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Long-time behaviour of point islands under fixed
rate deposition
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, K. P. O’Neill, and H. Park

We discuss the asymptotic behaviour as as t → ∞ of rate equations
modelling submonolayer deposition for an arbitrary critical island
size i ≥ 0, generalising the results of da Costa, van Rössel and
Wattis [7].

Keywords and phrases: Submonolayer deposition, asymptotic be-
haviour, similarity solutions.

1. Introduction

Among Marshall Slemrod’s many important contributions to analysis and
differential equations, his works on coagulation–fragmentation equations,
and in particular on long-term behaviour in the Becker-Döring equations
[12, 13] are very well known. In this paper we consider the dynamics of a
related, much simpler, point island system, in which there also is a steady
influx of monomers.

The context is of submonolayer deposition, i.e. of depositing atoms onto
a surface, such that the deposited particles can then diffuse and coagulate
into clusters. If in modelling this process we do not take the spatial structure
into consideration, we are, broadly speaking, in the domain of mean-field
models. If we furthermore assume that coagulation and fragmentation rates
of clusters are not size-dependent, we are dealing with point islands. It
makes sense to say that i is the critical island size if clusters of size 2 < j ≤
i can fragment into monomers while clusters of size j ≥ n := i + 1 cannot.
If we assume that clusters of all sizes larger or equal to n are immobile,
a point-island mean-field model would lead to Becker–Döring kinetics, i.e.
stable clusters would be able to grow only by addition of monomers.

In [7], the authors consider such a mean-field point island deposition pro-
cess with Becker–Döring kinetics and time-independent input of monomers
with i = 1 (note that in the absence of diffusion the i = 1 case is equivalent
to the i = 0 case). Using Poincaré compactification and centre manifold
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methods (see also [6] for a more elementary argument), they characterise
long-term behaviour of solutions and then (see Theorem 4 of [7]) describe
the convergence of solutions to a self-similar profile. This work has been
further extended in [8] to allow for time-dependent input of monomers.

In the present paper we generalise the work of [7] to the case of submono-
layer deposition with point islands of arbitrary critical size i ≥ 2. There are
roughly three ways of modelling this situation.

(a) We could allow all clusters of size 1 < j ≤ i to fragment.
(b) We could assume that all clusters of size 1 < j ≤ i are at equilibrium;
(c) We could assume that clusters of size 1 < j ≤ i simply do not arise,

i.e. that one needs the energy of a n-ary collision to create a stable cluster
of size n.

(a) seems to us to be the most realistic approach. It has been adopted
by [4, 11]; we will comment on the (formal) results of [4] below. However,
the rigorous analysis of the resulting differential equations is prohibitively
complicated, and we leave this approach to future work. (b) seems ad-hoc,
and in this paper we analyse the scheme of (c). In fact, (c) is faithful to the
physical mechanism that underlies Monte-Carlo simulations of submonolayer
deposition with i ≥ 0 [1].

As the qualitative methods of [6, 7] do not seem to work in this more gen-
eral situation, we analyse the asymptotic behaviour of clusters from scratch,
showing in particular that all the solutions of the reduced system (4) in the
positive quadrant have the same asymptotics; in the Conclusions section
we comment on the connections of this approach to the ones based on the
Newton polygon, such as Bruno’s power geometry and rivers.

2. The equations

In [7], the authors consider the system of equations

(1)

{
ċ1 = α− 2c21 − c1

∑∞
i=2 ci,

ċj = c1cj−1 − c1cj , j ≥ 2,

where cj(t) is the concentration of a cluster of j monomers, and α ∈ R+ is
the monomer input rate.

In case (c), the system of equations in (1) becomes

(2)

⎧⎪⎨⎪⎩
ċ1 = α− ncn1 − c1

∑∞
j=n cj ,

ċn = cn1 − c1cn,

ċj = c1cj−1 − c1cj , j > n.
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The advantage of this formulation is that, as in (1), the analysis of the

long-time behaviour of solutions reduces essentially to a study of a two-

dimensional (2-D) system of ordinary differential equations (ODEs). It is

convenient to use slightly different variables from the ones used in [7].

