ R, if v0 ∈ Hs(T) and h ∈
L2(0, T ;Hs(T)), the function given by (2.2) belongs to the space C([0, T ];Hs(T)).

We have the following exact controllability result for the system (2.1).

Theorem 2.1. Let T > 0 and s ∈ R be given. There exists a bounded linear

operator

Φ : Hs(T) ×Hs(T) → L2(0, T ;Hs(T))
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such that for any v0, v1 ∈ Hs(T), if one chooses h = Φ(v0, v1) in (2.1), then the

system (2.1) admits a solution v ∈ C([0, T ];Hs(T)) satisfying

v|t=0 = v0, v|t=T = v1.

In the sequel we will denote by C a constant which may be different from line to

line. Moreover,

‖f‖s := ‖f‖Hs(T) for any f ∈ Hs(T)

and

‖f‖ := ‖f‖0.

Proof. For given v0, v1 ∈ Hs(T), we need to find h ∈ L2(0, T ;Hs(T)) such that

v1(x) =

∞∑

k=−∞

(
eλkT v0,k +

∫ T

0

eλk(T−τ)Gk[h](τ)dτ

)
φk(x)

or
∞∑

k=−∞

(
e−λkT v1,k − v0,k

)
φk =

∞∑

k=−∞

∫ T

0

e−λkτGk[h](τ)dτφk(x)

which is equivalent to

(2.3) e−λkT v1,k − v0,k =

∫ T

0

e−λkτGk[h](τ)dτ

for k = ±1,±2, · · · .
If we define pk = eλkt, then P ≡ {pk| −∞ < k <∞} will form a Riesz basis for

its closed span PT in L2(0, T ). We let Q ≡ {qk| − ∞ < k < ∞} be the unique dual

Riesz basis for P in PT such that

(2.4)

∫ T

0

qj(t)pk(t)dt = δjk, −∞ < j, k <∞.

We take the control h in (2.3) to have the form

(2.5) h(x, t) =

∞∑

j=−∞

hjqj(t)(Gφj)(x),

where the coefficients hj are to be determined so that, among other things, the se-

ries (2.5) is appropriately convergent. Substituting (2.5) into (2.3) yields, using the

biorthogonality (2.4), that

e−λkT v1,k − v0,k =

∞∑

−∞

hj

∫ T

0

e−λktqj(t)

∫

T

G(Gφj)(x)φk(x)dxdt

= hk

∫

T

G(Gφk)(x)φk(x)dxdt.(2.6)
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for −∞ < k <∞. As G is a self-adjoint operator in L2(T),

∫

T

G(Gφk)(x)φk(x)dxdt = ‖Gφk‖2, −∞ < k <∞.

We have

‖Gφk‖2 =

∫

T

∣∣∣∣g(x)
(
φk(x) −

∫

T

g(s)φk(s)ds

)∣∣∣∣
2

dx

=
1

4π2

∫

T

g2(x)dx − 2

∣∣∣∣
∫

T

g(x)φk(x)dx

∣∣∣∣
2

+

∫

T

g2(x)dx

∣∣∣∣
∫

T

g(x)φk(x)dx

∣∣∣∣
2

= : βk.

It is easy to see that β0 = 0 and βk 6= 0 if k 6= 0. Moreover, the familiar Lebesgue

lemma together with the second identity above shows that

lim
k→∞

βk =
1

2π

∫

T

g2(x)dx 6= 0.

It follows that there is a δ > 0 such that

βk > δ, for k 6= 0.

Setting h0 = 0 and

(2.7) hk =
e−λkT v1,k − v0,k

βk
, k 6= 0.

It remains to show that h defined by (2.5) and (2.7) is in L2([0, T ];Hs(T)) pro-

vided that v0, v1 ∈ Hs(T). To this end, let us write

Gφj(x) =

∞∑

k=−∞

ajkφk(x),

where

ajk =

∫

T

Gφj(x)φk(x)dx = (Gφj(x), φk(x))L2(T), −∞ < j, k <∞.

