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SMALLEST ENCLOSING BALL MULTIDISTANCE

I. AGUILÓ∗, J. MARTÍN∗, G. MAYOR∗, J. SUÑER∗† , AND O. VALERO∗

Abstract. The smallest enclosing ball problem is analyzed in the class of proper metric spaces.

By using the diameter of the smallest enclosing ball of a set of points, we find conditions in order to

ensure that the mentioned measure is a multidistance.
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1. Introduction. The problem of finding the smallest enclosing ball (SEB) of a

finite set of points is a well-studied one with a large number of applications in many

social and engineering areas. The SEB problem was according some authors first

mentioned by J.J. Sylvester in 1857 ([7]).

This problem can be described as: Given a finite set P of points in the m-

dimensional Euclidean space Rm, find a ball B(c; r) = {x ∈ Rm; d(x, c) ≤ r} (closed

ball with center c ∈ Rm and radius r ≥ 0) such that:

i) B(c; r) ⊃ P

ii) If B(c′; r′) ⊃ P then r′ ≥ r

It can be easily proved that for any finite set P there exists a unique ball B(c; r)

satisfying the above conditions. We call it the smallest enclosing ball of P .

A theoretical analysis for the SEB problem is given in [2]. In particular, it is

proved that the k-circumscribing enclosing ball with smallest k is the smallest en-

closing ball. Recall that, given a finite set of points P in Rm, the k-circumscribing

enclosing ball of P is an enclosing ball Bm(c; r) of P having a k-dimensional ball

Bk(c; r) as a k-dimensional large circle (a k-dimensional ball in a k-dimensional affine

subspace passing through c, with the same center c and radius r), which is uniquely

determined by k + 1 points in P . This fundamental result in [2] reduces a possible

large number of computations in the higher dimensional case.

On the other hand, N. Megiddo presented in 1984 the first algorithm that solves

the smallest enclosing circle problem in linear time for fixed dimension ([5]). An

interesting paper which generalizes the smallest enclosing ball problem can be found

in [6]. In this paper, two problems are studied: given a finite number of nonempty

closed subsets of a normed space, find a ball with the smallest radius that encloses all

of the sets, and find a ball with the smallest radius that intersects all of the sets.

The conventional definition of distance over a space specifies properties that must

be obeyed by any measure of how separated two points in this space are. However, one
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often wants to measure how separated the members of a collection of more than two

elements are. The conventional way to do it is to combine the pairwise distance values

for all pairs of elements in the collection into an aggregate measure, for example, the

arithmetic mean. It is clear that the aggregation function should be chosen in such a

way that the multi-argument distance function satisfies a group of axioms consistent

with those of the ordinary distance functions.

In [4] the concept of multi-argument distance (multidistance, for short) was in-

troduced, where the conventional definition of distance was extended to apply to

collections of more than two elements. It can be directly incorporated into many

domains where ad hoc combinations of pairwise metrics are currently used, with the

advantage that it allows the general treatment of the problem by means of an ax-

iomatic procedure. See for example [1], where multidistances are applied in the field

of Social Choice Theory. Of course, this approach includes in particular the case of

multidistances defined from the pairwise distances, but it is more general [3].

There exist other definitions for multidistances, or multimetrics. For example, the

one in [8], which is more general because it allows to measure the distance between

the points of an infinite set, but it is more restrictive in some sense: reduced to lists,

multimetrics in there correspond to strong multidistances in [4]. On the other hand,

symmetry is not an axiom in [8], and hence it cannot be avoided, preventing the

definition of asymmetric multidistances.

The purposes of this paper are the following:

1) Extend the SEB problem to a broad class of metric spaces.

2) Use the diameter of the SEB of a set of points as a measure of how separated

those points are.

3) Analyse under which conditions that measure can be considered as a multi-

distance.

4) Prove that, in the Euclidean space Rm, the diameter of the SEB of a set of

points defines a multidistance.

The paper is organized as follows: In Section 2 the definition of multidistance

and basic examples are given. Section 3 is the core of the paper, it contains the main

definitions and results. Conclusions are presented at the end of the paper.

2. Preliminaries. We recall here some definitions, properties and examples re-

lated to multidistances. See [4] for more details.

