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Zero dissipation limit of full compressible
Navier-Stokes equations with a Riemann initial data
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We consider the zero dissipation limit of the full compressible
Navier-Stokes equations with a Riemann initial data for the su-
perposition of two rarefaction waves and a contact discontinuity.
It is proved that for any suitably small viscosity ¢ and heat conduc-
tivity k satisfying the relation (1.3), there exists a unique global
piecewise smooth solution to the compressible Navier-Stokes equa-
tions. Moreover, as the viscosity ¢ tends to zero, the Navier-Stokes
solution converges uniformly to the Riemann solution of super-
position of two rarefaction waves and a contact discontinuity to
the corresponding Euler equations with the same Riemann initial
data away from the initial line ¢ = 0 and the contact discontinuity
located at x = 0.

1. Introduction

We study the zero dissipation limit of the solution to the Navier-Stokes
equations of a compressible heat-conducting gas in Lagrangian coordinate:

vy — Uy = 0,
(1.1) Uy +p§ :5(%)%
(e + %)t + (pu)z = ”(91 )z + 5(%)1
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with Riemann initial data

 (vo,u—,02), <0,
(1.2) (v,u,0)(0,2) = { (eur 0y), x>0,
where the functions v(x,t) > 0,u(x,t),6(z,t) > 0 represent the specific
volume, velocity and the absolute temperature of the gas, respectively. And
p = p(v,0) is the pressure, e = e(v, ) is the internal energy, € > 0 is the
viscosity constant and x > 0 is the coefficient of heat conduction. Here we
consider an ideal and polytropic gas, that is

RO RO
p=— €= —"01,

v v—1
with v > 1, R > 0 being gas constants.

The study of the asymptotic behavior of viscous flows, as the viscosity
tends to zero, is one of the important problems in the theory of compressible
fluid flows. When the solution of the inviscid flow is smooth, the zero dissi-
pation limit problem can be solved by classical scaling method. However, the
inviscid compressible flow contains discontinuities, such as shock waves, in
general. In this case, it is also conjectured that a general weak entropy solu-
tion to the inviscid flow should be the strong limit of the solution to the cor-
responding viscous flows with the same initial data as the viscosity vanishes.

It is well known that the solution to the Riemann problem for the FEuler
equations consists of three basic wave patterns, that is, shock, rarefaction
wave and contact discontinuity. Moreover, the Riemann solution is essential
in the theory for the Euler equations as it captures both local and global
behavior of general solutions.

For hyperbolic conservation laws with the uniform viscosity

ur + f(u)g = gy,

where f(u) satisfies some assumptions to ensure the hyperbolic nature of
the corresponding inviscid system, Goodman-Xin [4] verified the limit for
piecewise smooth solutions separated by non-interacting shock waves using
a matched asymptotic expansion method. Later, Yu [30] proved it for hyper-
bolic conservation laws with both shock and initial layers. In 2005, important
progress made by Bianchini-Bressan [1] justifies the vanishing viscosity limit
in BV-space even though the problem is still unsolved for the physical system
such as the compressible Navier-Stokes equations. For the multidimensional
case, the existence of curved, multidimensional viscous shocks to the viscous
conservation laws and the small-viscosity limit to the corresponding hyper-
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bolic conservation laws were proved by Gues-Métivier-Williams-Zumbrun in
[5, 6].

For the compressible isentropic Navier-Stokes equations where the con-
servation of energy in (1.1) is neglected in the isentropic regime, Hoff-Liu
[13] firstly proved the vanishing viscosity limit for a piecewise constant
shock with initial layer. Later, Xin [28] justified the limit for rarefaction
waves and Wang [26] generalized the result of Goodman-Xin [4] to the isen-
tropic Navier-Stokes equations. Then, Huang-Li-Wang [14] investigated the
zero dissipation limit of the one-dimensional compressible isentropic Navier-
Stokes equations in the case of rarefaction wave connected with one-side
vacuum state.

Recently, Chen-Perepelitsa [2] proved the convergence of the isentropic
compressible Navier-Stokes equations to the compressible Euler equations
as the viscosity vanishes in Eulerian coordinates for general initial data by
using compensated compactness method if the far field does not contain
vacuum. Note that this result allows the initial data containing vacuum in
the interior domain. However, the framework of compensated compactness
is basically limited to 2 x 2 systems so far, so that this result could not be
applied to the full compressible Navier-Stokes equations (1.1).

For the full compressible Navier-Stokes equations, there are investiga-
tions on the limits to the Euler system for the basic wave patterns in the
literature. We refer to Jiang-Ni-Sun [20] and Xin-Zeng [29] for the rarefac-
tion wave, Wang [27] for the single shock wave, Zhang-Pan-Wang-Tan [31]
for the two shock waves, Ma [21] for the contact discontinuity and Huang-
Wang-Yang [17, 18] for the superposition of two rarefaction waves and a
contact discontinuity and the superposition of rarefaction and shock waves,
respectively. Recently, Huang-Wang-Wang-Yang [19] justified the vanishing
viscosity limit of 1D full compressible Navier-Stokes equations to the Eu-
ler equations for generic Riemann solution with the superposition of shock,
rarefaction waves and contact discontinuity. We should point out that the
limits shown in [20] and [31] are for the discontinuous initial data while the
other results mentioned are for (well-prepared) smooth data.

As mentioned above, for the zero dissipation limit of the full Navier-
Stokes equations (1.1) with discontinous Riemann initial data (1.2), the
only known results are Jiang-Ni-Sun [20] for the rarefaction waves case and
Zhang-Pan-Wang-Tan [31] for the two shock waves case. In this paper, we
shall investigate the case of different wave patterns, that is, the superposition
of two rarefaction waves and a contact discontinuity. The local and global
well-posedness of the full system (1.1) or the corresponding isentropic sys-
tem with discontinuous initial data is systematically studied by Hoff, etc., see
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[7,8,9,10, 11, 12, 3]. In order to get the zero dissipation limit of the system
(1.1) to the Riemann solution of the Euler system, on one hand, we shall
combine the local existence of solutions with discontinuous data from [9]
and the time-asymptotic stability analysis to the compressible Navier-Stokes
equations (2.2); on the other hand, one must take care of the propagation of
the discontinuity uniformly in time. Compared with the previous results in
[17] where the same limit process is studied for (well-prepared) smooth ini-
tial data and in [15] for the stability of two rarefaction waves and a contact
discontinuity, the main difficulty here lies in the propagation of the disconti-
nuity from the initial data. The discontinuity of the initial data for the vol-
ume v(t, z) will propagate for all the time along the particle path due to the
hyperbolic regime while the smoothing effects will also be performed on the
velocity u(t,z) and the temperature (¢, z) by the parabolic structure, and
this interaction of the discontinuity and smoothing effects brings technical
difficulties. On the other hand, compared with [20, 31] where the zero dissipa-
tion limit is shown for the rarefaction or two shock waves case, the difficulties
here arise from the contact wave and its interactions with the rarefaction
waves. To circumvent such difficulties, motivated by Huang-Li-Matsumura
[15] for the stability of two rarefaction waves and a contact discontinuity
in the middle, we shall choose suitable weight functions to carry out the
weighted energy estimates in terms of the superposition wave structure (see
Lemmas 3.6 and 3.8 and Remark 3.7). Note that the weight function here
is a little different from Huang-Li-Matsumura [15] due to the discontinuity.

Without loss of generality, we assume the following relation between the
viscosity constant € and the heat-conducing coefficient x of system (1.1) as
in [20]:

(1.3) k= 0(e), as e —0;
' V= @ >c>0 for some positive constant ¢, as & — 0.

If k=e=01in (1.1), then the corresponding Euler system reads as

vy — Uy = 0,
(1.4) ut +pe =0,
(e + %) + (pu), = 0.