Thus

(2.8) h(x, t) =

∞∑

j=−∞

∞∑

k=−∞

hjajkqj(t)φk(x),

and
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‖h‖2L2([0,T ];Hs(T)) =

∫ T

0

∞∑

k=−∞

< k >2s

∣∣∣∣
∞∑

j=−∞

hjajkqj(t)

∣∣∣∣
2

dt

=

∞∑

k=−∞

< k >2s

∫ T

0

∣∣∣∣
∞∑

j=−∞

hjajkqj(t)

∣∣∣∣
2

dt

≤ C

∞∑

k=−∞

< k >2s
∞∑

j=−∞

|hj|2|ajk|2

= C

∞∑

j=−∞

|hj |2
∞∑

k=−∞

< k >2s |ajk|2,

where the constant C comes from the Riesz basis property of Q in PT . However

|ajk| = (Gφj , φk)L2(T)

= |(gφj , φk)L2(T) − (g, φj)L2(T)(g, φk)L2(T)|

=
∣∣∣

∞∑

m=−∞

gm(φmφj , φk)L2(T) −
( ∞∑

m=−∞

gm(φm, φj)L2(T)

)

×
( ∞∑

m=−∞

gm(φm, φk)L2(T)

)∣∣∣

=
∣∣∣ 1
2π
gk−j − gjgk

∣∣∣

≤ 1

2π
|gk−j |+ |gj ||gk|

where

g(x) =

∞∑

j=−∞

gmφm(x).

Hence

|ajk|2 ≤ C(|gk−j |2 + |gk|2|gj |2)

and
∞∑

k=−∞

< k >2s |ajk|2 ≤ C

∞∑

k=−∞

< k >2s |gk−j |2 + C

∞∑

k=−∞

< k >2s |gj |2|gk|2

= C

∞∑

k=−∞

< k + j >2s |gk|2 + C|gj|2
∞∑

k=−∞

< k >2s |gk|2.

Thus, in the case of s ≥ 0,
∞∑

k=−∞

< k >2s |ajk|2 ≤ C

∞∑

k=−∞

< k >2s< j >2s |gk|2 + C|gj |2
∞∑

k=−∞

< k >2s |gk|2

= C(< j >2s +|gj|2)‖g‖2s.
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We have, according to (2.7), that

‖h‖2L2([0,T ];Hs(T)) ≤ C
{ ∞∑

j=−∞

(< j >2s +|gj|2)|hj |2
}
‖g‖2s

≤ C
{ ∞∑

j=−∞

(< j >2s +|gj|2)
|e−λjT v1,j − v0,j |2

β2
j

}
‖g‖2s

≤ Cmax
j 6=0

|βj |−2(1 + ‖g‖20)
∞∑

j=−∞

< j >2s (|v1,j |2 + |v0,j |2)

≤ Cmax
j 6=0

1

|βj |2
(1 + ‖g‖20)‖g‖2s

(
‖v1‖2s + ‖v0|2s

)
.

In the case of s < 0, as for any −∞ < k, j <∞,

< j >−2s< k + j >2s≤< k >−2s, < j >−2s |gj |2 ≤ ‖g‖2−s,

∞∑

k=−∞

< j >−2s< k >2s |ajk|2 ≤ C

∞∑

k=−∞

< j >−2s< k + j >2s |gk|2

+C < j >−2s |gj |2
∞∑

k=−∞

< k >2s |gk|2

≤ C(1 + ‖g‖2s)‖g‖2−s

and therefore

‖h‖2L2([0,T ];Hs(T)) ≤ C

∞∑

j=−∞

|hj |2
∞∑

k=−∞

< k >2s |ajk|2

≤ C

∞∑

j=−∞

< j >2s |hj |2
∞∑

k=−∞

< j >−2s< k >2s |ajk|2

≤ C(1 + ‖g‖2s)‖g‖2−s

∞∑

j=−∞

< j >2s |hj |2

≤ Cmax
j 6=0

1

|βj |2
(1 + ‖g‖2s)‖g‖2−s

(
‖v1‖2s + ‖v0‖2s

)
.

Now we turn to consider feedback stabilization problem of the linear system (2.1).

We show that it is possible to choose an appropriate linear feedback law such that

the decay rate of the resulting closed-loop system is as large as one desires.

For any λ > 0, define

Lλφ =

∫ 1

0

e−2λτW (−τ)GG∗W ∗(−τ)φdτ
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for any φ ∈ Hs(T). Clearly, Lλ is a bounded linear operator from Hs(T) to Hs(T).

Moreover, Lλ is a self-adjoint positive operator on L2
0(T) := {φ ∈ L2(T) : [φ] = 0}

and so is its inverse L−1
λ . Indeed, the following result holds for the operator Lλ.