Definition 1. A function D :
⋃

n>1 X
n → [0,∞) is a multidistance on a non

empty set X when the following properties hold, for all n ≥ 1 and x1, . . . , xn, y ∈ X:

(1) D(x1, . . . , xn) = 0 if and only if xi = xj for all i, j = 1, . . . n,

(2) D(x1, . . . , xn) = D(xπ(1), . . . , xπ(n)) for any permutation π of 1, . . . , n,

(3) D(x1, . . . , xn) 6 D(x1, y) + . . .+D(xn, y).
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Remark 1. If D is a multidistance on X, then the restriction of D to X2, D|X2 ,

is an ordinary distance on X. On the other hand, ordinary distances d on X can be

extended in order to obtain multidistances.

Example 1. The following are multidistances which can be defined on any metric

space (X, d). Observe that all of them extend the ordinary distance d.

• The maximum multidistance:

(1) DM (x1, . . . , xn) = max
i,j:1,...,n

{d(xi, xj)}.

• The Fermat multidistance:

(2) DF (x1, . . . , xn) = inf
x∈X

{

n
∑

i=1

d(xi, x)

}

.

DF is maximum in the sense that any other multidistance D such that D|X2 =

d takes values not greater than DF , i.e. D(x1, . . . , xn) 6 DF (x1, . . . , xn), for all

(x1, . . . , xn) ∈ Xn.

Definition 2. A metric space (X, d) is called proper if all bounded, closed balls

are compact sets.

If X is a proper metric space, then the infimum in (2) converts into a minimum.

3. The Multidistance based on the Smallest Enclosing Ball.

3.1. The Smallest Enclosing Ball. Let (X, d) be a non trivial (|X | > 2)

proper metric space.

Proposition 1. Given a list (x1, . . . , xn) ∈ Xn, let us consider the function

F (x1, . . . , xn) : X → R+ defined by

F(x1,...,xn)(p) = max{d(p, xi), i = 1, . . . , n} =
n
∨

i=1

d(p, xi)

Then F satisfies the following properties:

i) F(x1)(p) = d(p, x1)

ii) F(x1,x2)(p) ≥ 1
2d(x1, x2)

iii) F(x1,...,xn) is a continuous function and it achieves the absolute minimum.

Proof. The first property comes from the definition of F . Let us prove ii). First

of all, note that for all p ∈ X we have

d(x1, x2) ≤ d(x1, p) + d(x2, p) ≤ 2max{d(p, x1), d(p, x2)}

Thus F(x1,x2)(p) = max{d(p, x1), d(p, x2)} ≥ 1
2d(x1, x2)

Finally we prove iii). Let fi : X → R+ be defined by fi(p) = d(p, xi), i = 1, . . . , n.

All theses functions are continuous since |d(p, xi)− d(p′, xi)| ≤ d(p, p′) for i = 1, . . . n.

Now F(x1,...,xn) =
∨n

i=1 fi, and thus F(x1,...,xn) is continuous.
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For the sake of simplicity, we will write F instead of F(x1,...,xn). Let us prove now

that F achieves the absolute minimum.

There exists a closed ball B containing x1, . . . , xn and a point p′ ∈ B such that

F (p′) ≤ F (p) ∀p ∈ Bc.

Since F is continuous and B a compact set, then F achieves a minimum on B:

∃p0 ∈ B / F (p0) ≤ F (p) ∀p ∈ B

But also F (p0) ≤ F (p′) ≤ F (p) ∀p ∈ Bc. Thus F (p0) ≤ F (p) ∀p ∈ X .

Remark 2. If the metric space X is not proper, the function F(x1,...,xn) needs not

have a minimum. For instance, the set X = Q ∪ {
√
2} with the euclidean distance is

not a proper metric space. In effect, the closed ball B(0;
√
2) = {x ∈ Q ∪ {

√
2}; |x| ≤√

2} is not compact since it is not a closed set.

Now, let us consider the function F(0,
√
2). For all p ∈ X,

F(0,
√
2)(p) = max{d(p, 0), d(p,

√
2} =

{ √
2− p if p <

√
2
2

p if p >
√
2
2

Then this function does not have a minimum.

Proposition 2. The radius of the smallest closed ball containing the points

x1, . . . , xn ∈ X is the real number

min{max{d(p, xi); i = 1 . . . , n}; p ∈ X}

Proof. In effect, let p0 ∈ X be such that

r = min{max{d(p, xi); i = 1 . . . , n}, p ∈ X} = max{d(p0, xi); i = 1 . . . , n}

The closed ball B(p0; r) contains the points x1, . . . , xn, that is, d(p0, xi) ≤ r.