It can be easily computed that the eigenvalues of the Jacobi matrix of the
flux function to (1.4) are

(1.5) M=—y/2E X=0, A3=,/2.
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It is well known that the first and third characteristic fields of (1.4) are
genuinely nonlinear and the second one is linearly degenerate (see [25]).

For the Euler equations, we know that there are three basic wave pat-
terns, shock, rarefaction wave and contact discontinuity. And the Riemann
solution to the Euler equations has a basic wave pattern consisting the su-
perposition of these three waves with the contact discontinuity in the middle.
For later use, let us firstly recall the wave curves for the two types of basic
waves studied in this paper.

Given the right end state (vy,uy,04) with vy,04 > 0, the following
wave curves in the phase space {(v,u,f)|v > 0,6 > 0} are defined for the
Euler equations.

e Contact discontinuity curve:

(16) CD(U+’U+70+) = {(U7u79)‘u = U4, P =P+, 7_é U+}'

e i-Rarefaction wave curve (i = 1, 3):

(1.7)

Ri(v-‘rv U, 94—) = {(U, U, 9)

Ut

U< Up, U= U+—/ Ai(n, s4) dn, s(v,0) = 3+}7

where sy = s(vy,04) and A; = Aj(v,s) defined in (1.5) is the i-th charac-
teristic speed of the Euler system (1.4).

Now, we define the solution profile that consists of the superposition
of two rarefaction waves and a contact discontinuity. Let (v_,u_,0_) €
R1-CD-R3(v4,uy,64). Then, there exist uniquely two intermediate states
(Ui, Ug, B5) and (v*,u*,0%), such that (ve,u., 0x) € Ri(v_,u_,0_), (v, s,
0.) € CD(v*,u*,0*) and (v*,u*,0%) € R3(vy,uq,04).

Thus, the wave pattern (V,U, ©)(t,z) consisting of 1-rarefaction wave,
2-contact discontinuity and 3-rarefaction wave that solves the corresponding

Riemann problem of the Euler system (1.4) can be defined by

‘:/ T UCd 4T Uy + v*
18) [ U |ta)=| v +ud+u® | (tx)— | wtu* |,
C) O + g4 4 gs 0, + 0*

where (v, u™,0™)(t,x) is the 1-rarefaction wave defined in (1.7) with the
right state (v, uy, 0, ) replaced by (vy, ux, 05), (v°4, ucd, 8°4)(t, z) is the con-
tact discontinuity defined in (1.6) with the states (v_,u_,0_) and (v4,u4,
0 ) replaced by (vs, us, 0,) and (v*, u*, %) respectively, and (v"s, u"3,0"3)(t, )
is the 3-rarefaction wave defined in (1.7) with the left state (v_,u_,6_) re-
placed by (v*,u*,0%).
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Now we state the main result as follows.

Theorem 1.1. Given a Riemann solution (V,U,0)(t,z) defined in (1.8),
which is superposition of two rarefaction waves and a contact discontinuity
for the Euler system (1.4), there exist small positive constants &g and £, such
that if e < &g and the wave strength 6 = |(vy —v_,uy —u_,04 —0_)| < o,
then the compressible Navier-Stokes equations (1.1) with (1.2) and (1.3)
admits a unique global piece-wise smooth solution (v¢,uf,0%)(t,x) satisfying
that

e The quantities u®, 6%, p(v®,0°) — {:‘Z—E and g—z are continuous for t > 0,

and the jumps in v°,us, 05 at x = 0 satisfies

ct

([ (2, 0)], [uz (¢, 0], [0z (¢, 0)])| < Ce™ =,

where the constants C' and ¢ are independent of t and €.
e Moreover, under the condition (1.3), it holds that
(1.9) lim sup |(v5,u5,0°)(t,z) — (V,U,0O)(t,x)| =0, Vh>0,
=0 (t,x)eX,

where X, = {(t,x)\t > h, \)% >he*0<a< %}

Remark 1.2. Theorem 1.1 shows that, away from the initial time t = 0
and the contact discontinuity located at x = 0, there exists a unique global
solution (v¢,uf,0%)(t,x) of the compressible Navier-Stokes equations (1.1)
which converges to the Riemann solution (V,U,©)(t,x) consisting of two
rarefaction waves and a contact discontinuity when € and k satisfy the rela-
tion (1.3) and € tends to zero. Moreover, the convergence is uniform on the
set 3y, for any h > 0.

Notations. In the paper, we always use the notation {5 = [g+ + Jg— I |l
to denote the usual L?(R) norm, |- |} to denote the piecewise L? norm, that
is, | /2= fg f?dy. ||-]l1 and || - {}1 represent the H'(R) norm and piece-wise
H'(R*) norm, respectively. And the notation [-] represents the jump of the
function - at x = 0 or y = 0 if without confusion.

2. Approximate profiles

Introduce the following scaled variables

(2.1) y=
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and set
(v, u,0%)(t, x) = (v, u, 0)(T,y).
Then the new unknown functions (v,u, #)(7,y) satisfies the system
vy —uy = 0,

(2.2) ur +py = ()y,
7_13107"'19“11 =

)

L)y +

v

K

with the scaled heat conductivity v = £ in (1.3) satisfying
vg < v < vy, uniformly in € as e — 0+, for some positive constants vy and .

Note that the Riemann solution (V,U, ©)(t, z) in (1.8) is invariant under
the scaling transformation (2.1), thus to prove the limit (1.9) in Theorem
1.1, it is sufficient to show the following limit

(2.3) lim sup [(v,u,0)(r,y) — (V,U,0)(r,y)| =0, Vh>0,

e—0 (ry)est

where 2111 is the corresponding region of ¥ in the new coordinates (7,y)
defined by

» h yl h 1
2.4 1 — > — > < — %
24 h “ﬂwh—e\ﬁi7—g%wo—a<2}

Now we study the Navier-Stokes equations (2.2). The corresponding
wave profiles to (1.6) and (1.7) can be defined approximately as follows.
We start from the viscous contact wave to (1.6).

2.1. Viscous contact wave
If (v_,u_,0_) € CD(vy,uq,04), ie.,

U = Uy, P— = P+, V- 7é Uy,

then the Riemann problem, that is, the Euler system (1.4) with Riemann
initial data

(U—au—ae—)> y <0,
(U+,U+,9+), y >0,

(%wmhzaw:{
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admits a single contact discontinuity solution

(v_,uy,6_), y < usr, T >0,
(U-Hu-‘rae-‘r)a Yy >ugT, T > 0.

(UCd, ucd7 QCd)(T7 y) — {

As in [16], the viscous version of the above contact discontinuity, called
viscous contact wave (VEP UCP @CP)(r,y), can be defined as follows.
Since it is expected that

pep ~pyr =p_, and |UCD —uy| <1,

the leading order of the energy equation (2.2), is
R ©
SOty = vy

Then, similar to [15] or [17], one can get the following nonlinear diffusion
equation

Oy vp+(vy—1)
@T:a<6>y, @(T,Zl:)ZQ:t, a:TLy.
The above diffusion equation has a unique self-similar solution @(T, y) =
(Y
O( \/H‘—T)

Thus, the viscous contact wave (VEP, UCP ©CP)(r,y) can be defined

~

VCD(T, y) — R@(Tvy)7
b+
- 1) é (7—7 y)
2.5 uer TY) = U —FZ/(7 - ,
( ) ( ?/) + R~y Q(ij)
R Ry — —1) 4
6 (r,) = O(r.p) + 20,

Here, it is straightforward to check that the viscous contact wave defined in
(2.5) satisfies

coy?