Let Y (t) = c1(t) and (formally) set X(t) =
∑∞

i=n ci(t). Then we have

(3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ẏ = α− nY n − Y X,

Ẋ = Y n,

ċn = Y n − Y cn,

ċj = Y cj−1 − Y cj , j > n.

Note that the first two equations decouple from the rest and that once be-

haviour of Y (t) is known for large t, we can recover the long-time behaviour

of cj , j ≥ n by solving, one by one, linear equations.

As in [7], we have a theorem about the equivalence of solutions to (2)

and (3):

Theorem 1. If
∑∞

j=n cj(0) < ∞, a solution of (3) also solves (2).

The proof follows the lines of [7, Theorem 1].

To find the asymptotics of ci(t), i = 1, 2, . . ., we therefore consider the

first two equations of (3),

(4)

{
Ẋ = Y n,

Ẏ = α− nY n −XY, X(0), Y(0)>0.

3. Asymptotics of (4)

Proposition 1. For (4):

(i) The first quadrant (X,Y ) ∈ R2
+ is positively invariant.

(ii) Let [0, t0), t0 > 0 be an interval of existence of the solution of the

initial value problem (4) (such an interval exists by general ODE theorems).

Then, on some interval (t1, t0) with t1 ∈ (0, t0), Y is monotonic.

(iii) The solution of (4) exists for all t > 0.

(iv) ∃ τ > 0 s.t. ∀t > τ Y is monotonically decreasing and X is mono-

tonically increasing.

(v) As t → ∞ we have limt→+∞ Y (t) = 0, limt→+∞X(t) = +∞.

(vi) limt→+∞X(t)Y (t) = α.
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Theorem 2. As X → ∞ the function Y (X) is well defined and has an
asymptotic series of all orders in X of the form

(5) Y ∼ αX−1 − nαnX−n−1 + αn+1X−n−3 − n3α2n−1X−2n−1 + · · ·

where the subsequent terms in the expansion are unique (i.e. independent of
X(0), Y (0); their relative order depends on the value of n).

Proof of Proposition 1. (i) The fact that Ẏ = α > 0 means that the line Y =
0 can only be crossed from below. Similarly, Ẋ ≥ 0 implies that solutions
cannot cross the line X = 0.

(ii) Indeed, assume first towards a contradiction that Y had infinitely
many subintervals where it increases and infinitely many on which it is
decreasing. Since Y is smooth, Y has infinitely many strict maxima and
infinitely many strict minima. Let te be a minimum point. We have Ẏ (te) = 0
and thus

(6) Ÿ (te) = −Ẋ(te)Y (te) = −Y (te)
n+1 < 0,

a contradiction.
(iii) Since Y is monotonic on (t1, t0) bounded below by zero, limt→t0

Y (t) = L0 ∈ [0,+∞] exists. If we had L0 = +∞, then for some t2, we would
have nY n > 2α on (t2, t0), implying, by (4), that Y is strictly decreasing on
(t2, t0) and thus Y (t) < Y (t2) on this interval, a contradiction. Therefore

(7) lim
t→t0

Y (t) = L0 ∈ [0,+∞).

By (7), on [0, t0) we have Ẋ ∈ [0, Ln
0 + a) for some a > 0 and X is

increasing, with bounded derivative. Thus limt→t0 X(t) = L1 exists and L1 ∈
[0,∞). Then limt→t0(X(t), Y (t)) exists, and by general ODE arguments,
(X(t), Y (t)) extends beyond t0, as claimed. Thus the solution (X(t), Y (t))
is global.

(iv) Assume that Y is not eventually monotonic. Then there would be in-
finitely many subintervals where it increases and infinitely many on which it
is decreasing, and this is ruled out as in (ii). Thus Y is eventually monotonic
and limt→∞ Y (t) = L2 ∈ [0,∞]. We claim that L2 = 0. Indeed, if L2 > 0 we
get from Ẋ = Y n that X → +∞ as t → ∞. But then for sufficiently large t,
we see from (4) that Ẏ → −∞ and thus for some t3 and all t > t3 we have
Ẏ < −1 (say), and thus Y → −∞, contradicting the fact that the solution
is confined to the first quadrant. Y being eventually monotonic implies that
Y is eventually decreasing.
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(v) By the proof of (iv), Y is eventually decreasing and we have

(8) lim
t→∞

Y (t) = 0.