If B(p1; r1) is another closed ball containing the points x1, . . . , xn, then d(p1, xi) ≤
r1 for all i = 1 . . . , n, and max{d(p1, xi); i = 1 . . . , n} ≤ r1. Therefore r ≤ r1.

Next we recall a well known result about the uniqueness of the smallest enclosing

ball in the euclidean space. We include the proof to emphasize the importance of the

midpoint property to ensure this uniqueness.

Proposition 3. Let us consider the euclidean space Rm. Then there exists the

smallest enclosing ball of a finite set of points and it is unique.

Proof. Let P be a finite set of points of Rm. The smallest enclosing ball containing

P exists since Rm is a proper metric space.

In order to prove the uniqueness, let us suppose that there exist two closed balls

B1 and B2 containing P , with centers c1 and c2, respectively, and minimum radius r.

Then P ⊂ B1 ∩B2 and B1 ∩B2 is contained in a ball with center the midpoint of c1

and c2, c =
1
2 (c1 + c2), and radius r′ =

√
r2 − a2 where a = 1

2d(c1, c2).
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In effect, if a > 0 and d(p, c1) ≤ r and d(p, c2) ≤ r, then if we apply the Apollonius’

Theorem to the triangle p, c1, c2, we have

d(p, c) =
1

2

√

2(d(p, c1)2 + d(p, c2)2)− d(c1, c2)2 ≤
√

r2 − a2 = r′

Thus B(c; r′) is a ball containing the set P and its radius r′ < r, but this it is not

possible, therefore a = 0 and c1 = c2.

Remark 3. The midpoint property (see Def. 4 below) in a metric space does not

imply the uniqueness of the ball of minimum radius containing several points. For

instance, the euclidean plane R2, with the distance of the maximum, that is,

d((x1, x2), (y1, y2)) = max{|x1 − y1|, |x2 − y2|}

satisfies the midpoint property but the smallest ball is not unique: if we take the points

(0, 0) and (1, 0), all the squares of side 1 with these two points in there border would

be smallest balls. The uniqueness would hold only in particular cases, like for example

when the points are opposing vertices of a square.

3.2. Smallest Enclosing Ball Multidistance. In this section we analyze in

which conditions a multidimensional function D(x1, . . . , xn) defined as the diameter

of the smallest enclosing ball of x1, . . . , xn is a multidistance.

Definition 3. We say that the metric space (X, d) has the Fermat property (X

is a Fermat space) if for all x1, . . . , xn ∈ Xn, there exists a ball of radius F
2 containing

the points x1, . . . , xn, where

F = min

{

n
∑

i=1

d(p, xi); p ∈ X

}

Remark 4. F is called the Fermat sum and a point f where this minimum value

is reached is called a Fermat point.

Let x1, . . . , xn, xn+1 ∈ X and let Fn and Fn+1 be the Fermat sums of x1, . . . , xn

and x1, . . . , xn, xn+1, respectively. Then Fn ≤ Fn+1. In effect, let fn and fn+1 be two

corresponding Fermat points. Then

Fn =

n
∑

i=1

d(fn, xi) ≤
n
∑

i=1

d(fn+1, xi) ≤
n+1
∑

i=1

d(fn+1, xi) = Fn+1

Example 2. Let us give an example of a proper metric space not having the

Fermat property.

Let us consider X = [a, b] ∪ [c, e] ⊂ R where a < b < c < e, with the usual

distance. This is a proper space but it does not have the Fermat property: the points

b, c cannot be included in any ball with radius F/2, where

F = min{d(p, b) + d(p, c); p ∈ [a, b] ∪ [c, e]} = c− b
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Definition 4. We say that the metric space (X, d) has the midpoint property if

for each x, y ∈ X there exists m ∈ X such that

d(x, y) = 2d(m,x) = 2d(m, y)

Proposition 4. If (X, d) has the Fermat property, then it has the midpoint

property.

Proof. Let us consider two points x, y ∈ X and let

F = min{d(p, x) + d(p, y); p ∈ X}

Since X has the Fermat property, then we know that there exists m ∈ X such that

d(m,x) ≤ F
2 and d(m, y) ≤ F

2 . But then F ≤ d(m,x) + d(m, y) ≤ F and therefore

d(m,x) = d(m, y) = F
2 .