(2.6) |O—0|+(147)2|Oy|+(147)[Oy,| = O(1)6Pe™ 75,  as |y| — +oo,

where §¢P = |0, — 0_| represents the strength of the viscous contact wave
and ¢p is a positive constant. Note that in (2.5), the higher order term
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%(3_1)(:)7 is introduced in ©“P(7,7) to make the viscous contact wave
(VEP UCP @CP)(r,y) satisfy the momentum equation exactly, see also [23,
24]. Correspondingly, (VEP, UCP ©CP) (1, y) satisfies the system
ver — Ul =o,
yop

(2.7) UL + PEP = (355,
@C‘D (UCD)2

L6000 4+ POPULP = v(Tn )y + oo + QP

CcD .
where P¢P = 1%/6013 and the error term QP satisfies

(2.8) QY =0(1)6P(1 + 7)726_%, as |y| — +oo,
for some positive constant cg.

2.2. Approximate rarefaction waves

We now turn to the approximate rarefaction waves to (1.7). Since there is no
exact rarefaction wave profile for the Navier-Stokes equations, the following
approximate rarefaction wave profile, which satisfies the Euler equations,
is motivated by [28]. For the completeness of presentation, we include its
definition and the properties in this subsection.

If (v_yu_,0_) € Ri(vy,uy,04), (i =1,3), then there exists an i-rarefac-
tion wave (v",u"i,0")(y/7) which is a global solution of the following Rie-
mann problem:

(v, — uy = 0,
Ur +py(U, 9) =0,
(2.9) 7—}_2197- + p(v,0)u, =0,

(v_,u_,0_), y<O0,
v,u,0)(0,y) =
( )( y) { (v-i-?u-‘rae-‘r)a Yy > 0.

\
Consider the following inviscid Burgers equation with Riemann data:

wr + wwy =0,

(2.10) w_, y <0,
Wy, Y > 0.
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If w_ < wy, then the Riemann problem (2.10) admits a rarefaction wave

solution
w—, % S w—,
(2.11) w'(T,y) = w’"(g) =¢ % w. <Ef<w,,
T
wy, Z>w,.

Thus, the Riemann solution in (2.9) can be expressed explicitly through the
above rarefaction wave (2.11) to the Burgers equation, that is,

s"(1,y) = s(v"(1,9),07 (T, y)) = s+,
wy = At = Ai(vg, 04),

w'(3) = Ai(v" (1, 9), 54),

u" (1Y) = ug — [ () Ai(v, s4)dv.

e
+

(2.12)

In order to construct the approximate rarefaction wave (VRi,URi,
O%)(1,y) corresponding to (2.12), we first consider the following approxi-
mate rarefaction wave to the Burgers equation:

(2.13)

wr + wwy = 0,
w(0,y) = wo(y) = == + 2= tanhy.

Note that the solution w!(7,y) of the problem (2.13) is given by

wh(r,y) = wolzo(r,y)), &= z0(7,y) +wo(wo(T,y))T.

And wf(7,y) has the following properties, the proof of which can be found
in [22, 28):

Lemma 2.1. Let w_ < wy, then (2.13) has a unique smooth solution
w?(1,y) satisfying

(1) w- < wi(r,y) <wy, (W)y(r,y) > 0;
(2) For any 1 < p < 400, there exists a constant C' such that

| 2wk () oy < Cmin {(wy —w_), (ws —w_)/rr=+1/r},

||88_y22wR(Ta MNerw) < Cmin {(wy —w_), 771}
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(3) If y —w_1 <0, then

|wR(T y) —w_| < (wy — ’w_)e_2|y—w—7'|’

(9 (T y)‘ < 2(w+ — _)e*2|y*w,ﬂ;
If y —wyr >0, then

‘wR(T7 y) - w-‘r‘ < (w+ — w_)e_Q‘y—wyr\’
‘%wR(T, y)| < 2(w+ — w_)e—2|y—w+7—|;

(4) sup |wR(T) y) - wr(%)’ < min {U)+ - w-, % hl(l + T)}
yeER

Then, corresponding to (2.12), the approximate rarefaction wave profile
denoted by (VU ©f) (1 y) (i =1,3) to (1.7) can be defined by

SBi(7,y) = s(VE(r,y), 0% (1,y)) = 54,
) we = Nt = A\i(v4,04),
(2.14) W14 7,9) = M(VE(r, ), 54),

URs(r,y) =uy — [T Ni(v, 54)dv.
Note that (Vi Ui ©%:)(7,y) defined above satisfies
Vi — Ul =0,
(2.15) Uft + Pfn =0,
ALef+ PRUt =0,
where PHi = p(VE: @),

By virtue of Lemma 2.1, the properties on the approximate rarefaction
waves (VI Ui ©%:)(7,y) can be summarized as follows.

Lemma 2.2. The approzimate rarefaction waves (V¥ UR: @) (1 y) (i =
1,3) constructed in (2.14) have the following properties:

(1) UBi(1,9) >0 fory € R, 7 > 0;

(2) For any 1 < p < 400, the following estimates holds,
IV U ©8), gy < Cmin {57, (372 (1 4+ 7) 7403,
[(VE U 08y || 1o(ay) < Cmin {65, (14 7)71},
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where 6T = |(vy —v_,uy —u_,04 — 0_)| is the i-rarefaction wave
strength and the positive constant C' is independent of T, but may de-
pend on p and the wave strength;

(3) If y > M+ (1 +71), then

(VTR 0 ) () — (v, u,0)] < Cofe2—ha (147
’(VRl , URl , @R1 )y(Ta y)| S 05R1 e—2|y—>\1+(1+7')|;

If y < Xs—(1+7), then

(Vs URs ©F5)(1,y) — (04, uy, 04)] < Cosem2ly= 2o (T

(Ve U, ©F), (7, )] < Cfsem 2 (0,

(4) There exists a positive constant C, such that for all T > 0,

R: 77R: R o oo Y C
g g i _ i i i\ (2L < .
sup |V, U5, 0)(ry) = (07w, 07) (D)) < o In(1+7)

yeR

2.3. Superposition of rarefaction waves and contact discontinuity

Corresponding to (1.8), the approximate wave pattern (V,U, ©)(7,y) of the
compressible Navier-Stokes equations (2.2) can be defined by

v Vi Lyl ks Ui + "
(2.16) U |(ry = UB+UP+UB | (r,y)— [ wtu* |,
S) oft + P 1 ofs 0, + 6*

where (V1 UF ©F1) (7, y) is the approximate 1-rarefaction wave defined in
(2.14) with the right state (vy,uy,0,) replaced by (vs,us, 0y), (VEP, UCP,
O°P)(r,y) is the viscous contact wave defined in (2.5) with the states
(v_,u_,0_) and (vy,uy,04) replaced by (v, us, 6x) and (v*,u*,0*) respec-
tively, and (Vs URs ©Fs)(r,y) is the approximate 3-rarefaction wave de-
fined in (2.14) with the left state (v_,u_,0_) replaced by (v*,u*,6%).

Thus, from the properties of the viscous contact wave in (2.6) and the
approximate rarefaction wave in Lemma 2.3, we have the following relation
between the approximate wave pattern (V, U, ©)(r,y) and the exact inviscid
wave pattern (V,U,©)(r,y) of the Euler equations

(2.17) (V,0,0)(r,y) ~ (V,0,0)(ry)| < 1o~ In(1 +7) + C6°Pe 5.

T
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Hence, to prove the zero dissipation limit (2.3) on the set X} defined in
(2.4), it is sufficient to show the following time-asymptotic behavior of the
solution to (2.2) around the approximate wave profile (2.16), i.e.,

(2.18) lim | (v,u,0)(r,-) — (V,U,0)(r,-)||~ = 0.