The fact that X is increasing is manifest in the first equation of (4), since
Y ≥ 0. Assume, again towards a contradiction that limt→∞X(t) = l < ∞.
Then, by (8) and the fact that X is bounded, we have Ẏ (t) → α > 0, and
thus Y is eventually increasing, which is incompatible with (8).

(vi) We now look at the function w(t) = X(t)Y (t). Note that

ẇ = αX − nY n−1w −Xw + Y n+1.

Thus, if ẇ = 0, we have

(9) w =
αX + Y n+1

X + nY n−1
.

If there is an infinite sequence of intervals on which w is increasing and an
infinite one in which it is decreasing, there are sequences of times, t̄k → ∞
and tk → ∞ of maxima and minima of w, respectively. Since X → ∞ and
Y → 0, (9) implies that for any ε > 0 there exists a τ > 0 such that for all
t̄k, tk > τ , w(t̄k) < α+ ε and w(tk) > α− ε. Hence

(10) α− ε < inf
t>τ

w(t) ≤ sup
t>τ

w(t) < α+ ε,

and this means that

(11) lim
t→∞

w(t) = α.

The other possibility is that w is eventually increasing or eventually decreas-
ing. If w is eventually increasing, we see that it must be bounded above,
or else we would have limt→∞X(t)Y (t) = +∞ implying from (4) and (v)
above, that limt→∞ Ẏ (t) = −∞ contradicting (v). Thus, whether increasing
or decreasing, limt→∞w(t) = λ ∈ [0,∞), in which case, from the first of (4),

(12) lim
t→∞

Ẏ = α− λ.

The only possibility consistent with (v) above is clearly λ = α.

Note 1. Since Y is eventually decreasing and X is eventually increasing,
the functions Y (X) and w(X) are well defined at least for large X and,
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since Ẋ 
= 0, Y (X) is smooth on (X0,∞) and decreasing. Furthermore,
from Proposition 1 we have

(13) w(X) ∼ α, Y (X) ∼ αX−1, as X → ∞.

Writing w(X) = α+ ε(X), by (13) we have ε(X) → 0 as X → ∞.

Straightforward algebra shows that

(14)
dε

dX
=

α+ ε

X
− ε

(α+ ε)n
Xn+1 − nX.

Let β = n
n+2 ∈ (0, 1), ξ = Xn+2, and ε(X) = g(ξ). Denoting by “′” deriva-

tives with respect to ξ, we get

(15) g′ =
α+ g

ξ(n+ 2)
− (α+ g)−n

2 + n
g − β

ξβ
,

where we substitute g(ξ) = ξ−βh(ξ) to get

(16) h′ = −β +
α

ξ1−β(2 + n)
− (α+ ξ−βh)−n

2 + n
h+

h

ξ

(
β +

1

2 + n

)
.

Theorem 3. For all solutions in the first quadrant, h(ξ) has an asymptotic
behavior of the following form:

h(ξ) ∼
∑
l,m≥0

al,m

ξl(1−β)+mβ
= −nαn +

αn+1

ξ1−β
− n3α2n−1

ξβ
+ o(ξ−β),

where al,m can be calculated explicitly order by order by iterating (18).

Since ε(X) → 0, g = h
ξβ → 0 and thus λ(ξ) = (α+ξ−βh)−n

2+n → λ :=

α−n(2 + n)−1, so that

(17) h′ = −β +
α

ξ1−β(2 + n)
+

hγ

ξ
− λh− δ(ξ, h),

where δ(ξ, h) = λh((1 + h
αξβ )

−n − 1) and γ = n+1
n+2 , and the solution of (17)

must satisfy

(18) h(ξ) = G(ξ) + e−λξξγ
∫ ξ

ξ0

δ(s, h)eλss−γds,
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where

(19) G(ξ) = e−λξξγ
[
C +

∫ ξ

ξ0

(−β +
α

s1−β(2 + n)
)eλss−γds

]
.