On the other hand, d(x, y) ≤ d(x,m) + d(m, y) = F but also d(x, y) ≥ F , from

the definition of F . Therefore, d(x, y) = 2d(m,x) = 2d(m, y), and m is a midpoint

between x and y.

Next we introduce a multidimensional function D(x1, . . . , xn) corresponding to

the diameter of the smallest enclosing ball of the list.

Definition 5. Let us define D :
⋃

n>1

Xn → R+ in the following way:

D(x1, . . . , xn) = min{2 max{d(p, xi); i = 1, . . . , n}; p ∈ X} = 2
∧

p∈X

n
∨

i=1

d(p, xi)

Proposition 5. The restriction of D to X2 is d (D is an extension of d) if and

only if (X, d) has the midpoint property.

Proof. Supose first that X has the midpoint property and let x1, x2 ∈ X . For all

p ∈ X , we have that

d(x1, x2) ≤ d(x1, p) + d(x2, p) ≤ 2 max{d(x1, p), d(x2, p)}

Therefore

D(x1, x2) = min{2 max{d(p, x1), d(p, x2)}, p ∈ X} ≥ d(x1, x2)

On the other hand, if m is a midpoint between x1 and x2, we have

d(x1, x2) = 2d(m,x1) = 2d(m,x2)

and 1
2d(x1, x2) is an element of the set {max{d(p, x1), d(p, x2)}; p ∈ X}; thus

D(x1, x2) = min{2 max{d(p, xi); i = 1, . . . , n}; p ∈ X} ≤ d(x1, x2)

and D(x1, x2) = d(x1, x2) ∀x1, x2 ∈ X .



SMALLEST ENCLOSING BALL MULTIDISTANCE 191

Let us suppose now that D(x1, x2) = d(x1, x2) ∀x1, x2 ∈ X , that is,

min{2 max{d(p, x1), d(p, x2)}; p ∈ X} = d(x1, x2)

This means that there exists m ∈ X such that

2 max{d(m,x1), d(m,x2)} = d(x1, x2)

and then

d(x1, x2) = 2d(m,x1) = 2d(m,x2)

Thus m is a midpoint between x1 and x2.

Proposition 6. Let (X, d) be a proper metric space. Then the function D :
⋃

n>1

Xn → R+ defined by

D(x1, . . . , xn) = 2
∧

p∈X

n
∨

i=1

d(p, xi)

is a multidistance extension of d if and only if X has the Fermat property.

Proof. Let us suppose first that D is a multidistance extension of d and let us

prove that X has the Fermat property.

From the condition (3) of the definition of multidistance, we have that

D(x1, . . . , xn) = 2
∧

p∈X

n
∨

i=1

d(p, xi) ≤
n
∑

i=1

d(xi, y) ∀y ∈ X

Thus there must exist p0 ∈ X such that for all i = 1, . . . , n,

d(p0, xi) ≤
1

2

n
∑

i=1

d(xi, y) ∀y ∈ X

But then

d(p0, xi) ≤
F

2
∀i = 1, . . . , n

and X has the Fermat property.

Reciprocally, let us suppose that X has the Fermat property. First of all, we have

from the propositions 4 and 5 that D is an extension of d. Let us now prove that D

is a multidistance, that is, for all n ≥ 1 and x1, . . . , xn, y ∈ X :

(1) D(x1, . . . , xn) = 0 if and only if xi = xj for all i, j = 1, . . . n,

(2) D(x1, . . . , xn) = D(xπ(1), . . . , xπ(n)) for any permutation π of 1, . . . , n,

(3) D(x1, . . . , xn) 6 D(x1, y) + . . .+D(xn, y).
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The condition (1) comes from the fact that D(x1, . . . , xn) is the diameter of the

smallest ball containing the points x1, . . . , xn, and (2) is obvious from the definition

of D. Now, we have to prove (3), that is,

2
∧

p∈X

n
∨

i=1

d(p, xi) 6 d(x1, y) + . . .+ d(xn, y) ∀y ∈ X

This is equivalent to prove that for all y ∈ X , there exists p ∈ X such that

max{d(p, xi); i = 1, . . . , n} 6
1

2

n
∑

i=1

d(xi, y)

Let p0 be a point of X such that d(p0, xi) ≤ F
2 ∀i = 1, . . . , n, and the proof is finished

since F ≤
n
∑

i=1

d(xi, y) ∀y ∈ X .

