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A semi-Lagrangian time splitting method
for the Schrödinger equation with vector potentials∗

Shi Jin and Zhennan Zhou

In this paper, we present a time splitting scheme for the Schrödinger
equation in the presence of electromagnetic field in the semi-classi-
cal regime, where the wave function propagates O(ε) oscillations
in space and time. With the operator splitting technique, the time
evolution of the Schrödinger equation is divided into three parts:
the kinetic step, the convection step and the potential step. The
kinetic and the potential steps can be handled by the classical time-
splitting spectral method. For the convection step, we propose a
semi-Lagrangian method in order to allow large time steps. We
prove the unconditional stability conditions with spatially variant
external vector potentials, and the error estimate in the l2 approxi-
mation of the wave function. By comparing with the semi-classical
limit, the classical Liouville equation in the Wigner framework,
we show that this method is able to capture the correct physical
observables with time step Δt � ε. We implement this method
numerically for both one dimensional and two dimensional cases
to verify that ε−independent time steps can indeed be taken in
computing physical observables.

1. Introduction

Many problems in solid state physics and quantum chemistry require the
solution to the Schrödinger equation in the presence of electromagnetic field
with a small (scaled) Planck constant ε,

iε∂tu
ε =

1

2
(−iε∇x −A)2 uε + V uε, t ∈ R

+, x ∈ R
d;(1.1)

uε(x, 0) = u0(x), x ∈ R
d(1.2)

where d = 3, uε(x, t) is the complex-valued wave function, V (x) is the scalar
potential and A(x) is the vector potential.
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Mathematically, the electromagnetic field, or respectively, electric field

E(x) ∈ R
d and magnetic field B(x) ∈ R

d are described by the scalar poten-

tial V (x) ∈ R and the vector potential A(x) ∈ R
d as

(1.3) E = −∇V (x), B = ∇×A.

In the dynamic picture, one defines canonical momentum P̂ = −iε∇x

and the kinetic momentum is κ̂ = P̂−A (see [9]). The Schrödinger equation

(1.1) can be derived from the one in the absence of the vector potential by

local gauge transformation (see [26]).

In fact, one can simplify the potential description by imposing one more

condition, namely, specifying the gauge. Due to the fact that the potential

fields are not what are observed, while the electric and magnetic fields are,

there is freedom to impose conditions on the potentials so long as what-

ever condition is chosen to impose does not affect the resultant electric and

magnetic fields. This freedom is called the gauge freedom. For any choice
of a scalar function of position λ(x) ∈ R, the potentials can be changed as

follows:

(1.4) A′ = A+∇xλ, V ′ = V.

One can easily show that electric field E(x) ∈ R
d and magnetic field

B(x) ∈ R
d do not change at all under this transformation. One natural

choice is, choosing λ, so that ∇x · A′ = 0. This is the so-called Coulomb

gauge. In this gauge, the vector potential and the canonical momentum

operator commute, [A, −iε∇x] = 0, so that the modified “kinetic” part of
the Schrödinger equation (1.1) can be simplified to:

1

2
(−iε∇x −A)2uε = −ε2

2
Δxu

ε +
iε

2
(A · ∇x +∇x ·A)uε +

1

2
|A|2uε

= −ε2

2
Δxu

ε + iεA · ∇xu
ε +

1

2
|A|2uε.

Previously, many numerical methods have been designed for the semi-

classical Schrödinger equation with only scalar potentials. As far as we

know, little research has been done for the semi-classical Schrödinger equa-

tion with vector potentials in the aspect of numerical simulations. However,
dynamics for particles exposed to external electromagnetic field result in

many far-reaching consequences in quantum mechanics, such as the Landau

level, the Zeeman effect and superconductivity. In the aspect of analysis, the
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Schrödinger operator with the vector potential has different features in spec-
tral and scattering properties (see [2]). Numerically, it gives new challenges
as well, especially in the semi-classical regime.

In the Schrödinger equation, the wave function acts as an auxiliary quan-
tity used to compute primary physical quantities such as the position density,

(1.5) n(t, x) = |uε(t, x)|2,

the current density,

(1.6) I(t, x) = εIm (uε(t, x)∇xu
ε(t, x)) =

ε

2i
(uε∇xu

ε − uε∇xuε) ,

where f̄ denotes the complex conjugate of f . As a matter of fact, in the
presence of the vector potential, one needs to introduce the modified current
density as

(1.7) J(t, x) =
1

2
(uε (−iε∇x −A)uε − uε (−iε∇x −A)uε) ,

so that mass conservation equation is satisfied,

(1.8)
∂

∂t
n+∇x · J = 0.

We remark that n and J are gauge invariant quantities. Numerically, com-
puting I(t, x) and J(t, x) face the same challenge.

It is well known that, the semi-classical Schrödinger equation propa-
gates oscillation of wavelength of order O(ε) in space and time, so that the
wave function uε does not converge in the strong sense as ε → 0. In addi-
tion, since the macroscopic physical quantities are non-linear transforms of
uε, the classical limit for those physical observables are not guaranteed by
the weak convergence. Mathematically, some micro-local analysis method-
ologies were introduced to explore the so-called semi-classical limit of the
Schrödinger equation. The celebrated Wigner transform (see [11, 10, 23]) has
been shown to be a very powerful tool to reveal the macroscopic properties
of the Schrödinger equation in the semi-classical regime. In this framework,
the semi-classical limit of the Schrödinger equation can be derived, which
is the classical Liouville equation. This provides an insightful viewpoint to
understand the transition from quantum mechanics to classical mechanics.

Numerically, the oscillatory nature of the wave function for the semi-
classical Schrödinger equation, in general, gives rise to significant computa-
tional burden. As a matter of fact, even for unconditionally stable methods,
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the numerical results may lead to completely wrong physical observables if
the mesh grids fail to completely resolve the O(ε) oscillations in space and
time. In [20], by utilizing the Wigner transform to study finite difference ap-
proximation of the Schrödinger equation, Markowich, Pietra and Pohl have
shown for prevailing finite difference method, to obtain correct physical ob-
servables, one has to enforce the following meshing strategy

(1.9) Δx = o(ε), Δt = o(ε).

In the meanwhile, in order to guarantee accurate L2 approximation of the
wave function, even more restrictive conditions have to be satisfied.

In [5], Bao, Jin and Markowich have shown that the time splitting spec-
tral method gives much less restrictive conditions in approximating not only
the wave function but also physical observables. By comparing with the
semi-classical limit using the Wigner Transform, and presenting extensive
numerical experiments, they have shown that the following meshing strategy
is sufficient in computing correct physical observables,

(1.10) Δx = O(ε), Δt = o(1).