T—400

First, by (2.7) and (2.15), the superposition wave profile (V,U, ©)(r,y) de-
fined in (2.16) satisfies the following system

V, - U, =0,
UT+P :(%)y""Ql,

o,y . U
0, 4 PU, = (S, + 5+ s

where P = p(V,0) and

Q1 :(P—PRI_PCD—PR3)y_(Vy_V%D) ;
y

— Ri77Ry CDyrrCD Rs717R3 Y Y
Q2 =(PU,—PRUM — PCPULP — P %)—V<—"‘cp
Yy
2 CD\2
_ U?J _ (Uy ) _QCD
Vv Vv CD :

A direct calculation shows that

(2.19)
Q1= 0W{|(V" O I(VOP —v., 0 =0, V™ —v*, € %)
+ |(‘/yR3’ @53)”(‘/1%1 — vy, ot _ 0., VCD o ’U*, @C’D B 9*)‘
IV, 07 UV — v, 0 — 0, VI — v, 0 — )
FIUFP VIO VU V) + U5 VI V)l |
F WU |+ U531+ U IV + (U 1V}
= Qn + Q2.
Similarly, it holds that

(2.20)
Q2 = O [(VEP = 0., 0P — 0, VT — 0, 0F — ¢)
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+ |U;~23||(VR1 o 0*7931 o 9*7VCD . 0*7901) — 0]
+|(UFP,VEP, e5P)|(VE — v, 0 — 0, VT —p* 0 — %))
+(USP, VIR 0T [(U, v e, U, v, el
AN DICARANCEN

+ 0(1){|@§;| + (O] + (U, VB e U, Ve, @53)?} +1Q°7|

= Qa1 + Qa2 + Q7.

Here Q11 and Q21 represent the wave interaction terms coming from the
wave patterns in the different family, Q12 and Q)99 stand for the error terms
due to the inviscid approximate rarefaction wave profiles, and Q¢P is the
error term defined in (2.8) due to the viscous contact wave.

In fact, one can estimate the interaction terms Q17 and Q)21 by dividing
the whole domain Q = {(7,y)|(7,y) € R x R} into three regions:

Q- ={(r,y) |2y < A(14+ 1)},

Qop ={(1y) [ Mx(1+7) <2y < A3(1 +7)},
Qp ={(r,9) | 2y 2 A3(1 + 1)},

where M. = A1(vs,04) and Aj = A3(v*,0%). Then, in each section the fol-
lowing estimates follow from (2.6) and Lemma 2.2.

e InQ_,|
(Vs — %, VyR3)| = 0(1)§%s e~ 2HyIHAIA+T)}
(V0P = 0, VEP o V0P| = O(1)gPe 2
= 0(1)0Pe= 1+,
e In QCD)
’(VRI — v, Vle)‘ — O(l)aRle—Z{\yH—Ml*|(1+T)},
(Vs —p*, VyR?*)’ = O(1)fts e~ 2yHINI(+)F
e In O,

(VI — 0, V)| = O(1)% e 21003,

c{3la+7)3?
|(VCD — v, VCD _ ,U*,VvyCD)| — O(l)écDe—JHT—

— 0(1)50D6_0(1+T) )
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Keep in mind that each individual wave strength is controlled by the total
wave strength by (1.6) and (1.7), that is,

ot 4 5% 4 §CP < (.

Hence, in summary, it follows from (2.19), (2.20) and the above arguments
that

(Q11,Q21)| = O(1)deCllyl+0+7)}

for some positive constant C' independent of 7 and y.
3. Proof of the main result

In this section, we shall prove the main result Theorem 1.1. By virtue of the
arguments in Section 2.3, it is sufficient to show (2.18) besides the regularity
of the solution. To this end, we first reformulate the problem.

3.1. Reformulation of the problem

Set the perturbation around the wave profile (V,U, ©)(7,y) by

(¢> ¥, C) (7—7 y) = (Ua u, 9)(7—7 y) - (Vv U, 6)(T> y)'

Then, after a straightforward calculation, the perturbation (¢,,()(T,y)
satisfies the system

¢T_¢y =0,

T/’T"‘(p_P)y:(%_%)y_Qla

G+ (g = PU) = (5 = G0y + (F = §) — @2,
(gb’wa g)(’r = O?Z/) = (¢07 17[)07 CO)(y)7

(3.1)

where the initial data (¢o,%0,Co)(y) and its derivatives are sufficiently
smooth away from but up to y = 0, and

(¢0,%0,¢0)(y) € L*(R), oy € L*(R™).

For simplicity, denote

No = [[(¢0, %o, )II” + Nl oy 4 -

In order to prove (2.18), we easily see that it suffices to show
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Proposition 3.1. There exists a positive constant &g, such that if the wave
strength 6 and the initial data satisfy

5+ Ny < do,

then the problem (3.1) admits a unique global solution (¢,1,C)(t,y) satisfy-
mng

(i) There exists a positive constant C' independent of t, such that

+oo
sup (16,9 )P+ o) ) + [ 16000 G)r )R dr
>0 0
< C(No + 07%).

(ii) For any 19 > 0, there exists a positive constant C' = C(7y), such that

5 Gy s )P [ Wi e G )7 )4 0
< C(70)(Ny + 61).
(iii) The jump condition of ¢(7,y) at y = 0 admits the bound
52 ()] < Ce

where the positive constants C' and c are independent of T € (0,+00).

Assume that Proposition 3.1 holds, then for any 7y > 0, one has

+o0 d
[ (16000 O #1166, G [)ar < o6,

whence,
. 2
Tlin;o H (¢y7 T/’ya Cy)-H - O,
which, together with Proposition 3.1 and Sobolev’s inequality, implies that

Jim, sup (0,9, Ol < € lim [, )l (b, 0y, )
Y
S CTILngo ||(¢y, T/Jya Cy)H» =0.

The above inequality combined with (3.2) gives (2.18). Thus, the main result
Theorem 1.1 follows from (2.18) and (2.17).
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Denote

N(7,7%) = sup ]{II(¢7¢,C)(T,')IIQ+ 1(y, %y G (7 )

TE[Tw,T*

+ 1 G )2,
N(1y) = N(Tu, Ts),

and define the solution space by

(6,9,0)(r,y) € Clm, 7] H'(RF)),
2 * 1 +
X * *1 — (¢y»<y) €L (T*’T aH (R ))7
[7’ y T ] (¢7¢7C) ¢y e LQ(T*,T*;LQ(Ri)),
(¥r, ) € LO(r, 75 LA(RF)) N L2 (7, 74 H' (RY)).
Since the local existence of solutions to (3.1) is proved in [9], we just state

it and omit its proof for brevity.

Proposition 3.2. (Local existence) Suppose that Ny and the wave strength
0 are suitably small such that inf vg and inf O are positive. Then there exists
a positive time 1o = 10(N(0),0) > 0, such that the Cauchy problem (3.1)
admits a unique solution (¢,1,)(T,y) € X|[0,70] satisfying

A(19) + B(10) + F(10) < C(Np +9),

where

Aw) = s {1600 +lod }+ [T wclPar

0<7<70

B(r) = sup {g(r)% I + g(r)loy 4 }

0<r<79

9 (el + | (), 4

oI + 10-17 + 12, 42,

F(m) = sup {g(r)(url? + D4 + o) (16 + 1,49}

+/0 gy +g(r) Gy ),

with (1) = 7A1 =min{r, 1} and ¥ € (0,1). Moreover, v,u, 8 have the same
reqularity as in Theorem 1.1. Thus, v, uy,0, have one-side limit at y = 0
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and satisfy the jump conditions

-2 [4] o
v v ’
Finally, one has the following estimate on the jump at y = 0,
[[v](7)] < Cde™, T>0

for some positive constants C' and c independent of T.