Next example shows that D(x1, . . . , xn) = 2
∧

p∈X

n
∨

i=1

d(p, xi) could be a multidis-

tance even if X is not a Fermat space.

Example 3. Let X be a finite set with |X | ≥ 2 and let d be the drastic distance

on X. X is a proper metric space that does not have the midpoint property and thus

it is not a Fermat space. In this case,

D(x1, . . . , xn) =

{

0 if xi = xj ∀i, j = 1, . . . , n

2 otherwise

is a multidistance with D(x1, x2) = 2d(x1, x2).

Note that 1
2 D(x1, . . . , xn) is the multidimensional version of the discrete distance.

Proposition 7. The euclidean space Rm,m ≥ 1, is a Fermat space.

Proof. Let us take x1, . . . , xn ∈ Rm. Let us suppose that x1 and x2 are the

most distant points of the list and let m be their midpoint. Let us suppose now that

x3 satisfies that d(m,x3) ≥ d(m,xi) ∀i = 3, . . . , n. Then any ball with center at m

containing x1, x2 and x3 must contain also x4, . . . , xn. Thus if we consider the plane

defined by x1, x2 and x3, we can reduce the problem to the case of three points in R2.

Let us consider then A,B,C ∈ R2 and suppose that d(B,C) ≥ d(A,B)∨d(A,C).

Let a, b, c be the lengths of the segments BC,AC and AB, respectively. Let M be

the midpoint of the segment BC and let d = d(M,A).

�
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�
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Q
Q
Q
Q
Q
QQ

A
A
A
A
A
A
MB C

A

b

a/2 a/2

c
d

Fig. 1. The triangle ABC.
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In order to prove the Fermat property, it is sufficient to prove that d ≤ F/2,

where

F = min{d(P,A) + d(P,B) + d(P,C);P ∈ R2}

Observe first that a ≤ F and thus, if A ∈ B(M ; a/2), then A ∈ B(M ;F/2) and the

proof is finished. Let us suppose now that A 6∈ B(M ;F/2). Since we must have that

A ∈ B(B; a) ∩B(C; a), ABC must be an acute triangle.

Now, by applying the Law of cosines to both the triangle ABM with sides a/2, c

and d and the triangle ABC with sides a, b and c, we have

d2 =
a2

4
+ c2 − 2 · a

2
· c · cosB =

a2

4
+ c2 − ac · a

2 + c2 − b2

2ac
=

b2

2
+

c2

2
− a2

4

On the other hand, a straightforward application of the Law of cosines and Heron’s

formula shows that the Fermat sum of a triangle is equal to

F =

√
2

2

√

a2 + b2 + c2 +
√
3 ·

√

((b+ c)2 − a2)(a2 − (b− c)2)

Thus a straightforward computation gives

(

F

2

)2

=
1

8

(

a2 + b2 + c2 +
√
3 ·

√

((b + c)2 − a2)(a2 − (b − c)2)
)

=
1

8

(

a2 + b2 + c2 +
√
3 ·

√

2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4
)

Now, taking into account that the angle A is acute and thus cosA > 0, which implies

that a2 = b2 + c2 − 2bc cosA < b2 + c2, we have

d2
?
≤ F

2
⇐⇒ 3b2 + 3c2 − 3a2

?
≤

√
3 ·

√
2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4

⇐⇒ a4 + b4 + c4 + b2c2 − 2a2b2 − 2a2c2
?
≤ 0

⇐⇒ (a2 − b2)2
?
≤ c2(2a2 − b2 − c2)

And this inequality is true:

(a2 − b2)2 = (a2 − b2)(a2 − b2) = (c2 − 2bc cosA)(a2 − b2+ a2− c2) ≤ c2(2a2− b2− c2)

since

· the angle A is acute, thus cosA > 0

· a > c =⇒ a2 − c2 > 0

· a > b =⇒ a2 > b2
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4. Conclusions. In this paper, we prove that, given a finite set of points P of

a proper metric space, there exists the smallest closed ball containing P . This ball is

proven to be unique for the case of Rm. On the other hand, we consider the diameter

of the smallest enclosing ball of a set of points {x1, . . . , xn} in a proper metric space X

as a multi-argument function D(x1, . . . , xn), and analyse under which conditions this

measure is, in fact, a multidistance. More precisely, we prove that D is a multidistance

if, and only if, X has the Fermat property. In particular, we prove that this is always

true for the Euclidean space Rm.
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