In other words, one is allowed to take ε−independent time steps in comput-
ing physical observables. The readers can refer to the recent review [15] on
the computation of semi-classical Schrödinger equations by Jin, Markowich
and Sparber.

In the presence of the vector potential, in general, the stability constraint
in solving the convection part

(1.11) ∂tu
ε = A · ∇xu

ε

requires Δt = O(ε) by an explicit scheme since one needs to take Δx = O(ε)
in order to resolve spatial oscillations. The primary goal of this paper is to
develop a numerical method with meshing strategy (1.10), so that large
time steps satisfying Δt � ε are allowed to take in computing the physical
observables.

We propose a semi-Lagrangian method to handle the convection step
with the goal to allow time steps which are as large as the case without the
vector potential term. In this method, one follows the characteristics of the
convection equation (1.11) backwards in time from the original grid points
to the previous time step, and then use polynomial interpolation to compute
the corresponding value of the numerical solution.
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The semi-Lagrangian methodology has been extensively studied in at-
mospheric models. See [28] for a review by Staniforth and Côté. This tech-
nique has been extended to general transport equations, for example, by Lin
and Rood in [18], and in particular, a lot of research has been done for its
applications in Vlasov equation and other kinetic models (see [27, 24]). Pre-
viously, the stability study for the semi-Lagrangian method was carried out
only for constant coefficient problems (except the case of using the spectral
interpolation, see [29]). In this paper, we give rigorous l2 stability analysis of
this method for variable coefficient problems with the polynomial interpo-
lation, and prove the unconditional stability if suitable interpolation points
are used.

By analyzing the correspondence between solving the Schrödinger equa-
tion and the semi-classical limit, namely the Liouville equation in the Wigner
framework, we show that the semi-Lagrangian time splitting method is able
to compute correct physical observables even with time step Δt � ε, which
is further verified numerically.

The rest of this paper is organized as follows. In Section 2, we present the
numerical methods to solve the one dimensional Schrödinger equation with
vector potentials based on the time splitting technique and carry out the l2

stability analysis for arbitrary Courant numbers. In Section 3, we prove the
error estimate and corresponding meshing strategy for the semi-Lagrangian
time splitting method in the l2 approximation of the wave function. In Sec-
tion 4, by comparing with the semi-classical limit, namely the Liouville equa-
tion in the Wigner framework, we prove that the meshing strategy can be
much relaxed so that ε−independent time step is allowed if one only aims to
obtain correct physical observables. We discuss how to extend the method
to multidimensional cases in Section 5. Extensive numerical examples are
shown in Section 6 to verify the proposed meshing strategy. We give some
final remarks and future directions in the last section.

2. The description of numerical methods

2.1. The time splitting and the spectral approximation

In this section, we present the numerical method to solve the Schrödinger
equation (1.1), (1.2) in one dimension with periodic boundary condition. The
extension to multidimensional cases is straightforward, and will be discussed
in Section 5.

We assume, on computation domain [a, b], a uniform spatial grid xj =
a + jΔx, j = 0, · · ·N − 1, where N = 2n0 , n0 is an positive integer and
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Δx = b−a
N . We also assume uniform time steps tk = kΔt, k = 0, · · · ,K. The

construction of numerical methods is based on the following (first order)
operator splitting technique.

With the Coulomb gauge, the Schrödinger equation (1.1) can be formu-
lated as

iε∂tu
ε = −ε2

2
Δuε + iεA · ∇uε +

1

2
|A|2uε + V uε, a < x < b, t ∈ R

+;

(2.1)

uε(0, x) = uε0(x), uε(t, a) = uε(t, b), uεx(t, a) = uεx(t, b).

By the operator splitting technique, for every time step t ∈ [tn, tn+1], one
solves the kinetic step

(2.2) iε∂tu
ε = −ε2

2
Δuε, t ∈ [tn, tn+1];

followed by the potential step

(2.3) iε∂tu
ε =

1

2
|A|2uε + V uε, t ∈ [tn, tn+1],

and followed by the convection step

(2.4) ∂tu
ε = A · ∇uε, t ∈ [tn, tn+1].

For clarity, we rewrite the equation (2.1) as

(2.5) ∂tu
ε = (A+ B + C)uε

where

A =
iε

2
Δ, B = − i

ε

(
1

2
|A|2 + V

)
, C = A · ∇.

Let uε(tn) be the exact solution at t = tn, so uε(tn+1) = e(A+B+C)Δtuε(tn).
Let Un

j be the numerical approximation of uε(xj , tn) and uε,n be the nu-
merical approximation of uε(tn), which means uε,n has Un

j as components.
Define the solution obtained by the (first order) operator splitting (without
spatial discretization) as

(2.6) wn+1 = eCΔteBΔteAΔtuε(tn).

Note that wn+1 differs from uε(tn+1) due to the operator splitting error.
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After operator splitting, the kinetic step can be solved analytically in
time in the Fourier space, and the potential step can be solved exactly by
direct integration in time:

U∗
j =

1

N

N/2−1∑
l=−N/2

e−iεΔtμ2
l /2Ûn

l e
iμl(xj−a);(2.7)

U∗∗
j = e−i( 1

2
|A|2(xj)+V (xj))Δt/εU∗

j ;(2.8)

where Ûn
l are Fourier Coefficients of Un

j , defined by

Ûn
l =

N−1∑
j=0

Un
j e

−iμl(xj−a), μl =
2πl

b− a
, l = −M

2
, · · · , M

2
− 1.

But for the convection step, there is no obvious way to solve it analyti-
cally based on discrete data for a variable A(x). We propose in the next sub-
section a semi-Lagrangian method to solve the convection equation (2.9).

We need to give two remarks here:

Remark 1. Even if one doesn’t specify the Coulomb gauge, the commutator
[∇x,A] = ∇x · A appears, and one only needs to add this contribution to
operator C, namely one modifies C = −i(12 |A|2+V )/ε+ 1

2∇x ·A. But, since
∇x · A is only a slowly varying scalar function, this modification will not
introduce any new challenges numerically.

Remark 2. The first order operator splitting implies first order convergence
in time. One can make use of Strang’s splitting to obtain second order time
discretization method. If one wants to apply the second order Strang’s split-
ting to three operators, one can firstly group A + B together as a single
operator, and apply Strang’s splitting to A + B and C, while in the steps
corresponding to A+ B, one also uses Strang’s splitting.

2.2. A semi-Lagrangian method for the convection step

In this part, we present a semi-Lagrangian method (abbreviated by SL)
to solve the following scalar convection equation with periodic boundary
conditions

(2.9) ∂tu
ε −A · ∇xu

ε = 0, t ∈ [tn, tn+1].