Hence, in view of the local existence Proposition 3.2 and the standard
continuation process, we see that to prove Proposition 3.1, it suffices to show
the following (uniform) a priori estimate.

Proposition 3.3. (A priori estimate) Suppose that the Cauchy problem
(3.1) has a solution (¢,¢,C)(1,y) € X|[r1,72]. There exists a positive con-
stant ny, such that if

(3.3) N(71,72) +0 <,
then,
(3.4)
N(rvm)+ [ {00 1R+ ) MR 0 G ()}
< C(N(n) +6%),
where the positive constant C is independent of 7.

3.2. Energy estimates

In this section we will derive the a priori estimate given in Proposition 3.3.
Note that under the a priori assumption (3.3), if 7 < 1, then it holds that

inf {(V+¢,0+)(r,y)} = Co

[Tl ,7'2] xR

for some positive constant Cy. First, one has the following Lemma:

Lemma 3.4. Under the assumptions of Proposition 3.3, there exists a con-
stant C' > 0, such that for any T € [11, 2],

16.0.¢.0)m W + [ {IN O U@ IR + 16000 6 Jar
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< Oll(,, ¢, ) W2 (1) + C / (1+7)75[(¢, 8, ) (-, 7)|Pdr + C63

T1

+C§/T]{1(1+T)_ T |(q5 O)|Pdydr.

Proof: Let
P(z)=2z—1—Inz.

Arguing similarly to that in [15] or [17], one can get the following equality
(3.5)

2
Tilr) + i) + b 0958 4 P+ 0 () +0())
=Q3— Q¢ — Q2%,
where
g2 0
I(r,y) = ROD(T) + -+ jé(é),
0 G}
(36)  Hilry) =P (2 - Dy (-0
and
(3.7)
0 e Uy

Qs =-rPug? (2(5) 703 ) + (y<7y>y +2be Q2> {-ne)

9 2 1 1 1 1 w e

o)~ g@} G U+ (5~ V)U2§ w Y 593

1 1,004, 1 1.¢6;
Gy e e Ty

Integration of the equality (3.5) with respect to y and 7 over R* x [ry, 7]
yields that

(3.8) / L7, y)dy + / L (r)dr + / ][ <@¢z @Cy>dydr
+/Tj]{_{P(Uf1+Uf3)< (9‘(;)+~yq>(v)> dydr

:/Il(fl,y)der/T:]i(Qg—Qlw—ng)dydr
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It is easy to observe that the jump of H; in (3.6) across y = 0 vanishes, i.e.,

] =0~ 0] ~ [P~ ) —w[(B - O]
Uy 0y Oy 7
= Ip- 2300 - [P~ ZJutr0) - (2 - [27) 500 o

(1) =d'(1)=0, Pd"(z)=2"2>0,
there exists a positive constant C, such that if z is near 1, then
CHz—1)2<d(2) <Oz —1)2

Thus under the a priori assumptions (3.3), one gets

_ v _ 0
(89)  CTHP <) <l CTHC < @(g) < I
and

)+ 78() < C|(¢, )|

(3.10) O (6P < @(0g) +79( )

vO

Now it follows from (3.7), (3.9), (3.10) and Cauchy-Schwarz’s inequality that
(3.11)

2
Q3] < @wy + Vo5,

4v6?
+ <|<vyRs, U, OF) %, 105) + Qs b(6? + ¢2).

c{(18GP P, 16GP1) + (I(Vf, UR, 612, [0f)

By the properties of the viscous contact wave, one can obtain
T g cov?
/ ][ (1052, 165, ) (6*+¢*)dydr < C5 / ][ (147)"'e™ 5|6, ) Py,
1 JR 1 JR

while by the properties of the approximate rarefaction wave in Lemma 2.2,
we have that for i =1, 3,

/T ]{{<|<v;ﬁwfz@5f>

< / (VR UF OF )2 1 08 1)) (6, 0) 3w dr

T1

2108 )) (6% + ¢*)dydr
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<c / 1+ 7) 6. Ol (B G
<1 / 16y, &) %7 + C / (14726, O)[12dr,

where and in the sequel p is a small positive constant to be determined and
C}, is some positive constant depending on p.

Now, it remains to estimate the terms ()11, QQ% on the right-hand side
of (3.8) and the term |Q2|(¢? + ¢?) on the right-hand side of (3.11). For
simplicity, we only estimate QQ%. By (2.20), we find that

| 1@giavir < c [ 1y 1@alar

<c / IS 16113 (IQanllzy + 1 @aallzy + 1QPllzy ) dr

< [T (56700 4 (57 4 57 (L4 1) E (1)) ar

SM/ 1¢,I2dr + C, 68/ I+ )

<u [ 16l + o [ 1P+ Edr G 6.

Similarly, one can control the term Q1% and |Q2|(¢?+¢?). Thus, substituting
all the above estimates into (3.8) and choosing p in the front of the integral
fTTl | (¢hy, ¢y)||?dr small enough, so that the integral can be absorbed by the
left-hand side of (3.8), one concludes

(3.12)
161, ), )2 + / Wy G ) + I (U UE) (6, ), )2}

< Oll(,C) (1, u2+c/ (14 7)-2 (6.9, 0)|2dr + C6

+C,u/ 16y (7, )2 dT+05/]l 14 7)te S (6, O) Ry

Next, we estimate [|¢,|?. Denote & = . From the system (3.1),, one has

(L)r =t == P)y = Q= 0.
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Multiplying the above equation by %y and noticing that

RO, R, v, 11
_(p—P)y_ v ,D v +(p P)V RGQ(V 'U)’

one obtains

o= (B2 R, -1 - 1) T

Integrating the above equality with respect to y and 7 over R* x [r1, 7] and
using Cauchy-Schwarz’s inequality, we infer that

(3.13)
1 ] i "[RO
]i<§(%)2—¢3y> (T,y)dy+/ﬁ {w%] (T)dT—i—/Tl R%(%)zdych
) ; h o
<4 (1<”y>2—w§) o+ [ f 10,2 = S ayan
2
ng )%+R@y(% ) — Q1| dydr,

where the jump across y = 0 can be bounded as follows.

/[ ] dT‘/w [ - }()df— T¢(TO)[p](T)dT

R/wfo TO)H dT——R/ e ))[U](T)dT

<C/ 9| (7)][0]| (r1)e =T dr < O5 / ||w||5|rwyuiefc<f*ﬁ>df

<5 / Iy |Pdr +6 sup |[6]2(r) + C@.

TE|T1,T2

Using the equality
vw_ Yy _ ¢y Vo

2y
v v 174 v vV’

we see that

THgyl® = [Vygl) < ()7 < Cllgyl® + [Vigl)-
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From the definition of @1 in (2.19) it follows that

[ l@ilfar<c [ (1Qul? +1Qul)dr
<c / (lQul + (U, U U v Uy 2)dr < Co.

Therefore, substituting all the above estimates into (3.13), we conclude that

(3.14)
6y (r )42 + / I6y42 dr < Cll(6, 10, S (71) + Cll(6, ) (7, )|

ey / ]i (14 7)1 (6, O)Pdydr + C / 16y &) P

e [[a+ 6.0l + ot

Multiplying the inequality (3.12) by a large constant C; > 0, and sum-
ming the resulting inequality with (3.14), we obtain Lemma 3.4. This com-
pletes the proof. O

Next, we derive the higher order estimates, which are summarized in the
following Lemma:

Lemma 3.5. Under the assumptions of Proposition 3.3, it holds that
N(11,72)

+/T2 {IV U7, U (8, O + oy 1+l (Wys G +1 (e, Gy A e

<N+ [T, OlPar + o5}

T1

+05/ ][(1+7)—1e—%|(¢, O)2dyds.
T1 R
Proof: Multiplying the equation (3.1), by —1,,, one gets

2 2 1 1
<¢7> = (e, + =2 = {0 = Ply By = (UG = ), + Qu fn

Integration of the above equation with respect to y and 7 over R* x [T1, 7]
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gives

(3. 15)

][ (1,y)dy +/ ][ yyd dr —][ (7‘1 y)dy — /T: [Wrihy] (T)dT

1 1 3
+ /1-1 ]{{ (p—P)y+ U—g% - (Uy(; - V))y + Q1}¢yydyd7 =: Z‘]i'

i=1

We only have to estimate J; (i = 2, 3). First, the jump J; can be bounded
as follows.