Note 2. By L’Hôpital’s rule, (19) implies that G(ξ) → −β/λ as ξ → ∞.

Lemma 2. h(ξ) is bounded.

Proof of Lemma 2. (18) can be rewritten in the following way:

g =
h(ξ)

ξβ
=

G(ξ)

ξβ
+ e−λξξγ−β

∫ ξ

ξ0

λ
h

sβ

(
(1 +

h

αsβ
)−n − 1

)
eλss−γ+βds.

Replacing h/sβ by g, taking maximum over [ξ0,∞), and using the fact that

e−λξξγ−β

∫ ξ

ξ0

eλss−γ+βds → 1/λ as ξ → ∞,

we have

(20)

max
[ξ0,∞)

|g| ≤
max[ξ0,∞) |G|

ξβ0
+ Const(n, ξ0)(max

[ξ0,∞)
|g|)2

⇐⇒ max
[ξ0,∞)

|g|(1− Const(n, ξ0) max
[ξ0,∞)

|g|) ≤
max[ξ0,∞) |G|

ξβ0

for large enough ξ0.

Since Const(n, ξ0) can stay the same for any bigger ξ0, and max[ξ0,∞) |g|→
0 as ξ0 → ∞, we can make Const(n, ξ0)max[ξ0,∞) |g| < 1/2 by increasing ξ0.
Then from (20) we have

max
[ξ0,∞)

|g| ≤ 2K

ξβ0
,

where K := max[ξ0,∞) |G|. (Since G(ξ) → −β/λ, |G(ξ)| is bounded.) Since

max[ξ0,2ξ0] |h|
(2ξ0)β

≤ max
[ξ0,2ξ0]

|g| ≤ max
[ξ0,∞)

|g| ≤ 2K

ξβ0
,

we obtain max[ξ0,2ξ0] |h| ≤ 2β+1K, and since ξ0 can be any bigger number,

the inequality can be extended to max[ξ0,∞) |h| ≤ 2β+1K, proving that |h| is
bounded.



190 O. Costin et al.

Lemma 3. G(ξ) has the following asymptotic form:

G(ξ) ∼ −β

λ
+

αn+1

ξ1−β
− βγ

λ2ξ
+O(ξ−2+β).

More precisely,

G(ξ) ∼
[
− β

λ
− βγ

λ2ξ
+ G̃1(ξ)

]
+ ξβ

[αn+1

ξ
+ G̃2(ξ)

]
,

where G̃1, G̃2 = O(ξ−2) ∈ C[[1/ξ]].

Proof of Lemma 3. By integration by parts and L’Hôpital’s rule, we have

(21) e−λξξa
∫ ξ

ξ0

eλssb ds ∼ 1

λ
ξa+b − b

λ2
ξa+b−1 + · · · , as ξ → ∞,

and so we get the above asymptotic form for G(ξ).

Proof of Theorem 3. By Lemma 2, we can let |h| < M for some M . Since

∣∣∣ (1 + h

αsβ

)−n

− 1
∣∣∣ ≤ C

M

sβ

for s > ξ0, we have

∣∣∣e−λξξγ
∫ ξ

ξ0

λh
(
(1 +

h

αsβ
)−n − 1

)
eλss−γds

∣∣∣
≤ CλM2e−λξξγ

∫ ξ

ξ0

eλss−γ−βds ∼ CM2

ξβ
= O(ξ−β),

and so, by (18) we obtain

h = G(ξ) +O(ξ−β) = −β

λ
+

αn+1

ξ1−β
+O(ξ−β).