Such an approach has been used to solve atmospheric models, Vlasov
equation and other transport equations with improved stability condition,
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Figure 2.1: Backward Tracing: xj are grid points; x0j are the shifted grid
points, which are the solutions to problem (2.10) backwards in time at t = tn;
dot line “· · · ” indicates characteristics.

see [28, 18, 27, 24]. This method consists of two parts: backward character-
istic tracing and interpolation. We compute the data Un+1

j by firstly tracing
backwards along the characteristic line:

(2.10)
dx(t)

dt
= −A (x(t)) , x(tn+1) = xj ,

for time interval [tn, tn+1]. Denote x(tn) = x0j , obtained by numerically solv-
ing the ODE (2.10) backwards in time as shown in the graph (Figure 2.1).

We call the point set {x0j} the shifted point set. By the method of char-

acteristics, Un+1
j = Un(x0j ). But, U

n(x0j ) in general are not known, since x0j
are not necessarily grid points. Therefore, interpolation is needed to approx-
imate Un+1

j = Un(x0j ) based on uε,n. We compare the following two choices:

the spectral interpolation and the M th order polynomial interpolation.
For the spectral approximation, the interpolant ΠNUn(x) =∑N/2−1

k=−N/2 cke
ikx is a global approximation to Un(x) based on uε,n. One needs

O(N logN) operations to get the Fourier coefficients ck via the FFT method.
But, one needs O(N) operations to evaluate the interpolant at each point
x0j , since the shifted points x0j are not necessarily the grid points, which

means the inverse FFT does not apply. Hence, the total cost is O(N2) in
each time step. This will make the whole scheme very costly.

But, for the M th order Lagrange polynomial interpolation, one needs
to establish a polynomial interpolant for each shifted point x0j with the
discrete data on the closest M grid points xj1 , · · · , xjM . For each shifted
point x0j , one uses M grid points near x0j to form a Lagrange polynomial

interpolant to approximate U(x0j ) with error of order O(ΔxM ). But, certain
stability constraints need to be satisfied for different interpolation methods.
We discuss this issue in the next sections. In practice, the fourth order
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interpolation, namely the cubic polynomial interpolation is widely used (see
[28]). The total cost of the semi-Lagrangian method with the polynomial
interpolation is O(N) for each time step. Therefore, we choose to take the
polynomial interpolation rather than a spectral interpolation.

We remark that, in [29], a local Chebyshev polynomial approach was
proposed to improve the efficiency of the semi-Lagrangian method with the
spectral interpolation, which is essentially using a local polynomial interpo-
lation with interpolation points at Chebyshev extrema to approximate the
Fourier basis function eixξ. The cost could be reduced to O(N (logN)2), and
the accuracy is restricted by the regularity of the solutions and the order
of local Chebyshev polynomials used. Thus, the semi-Lagrangian method
proposed in [29] could also apply to this problem.

Recall that, the kinetic step requires O(N logN) operations with the
spectral approximation. Hence, the overall cost of the semi-Lagrangian time
splitting method (abbreviated by SL-TS) for the whole Schrödinger equa-
tion is O(N logN) for each time step. We prove in the next sections that
the SL-TS method is unconditionally stable if suitable interpolation points
are used. Therefore, the time step can be taken much larger than Δx,
and the constraint Δt = O(ε) is removed, if only physical observables are
needed.

In summary, the semi-Lagrangian method for the convection step is im-
plemented by the following procedures:

1. For each grid point xj , j = 1, · · ·N , solve equation (2.10) backward
for Δt time to obtain the shifted grid points x0j , j = 1, · · ·N .

2. For each shifted grid point x0j , find the closest M grids points xj1 , · · · ,
xjM subject to certain stability requirements and obtain the approximate
value Un+1

j = Un(x0j ) by polynomial interpolation.
Here are some remarks for the semi-Lagrangian method:

Remark 3. When the vector potential A is time independent, the backward
characteristic tracing step is also independent of time. In other words, one
just needs to solve (2.10) for the set of shifted point {x0j} once with suffi-

ciently small time step Δ̃t, and can make use of them for all future time
steps. This step can be done in a preprocessed step with great precision.
When the vector potential is time dependent, the backward characteris-
tic tracing step needs to be done for every time step with O(N) opera-
tions.

Consider the one dimensional convection equation with periodic bound-
ary conditions:

(2.11) ∂tu−A(x) · ∂xu = 0, a < x < b.
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Assume A(x) ∈ C2 ([a, b]), A(x) and its first two derivatives are bounded.
With the M th order Lagrange polynomial interpolation, the numerical
scheme for the convection equation (2.11) can be written as

(2.12) Un+1
j =

M∑
m=1

lm+pj
(x0j )U

n
m+pj

,

where pj is determined by Δt, Δx and the velocity A(x), and lm+pj
are the

Lagrange basis functions.

If A(x) is spatially constant, in [6], it has been shown that, when linear
interpolation (M = 2) is applied, the scheme (2.12) is unconditionally sta-
ble when x0j is between xpj+1 and xpj+2, and when quadratic interpolation

(M = 3) is applied, the scheme (2.12) is unconditionally stable when x0j is
between xpj+1 and xpj+3. Similar analysis has been presented in [8]. How-
ever, little research has been done in the rigorous stability analysis for the
semi-Lagrangian method with spatially variant A(x).

We study the stability requirements of the semi-Lagrangian method in
the following three subsections. In Section 2.3, we deal with the case when
Δt = O (Δx), and the semi-Lagrangian difference operator is treated as a
one-parameter family of operators depending on Δx. This was done in [17],
where Δt is treated as Δx, but for our purpose, we need to keep track of
both Δx and Δt in the analysis. In Section 2.4, we study the case when
Cc = ‖A‖L∞ Δt/Δx > 1, which together with results in Section 2.3 covers
all Courant number cases, in particular when Δt � Δx, so an uncondi-
tional stability is established. In Section 2.5, we derive the specific stability
requirement for the semi-Lagrangian method with the fourth order polyno-
mial interpolation.

For numerical comparison, we also introduce a pseudo-spectral method
for the convection equation (2.9). We discretize the spatial derivative by the
spectral approximation,

(2.13) ∂tU
ε
j −A|x=xj

·DxU
ε|x=xj

= 0,

where

DxU
ε|x=xj

=
1

N

N/2−1∑
l=−N/2

iμlÛ
n
l e

iμl(xj−a),

and use some explicit ODE solver in time discretization. With the spec-
tral approximation, the eigenvalues of the spatial discretization operator are
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purely imaginary (see [32]). This indicates, the absolute stability region of
the time-discretization method used has to cover part of the imaginary axis
near origin. Namely, one needs the so-called I-stability studied in [4]. For
example, one can use the fourth order Runge-Kutta method or the leap frog
method. We name this method time-explicit spectral approximation method
(abbreviated by TESP).