(316) Jo= / (] ()7 = — / ) ] s
/1/1770 wy] (1)dr = — /wTTo )]()d’?’
/ Yr(m 0)(=7 = p)(7, 0) [o] (r)dr
<0 [ el (i + 1) B ()e” e

<05 [ 1l (1901 oy 4 41)e~C

In view of (3.1), and (3.3), one has
(3.17)

el < C (bt +1(6ys s G+ Vi Uiy ©4)1 + 11l )
< C (Il +1(@y, ¥y G +9).

Substituting (3.17) into (3.16), we obtain

(3.18) 121 <05 [ (It +100 061 +9)°
<Ay (Il [ttt +1)e= O dr
< [ Ny 4 G 8 [ 100G dr G
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On the other hand, J3 can be estimates as follows.

(3.19) Js = /]i {(p Pyt By~ (U~ ), + Ql}lbyydydr
<0 [ {16061+ 10,0164, i-0,.U)
1@, V)ll (g, Uy Uyd)| + @1
<o [l e+ Co [y NP i

el / (147 E (6,00 2dr
+Cud+Cy 5/][ (14+7)" 1+‘f\(¢,<)|2dyd7.

Substituting (3.18) and (3.19) into (3.15) and choosing p suitably small in
the front of the integral [ |4y, {f* dr, we deduce that

320) 14yI27)+ | o dr < ClluIPm) + o [ el e
e / (14776, O)lI2dr + Cp 0+ C, / 1yt G2 dr
e 5/ ]i(HT)_ =S5 (6, O) Rdydr.
Multiplication of the equation (3.1)5 with —(y, yields that

R (¢ R oy
ﬁ<?> e

Cyy L1 uy
v OG- ), m 5 -

<k

- {<puy ~PU,) + ) QQ}cyy

Integrating the above equality with respect to y and 7 over R* x [11, 7], and
employing almost the same arguments as those used for ||, {? (7) in (3.20),
we obtain

(3.21)
16126 / 1ol dr < ClIG 2(m) + C8% + C / (14 7) 56,0 2dr
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+—c:/m1M¢y,wy,@»H?«h-+-cxé>2j/ 7&(1—%70‘1e‘TffM¢,<M2dydT,

where we have used the following jump estimate across y = 0

R

_7_ T[gfgy]( dT_——/ Co(7,0) [¢,] (T)dr

/ GO B (ar = 25 [ G r 020 bl (r)ar

<c / 1ol (14 G ll) [} (r)e T dr

< C / 13 Gy (14 1613 11 8 e O dr

and the estimate
(3.22)

6l < (Ut +11(Bys s G 1Ty Oy ©4V3 U (@, ) + 1 Q21
< C (Gt +1(by, By G +).

It follows from (3.17) and (3.22) that

B2 [ W)
< C(/TZ H(T/fyyany)%Q dr + /T2 ||(¢y,¢y,(y){+2 dr

T1

+ [0, 00.0,V, UG Ol dr + [ Qulfar)

T1
T2

<c / Wy G 2 dr + © / | (bys Gy )42 dr

1

+/mu+7rﬂwgﬂﬁf+cﬁ-

Now we turn to control sup, ¢y, -, [|(¢r, ¢-)H2. First, applying the operator
0- to the equation (3.1)3, we get

1/}7'7' = (% —P) (_ - P)yT - Ql‘r-
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Multiplication of the above equation by ), gives

2 w2'r U U,
<%>T+i = {2 =), — (3= P},

Uy
*Qﬁyf v T+ tyr 2”T+¢yr( Dz + yr(p — P)r — ¥rQ1r.

Vv

If we integrate the above equality with respect to y and 7 over R* x [11, 7],
we find that

(3.24)

][1/}2 dy+/][ deyd
:]{f; (1, y)dy — / o (2 —p)T—wT(%—P)T](T)dT
/T ][ — Pyr y7+¢y7 2v7+wy7( L)+ Uyr(p — P); ¢TQ1T}dyd7—’

where the jump across y = 0 in fact vanishes, i.e.,

325)  [er(—p), —ua(F - P),] )
W]T]( )(__p) ( 70_)

+0(r, 00 [(% ~ ), | 1)~ [0 (32~ P)..(7,0)
= [l (7) (= = p) (r,0-)

e, 00)[ 2 — p]_(1) = () (32~ P, (,0)
=0.

Now we apply O: to the equation (3.1)3 to deduce that

W V(V)yT + {uy(% _p)}r - {“y(V - P)}T ~ Qe

Multiplying the above equation by (., one has

R
ﬁCrT =v(

R 2 2, 0 S)
G = (), ().,
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Oyr Oy Oy
+V<y'r +V<y7' 2vT+VCyT(V) +<Tuy7'(uy _p)
Uy Uy
+ C’ruy(% - p) CT yT( V ) CT ( P)T - CTQ2T‘

Integrating the above equality with respect to y and 7 over R* x [, 7], we
deduce that

(3.26)

]i( ’7’, dy+/][ dd _][ (RCE (11, 9)dy
- [ug(;);uo( it [ f {r6r o v

O, U,
V ) + Cﬂ'uy‘r(uy p) + CTUy( —p)r — G y‘r( V?

A N

+ vCyr (= - P)

where the jump in fact vanishes.

(3.27)
(), ~ver (), ] ()
— I .00 + w00 () )0 - eI (2, o)
= () 0) + v m 00 2] )i (82 0
=0.

Hence, taking into account (3.25) and (3.27), we get from (3.24) and (3.26)
that
(3.28)

(s G2 (7 / 1@y G 2 dr < C[ (W, G ()

+c/ 1 ) 2 d7+0/ A+ 1) 5|6, 0)|dr +C 8

T1

e / 16y, s &) |dr + C6 / ]i (1+7)Le 55 |6, O)Pdydr.

Combing the estimates (3.20), (3.21), (3.23), (3.28) and Lemma 3.4 to-
gether, we obtain Lemma 3.5, and the proof is completed. O
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It remains to control the term
T chQ
s / ][ (1+7)"e” 157 ((4, ¢)*dydr,
T1 R

which comes from the viscous contact wave. We shall use the estimate on
the heat kernel in [15] to get the desired estimates.

Lemma 3.6. Suppose that Z(t,y) satisfies
Z € L®(0,T; L*(R¥)), Z, € L*(0,T; L*(R¥)), Z, € L*(0,T; H ' (R¥)),

then
(3.29) /][(1+7)1226—%dyd7
T1 R
§Cﬁ{||Z(7'17y)||2+/ 1y 4 d7'+/ <Zr,Zg%>H1xH1(Ri)dT}

where

Bn?

L[
(3.30) 98(1,y) = (1+7‘)_5/ e 1 dn
0

and 8 > 0 is the constant to be determined.

Remark 3.7. Lemma 3.6 can be shown using arguments similar to those
in [15], and hence its proof will be omitted here for simplicity. Note that the
domain considered here consists of two half lines R*, and hence the jump
across y = 0 should be treated. In view of this, the functional gg should be
chosen in (3.30), so that gg is continuous at y = 0. Furthermore, it holds
that gg(7,0) = 0.