Now let

h(ξ) = −β

λ
+

αn+1

ξ1−β
+

a

ξβ
+ o(ξ−β),
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so that (18) becomes

− β

λ
+

αn+1

ξ1−β
+

a

ξβ
+ o(ξ−β)(22)

= G(ξ) + e−λξξγ
∫ ξ

ξ0

λ
(
− β

λ
+

αn+1

s1−β
+

a

sβ
+ o(s−β)

)
[
− n

αsβ

(
− β

λ
+

αn+1

s1−β
+

a

sβ
+ o(s−β)

)
+O(s−2β)

]
eλss−γds

= −β

λ
+

αn+1

ξ1−β
− βγ

λ2ξ
+O(ξ−2+β)

+ e−λξξγ
∫ ξ

ξ0

λ
(
− nβ2

λ2αsβ
2nβαn+1

λαs
+ o(s−1) +O(s−2β)

)
eλss−γds,

and hence by (21) we get a = − nβ2

λ2αξβ = −n3α2n−1

ξβ . Replacing β/λ by nαn,
we obtain:

h(ξ) = −nαn +
αn+1

ξ1−β
− n3α2n−1

ξβ
+O(ξ−1) +O(ξ−2β).

Once n is given, the coefficients of the asymptotic series can be inductively
calculated by iteration. Note that, without specifying the value of n, we
cannot proceed explicitly any further for general n since the ordering of the
subsequent terms depends on the concrete value of n.

By collecting all the possible exponents of ξ and simple verification,
similar to that of (22), we get the following asymptotic expansion for h(ξ):

(23) h(ξ) ∼
∑
l,m≥0

al,m

ξl(1−β)+mβ
.

(Note that (23) can be well ordered: since β = n
n+2 and 1 − β = 2

n+2 , for

even n = 2k, this sum can be expressed as
∑

m≥1 amξ−
m

k+1 , and for odd n,∑
m≥1 amξ−

m

n+2 .)

Proof of Theorem 2. Using (23) we get

w = XY = α+
h(ξ)

ξβ
=α+

h(Xn+2)

Xn
∼ α− nαnX−n

+ αn+1X−n−2 − n3α2n−1X−2n + · · ·

implying the result.
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Since X ′ = Y n, we can calculate X(t) and Y (t) asymptotically, setting
w = f(X) and using∫ X

X(0)

Xn

(f(X))n
dX =

∫ t

0
dt, Y (t) =

f(X(t))

X(t)
,

to obtain

(24) X(t) ∼ [αn(n+ 1)]
1

n+1 t
1

n+1 − n2
( α

n+ 1

)n−1

n+1

t−
n−1

n+1 +O(t−1)

and

(25) Y (t) ∼
[ α

n+ 1

] 1

n+1

t−
1

n+1 +
[ n2 − nα

α(n+ 1)

]
t−1 +O(t−

n+3

n+1 ).

Note 3. Since X(t) → ∞ as t → ∞, and we are interested in the asymptotic
behavior as t → ∞, for small initial value of X we choose a sufficiently large
initial time t0 so that X(t0) is also large.

4. Similarity solutions

We expect the similarity solutions to be of the form

cj(t) = CtγΨ(ζ) as t → ∞,

where Ψ(0) = 1, and ζ = j/tβ, β > 0. Since we know that

c1(t) ∼
[

α

n+ 1

]1/(n+1)

t−1/(n+1),

we have that

C =

[
α

n+ 1

]1/(n+1)

and γ = − 1

n+ 1
.

The arguments in [14, p. 7832] imply that we should have β = 1 + γ and

(26) Ψ(ζ) =

{
(1− (1 + γ)η/C)γ/(γ+1) ζ < C/(1 + γ)

0 otherwise.

The remainder of this section is devoted to formulating and proving this
result rigorously.

First, we introduce a new timescale, τ(t) :=
∫ t
0 Y (s)ds, along with scaled

variables, c̃j(τ) := cj(t(τ)). τ(t) > 0 and is monotone increasing, and we
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denote by t(τ) the inverse function of τ(t). Note that τ(t) → ∞ as t → ∞
by (25).

Using the new timescale, we have for j > n

c̃j(τ)
′ =

dcj
dt

dt

dτ
= c̃j−1 − c̃j .