Note that the FFT method can be used to compute spatial derivative
with the spectral approximation, so the total cost in this step isO (N log (N)),
which is comparable to the cost of the kinetic step. This method has spec-
tral convergence in space. However, because some explicit time-discretization
method is applied, one needs to enforce Δt/Δx = O(1) to guarantee stabil-
ity, which means the overall meshing strategy is Δx = O(ε), Δt = O(ε). We
remark that, the drawback of the TESP method is, it requires ε dependent
time step even if only physical observables are desired.

2.3. Stability of the semi-Lagrangian method when Δt = O(Δx)

Define the difference operator Pδ depending on a positive parameter δ in the
following way

(2.14) Pδ =
∑
α

pα(x)Tα,

where α is an integer, and Tα is the shift operator, (Tαu) (x) = u (x+ αδ).
The natural domain for the difference operator is the space of functions
defined on a lattice. It is easy to show that boundedness and positivity of
the difference operator over lattice functions of the l2 space are equivalent
to these properties of the difference operator over the L2 space (see [17]).
Next, define the symbol p(x, ξ) of the one-parameter family Pδ as

(2.15) p(x, ξ) =
∑
α

pα(x)e
iαξ,

which is 2π−periodic in ξ. For functions f(x), denote by |f |k the maximum
of the L2 norm of f and the L2 norms of its first k partial derivatives,
namely,

|f |k = max
l∈{0,··· ,k}

∥∥∥∂l
xf

∥∥∥
L2

.

Then, define the (k, l) norm of the symbol p as

(2.16) |p|k,l =
∑
α

|pα|k (1 + |α|)l .
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Denote by Ck,l the class of symbols with finite (k, l) norm.
We quote the following lemma from [17], which plays a crucial role in

proving stability.

Lemma 1. Let Pδ be a one-parameter family of difference operators, whose
symbol p(x, ξ) is in C2,0 ∩ C0,2. Suppose p(x, ξ) is bounded by 1:

(2.17) |p (x, ξ)| � 1, ∀x, ξ ∈ R.

Then for all δ, there exists a constant K, such that the operator Pδ is bounded
in the following way:

(2.18) ‖Pδ‖L2 � 1 +Kδ.

To prove this Lemma, we need to quote two theorems from [17]. The
first one is a standard result for pseudo-differential operators:

Theorem 1. Let Aδ, Bδ be one-parameter families of difference operators
of the form (2.14) with symbols a(x, ξ) and b(x, ξ), respectively. Denote the
product ab by c, and the one-parameter family of operators with symbol c by
Cδ. Then

‖AδBδ − Cδ‖L2 � δ |a|0,1 |b|1,0 .
The following theorem is the main result of paper [17]:

Theorem 2. Let Qδ be a one-parameter family of difference operators whose
symbol q(x, ξ) is in C2,0 ∩ C0,2. Suppose q is Hermitian and non-negative
definite for every x and ξ. Then there exists a constant K related to |q|2,0
and |q|0,2, such that the operator Qδ satisfies the inequality

Re (u,Qδu) � −Kδ (u, u) ,

for all δ, and arbitrary u ∈ L2.

Now we sketch the proof of Lemma1 from [17], and later modify the
proof to show that the stability constraint in time steps Δt can be relaxed.

Proof. For all u ∈ L2,

(2.19) ‖u‖2L2 − ‖Pδu‖2L2 = (u, u)− (Pδu, Pδu) = (u, (I − P ∗
δ Pδ)u) ,

where P ∗
δ is the adjoint of Pδ.

Define the symbol q = 1− p∗p, and denote the difference operator with
symbol q by Qδ. By Theorem1, Qδ differs from (I − P ∗

δ Pδ) only by O(δ).



A semi-Lagrangian time splitting method 259

In other words, there exits a δ−independent constant K1 = |p|0,1 |p|1,0, such
that

(2.20) ‖Qδ − (I − P ∗
δ Pδ)‖L2 � K1δ.

From (2.19) and (2.20), one gets

−‖u‖2L2 + ‖Pδu‖2L2 � − (u,Qδu) +K1δ ‖u‖2L2 .

Obviously, q is Hermitian, and according to the assumption (2.17), q is
also non-negative definite. Therefore, according to Theorem2, there is some
constant K2 such that

(2.21) Re (u,Qδu) � −K2δ (u, u) .

If ‖u‖2L2 −‖Pδu‖2L2 � 0, then by (2.20) and (2.21), there is some positive
constant K (for example, K = K1 +K2), such that

−‖u‖2L2 + ‖Pδu‖ = Re
(
−‖u‖2L2 + ‖Pδu‖2L2

)
� Kδ ‖u‖2L2 ,

which implies

‖Pδu‖2L2 � (1 +Kδ) ‖u‖2L2 .

If ‖u‖2L2 − ‖Pδu‖2L2 � 0, the estimate above is also satisfied. This com-
pletes the proof.

Therefore, for the semi-Lagrangian method, if one takes δ = Δx, and
Δt = O (Δx), then Δx and Δt can be treated as a single parameter. We take
M = Δt/Δx, which characterizes the ratio of temporal and spatial mesh.
Thus, the numerical scheme can be written as

u (x+Δt) = Pδu(x).

As long as one can show |p (x, ξ)| � 1 for all x and ξ, then by Lemma1,

‖u (x, t0 + nΔt)‖L2 � ‖Pδ‖nL2 ‖u (x, t0)‖L2 � (1 +Kδ)n ‖u (x, t0)‖L2

(2.22)

� eKnΔx ‖u (x, t0)‖L2 = e
KnΔt

M ‖u (x, t0)‖L2 � e
KT

M ‖u (x, t0)‖L2 .

This implies, for fixed M = O(1), in other words when Δt = O (Δx), the
semi-Lagrangian method is stable as long as |p (x, ξ)| � 1 for all x and ξ. The
reason is with fixedM = Δt/Δx, the constantK in (2.18) is δ−independent.
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Another implication is in the limit M = Δt/Δx → 0, the above stability
proof fails. However, we would like to allow Δt = o(1) despite Δx = O(ε), so
the Courant number can be as large as O(1ε ). We further show in the next
subsection the stability conditions for the semi-Lagrangian method with
arbitrary Courant number Cc = ‖A‖L∞ Δt/Δx > c0, where c0 > 0.