Lemma 2.2. For any s ≥ 0, the operator Lλ is an isomorphism from Hs(T) onto

Hs(T) for all s ≥ 0.

Proof. See Lemma 2.4 in [22].

According to Lemma 2.2, Lλ has bounded inverse in Hs(T). Taking the control

function h(x, t) = −G∗L−1
λ v(x, t), employing the following feedback control law,

Kλv(x, t) ≡ −GG∗L−1
λ v(x, t),

we obtain the following closed-loop system, which is exponentially stable,

(2.9) vt − v5x + βv3x + avx = −Kλv, v(x, 0) = v0(x), x ∈ T.

Proposition 2.3. Let s ≥ 0 and λ > 0 be given. Then for any v0 ∈ Hs(T),

the system (2.9) admits a unique solution v ∈ C([0, T ];Hs(T)). Moreover there exist

positive constants Ms depending only on s such that

(2.10) ‖v(·, t)‖s ≤Mse
−λt‖v0‖s

for any t > 0.

Proof. The existence of the solution v follows from the standard semigroup theory

[24]. For the decay estimate (2.10), it suffices to provide the proof for the cases s = 0

and s = 5. The case of 0 < s < 5 follows by interpolation. The other cases of s can

be proved similarly.

The case of s = 0 follows from [30]. For s = 5, let w = vt. Then w solves

wt − w5x + βw3x + awx = −Kλw, w(x, 0) = w0(x), x ∈ T

where w0(x) = v
(5)
0 (x)− βv

(3)
0 (x)− av′0(x)−Kλv0(x). Thus

‖w(·, t)‖ = ‖vt(·, t)‖ ≤ Ce−λt‖w0‖

for any t ≥ 0. It then follows from

v5x − βv3x − avx −Kλv = w

that

‖v(·, t)‖5 ≤ e−λt‖v0‖5

for any t ≥ 0.
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3. Exact controllability. In this section, we study the exact controllability for

the open loop nonlinear control system

(3.1) ut − u5x + βu3x + aux + uux = Gh, u(x, 0) = u0(x), x ∈ T

and prove Theorem 1.1; the system (3.1) is locally exactly controllable in the space

Hs
0(T) for any s ≥ −1. Some technical preparations are needed before presenting our

proof for Theorem 1.1.

For given b, s ∈ R, and a function u : T× R → R, define the quantities

||u||Xb,s
:=

(
∞∑

k=−∞

∫

R

〈k〉2s 〈τ − p(k)〉2b |û(k, τ)|2 dτ
) 1

2

,

||u||Yb,s
:=

(
∞∑

k=−∞

(∫

R

〈k〉s 〈τ − p(k)〉b |û(k, τ)| dτ
)2
) 1

2

where û(k, τ) denotes the Fourier transform of u with respect to the space variable

x and the time variable t, 〈·〉 =
√
1 + | · |2 and p(k) = k5 − βk3 + ak. The Bourgain

space Xb,s (resp. Yb,s) associated to the Kawahara equation on T is the completion

of the Schwartz space S(T × R) under the norm ‖u‖Xb,s
(resp. ‖u‖Yb,s

). Note that

for any u ∈ Xb,s,

‖u‖Xb,s
= ‖W (−t)u‖Hb(R,Hs(T)).

For given b, s ∈ R, let

Zb,s = Xb,s ∩ Yb− 1
2
,s

be endowed with the norm

||u||Zb,s
= ||u||Xb,s

+ ||u||Y
b− 1

2
,s
.

For a given interval I, let Xb,s(I) (resp. Zb,s(I)) be the restriction space of Xb,s to

the interval I with the norm

‖u‖Xb,s(I) = inf
{
‖ũ‖Xb,s

| ũ = u on T× I
}

(resp. ‖u‖Zb,s(I) = inf
{
‖ũ‖Zb,s

| ũ = u on T× I
}
).

For simplicity, we denote Xb,s(I) (resp. Zb,s(I)) by XT
b,s (resp. ZT

b,s) if I = (0, T ).

In addition, let

Z
T
1
2
,s
:= ZT

1
2
,s
∩ C([0, T ];Hs(T)).

