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HYBRID DETERMINISTIC-STOCHASTIC GRADIENT LANGEVIN

DYNAMICS FOR BAYESIAN LEARNING

QI HE∗ AND JACK XIN†

Abstract. We propose a new algorithm to obtain Bayesian posterior distribution by a hybrid

deterministic-stochastic gradient Langevin dynamics. To speed up convergence and reduce compu-

tational costs, it is common to use stochastic gradient method to approximate the full gradient by

sampling a subset of the large dataset. Stochastic gradient methods make progress fast initially,

however, they often become slow in the late stage as the iterations approach the desired solution.

The conventional gradient methods converge better eventually however at the expense of evaluat-

ing the full gradient at each iteration. Our hybrid method has the advantages of both approaches

for constructing the Bayesian posterior distribution. We prove that our algorithm converges based

on the weak convergence methods, and illustrate numerically its effectiveness and improved accuracy.
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1. Introduction. This work focuses on Bayesian learning based on a hybrid

deterministic-stochastic gradient descent Langevin dynamics. There has been increas-

ing interest in large scale datasets for machine learning, ranging from network data,

signal processing and data mining to bioinformatics. The large scale data significantly

increase the computational complexity of the underlying optimization algorithm. One

of the successful methods to overcome this difficulty is stochastic gradient method,

which is efficient and simple to implement.

In the literature, stochastic gradient methods have been widely used for large scale

machine learning. For example, [1, section 3.2] and [2] studied incremental-gradient

method in which each iteration only evaluates the gradient along one single index;

[3] applied stochastic gradient algorithm to large scale linear prediction problems; [4]

explored hybrid deterministic-stochastic methods for large scale optimization. For

more applications of stochastic gradient methods in large scale machine learning, we

refer to [5] and references therein. The convergence of stochastic gradient algorithm

has also been extensively studied in stochastic approximation literature, such as[2,

6], where convergence holds under some mild conditions including the case where

the loss function is not everywhere differentiable; see also [7] for the convergence of

a simultaneous perturbation gradient approximation and [8] for the convergence of

stochastic gradient expectation maximization (EM) algorithm.

Along another line, there are few studies for large scale Bayesian learning by

stochastic gradient method. [9] seems to be the first to propose stochastic gradient

method for Bayesian learning by Langevin dynamics. Later, [10] improved the method
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by adding preconditioner using stochastic Fisher scoring. Although the algorithm

works efficiently in numerical experiments, there is no theoretical analysis for the

convergence of the stochastic gradient Bayesian learning yet. To bridge this gap, in

this paper, we study Bayesian learning by hybrid deterministic-stochastic gradient

method motivated by [4] and provide a convergence proof. It covers the model in [9]

as a special case and so gives the proof of the convergence for algorithm in [9]. This

is the first work, to the best of our knowledge, that presents the theoretical analysis

of the algorithm for stochastic gradient Bayesian learning.

It is worth mentioning that the convergence analysis of the hybrid deterministic-

stochastic method for data fitting in [4] does not apply directly to the Bayesian learn-

ing problem here. The algorithm for Bayesian learning converges to a probability

distribution rather than to a deterministic number. The traditional error analysis is

not suitable for Bayesian learning. Instead we employ weak convergence method [11]

to treat both data fitting and Bayesian learning algorithms. The weak convergence

method also requires weaker conditions for convergence.

The rest of the paper is organized as follows. Section 2 begins with certain

preliminary results. Section 3 provides the proof of convergence for the algorithm.

Section 4 shows advantages of our proposed method by numerical simulations. Finally,

concluding remarks are given in Section 5.

The work was partially supported by NSF grants DMS-1222507, and DMS-

1211179. The authors thank Mr. Sungjin Ahn for helpful conversations on Bayesian

learning and related data sets.

2. Preliminary Results. The Markov chain Monte Carlo (MCMC) method is a

very popular tool for computational problems in Bayesian statistics, see [12] and [13].

To sample from the target density, MCMC methods construct a Markov chain whose

stationary distribution is the target density. Under some suitable ergodic condition of

the Markov chain, statistical quantities based on the target density can be calculated

by simulating the Markov chain and computing time averaged quantities.