2.4. Stability of the semi-Lagrangian method for arbitrary
Courant numbers

The proof above for the stability of the semi-Lagrangian method does not
apply directly, for arbitrary Courant numbers. Instead, in this subsection
we explore the dependence of Pδ on both Δt and Δx. Especially, we aim to
derive the estimates of Pδ which are valid even when Δt � Δx.

For arbitrary Courant number cases, one expects to derive the require-
ments such that Pδ is bounded in the following way,

(2.23) ‖Pδ‖L2 < 1 +K (Δx+Δt) ,

for some constant K independent of Δx and Δt. However, when Δt � Δx,
one can no longer treat the constants K1 in (2.20) and K2 in (2.21) simply
as bounded quantities. Hence, one needs to derive the dependence of those
constants on both Δt and Δx.

When A(x) has zeros, even for bounded A(x), there is no obvious way
to find desired bounds for certain (k, l) norms of the symbol of Pδ such that
(2.23) is satisfied. To simplify the analysis, we firstly introduce a method to
decompose the semi-Lagrangian difference operator Pδ into a product of a
shift operator and another semi-Lagrangian difference operator P̃ δ, which
corresponds to a different characteristic velocity −Ã(x), where Ã is positive.
We will derive estimates for certain (k, l) norms of the symbol of P̃ δ, which
help to prove the stability of the semi-Lagrangian method with arbitrary
Courant numbers.

We now introduce the decomposition of the semi-Lagrangian difference
operator. Since A(x) is bounded, assume amin � A(x) � amax. We naturally
assume ‖A‖L∞ > 0, because otherwise only the trivial case A ≡ 0 is allowed.
Suppose for each point xin at time level t = tn+1, the backward characteristic
passing through it hits the point x0 at time level t = tn. Notice, ∀m ∈ Z,
one can rewrite the difference operator as

Pδ =
∑
α

pα (xin)Tα =

⎛⎝∑
β

p̃β (xin)Tβ

⎞⎠Tm = P̃ δTm,
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where β = α − m and p̃β(xin) = pβ+m(xin). Actually, ∀m ∈ Z, the shift
operator Tm can be seen as the semi-Lagrangian difference operator corre-
sponding to the exact method of characteristic with the characteristic speed
−mΔx

Δt . Thus, the operator P̃ δ is the semi-Lagrangian difference operator

with velocity −A(x)+ mΔx
Δt . This observation allows one to rewrite the orig-

inal semi-Lagrangian difference operator Pδ as a product of a shift operator
and another semi-Lagrangian difference operator P̃ δ with different velocity
field, though the difference in corresponding velocities is only a constant.

Since in Section 2.3, the cases when the Courant number Cc = O(1)
were treated, to complete the analysis for arbitrary Courant number cases,
without the loss of generality, we assume Cc > 1. Next, we choose a spe-
cial integer m, so that the characteristic velocity that the semi-Lagrangian
difference operator P̃ δ corresponds to is negative and bounded away from
0. Since Cc = ‖A‖L∞ Δt/Δx > 1, we claim that there exists a constant
b ∈ [1, 2], such that (amin − b ‖A‖L∞)Δt/Δx = m0 ∈ Z. Actually, consider
the linear function,

y(s) = − (‖A‖L∞ Δt/Δx) s+ aminΔt/Δx

with the slope − (‖A‖L∞ Δt/Δx) < −1 and the domain D = [1, 2], so the
length of the range is larger than 1. Thus, there exists a point b ∈ [1, 2], such
that y(b) equals an integer, and we denote this integer by m0.

Therefore, the operator Tm0
can be seen as the semi-Lagrangian differ-

ence operator that corresponds to the constant characteristic speed −amin+
b ‖A‖L∞ , and P̃ δ = PδT−m0

corresponds to the semi-Lagrangian difference
operator with the same Δx and Δt, but the velocity −A(x) is replaced by
−Ã(x) = − (A(x)− amin + b ‖A‖L∞). We denote the symbol of P̃ δ by p̃,
then obviously, p̃ = pe−im0ξ. For different pairs of Δx and Δt, one may have
different P̃ δ, but the corresponding Ã(x) has a uniform lower bound and a
uniform upper bound:

Ã(x) = A(x)− amin + b ‖A‖L∞ � b ‖A‖L∞ � ‖A‖L∞ ;(2.24)

Ã(x) = A(x)− amin + b ‖A‖L∞ � 2 ‖A‖L∞ + b ‖A‖L∞ � 4 ‖A‖L∞ .(2.25)

Also, observe that A(x) and Ã(x) have the same derivatives, so we denote
‖∂xA‖L∞ = ‖∂xÃ‖L∞ = L1 and ‖∂2

xA‖L∞ = ‖∂2
xÃ‖L∞ = L2.

Since the polynomial interpolation is applied, the coefficients p̃β (xin) of

P̃ δ are Lagrange basis functions, which are polynomials of r(xin), with

(2.26) r(xin) =
x0 − xl
Δx

,
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where xl is the first point on the left hand side of x0 such that for some

integer n0, (xl − xin) /Δx = n0. To give estimates of certain (k, l) norms of

p̃, we study the derivative of r with respect to xin.

Consider the characteristic equation

(2.27)
dx(t)

dt
= −Ã(x(t)),

with x(Δt) = xin. Denote the solution to this initial value problem by

x(t; xin). Integrate the equation from Δt to 0, one gets

(2.28) x0 = xin +

∫ Δt

0
Ã (x (s; xin)) ds.

Since Ã(x) ∈ C1, x(t; xin) is continuously differentiable with respect to xin.

Therefore, there exists a constant η, such that |dx(t;xin)
dxin

| < η.

Because Ã(x) � ‖A‖L∞ > 0, there exists t′ ∈ [0,Δt], such that

(2.29) xl = xin +

∫ t′

0
Ã (x (s; xin)) ds.

In other words, one gets

(2.30) n0 =
xl − xin
Δx

=

∫ t′

0 Ã (x (s; xin)) ds

Δx
.

Rewrite r =
∫ Δt
t′ Ã (x (s; xin)) ds/Δx. Then one gets the following estimate

for its derivative with respect to xin,

∣∣∣∣ dr

dxin

∣∣∣∣ =
∣∣∣∫ Δt

t′ ∂xÃ (x (s; xin))
dx
dxin

ds
∣∣∣

Δx

� η (Δt− t′)

Δx

∥∥∥∂xÃ∥∥∥
L∞

=
η (Δt− t′)L1

Δx
.