By the variation of constants formula,

c̃j = e−τ

∫ τ

0
esc̃j−1(s)ds+Ke−τ =

∫ τ

0
e−sc̃j−1(τ − s)ds+Ke−τ ,

where K ≡ c̃j(0). Note that cn we have

c̃n(τ) = e−τ c̃n(0) +

∫ τ

0
e−(τ−s)[c̃1(s)]

n−1ds.

Hence for all j ≥ n,

(27) c̃j(τ) = e−τ
j∑

k=n

τ j−k

(j − k)!
c̃k(0) +

1

(j − n)!

∫ τ

0
sj−ne−s[c̃1(τ − s)]n−1ds.

From the results of Section 3, we have

Proposition 4. As t, τ → ∞

(i) ( n
n+1)(

n+1
α )1/(n+1)t−n/(n+1)τ(t) → 1;

(ii) (nτα )1/nỸ (τ) → 1;

(iii) (n+1
α )1/(n+1)t1/(n+1)c1 → 1;

(iv) ( (n+1)t
α )(n−1)/(n+1)cj → 1, ∀j ≥ n.

We will also need the long time behaviour of c̃j(τ):

Proposition 5. As τ → ∞,

(28)
(nτ
α

)(n−1)/n
c̃j(τ) → 1 as τ → ∞, j ≥ n,

The proof of Propositions 4 and 5 is analogous to the argument
in [7, p. 381–383].

Let η = j/τ . The objective is to find a function Φ1(η), η 
= 1 such that

lim
j,τ→∞

[nτ
α

](n−1)/n
c̃j(τ) = Φ1(η),
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where η is fixed. For that we will need (27) and the results of Proposition 4 as

well as the Stirling formula approximation for the Gamma function, Γ(x) =√
2πxx−1/2e−x[1 +O(x−1)] as x → ∞.

For monomeric initial data with j ≥ n, we have

(29)
(nτ
α

)(n−1)/n
c̃j(τ) =

(
nτ
α

)(n−1)/n

(j − n)!

∫ τ

0
sj−ne−s[c̃1(τ − s)]n−1ds.

Consider the function φ1 defined on [n,∞)× [0,∞) by

(30) φ1(x, τ) =

(
nτ
α

)(n−1)/n

Γ(x− n+ 1)

∫ τ

0
sx−ne−s[c̃1(τ − s)]n−1ds.

Let x = ητ . Then, from (30), we obtain

φ1(ητ, τ) =

(
nτ
α

)(n−1)/n

Γ(ητ − n+ 1)

∫ τ

0
sητ−ne−s[c̃1(τ − s)]n−1ds.

The change of variable s = yτ now leads to

(31)

φ1(ητ, τ) =
ηn−1/2−ηττ1/2√

2πen−2
(1 +O(τ−1))

∫ 1

0

ψ(τ(1− y))eτ(η log(y)−y+η)

yn(1− y)(n−1)/n
dy,

where ψ(τ) =
(
nτ
α

)(n−1)/n
[c̃1(τ)]

n−1. Let

In(η, τ) := η−ηττ1/2eητ
∫ 1

0

ψ(τ(1− y))eτ(η log(y)−y)

yn(1− y)(n−1)/n
dy,

as τ → ∞. There are two cases to consider, η > 1 and η ∈ (0, 1).

Proposition 6. If η > 1, then Φ1(η) = 0.

Proof. In the integral, y−neτ(η log(y)−y) = e(ητ−n) log(y)−yτ = eg1(y), where

g1(y) = (ητ − n) log(y) − yτ . For all y ∈ (0, 1] and τ > n
η−1 , g

′
1 > 0. For

y ∈ (0, 1], we have g1(y) ≤ g1(1) = −τ . This leads to∫ 1

0
ψ(τ(1− y))

eτ(η log(y)−y)

yn(1− y)(n−1)/n
dy ≤ Mψe

−τ

∫ 1

0

dy

(1− y)(n−1)/n
= nMψe

−τ .

Thus, following [7, p. 385], for η > 1 we have In(η, τ) → 0 as τ → ∞.



Long-time behaviour of point islands under fixed rate deposition 195

Proposition 7. If η ∈ (0, 1), Φ1(η) = (1− η)−(n−1)/n.