A basic sampling method in MCMC is Langevin dynamics [13]. Assume that π

is a target density on R
r. Then the Langevin diffusion θt is defined by the stochastic

differential equation

(2.1) dθt =
1

2
∇ log π(θt)dt+ dWt,

whereWt is a standard Brownian motion. When π is suitably smooth, it can be shown

that θt has π as a stationary distribution [14]. Denote the density function of the

diffusion θt by ρ(t, x), then limt→∞ ρ(t, x) = π(x). A variety of MCMC algorithms are

based on Langevin dynamics. For example, the simplest way is to discretize Langevin

dynamics (2.1) by the Euler-Maruyama method [15]. In addition, the Metropolis step

can be added to remove bias if the step size is such that bias is significant. There
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are also some variants of the method, for example, pre-conditioning the dynamic by

a positive definite matrix A to obtain

(2.2) dθt =
1

2
A∇ log π(θt)dt+A1/2dWt.

This dynamic also has π as its stationary distribution.

To apply Langevin dynamics of MCMC method to Bayesian learning, we consider

the following model. Let θ denote a parameter vector, with p(θ) a prior distribution,

and p(x|θ) is the conditional distribution density of data x given θ. The posterior

distribution of parameter θ given a set of data X = (xi, 1 ≤ i ≤ N) is

p(θ|X) ∝ p(θ)ΠN
i p(xi|θ).

Replacing π in (2.1) by p(θ|X), we have the following Langevin dynamic for θ

(2.3)

dθt =
1

2
∇ log p(θt|X)dt+ dW (t),

=
1

2

(
∇ log p(θt) +

N∑

i=1

∇ log p(xi|θt)
)
dt+ dW (t).

Hence, we have that the limit distribution of θt is p(θ|X), [14].

In order to approach the posterior distribution by Langevin dynamics, we use

Euler-Maruyama method for discretization [15]. The algorithm is as follows

(2.4) θk+1 =
εk
2

(
∇ log p(θk) +

N∑

i=1

∇ log p(xi|θk)
)
+
√
εkηk,

where ηk is an i.i.d random variable sequence with normal distribution, and step size

εk satisfies
∑∞

k=1 εk = ∞ and
∑∞

k=1 ε
2
k < ∞. These two conditions for εk are very

common for stochastic approximation with decreasing step size, see [6], [11] and [16].

Typically, step size εk = a(b + t)−γ which decays algebraically with γ ∈ (0.5, 1]. To

correct for discretization error, one can use (2.4) as a proposal distribution and modify

it by the Metropolis-Hasting method [17]. Note that as we decrease the step size εk,

the discretization error decreases to zero so that the rejection rate approaches zero.

Hence, we can simply ignore the Metropolis-Hasting acceptance step.

In the algorithm (2.4), we need to evaluate the gradient of log(x|θ) over all the

data set, which is time consuming. To speed up convergence, [9] used the stochastic

gradient method, i.e., at each step only estimate the gradient over a subset of the

data. Assume that the size of the subset of the data is n < N, the algorithm is as

follows

θk+1 =
εk
2

(
∇ log p(θk) +

N

n

n∑

i=1

∇ log p(xi|θk)
)
+
√
εkηk.

Although it is shown in [9] that this stochastic gradient Bayesian learning works

well for some numerical simulations, the convergence improves slowly after a certain
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number of iterations. The reason for this is that the stochastic gradient method

makes good progress initially, but it is slow in improving the accuracy as the iterates

approach the limiting solution. To overcome this disadvantage, [4] proposed a hybrid

deterministic-stochastic method for optimization, in which the size of the sampling

subset is increasing after each iteration. It is shown that this method exhibits benefits

of both the stochastic gradient method and full gradient method.

Motivated by [4], we propose a hybrid deterministic-stochastic gradient method

for Bayesian learning. The new ingredient is to inject additional noise according

to Langevin dynamics into the algorithm so that convergence to the full posterior

distribution holds.

The hybrid deterministic-stochastic gradient Bayesian learning algorithm is given

by

(2.5) θk+1 =
εk
2

(
∇ log p(θk) +

N

nk

nk∑

i=1

∇ log p(xi|θk)
)
+
√
εkηk,

where nk is the number of size of a sample subset at the k-iteration. It is nondecreasing

and limk→∞ nk ≤ N.