The following estimates related to the Bourgain space XT
b,s and ZT

b,s will play

important roles in establishing the exact controllability and stabilizability of the non-

linear Kawahara equation.
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Lemma 3.1. Let b, s ∈ R and T > 0 be given. There exists a constant C > 0

such that

(i) for any φ ∈ Hs(T),

‖W (t)φ‖
Z
T
1
2
,s

≤ C‖φ‖s;

(ii) for any f ∈ ZT
− 1

2
,s
,

∥∥∥∥
∫ t

0

W (t− τ)f(τ) dτ

∥∥∥∥
Z
T
1
2
,s

≤ C‖f‖ZT

−
1
2
,s

·

Proof. See [12].

Lemma 3.2. Let s ≥ −1 and T > 0 be given. There exist a constant C such that

the following bilinear estimate

‖(uv)x‖ZT

−
1
2
,s

≤ C‖u‖ZT
1
2
,s

‖v‖ZT
1
2
,s

holds.

Proof. Let λ = 1 in Theorem 1.3 of [12], we obtain the result on Z1
1
2
,s
. Further-

more, taking ψ( t
T
) as the cut-off function, we obtain Lemma 3.2 for bilinear estimate

on ZT
1
2
,s
.

Now we turn to prove Theorem 1.1.

Proof of Theorem 1.1. Rewrite the system (3.1) in its equivalent integral equation

form:

(3.2) u(t) =W (t)u0 +

∫ t

0

W (t− τ)(Gh)(τ)dτ −
∫ t

0

W (t− τ)(uux)(τ)dτ.

Define

ω(T, u) :=

∫ T

0

W (T − τ)(uux)(τ)dτ.

According to Theorem 2.1, for given u0, u1 ∈ Hs
0(T), if one chooses

h = Φ(u0, u1 + ω(T, u))

in the equation (3.2), then

u(t) =W (t)u0 +

∫ t

0

W (t− τ)(GΦ(u0, u1 + ω(T, u)))(τ)dτ −
∫ t

0

W (t− τ)(uux)(τ)dτ.

and

u|t=0 = u0, u|t=T = u1.
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This leads us to consider the map

Γu(t) =W (t)u0+

∫ t

0

W (t− τ)(GΦ(u0, u1+ω(T, u)))(τ)dτ −
∫ t

0

W (t− τ)(uux)(τ)dτ.

If we can prove that Γ is a contraction mapping in an appropriate space, then its fixed

point u is a solution of (3.2) with h = Φ(u0, u1 + ω(T, u)) and satisfies u|t=T = u1.

Applying Lemma 3.1-3.2 yields that

‖Γu‖
Z
T
1
2
,s

≤ C‖u0‖s + C
∥∥∥
∫ t

0

W (t− τ)(GΦ(u0, u1 + w(T, u)))(τ)dτ
∥∥∥
ZT

1
2
,s

+C‖uux‖ZT

−
1
2
,s

≤ C‖u0‖s + C‖GΦ(u0, u1 + ω(T, u))‖L2([0,T ];Hs
0(T))

+ C‖u‖2
Z
T
1
2
,s

≤ C‖u0‖s + C
[
‖u1‖s + ‖u0‖s + ‖ω(T, u)‖s

]
+ C‖u‖2

Z
T
1
2
,s

.

Notice that

‖w(T, u)‖s =
∥∥∥
∫ T

0

W (T − τ)(uux)(τ)dτ
∥∥∥
s

≤ C sup
t∈(0,T )

∥∥∥
∫ t

0

W (t− τ)(uux)(τ)dτ
∥∥∥
s

≤ C‖u‖2
Z
T
1
2
,s

.

Consequently,

‖Γ(u)‖
Z
T
1
2
,s

≤ C(‖u0‖s + ‖u1‖s) + C‖u‖2
Z
T
1
2
,s

.

For R > 0, let BR be a bounded subset of ZT
1
2
,s
:

BR = {v ∈ Z
T
1
2
,s
| [v] = 0, ‖v‖

Z
T
1
2
,s

≤ R}.

Then, for any u ∈ BR

‖Γ(u)‖
Z
T
1
2
,s

≤ C(‖u0‖s + ‖u1‖s) + CR2.

We choose δ > 0 and R > 0 such that

2Cδ + CR2 ≤ R, CR <
1

2
.

Then, ‖Γ(u)‖ZT
1
2
,s

≤ R, that is Γ map BR into itself. In addition, for any u, v ∈ BR,

similarly, we have

‖Γ(u)− Γ(v)‖
Z
T
1
2
,s

≤ 1

2
‖u− v‖

Z
T
1
2
,s

.