By the definition of xl, one has 0 � x0−xl � Δx, so (2.28) and (2.29) imply

0 �
∫ Δt

t′
Ã (x (s; xin)) ds � Δx,
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then the estimate (2.24) implies,

(2.31)
(
Δt− t′

)
‖A‖L∞ �

∫ Δt

t′
Ã (x (s; xin)) ds � Δx,

and thus one concludes

(2.32)

∣∣∣∣ dr

dxin

∣∣∣∣ � η (Δt− t′)L1

Δx
� ηL1

‖A‖L∞
.

This means, dr
dxin

is uniformly bounded with respect to Δx and Δt. Simi-

larly, one can show d2r
dx2

in
is also uniformly bounded. We remark that, without

introducing Ã, one cannot get the estimate (2.31).
We’re ready to prove the following lemma, which gives the estimate of

the L2 norm of the semi-Lagrangian difference operator Pδ when the Courant
number exceeds 1.

Lemma 2. Let Pδ be the semi-Lagrangian difference operator with δ = Δx
and Cc = ‖A‖L∞ Δt/Δx > 1, as is defined above. Suppose its symbol p(x, ξ)
is bounded by 1:

(2.33) |p (x, ξ)| � 1, ∀x, ξ ∈ R.

Then for all δ, there exists a constant K, such that the operator Pδ is bounded
in the following way:

(2.34) ‖Pδ‖L2 � 1 +K (Δx+Δt) .

Proof. For the semi-Lagrangian difference operators Pδ when Cc =
‖A‖L∞ Δt/Δx > 1, we introduce the decomposition Pδ = P̃ δTm0

as is de-
fined above. Observe, for all L2 functions u,

‖u‖2L2 − ‖Pδu‖2L2 = (u, (I − P ∗
δ Pδ)u)

=
(
u,

(
I −

(
P̃ δTm0

)∗
P̃ δTm0

)
u
)

=
(
u,

(
T−m0

Tm0
− T−m0

(
P̃ δ

)∗
P̃ δTm0

)
u
)

=
(
Tm0

u,
(
I −

(
P̃ δ

)∗
P̃ δ

)
Tm0

u
)
.

Next, we define the symbol q̃ (x, ξ) = 1− p̃∗p̃, and denote the difference

operator with symbol q̃ by Q̃δ.
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To make use of Theorem1 and Theorem2, we estimate some (k, l) norms
of the symbols p̃ and q̃ to be used in the proof. Recall that p̃ =∑

β p̃β (r (xin)) e
iβξ, since p̃β (r (xin)) are polynomials of r, and the first

derivative of r is bounded uniformly with respect to Δx and Δt, so |p̃β|0
and |p̃β|1 are bounded on any bounded interval of r. In practice, the interval
of r is determined so that the condition |p (x, ξ)| � 1 is satisfied. In the next
subsection, we derive the interval of r when the fourth order interpolation
is applied, so that |p (x, ξ)| � 1.

If the M thorder polynomial interpolation is applied, one then has |β| �
n0 +M , where M is fixed and

n0 =

∫ t′

0 Ã (x (s, xin)) ds

Δx
�

∫ Δt
0 Ã (x (s, xin)) ds

Δx
� 4 ‖A‖L∞

Δt

Δx
.

Therefore, 1 + |β| � K1(1 + Δt
Δx) for some constant K1. In conclusion, on

some bounded interval of r and with M fixed, |p̃|1,0 =
∑

β |p̃β |1 is bounded

and |p̃|0,1 =
∑

β |p̃β |0 (1 + |β|) = O(1 + Δt
Δx).

Next, with

q̃ = 1− p̃∗p̃ =
∑
ζ

q̃ζ(r)e
iζξ,

we now prove that, if |ζ| > 2M , q̃ζ = 0. Actually

q̃ = 1−
(∑

γ1

˜̃pγ1
(r)eiγ1ξ

)(∑
γ2

˜̃pγ2
(r)e−iγ2ξ

)
= ei0ξ −

∑
γ1,γ2

˜̃pγ1
˜̃pγ2

ei(γ1−γ2)ξ.

For any specific x, if the M−point interpolation is applied, the set {p̃γ(x)}
has at most M nonzero elements, we denote the corresponding indices by
γ(1)(x), · · · , γ(M)(x), which are M consecutive integers. Therefore, in the
summation

∑
γ1,γ2

p̃γ1
p̃γ2

ei(γ1−γ2)ξ, one has p̃γ1
(x)p̃γ2

(x) = 0 unless γ1, γ2 ∈
{γ(1)(x), · · · , γ(M)(x)}. This implies, in this summation, the nonzero contri-
butions occur only when |γ1 − γ2| � 2M . Due to the arbitrariness of x, one
concludes, in the summation, q̃ (x, ξ) =

∑
ζ q̃ζ(x)e

iζξ, one has |ζ| � 2M .

So when M is fixed, 1 + |ζ| � 2M + 1. Since the coefficients q̃ζ(r) are
also polynomials of r, whose first and second derivatives with respect to xin
are bounded on bounded intervals of r, so |q̃β|0, |q̃β|1 and |q̃β|2 are bounded
on bounded intervals of r. In conclusion, on bounded intervals of r and with



A semi-Lagrangian time splitting method 265

M fixed, |q̃|2,0 =
∑

β |q̃β|2 is bounded, and |q̃|0,2 =
∑

ζ |q̃ζ |0 (1 + |ζ|)2 is also

bounded. Therefore, the symbol q̃ is in C2,0 ∩ C0,2.

By Theorem1, the operator Q̃δ differs from I − (P̃ δ)
∗P̃ δ in the L2 norm

at most by δ |p̃|1,0 |p̃|0,1, so there exists a constant K3, such that

∥∥∥Q̃δ −
(
I −

(
P̃ δ

)∗
P̃ δ

)∥∥∥
L2

� K3

(
1 +

Δt

Δx

)
δ = K3 (Δx+Δt) .

Then one gets,

− ‖u‖2L2 + ‖Pδu‖2L2 = −
(
Tm0

u,
(
I −

(
P̃ δ

)∗
P̃ δ

)
Tm0

u
)

(2.35)

� −
(
Tm0

u, Q̃δTm0
u
)
+
∥∥∥Q̃δ −

(
I −

(
P̃ δ

)∗
P̃ δ

)∥∥∥
L2

‖Tm0
u‖2L2

� −
(
Tm0

u, Q̃δTm0
u
)
+K3 (Δx+Δt) ‖u‖2L2 .