3. Weak convergence method. In this section, we prove that the distribution

of the algorithm (2.5) converges to the posterior distribution p(θ|X). We introduce

the following conditions.

Assumption A. Assume that ∇ log p(θ) and ∇ log p(θ|x) satisfy linear growth and

Lipschitz conditions, and that p(x) is continuously differentiable.

Remark 3.1. The linear growth and Lipschitz conditions in assumption A can

be extended to local linear growth and local Lipschitz conditions by applying truncation

techniques, for more details we refer to [6].

Define tk =
∑k−1

i=0 εi,m(t) = max{k : tk ≤ t}, and continuous-time interpolations

(3.1)
θ0(t) = θk, for t ∈ [tk, tk+1),

θk(t) = θ0(t+ tk).

We first obtain an estimate on the pth moment of {θk}. This is stated as follows.

Lemma 3.2. Under assumption A, for any fixed p ≥ 2 and T > 0,

(3.2) sup
0≤k≤m(T )

E|θk|p ≤ (|θ0|p +KT ) exp(KT ) < ∞,

for some constant K > 0.

Proof. Define U(θ) = |θ|p and use Ek to denote the conditional expectation

with respect to the σ-algebra Gk, where Gk = σ(θ1, . . . , θk). In the following, we use
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notation ′ for the transpose operation. Thus

(3.3)

EkU(θk+1)− U(θk) = Ek∇U ′(θk)[θk+1 − θk]

+ Ek(θk+1 − θk)
′∇2U(θ+k )(θk+1 − θk)

≤ εk∇U ′(θk)
(
∇ log p(θk) +

N

nk

nk∑

i=1

∇ log p(xki|θk)
)

+Kεk|θk|p−2(1 + |θk|2)
≤ Kεk(1 + |θk|p),

where ∇U and ∇2U denote the gradient and the Hessian of U w.r.t. to x, and θ+k
denotes a vector on the line segment joining θk and θk+1. Note that we have used the

linear growth in θ for both ∇ log p(θ) and ∇ log p(θ|x) in the last line of (3.3). Since

U(θk) = |θk|p, we obtain Ek|θk+1|p ≤ |θk|p +Kεk +Kεk|θk|p. Taking the expectation

on both sides and iterating on the resulting recursion, we have

E|θn+1|p ≤ |θ0|p +Kεkn+Kεk

n∑

k=0

E|θk|p.

An application of the Gronwall’s inequality yields E|θn+1|p ≤ (|θ0|p +KT ) exp(KT )

as desired.

To proceed, let us recall the definition of tightness. Assume that B is a metric

space and that B is a σ algebra of subsets of B. A set of probability measures {Pα} on

(B,B) is tight if for each ε > 0 there is a compact set Bε ⊂ B such that infα Pα{Bα} ≥
1−ε. A set of random variable {xα} is tight if its corresponding set of measures {Pα}
is tight. For more details of tightness, we refer readers to the book [11].

In view of the estimate above, {θk : 0 ≤ k ≤ m(T )} is tight in R
r by applying

the well-known Chebyshev inequality. That is, for each δ > 0, there is a Kδ satisfying

Kδ >
√
(1/δ) such that

P (|θk| > Kδ) ≤
sup

0≤n≤m(T )

E|θk|2

K2
δ

≤ Kδ.

Next, we show that {θk(·)} is tight in suitable function spaces.

Lemma 3.3. Under assumption A, {θk(·)} is tight in Dr[0,∞), the space of

functions that are right continuous and have left limits, endowed with the Skorohod

topology.
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Proof. For any η > 0, t ≥ 0, 0 ≤ s ≤ η, we have

(3.4)

E|θk(t+ s)− θk(t)|2

= E

∣∣∣∣∣∣
1

2

m(t+s)−1∑

k=m(t)

εk

(
∇ log p(θk) +

nk∑

i=1

N

nk
∇ log p(θk|xki)

)
+

m(t+s)−1∑

k=m(t)

√
εkηk

∣∣∣∣∣∣

2

≤ K

m(t+s)−1∑

k=m(t)

ε2k(1 + E|θk|2) +K

m(t+s)−1∑

k=m(t)

εkE|ηk|2

≤ K

m(t+s)−1∑

k=m(t)

ε2k(1 + sup
m(t)≤k≤m(t+s)−1

E|θk|2) +K

m(t+s)−1∑

k=m(t)

εk

≤ O (t+ s− t) = O(s).