Γ is thus a contracting map on BR. By the Banach fixed point theorem, there is a

unique solution to the integral equation (3.2) which is the desired solution of (3.1).�
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4. Stabilizability. In this section, we investigate stability properties of the

closed-loop system

(4.1)

{
ut − u5x + βu3x + aux + uux = −Kλu, x ∈ T, t > 0,

u(x, 0) = u0(x), x ∈ T.

First we consider the associated linear system

(4.2)

{
ut − u5x + βu3x + aux = −Kλu, x ∈ T, t > 0,

u(x, 0) = u0(x), x ∈ T.

Its solution can be written as

u(t) =Wλ(t)u0

where Wλ is the C0-semigroup associated to the linear system (4.2).

Lemma 4.1. Let s ∈ R and T > 0 be given. There exists a constant C > 0 such

that

(i)

‖Wλ(t)φ‖ZT
1
2
,s

≤ C‖φ‖s

for any φ ∈ Hs
0(T);

(ii)

∥∥∥∥
∫ t

0

Wλ(t− τ)f(τ)dτ

∥∥∥∥
Z
T
1
2
,s

≤ C‖f‖ZT

−
1
2
,s

for any f ∈ ZT
− 1

2
,s
.

Proof. For given φ ∈ Hs
0(T) and f ∈ ZT

− 1
2
,s
, let

u(t) =Wλ(t)φ+

∫ t

0

Wλ(t− τ)f(τ)dτ.

Then it u solves

(4.3)

{
ut − u5x + βu3x + aux = −Kλu+ f, x ∈ T, t > 0,

u(x, 0) = φ(x), x ∈ T.

Consequently,

u(t) =W (t)φ+

∫ t

0

W (t− τ)f(τ)dτ −
∫ t

0

W (t− τ)[Kλu](τ)dτ

and for any 0 < T ′ ≤ T ,

‖u‖ZT
1
2
,s

≤ C

(
‖φ‖s + ‖f‖ZT

−
1
2
,s

)
+ C‖Kλu‖ZT ′

−
1
2
,s
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where C > 0 depends only on s and T . As

‖Kλu‖ZT ′

−
1
2
,s

≤ C1‖Kλu‖XT ′

−
1
2
+ǫ,s

≤ C1(T
′)ν‖u‖ZT

1
2
,s

for some ν > 0 and C1 depending only on s and T . Thus if T ′ is chosen small enough,

we have

‖u‖
ZT′ 1

2
,s ≤ C

(
‖φ‖s + ‖f‖ZT

−
1
2
,s

)
.

It then follows from the semigroup property of the system (4.3) that

‖u‖
Z
T
1
2
,s

≤ C

(
‖φ‖s + ‖f‖ZT

−
1
2
,s

)
.

The proof is complete.

We first show the system (4.1) is well-posed in the space Hs(T) for any s ≥ −1.

Proposition 4.2. Let T > 0 and s ≥ −1 be given. Then there exists a δ > 0

such that for any u0 ∈ Hs(T) with

‖u0‖s ≤ δ,

the system (4.1) admits a unique solution u ∈ Z
T
1
2
,s
. Moreover, the corresponding

solution map is Lipschitz continuous.

Proof. Rewrite the system (4.1) in its equivalent integral equation form:

(4.4) u(t) =Wλ(t)u0 −
∫ t

0

Wλ(t− τ)(uux)(τ)dτ.

Then define the map

Γu(t) =Wλ(t)u0 −
∫ t

0

Wλ(t− τ)(uux)(τ)dτ.

Applying Lemma 4.1 yields

‖Γu‖
Z
T
1
2
,s

≤ C‖u0‖s +
∥∥∥
∫ t

0

[Wλ(t− τ)(u2)x](τ)dτ
∥∥∥
Z
T
1
2
,s

≤ C‖u0‖s + C‖u‖2
Z
T
1
2
,s

.

For R > 0, let BR be a bounded subset of ZT
1
2
,s
:

BR = {v ∈ Z
T
1
2
,s
| [v] = 0, ‖v‖

Z
T
1
2
,s

≤ R}.

Then, for any u ∈ BR

‖Γ(u)‖ZT
1
2
,s

≤ C‖u0‖s + CR2.
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We choose δ > 0 and R > 0 such that

Cδ + CR2 ≤ R, CR <
1

2
.