Proof. The exponential term inside the integral In(η, τ) is e
f(y) where

f(y) = τ(η log(y)− y)

so that f ′(y) = 0 at y = η and f ′′(η) = − τ
η < 0. So the exponential term has

a unique maximum at y = η. To seek the asymptotic behaviour of In(η, τ),
we write

In(η, τ)

= η−ηττ1/2eητ
(∫ ε

0
+

∫ 1−ε

ε
+

∫ 1

1−ε

)
ψ(τ(1− y))

eτ(η log(y)−y)

yn(1− y)(n−1)/n
dy

=: In,1(η, τ) + In,2(η, τ) + In,3(η, τ).

Consider In,1(η, τ) first. The calculation is similar to the case η > 1.
Since we have 0 < y < ε < ηe−1, for all τ > n

(1−e−1)η , we obtain g1(y) =

(ητ − n) log(y) − yτ and g′1(y) > 0. Thus, g1(y) ≤ g1(ε) ≤ g1(ηe
−1) =

(ητ − n) log(η)− (ητ − n)− τηe−1. As in [7, p. 385], we have

(32) In,1(η, τ) → 0 as τ → ∞.

Next, consider the case In,3(η, τ). The exponential term is

eτ(η log(y)−y)eητe−ητ log(η) =: e−τg3(y),

where g3(y) = (η log(η)− η)− (η log(y)− y). As in [7, p. 18], we have

(33) In,3(η, τ) → 0 as τ → ∞

By (32) and (33), we have

(34) I(η, τ) = In,2(η, τ) + o(1) as τ → ∞.

To compute In,2(η, τ), we modify the arguments in [7]. Since y < 1−ε ⇒
τ(1 − y) > τε → ∞ as τ → ∞, then ψ(τ(1 − y)) = 1 + o(1) for large
τ as expected in the previous section. So, ∀δ > 0, ∃ T (δ) : ∀τ > T (δ),
ψ(τ(1− y)) ∈ [1− δ, 1 + δ] and with

Jn(η, τ) :=

∫ 1−ε

ε

e−τφ(y)

yn(1− y)(n−1)/n
dy and φ(y) = y − η log(y)− η,
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(35) (1− δ)η−ηττ1/2Jn(η, τ) ≤ In,2(η, τ) ≤ (1 + δ)η−ηττ1/2Jn(η, τ).

Since φ(y) is smooth and has a unique minimum y = η ∈ (ε, 1− ε) with
φ(η) = −η log(η) and φ′′(η) = η−1, we can use Laplace’s method [15] to
obtain

(36) J(η, τ) ≈ eητ log(η)

ηn(1− η)(n−1)/n

√
2π

τ/η

By (31), (34), (35) and (36), we have

φ1(ητ, τ) =
1

(1− η)(n−1)/n
(1 +O(τ−1)).

Thus for monomeric initial data we have

Theorem 4.

Φ1(η) :=

{
(1− η)−(n−1)/n if 0 < η < 1,
0 if η > 1.

For non-monomeric initial data, we have

(nτ
α

)(n−1)/n
c̃j(τ) = φ1(j, τ) +

(nτ
α

)(n−1)/n
e−τ

j∑
k=n

τ j−k

(j − k)!
c̃k(0),

where φ1(η) is defined in the previous subsection. Since we already have es-
tablished that the term φ1 is related to the term Φ1 defined by Theorem 4,
all that is required is to show that the second part of the non-monomeric
initial data solution goes to zero. This will show that the asymptotic be-
haviour for monomeric initial conditions also holds for the non-monomeric
case.

We define v := 1
η , τ = jv and assume c̃k(0) ≤ ρk−μ. Then

(nτ
α

)(n−1)/n
e−τ

j∑
k=n

τ j−k

(j − k)!
c̃k(0)

≤ ρ

(
njv

α

)(n−1)/n

e−jv
j∑

k=n

(jv)j−k

(j − k)! kμ

=: ρ
(n
α

)(n−1)/n
φ2(v, j),
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where φ2(v, j) = (jv)(n−1)/ne−jv
∑j

k=n
(jv)j−k

(j−k)! kμ . Note that v 
= 1 since

η 
= 1.