Recall that, we have shown that the symbol q̃ ∈ C2,0∩C0,2. Besides, one

can easily verify that q is Hermitian, non-negative, which implies q̃ is also

Hermitian and non-negative. Actually, by definition, q̃ = 1− p̃∗p̃ is obviously

Hermitian. And q̃ = 1 − p̃∗p̃ = 1 − |p̃|2 = 1 − |p|2 � 0, because |p| < 1 by

assumption. Therefore, q̃ satisfies all the hypotheses in Theorem2, so there

exists a constant K4 such that

(2.36) Re
(
Tm0

u, Q̃δTm0
u
)

� −K4δ ‖Tm0
u‖2L2 = −K4Δx ‖u‖2L2 .

If ‖u‖2L2 −‖Pδu‖2L2 � 0, by (2.35) and (2.36), there exists some constant

K (for example, one can take K = K3 +K4), such that

−‖u‖2L2 + ‖Pδu‖2L2 = Re
(
−‖u‖2L2 + ‖Pδu‖2L2

)
� K (Δx+Δt) ‖u‖2L2 ,

which implies

‖Pδu‖2L2 � (1 +K (Δx+Δt)) ‖u‖2L2 .

If ‖u‖2L2 − ‖Pδu‖2L2 � 0, the estimate above is also satisfied. Hence, we

have shown when Cc = ‖A‖L∞ Δt/Δx > 1, the condition that |p(x, ξ)| � 1

for all x and ξ implies that there is some constant K, such that

‖Pδ‖L2 � 1 +K(Δx+Δt).
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According to Lemma2, when the Courant number Cc = ‖A‖L∞ Δt/Δx

exceeds 1, which means Δx < ‖A‖L∞ Δt, one gets

‖u (x, t0 + nΔt)‖L2 � ‖Pδ‖nL2 ‖u (x, t0)‖L2

� (1 + C(Δx+Δt))n ‖u (x, t0)‖L2

� eCn(Δx+Δt) ‖u (x, t0)‖L2

� eCn(1+‖A‖L∞)Δt ‖u (x, t0)‖L2

� eC(1+‖A‖
L∞)T ‖u (x, t0)‖L2 ,

with nΔt � T and C is independent of Δx and Δt.

Therefore, by Lemma1 and Lemma2, we have shown that when the

Courant number Cc = ‖A‖L∞ Δt/Δx � c0 for some c0 > 0, the semi-

Lagrangian method is stable if |p (x, ξ)| � 1 for all x and ξ. The stability

requirement for the semi-Lagrangian method is basically the norm of the

symbol p(x, ξ) is bounded by 1 with the exception that the proof fails in

the limit Δt/Δx → 0 with Δx fixed. In other words, as long as the Courant

number Cc = ‖A‖L∞ Δt/Δx � c0 for some c0 > 0, the condition that the

norm of the symbol p(x, ξ) is no greater than 1 is sufficient to prove stability.

We summarize the result in the following theorem.

Theorem 3. Consider the semi-Lagrangian scheme

(2.37) u(t+Δt, x) = Pδu(t, x),

where Pδ is the difference operator in the form (2.14), and δ = Δx. Sup-

pose, there is negligible error in tracing the characteristics, and suppose there

exists a positive constant c0 such that

(2.38) ‖A‖L∞ Δt/Δx > c0 > 0.

Then if for all x and ξ, the norm of the symbol p(x, ξ) is no greater than 1,

|p (x, ξ)| � 1, the semi-Lagrangian scheme is stable in the sense that

‖u (T )‖L2 � CT ‖u (0)‖L2

for all solutions to the scheme (2.37), where CT depends on T and c0, but

is independent of Δx, Δt.



A semi-Lagrangian time splitting method 267

2.5. Semi-Lagrangian method with the fourth order polynomial
interpolation

According to Theorem3, as long as the Courant number is bounded away
from 0, the semi-Lagrangian method is stable when the norm of the symbol
p(x, ξ) is no greater than 1. Therefore, for specific orders of interpolation,
one just needs to work out the requirement on the choice of interpolation
points such that this condition is satisfied. Since in Section 6 we choose to
use cubic polynomial interpolation (M = 4) in numerical examples, we carry
out the detailed calculation for this choice.

Define r = (x0j − xpj+2)/Δx, and the scheme can be written as

(2.39) Un+1
j =

4∑
m=1

lm+pj
(r)Un

m+pj
,

where

lpj+1(r) = −r(1− r)(2− r)

6
, lpj+2 =

(1 + r)(1− r)(2− r)

2
,

lpj+3(r) =
(1 + r)r(2− r)

2
, lpj+4 = −(1 + r)r(1− r)

6
.

To be more specific, one needs to work out the interval of r for this choice
of interpolation, so that the norm of the symbol of this semi-Lagrangian
difference operator is no greater than 1.

For simplicity, we drop pj in the sub-indices, and instead write l1, l2, l3,
l4. By direct calculation,

l1(r) + l4(r) = −r(1− r)

2
, l2(r) + l3(r) =

(1 + r)(2− r)

2
(2.40)

l1(r) + l2(r) + l3(r) + l4(r) = 1.

So the symbol of the difference operator is

p(x, ξ) =
(
l1(r)e

−i3ξ/2 + l2(r)e
−iξ/2 + l3(r)e

iξ/2 + l4(r)e
i3ξ/2

)
eiξ(pj−j+2+ 1

2
).

Multiply by p̄ on both sides, one gets,

|p(x, ξ)|2 = l21 + l22 + l23 + l24 + 2l1l4 cos (3ξ) + 2 (l1l3 + l2l4) cos (2ξ)

+ 2 (l1l2 + l2l3 + l3l4) cos (ξ) .
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Note, the identity (2.40) implies (l1 + l2 + l3 + l4)
2 = 1. So one gets,

|p(x, ξ)|2 = 1 + 2l1l4 (cos (3ξ)− 1) + 2 (l1l3 + l2l4) (cos (2ξ)− 1)

+ 2 (l1l2 + l2l3 + l3l4) (cos (ξ)− 1) .

With trigonometric identities cos (2ξ) = 2 cos2 (ξ) − 1 and cos (3ξ) =
4 cos3 (ξ)− 3 cos (ξ), one gets

|p(x, ξ)|2 = 1− 1

3
r(1− r)(1 + r)(2− r) (1− cos (ξ))2

− 2

9
r2(1− r)2(1 + r)(2− r) (1− cos (ξ))3

= 1 + r(1− r)(1 + r)(2− r) (1− cos (ξ))2 S(r, ξ),

where,

S(r, ξ) =
1

9

(
2(1− cos (ξ))r2 − 2(1− cos (ξ))r − 3

)
.