Then, ‖Γ(u)‖
Z
T
1
2
,s

≤ R, which suggests Γ maps BR into itself. In addition, for any u,

v ∈ BR, similarly, we have

‖Γ(u)− Γ(v)‖
Z
T
1
2
,s

≤ 1

2
‖u− v‖

Z
T
1
2
,s

,

the map Γ is thus a contracting mapping on BR whose fixed point is the desired

solution of the system (4.1).

Remark 4.3. The local well-posedness result presented in Proposition 4.2 can be

restated as follows.

Let s ≥ −1 and r > 0 be given. There exists a T > 0 such that for any u0 ∈ Hs(T)

with ‖u0‖s ≤ r, the system (4.1) admits a unique solution u ∈ Z
T
1
2
,s
.

Next we show that the system (4.1) is globally well-posed in the space Hs(T) for

any s ≥ 0.

Theorem 4.4. Let s ≥ 0 and T > 0 be given. For any u0 ∈ Hs(T), the system

(4.1) admits a unique solution u ∈ Z
T
1
2
,s
. Furthermore, the following estimate holds

‖u‖
Z
T
1
2
,s

≤ αT,s(‖u‖0)‖u0‖s,

where αT,s : R+ → R
+ is a nondecreasing continuous function depending only on T

and s.

Proof. The proof is very much similar to that of Theorem 4.7 in [22] and is

therefore omitted.

Now we present the proof of Theorem 1.2 showing that the closed-loop system

(4.1) is locally exponentially stable in the space Hs(T).

Proof of Theorem 1.2. For given s ≥ 0 and λ > 0, by Proposition 2.3, there exists

positive constant C such that

‖Wλ(t)u0‖s ≤ Ce−λt‖u0‖s, ∀ t ≥ 0.

For any given 0 < λ′ < λ, pick T > 0 such that

2Ce−λT ≤ e−λ′T .

We seek a solution u to the integral equation (4.4) as a fixed point of the map

Γu(t) =Wλ(t)u0 −
∫ t

0

Wλ(t− τ)(uux)(τ)dτ

in some closed ball BR(0) in the function space ZT
1
2
,s
. This will be done provided that

‖u0‖s ≤ δ where δ is a small number to be determined. Furthermore, to ensure the
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exponential stability with the claimed decay rate, the numbers δ and R will be chosen

in such a way that

‖u(T )‖s ≤ e−λ′T ‖u0‖s.

By Lemma 4.1, there exist some positive constant C1, C2 (independent of δ and R)

such that

‖Γ(u)‖
Z
T
1
2
,s

≤ C1‖u0‖s + C2‖u‖2ZT
1
2
,s

and

‖Γ(u1)− Γ(u2)‖ZT
1
2
,s

≤ C2(‖u1‖ZT
1
2
,s

+ ‖u2‖ZT
1
2
,s

)‖u1 − u2‖ZT
1
2
,s

.

On the other hand, we have for some constant C′ > 0 and all u ∈ BR(0)

‖Γ(u)(T )‖s ≤ C1‖Wλ(T )u0‖s + C2

∥∥∥
∫ T

0

Wλ(T − τ)(uux)(τ)dτ
∥∥∥
s

≤ e−λT δ + C′R2.

Pick δ = C4R
2, where C4 and R are chosen so that

C′

C4
≤ Ce−λT , (C1C4 + C2)R

2 ≤ R, 2C2R ≤ 1

2
.

Then we have

‖Γ(u)‖ZT
1
2
,s

≤ R, ∀u ∈ BR(0)

and

‖Γ(u1)− Γ(u2)‖ZT
1
2
,s

≤ 1

2
‖u1 − u2‖ZT

1
2
,s

, ∀u1, u2 ∈ BR(0).

Therefore, Γ is a contraction in BR(0). Furthermore, its unique fixed point u ∈ BR(0)

fulfills

‖u(T )‖s ≤ ‖Γ(u)(T )‖s ≤ e−λ′T δ.

Assume now that 0 < ‖u0‖0 < δ. Changing δ into δ′ ≡ ‖u0‖s and R into R′ ≡
(δ′/δ)

1
2R, we infer that

‖u(T )‖s ≤ e−λ′T ‖u0‖s,

and an obvious induction yields

‖u(nT )‖s ≤ e−λ′nT ‖u0‖s

for any n ≥ 0. We infer by the semigroup property that there exists some positive

constant C > 0 such that

‖u(t)‖s ≤ Ce−λ′t‖u0‖s

if ‖u0‖s ≤ δ. The proof is complete. �
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