Proposition 8. For v ∈ (0, 1) and v > 1, φ2(v, j) → 0 as j → ∞.

The proof of Proposition 8 is analogous to the argument in [7, p. 387].
Hence, by Theorem 4 and Proposition 8,

Theorem 5. With η = j
τ fixed and η 
= 1, we have

lim
j,τ→∞

(nτ
α

)(n−1)/n
c̃j(τ) = Φ1(η),

where

Φ1(η) :=

{
(1− η)−(n−1)/n if 0 < η < 1,

0 if η > 1.

Let us rephrase our results in terms of t. From Proposition 4, equations
(24) and (27), for large t we have that

(37) 〈j〉 =
∑∞

j=1 jcj(t)∑∞
j=1 cj(t)

∼ αt

[(n+ 1)αnt]1/(n+1)
=

(
α

n+ 1

)1/(n+1)

tn/(n+1).

Therefore

τ ∼
(
n+ 1

n

)(
α

n+ 1

)1/(n+1)

tn/(n+1) ∼
(
n+ 1

n

)
〈j〉.

This leads to the following main result:

Theorem 6. As t → ∞,

cj(t) ∼
{
〈j〉−(n−1)/nΦ1

(
n

n+1
j
〈j〉

)
if n

n+1
j
〈j〉 < 1,

0 otherwise.

5. Conclusions

We have described the large time behaviour of solution to (3) for the point-
island case of general i ≥ 1, generalising [7], who deal with the case of i = 1
(n = 2). We also prove the convergence to a self-similar profile Φ1(η), with
a discontinuity at η = j/τ = 1.

Note that our results in Section 3 are consistent with the results in [4]
in case (a) with p = 0 and the identifications N1(t) := Y (t), M0(t) :=
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X(t), m := i (see equations (19) and (20) in [4]). It is remarkable that the
asymptotic behaviour is the same in case (a) and case (c), proving which
requires further analytical work.

The model treated in this paper is closely related to the one studied
by Bartelt and Evans in [2] for the point-island case i = 1. They have
derived an equation for the scaled island size distribution (ISD) and obtain
a discontinuity at j/〈j〉 = 3/2. Let us show that our analysis generalises this
result. We have

〈j〉 =
∑

j≥n jcj(t)∑
j≥n cj(t)

=
θ −

∑n−1
j=1 jcj(t)∑

j≥n cj(t)
,

⎛⎝θ = Ft =
∑
j≥1

jcj

⎞⎠ .

Now, recall that we simply do not allow clusters of size 1 < j ≤ i. This
implies ck(t) = 0 for k = 2, 3, . . . , n− 1. Then we have, with α = F

〈j〉 = αt− c1(t)∑
j≥n cj(t)

.

Since

τ ∼
(
n+ 1

n

)(
α

n+ 1

)1/(n+1)

tn/(n+1) ∼
(
n+ 1

n

)
〈j〉.

The discontinuity (at j/τ = 1) is in terms of 〈j〉, at

j

〈j〉 ∼ n+ 1

n
,

confirms the result obtained by Bartelt and Evans for i = 1, n = 2.
Note that as explained in [2, p. 54] and [10, p. 89], there is no discontinu-

ity in the similarity solution obtained from MC simulations. This raises by
the question of formulating conditions on the coefficients of Smoluchowski
coagulation equations which ensure a continuous scaling solution.

Finally, we would also like to comment on the connection of the calcu-
lations of Section 3, the work of Bruno [5], and the concept of a river [9]. In
terms of rivers, it can be verified that (4) admits a unique locally Lyapunov
stable river in the (positively invariant) first quadrant; our results prove that
in this case uniqueness and local Lyapunov stability imply global Lyapunov
stability in the positive quadrant. We leave a more extensive analysis of this
implication for future work. Our results would also follow from the work
of Bruno [5] once we establish that all solutions in the positive quadrant
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have the same order (see the definition in [5, p. 455]); this however seems
equivalent to obtaining the leading order of the final results of that section,
(24), (25).
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