Lemma 3.8. Under the assumptions of Proposition 3.3, it holds that

Coy2

[ 1 S0 Payir < C 4l 6. 0. O+ 6., O P

—+ T
e / 1y, s G2 dr 4 C / (14756, )] Pdr.

Proof: From the equation (3.1), and the fact p — P = @ one gets

B=Poy _ Uy

(3.31) e+ ( b

)y:( )y_Ql-
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Let

n2

Y an
Golry) = (14+7)" / et an,
0

where « is a positive constant to be determined. Multiplying the equation
(3.31) by Go(RC — P¢), we find that

(3.32)

Go(R¢ — Po)? (R¢ — P$)*  Gao(RC — Po)?

Uy

), = Ga(RC = PY)Q1.

= ~Ga(RC = Po)ir + Ga(RC — Po)(“ —

Noticing that
(3.33)

~Ga(R(—P@)r = —(Ga(B(—P@)Y) +(Ga)r(RC—Po)p+Gatp(RC—Po)-

and
(334) (R( - P¢)T = R(; — Pr¢ — Po-
u? U2
= =Py + (= D{ = (= P)Uy + ) + (£ = 71
6, ©
(L= =1, — Qo — Pro,
if we insert (3.34) into (3.33) and use the equality
2 2 2
—GarPuyh = —(16aPS) +aP(Ga s+

we get from (3.32) that

_Lyz

(335) gy { (R POP +9Pu?} = {Gav(RC~ PO} + Hay + Qi
where
Go(R¢ — Po)? 2 0 G}
Hy = (CQ—vgb) +7GQP% - V('Y - I)Goﬂvb(;y - Vy)
U,

~ Ga(RC— PO)(2 — 1)
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and

wQ

@) + GQ(RC - P¢)Ql + GoﬂpP‘rQ5 - 'YPZJ?'

0
— Dv(Gap)y (-2 —
(= (G (2 - 2
Integrating (3.35) over R* x [r1, 7], one infers that

(3.36)

2
p

/ ][ el_j {(RC = Pg)? + ¢ }dydr =][ {Gav(RC — PO} (7, y)dy
n JR T R

- L AGartre = Porsmiy+ [l i+ [ f Quivar

Here we only analyze the jump term [Hj] across y = 0, the other terms
in (3.36) can be estimated similarly to those in [15] or [17]. Recalling that
Go(7,y) is continuous at y = 0 and G (7,0) = 0, we easily see that

[Ha](T) = 0.
Thus, from (3.36) one gets

(3.37)

2

| £ AR = Pop + v?hayir < 06+ Cl6,0.0 . )P

+Cl@ 0.0+ C [ 1) 6 O )P

_ay?
e 1+t
1+71

(¢, C)Pdydr.

* C/ 1By, by ) (7. P dr + 05/; ]{1

In order to get the desired estimate in Lemma 3.8, we will use Lemma 3.6
to derive another similar estimate from the energy equation (3.1),. To this
end, we set

R
Z=—(C+ Po
v—1
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in Lemma 3.6. Thus we only need to compute the last term in (3.29). From
the energy equation (3.1),, we have

< I&
< !SM

) ©
7'— ‘r¢ (p_P)uy+V(;y_7y)y+( Q2a

whence

/ (Zr, Zg3) i -1 (R AT

/][ P.¢—(p—P)U, Zgﬁdydr—/ ][ p— PwngﬂdydT
+/ [u(i—y (;)/ dT—/][ L — ) (Zg3)ydydr

W2 U2
/ ][ —y——y ZgﬁdydT—/ ][ QngﬁdydT— ZK

Here the jump term K3 can be estimated as follows, recalling gg(7,0) = 0.

r 68, © 9 T 6, © _
Ky :/ﬁ (-2 268 (ryar = ”/ﬁ Gr 02— 22)(r,0)[2] (r)dr = 0,
while the terms K; (i = 1,4,5,6) can be directly dealt with in the same
manner as in [15] or [17]. To bound the term K, we make use of the mass
equation (3.1); to write K> in the form

VP~ (v~ 1)Z (v~ 1) 2%

2
—(p— Py Zgl= 2620, = B (), - %,

YPZ§? g5 — 2(y — 1) Z%g} PZ? — 2y — 1) 22
=( Z 50 B>T—V s U(v ) d)ga(gﬂ%

YPZp? —2(y—-1)Z2%¢ , 2(y=1)g30Z ~Pgje® 950°Z
+ 93ur — ( + )ZT -
202 v 2v

>
v ’

where all terms on the right-side hand of the above identity can be directly
bounded in the same way as in [15] or [17]. Therefore, we have bounded K.
Taking 8 = %, one can get from Lemma 3.6 that

(3.38)

INs

dydr < C6 4 C||(¢, ¢, Q) (71, )II> + Cll(¢,, O) (7, )17
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+c/ 1y, By GO dT+c/< L 7)) (6, ) |2

T1

+05+m/][ o) le B (0, 0)Pdydr.

Now, taking a = ¢y in (3.37) and choosing § and 7; suitably small, we

combine (3.37) with (3.38) to obtain the desired estimate in Lemma 3.8. O

An

By Lemmas 3.5 and 3.8, we conclude

Nrm)+ [ {1647 +10 6B+ G Jar

T1

t
< ON(m) +C /0 (L +7) 2 (6, O)|2dr + C5°.

application of Gronwall’s inequality to the above inequality gives the es-

timate (3.4) in Proposition 3.3. This completes the proof of Proposition 3.1.

1]
2]

References

S. Bianchini, A. Bressan, Vanishing viscosity solutions of nonlinear hy-
perbolic systems, Ann. of Math., 161 (2005), 223-342. MR2150387

G. Q. Chen, M. Perepelitsa, Vanishing viscosity limit of the Navier-
Stokes equations to the Euler equations for compressible fluid flow,
Comm. Pure Appl. Math., 63, (2010), 1469-1504. MR2683391

G. Q. Chen, D. Hoff, K. Trivisa, Global solutions of the compressible
Navier-Stokes equations with large discontinuous initial data, Comm.
Partial Diff. Eqns., 25 (2000), 2233-2257. MR 1789926

J. Goodman, Z. P. Xin, Viscous limits for piecewise smooth solutions
to systems of conservation laws, Arch. Ration. Mech. Anal., 121 (1992),
235-265. MR 1188982

0. Gues, G. Métivier, M. Williams, and K. Zumbrun, Existence and sta-
bility of multidimensional shock fronts in the vanishing viscosity limit,
Arch. Ration. Mech. Anal., 175 (2005), 151-244. MR2118476

0. Gues, G. Métivier, M. Williams, and K. Zumbrun, Multidimensional
viscous shocks II: The small viscosity limit, Comm. Pure Appl. Math.,
57 (2004), 141-218. MR2012648

D. Hoff, Construction of solutions for compressible, isentropic Navier-
Stokes equations in one space dimension with nonsmooth initial data,
Proc. Roy. Soc. Edinburgh (Sect. A), 103 (1986), 301-315. MR0866843


http://www.ams.org/mathscinet-getitem?mr=2150387
http://www.ams.org/mathscinet-getitem?mr=2683391
http://www.ams.org/mathscinet-getitem?mr=1789926
http://www.ams.org/mathscinet-getitem?mr=1188982
http://www.ams.org/mathscinet-getitem?mr=2118476
http://www.ams.org/mathscinet-getitem?mr=2012648
http://www.ams.org/mathscinet-getitem?mr=0866843

244

8]

[13]

[14]

Feimin Huang et al.