In the above, we have used Lemma 3.2 to ensure that supm(t)≤k≤m(t+s) E|θk|2 < ∞
and the conditions of the stepsize

∑∞
i=1 ε

2
k < ∞ and

∑∞
i=1 εk = ∞. Therefore, (3.4)

leads to

lim
η→0

lim sup
k→∞

E|θk(t+ s)− θk(t)|2 = 0.

The tightness of {θk(·)} then follows from [11, p. 47].

3.1. Weak Convergence. Since {θk(·)} is tight, by Prohorov’s Theorem (see

[6]), we may select a convergent subsequence. For simplicity, we still denote the

subsequence by {θk(·)} with limit denoted by {θ̃(·)}.
Theorem 3.4. Under assumption A, the sequence {θk(·)} converges weakly to

θ(·), which is the solution of Langevin dynamic given by (2.3).

Proof. By Skorohod representation (see [6]), without loss of generality and without

changing notation, we may assume that {θk(·)} converges to θ̃(·) almost surely, and

the convergence is uniform on each bounded interval. We proceed to characterize the

limiting process.

Step 1: We show that the algorithm converges to the solution of (2.3). Define the

operator

(3.5) Lg(θ) = 1

2

〈
∇g(θ),∇ log p(θ) +

n∑

i=1

∇ log p(θ|xi)
〉
+

1

2
tr[∇2g(θ)],

for any suitable function g. For each t > 0 and s > 0, each positive integer κ, each

0 ≤ tι ≤ t with ι ≤ κ, each bounded and continuous function ρ0(·), and for each twice

continuously differentiable function h(·) with compact support, we shall show that

(3.6) Eρ(θ̃(tι); ι ≤ κ)
[
h(θ̃(t+ s))− h(θ̃t)−

∫ t+s

t

Lh(θ̃(u))du
]
= 0.

This yields that

h(θ̃t)−
∫ t

0

Lh(θ̃(u))du is a continuous-time Martingale,
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which in turn implies that θ̃(·) is a solution of the Martingale problem with operator

L defined in (3.5).

To establish the desired result, we work with the sequence θk(·). By virtue of the

weak convergence and the Skorohod representation, it is readily seen that

(3.7)
Eρ(θk(tι); ι ≤ κ)[h(θk(t+ s))− h(θk(t))]

→ Eρ(θ̃(tι); ι ≤ κ)
[
h(θ̃(t+ s))− h(θ̃(t))

]
as ε → 0.

On the other hand, given a small ∆, direct calculation shows that

(3.8)

Eρ(θk(tι); ι ≤ κ)
[
h(θk(t+ s))− h(θk(t))

]

= Eρ(θk(tι); ι ≤ κ)
{ s/∆−1∑

l=0

[
h(θm(t+tk+l∆+∆))− h(θm(t+tk+l∆))

]}
.

Step 2: For simplicity, we define

f(θ) = ∇ log p(θ) +

N∑

i=1

∇ log p(θ|xi), and fk(θ) = ∇ log p(θ) +
N

nk

nk∑

i=1

∇ log p(θ|xki).

For the terms on the last line of (3.8), we have

(3.9)

lim
k→∞

Eρ(θk(tι); ι ≤ κ)

s/∆−1∑

l=0

[h(θm(t+tk+l∆+∆))− h(θm(t+tk+l∆))]

= lim
k→∞

Eρ(θk(tι); ι ≤ κ)
{ s/∆−1∑

l=0

[
∇h′(θm(t+tk+l∆))

m(t+tk+l∆+∆)−1∑

i=m(t+tk+l∆)

εi
2
fi(θi)

+

m(t+tk+l∆+∆)−1∑

i=m(t+tk+l∆)

εi
2
tr[∇2h(θm(t+tk+l∆))]

]}
.