D. Hoff, Global existence for 1D, compressible, isentropic Navier-Stokes
equations with large initial data, Trans. Amer. Math. Soc., 303 (1987),
169-181. MR0896014

D. Hoff, Discontinuous solutions of the Navier-Stokes equations for
compressible flow, Arch. Rational Mech. Anal., 114 (1991), 15-46.
MR1088275

D. Hoff, Global well-posedness of the Cauchy problem for the Navier-
Stokes equations of nonisentropic flow with discontinuous initial data,
J. Diff. Eqns., 95 (1992), 33-74. MR1142276

D. Hoff, Discontinuous solutions of the Navier-Stokes equations for
multidimensional flows of heat-conducting fluids, Arch. Rational Mech.
Anal., 139 (1997), 303-354. MR1480244

D. Hoff, Global solutions of the equations of one-dimensional, com-
pressible flow with large data and forces, and with differing end states,
Z. Angew. Math. Phys., 49 (1998), 774-785. MR 1652200

D. Hoff, T. P. Liu, The inviscid limit for the Navier-Stokes equations
of compressible, isentropic flow with shock data, Indiana Univ. Math.
J., 38 (1989), 861-915. MR1029681

F. M. Huang, M. J. Li, and Y. Wang, Zero dissipation limit to rarefac-
tion wave with vacuum for 1-D compressible Navier-Stokes equations,
STAM J. Math. Anal., 44 (2012), 1742-1759. MR2982730

F. M. Huang, J. Li, and A. Matsumura, Asymptotic stability of
combination of viscous contact wave with rarefaction waves for one-

dimentional compressible Navier-Stokes system, Arch. Rat. Mech.
Anal.; 197 (2010), 89-116. MR2646815

F. M. Huang, A. Matsumura, Z. P. Xin, Stability of contact disconti-
nuities for the 1-D compressible Navier-Stokes equations. Arch. Ration.
Mech. Anal., 179 (2006), 55-77. MR2208289

F. M. Huang, Y. Wang, and T. Yang, Fluid dynamic limit to the Rie-
mann solutions of Euler equations: I. Superposition of rarefaction waves
and contact discontinuity, Kinetic and Related Models, 3 (2010), 685—
728. MR2735911

F. M. Huang, Y. Wang, and T. Yang, Vanishing viscosity limit of the
compressible Navier-Stokes equations for solutions to Riemann prob-
lem, Arch. Ration. Mech. Anal., 203 (2012) 379-413. MR2885565


http://www.ams.org/mathscinet-getitem?mr=0896014
http://www.ams.org/mathscinet-getitem?mr=1088275
http://www.ams.org/mathscinet-getitem?mr=1142276
http://www.ams.org/mathscinet-getitem?mr=1480244
http://www.ams.org/mathscinet-getitem?mr=1652200
http://www.ams.org/mathscinet-getitem?mr=1029681
http://www.ams.org/mathscinet-getitem?mr=2982730
http://www.ams.org/mathscinet-getitem?mr=2646815
http://www.ams.org/mathscinet-getitem?mr=2208289
http://www.ams.org/mathscinet-getitem?mr=2735911
http://www.ams.org/mathscinet-getitem?mr=2885565

Zero dissipation limit of full compressible Navier-Stokes equations 245

F. M. Huang, Y. Wang, Y. Wang, T. Yang, The limit of the Boltzmann
equation to the Euler equations for Riemann problems, SIAM J. Math.
Anal., 45 (2013), 1741-1811.

S. Jiang, G. X. Ni, and W. J. Sun, Vanishing viscosity limit to rarefac-
tion waves for the Navier-Stokes equations of one-dimensional compress-
ible heat-conducting fluids, STAM J. Math. Anal., 38 (2006), 368-384.
MR2237152

S. X. Ma, Zero dissipation limit to strong contact discontinuity for the
1-D compressible Navier-Stokes equations, J. Diff. Eqns., 248 (2010),
95-110. MR2557896

A. Matsumura, K. Nishihara, Asymptotics toward the rarefaction wave
of the solutions of a one-dimensional model system for compressible
viscous gas, Japan J. Appl. Math., 3 (1986), 1-13. MR0899210

X. Qin, Y. Wang, Stability of wave patterns to the inflow problem of full
compressible Navier-Stokes equations, SIAM J. Math. Anal., 41 (2009),
2057-2087. MR2578799

X. Qin, Y. Wang, Large-time behavior of solutions to the inflow problem
of full compressible Navier-Stokes equations. STAM J. Math. Anal., 43
(2011), 341-366. MR2765694

J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd ed.,
New York: Springer-Verlag, xxii, 1994. MR1301779

H. Y. Wang, Viscous limits for piecewise smooth solutions of the p-
system, J. Math. Anal. Appl., 299 (2004), 411-432. MR2098251

Y. Wang, Zero dissipation limit of the compressible heat-conducting
Navier-Stokes equations in the presence of the shock, Acta Mathematica
Scientia, 28B (2008), 727-748. MR2462917

Z. P. Xin, Zero dissipation limit to rarefaction waves for the one-
dimensional Navier-Stokes equations of compressible isentropic gases,
Comm. Pure Appl. Math., 46 (1993), 621-665. MR1213990

Z. P. Xin, H. H. Zeng, Convergence to the rarefaction waves for the non-
linear Boltzmann equation and compressible Navier-Stokes equations,
J. Diff. Eqns., 249 (2010), 827-871. MR2652155

S. H. Yu, Zero-dissipation limit of solutions with shocks for systems of
hyperbolic conservation laws, Arch. Ration. Mech. Anal., 146 (1999),
275-370. MR1718368


http://www.ams.org/mathscinet-getitem?mr=2237152
http://www.ams.org/mathscinet-getitem?mr=2557896
http://www.ams.org/mathscinet-getitem?mr=0899210
http://www.ams.org/mathscinet-getitem?mr=2578799
http://www.ams.org/mathscinet-getitem?mr=2765694
http://www.ams.org/mathscinet-getitem?mr=1301779
http://www.ams.org/mathscinet-getitem?mr=2098251
http://www.ams.org/mathscinet-getitem?mr=2462917
http://www.ams.org/mathscinet-getitem?mr=1213990
http://www.ams.org/mathscinet-getitem?mr=2652155
http://www.ams.org/mathscinet-getitem?mr=1718368

246 Feimin Huang et al.

[31] Y. H. Zhang, R. H. Pan, Y. Wang, and Z. Tan, Zero dissipation limit
with two interacting shocks of the 1D non-isentropic Navier-Stokes
equations, Indiana Univ. Math. J., 62 (2013), 249-309. MR3158509

FemmMIN HuaNG

INSTITUTE OF APPLIED MATHEMATICS
AMSS, CAS

Bewing 100190

P.R. CHINA

E-mail address: fhuang@amt.ac.cn

SONG JIANG

INSTITUTE OF APPLIED PHYSICS AND COMPUTATIONAL MATHEMATICS
BELING 100088

CHINA

E-mail address: jiang@iapcm.ac.cn

Y1 WANG

INSTITUTE OF APPLIED MATHEMATICS
AMSS, CAS

BeEiNGg 100190

P.R. CHINA

E-mail address: wangyi@amss.ac.cn

RECEIVED AuGuUSsT 29, 2013


http://www.ams.org/mathscinet-getitem?mr=3158509
mailto:fhuang@amt.ac.cn
mailto:jiang@iapcm.ac.cn
mailto:wangyi@amss.ac.cn

	1 Introduction
	2 Approximate profiles
	2.1 Viscous contact wave
	2.2 Approximate rarefaction waves
	2.3 Superposition of rarefaction waves and contact discontinuity

	3 Proof of the main result
	3.1 Reformulation of the problem
	3.2 Energy estimates

	References