By the continuity of f(·) and the fact that Ef(θ) = Efk(θ),

lim
k→∞

Eρ(θk(tι); ι ≤ κ)
{ s/∆−1∑

l=0

∇h′(θm(t+tk+l∆))

m(t+tk+l∆+∆)−1∑

i=m(t+tk+l∆)

εi
2

[
f(θi)− fi(θm(t+tk+l∆))

]}

= lim
k→∞

Eρ(θk(tι); ι ≤ κ)
{ s/∆−1∑

l=0

∇h′(θm(t+tk+l∆))

m(t+tk+l∆+∆)−1∑

i=m(t+tk+l∆)

εi
2

[
f(θi)− fi(θi)

]}

+ lim
k→∞

Eρ(θk(tι); ι ≤ κ)
{ s/∆−1∑

l=0

∇h′(θm(t+tk+l∆))

m(t+tk+l∆+∆)−1∑

i=m(t+tk+l∆)

εi
2

[
fi(θi)− fi(θm(t+tk+l∆))

]}

= 0.
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Thus, in evaluating the limit, fi(θi) can be replaced by f(θm(t+tk+l∆)).

Consequently, by the weak convergence and the Skorohod representation,

(3.10)

lim
k→∞

Eρ(θk(tι); ι ≤ κ)
{ s/∆−1∑

l=0

∇h′(θm(t+tk+l∆))

m(t+tk+l∆+∆)−1∑

i=m(t+tk+l∆)

εi
2
f(θm(t+tk+l∆))

}

= lim
k→∞

Eρ(θk(tι); ι ≤ κ)
{ s/∆−1∑

l=0

∇h′(θm(t+tk+l∆))
∆

2
f(θm(t+tk+l∆))

}

= lim
k→∞

Eρ(θk(tι); ι ≤ κ)
{ s/∆−1∑

l=0

∆

2
∇h′(θk(t+ l∆))f(θk(t+ l∆))

}

= Eρ(θ̃(tι); ι ≤ κ)
{∫ t+s

t

∇h′(θ̃(u))f(θ̃(u))du
}
.

In the above, treating such terms as f(θk(t + lδε)), we can approximate θk(·) by a

process taking finitely many values using a standard approximation argument (see

example, [6, p. 169] for more details).

Similar to (3.10), we also obtain

(3.11)

lim
k→∞

Eρ(θk(tι); ι ≤ κ)
{ s/∆−1∑

l=0

m(t+tk+l∆+∆)−1∑

i=m(t+tk+l∆)

εi
2
tr
[
∇2h(θt+tk+l∆)

]}

= Eρ(θ̃(tι); ι ≤ κ)
{∫ t+s

t

1

2
tr
[
∇2h(θ̃(u))

]
du

}
.

Step 3: Combining Steps 1–2, we obtain that θ̃(·), the weak limit of θk(·), is a

solution of the Martingale problem with operator L defined in (3.5). Using charac-

teristic functions, we show as in [18, Lemma 7.18], θ(·) the solution of the Martingale

problem with operator L, is unique in the sense of distribution. Thus θk(·) converges
to θ(·) as desired, which concludes the proof of the theorem.

Remark 3.5. The proof can also be extended to the algorithm (2.2) including the

preconditioner matrix, which is more common in practice.

4. Numerical simulations. In this section, we show the performance of the

hybrid deterministic-stochastic gradient method for binary logistic regression and

multinomial logistic regression models of data classification, in comparison with the

stochastic gradient descent method.

4.1. Binary logistic regression. We apply our hybrid deterministic-stochastic

gradient method to Bayesian logistic regression model and compare with the result of

stochastic gradient method. Logistic regression models [20] have been used widely in

a vast number of applications for the problem of binary classification. Assume that

we have data with N examples of input-output pairs (xi, yi), where xi ∈ R
m is a
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vector of m features, and yi ∈ {−1, 1} is the binary outcome. The goal is to find a

linear classifier that given the features xi and a vector of parameters β, the sign of

the inner product βTxi gives yi. The probability of the outcome given features xi is

p1(yi|xi) = σ(yiβ
Txi),

where σ(z) = 1
1+exp (−z) . The bias parameter is absorbed into β by including 1 as an

entry in xi. We use standard normal distribution as the prior distribution for β. Then

the gradient of the log likelihood is:

∂

∂β
log p1(yi|xi) = σ(−yiβ

Txi)yixi,

and the gradient of the log of the prior is ∂
∂β log p(β) = −β. We applied our algorithm

to the a9a dataset used in [9] from UCI adult dataset. It consists of 32561 observations

and 123 features. We used 80% of the data as the training data, i.e. N = 26049

and the rest 20% as the test data. For hybrid deterministic-stochastic method, we

set the number of the size of the sampling subset as nk = min(1.1nk−1, N), k =

1, 2, · · · with n1 = 1. While for the stochastic gradient method, we use the constant

number of samples with n = 4. We run each algorithm 50 times and take the average.

Figure 1 shows the average log joint probability per data item. It can be seen that

stochastic gradient algorithm leads to large likelihood at the beginning, while the

hybrid stochastic-deterministic gradient algorithm dominates the stochastic gradient

when the sample size grows.
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Fig. 1. Comparison of the log probability of logistic regression for stochastic and hybrid

deterministic-stochastic methods.

Figure 2 shows the accuracy by comparing these two methods on the testing

data set. The accuracy is in the sense of data percentages correctly predicted over

the testing data set. The hybrid nature can be seen again: the stochastic gradient

algorithm has more rapid initial progress, while the hybrid deterministic-stochastic

gradient algorithm gains more accuracy when the sample size grows with the iteration.

4.2. Multinomial logistic regression. In this subsection, we apply both al-

gorithms to a more general logistic regression model. Multinomial logistic regression

extends the binary requirement to allow each outcome yi to take any value from a set
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Fig. 2. Comparison of the accuracy of logistic regression on test set for stochastic and hybrid

deterministic-stochastic methods.

of classes C = {1, 2, 3, · · · , n}, [20]. In this model, we have a separate parameter βj

for each class j ∈ C. Given data xi ∈ R
m with m features, we model the probability

of the outcome by:

p2(yi = j|xi, (βj)j∈C) =
exp (βT

j xi)∑
l∈C exp (βT

l xl)
.

The gradient of the log likelihood is:

∂

∂βj
p2(yi = j|xi, (βj)j∈C) = σ(−

∑

l∈C

yiβlI{yi=l}xi)yixi,

where I{·} is the indicator function.

We run the experiments for multinomial logistic regression on the well-known

MNIST data set [4], containing 70000 examples of 28 × 28 images of digits, where

each digit is classified as one of the integers between 0 to 9. We used 60000 examples

as the training data and the rest 10000 as the test data. We set the sample size n = 10

for stochastic gradient algorithm and nk = min(1.1nk, N) for hybrid deterministic-

stochastic gradient algorithm. Assume that prior distributions for parameter βj , j ∈ C

are standard normal distributions. Then the gradient of the logarithm of the prior for

βj is ∂
∂betaj

log p(βj) = −βj. We run each algorithm 20 times and take the average.

Figure 3 shows the accuracy of these two methods. As the results of the above

experiments, the stochastic gradient algorithm is better initially. However, hybrid

deterministic-stochastic gradient algorithm gains more accuracy as the sample size

grows.

5. Remarks. Our work developed hybrid deterministic-stochastic gradient al-

gorithm of Langevin dynamics to Bayesian learning. We further developed the hybrid

deterministic-stochastic gradient optimization method [4] for Bayesian learning, and

advanced the stochastic Bayesian learning method in [9]. A comprehensive weak con-

vergence analysis of these algorithms is presented based on stochastic approximations

method [6]. We showed by numerical simulations that our proposed method has

both the advantages of the stochastic gradient Bayesian learning and the full gra-

dient Bayesian learning. More efficient MCMC sampling methods based on hybrid
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Fig. 3. Comparison of the accuracy of multi-logistic regression on test dataset for stochastic

and hybrid deterministic-stochastic methods.

deterministic-stochastic gradients are interesting directions in the future, for example,

the study of the more sophisticated Hamiltonian Monte Carlo approaches based on

the hybrid deterministic-stochastic gradients.
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