S(r, ξ) is a quadratic function in r with parameter ξ in the coefficients,
we denote its roots by r1 and r2, where r1 � r2. When cos (ξ) = 1, one gets
|p(x, ξ)|2 = 1. When 1

4 < cos (ξ) < 1, r1 < −1, r2 > 2, and |p(x, ξ)|2 � 1
means r ∈ [r1,−1] ∪ [0, 1] ∪ [2, r2]. When cos (ξ) = 1

4 , r1 = −1, r2 = 2, and

|p(x, ξ)|2 � 1 means r ∈ {−1} ∪ [0, 1] ∪ {2}. When −1 � cos (ξ) < 1
4 , −1 <

r1 < 0, 1 < r2 < 2, and |p(x, ξ)|2 � 1 means r ∈ [−1, r1]∪[0, 1]∪[r2, 2]. Based
on the analysis above, one sees the condition |p(x, ξ)|2 � 1 is equivalent to
r ∈ {−1} ∪ [0, 1] ∪ {2}. So in practice, we take the stability interval [0, 1]
for r.

Therefore, the semi-Lagrangian method with the fourth order polyno-
mial interpolation is stable when the Courant number is bounded away
from 0, and x0j is between xpj+2 and xpj+3, namely, when the shifted grid
points are between the second points and the third points in interpolation.
Similarly, one can derive stability requirements for other polynomial inter-
polations, for example, see calculations in [6].

We give the following two remarks for stability constraints.

Remark 4. For the semi-Lagrangian method with polynomial interpolation,
the stability constraint comes from two parts: solving the characteristic ODE
(2.10) and the polynomial interpolation. The latter aspect has been studied
in depth so far. On the other hand, solving the characteristic equation (2.10)

with time step Δ̃t requires

(2.41) ‖∂xA‖L∞ Δ̃t � C,
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for some constant C to guarantee stability. Actually, one can take sufficiently

small Δ̃t in solving the ODE (2.10) to get a very accurate approximation
for the characteristics. This can be done in a preprocessed step, and thus

does not affect the computational cost in time evolution.

Remark 5. Another widely used necessary stability criterion for the semi-

Lagrangian method is the deformation constraint proposed in [18, 27], which
means characteristics initiated from adjacent grid points do not intersect in

Δ̃t time. This criterion actually leads to the same constraint (2.41).

So one concludes, for stability, Δt in the semi-Lagrangian method is

Δx−independent, and thus ε−independent in the sense that it requires that
the interpolation points are chosen properly, as is stated in Theorem3. Es-

pecially, one is allowed to take Δt � Δx. In comparison, the stability con-

straint for TESP method is ‖A‖L∞ Δt/Δx � C for some constant C, which
indicates Δt = O(Δx) = O(ε).

Note that, since the numerical schemes in the kinetic step and the poten-
tial step are realized by exact time integration, the numerical methods are

unconditionally stable. As is analyzed above, the stability constraint for the

semi-Lagrangian method in solving the convection part is Δx−independent,
and thus ε−independent. Therefore, one concludes the SL-TS method allows

Δt to be independent of Δx and ε. We will show in later sections, the SL-TS

method possesses great advantages in relaxing the time step restriction over
TESP time splitting method in computing physical observables.

3. Error estimates in the presence of vector potential

In this section, we study the error in approximating the wave function and

the meshing strategy of the SL-TS method. We use || · ||l2 to denote the
discrete l2 norm

(3.1) |||U ||l2 =

⎛⎝b− a

N

N−1∑
j=0

|Uj |2
⎞⎠ 1

2

.

We further assume that, the wave functions are ε−oscillatory in space and
time but the potentials are not oscillatory. So there are t, ε, x independent

positive constants Bm, Cm, Dm so that∥∥∥∥ ∂m1+m2

∂xm1∂tm2
u(t, x)

∥∥∥∥ C([0,T ];L2(a,b)) � 1

εm1+m2
Cm1+m2

,(3.2)
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∥∥∥∥ ∂m

∂xm
A(x)

∥∥∥∥ L2(a,b) � Dm,

∥∥∥∥ ∂m

∂xm
U(x)

∥∥∥∥ L2(a,b) � Bm.

Note that the differentiation operator is unbounded for general smooth
functions, but it is bounded in the subspace of smooth L2 function which are
at most ε−oscillatory. We use fI to denote the spectral approximation based
on the discrete data fj or f(xj). Now we are ready to prove the following
error estimate for the first order SL-TS method. The proof basically follows
Theorem4.1 in [5], though the situation here is more complicated due to the
convection step.

Theorem 4. Let uε(t, x) be the exact solution of equation (2.1), uε,n be
the discrete approximation by the first order SL-TS method. We assume the
characteristic equations (2.10) are numerically solved with minimal error in
the preprocessed step, the M th order polynomial interpolation is taken in
the semi-Lagrangian method for the convection step and the corresponding
stability condition is satisfied. Under assumption (3.2), we further assume
Δx/ε = O(1) and Δt/ε = O(1); then for all positive integers m � 1 and
t ∈ [0, T ],

(3.3) ||uε(tn)− uε,nI ||L2 � Gm,M
T

Δt

[(
Δx

ε

)
m +

(
Δx

ε

)
M

]
+

CTΔt

ε
,

where C is a positive constant independent of Δt, Δx, ε, m and M , and
Gm,M are positive constants independent of Δt, Δx and ε.

Proof. Recall that, we have defined operator splitting solution (without spa-
tial discretization) (2.6) wn+1 = eAΔteBΔteCΔtuε(tn). We firstly show, by
studying the commutators between three operators in (2.5), when poten-
tials are spatially variant, the local splitting error in equations (2.2), (2.3),
(2.4) for equation (2.1) is:

(3.4) ||uε(tn+1)− wn+1||L2 = O

(
Δt2

ε

)
.

Clearly, the exact solution to (2.1) at t = tn+1 with initial data uε(tn) is
given by

uε(tn+1) = e(A+B+C)Δtuε(tn).

The operator splitting error results from the non-commutativity of the op-
erators A, B and C. In [5], it was shown that

[AΔt, BΔt]uε = O

(
Δt2

ε

)
,
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where [·, ·] denotes the commutator. Similarly, by a direct computation:

[AΔt, CΔt]uε = (Δt)2
iε

2
(∂xxA∂xu

ε + ∂xA∂xxu
ε) = O

(
Δt2

ε

)
;

[BΔt, CΔt]uε = (Δt)2
(
− i

ε

)(
A∂x

(
1

2
|A|2 + V

))
uε = O

(
Δt2

ε

)
.

Therefore, we have shown the local operator splitting error is O
(
Δt2

ε

)
as in

(3.4).
By triangle inequality,

||uε(tn+1)− uε,n+1
I ||L2 � ||uε(tn+1)− wn+1||L2 + ||wn+1 − wn+1

I ||L2(3.5)

+ ||wn+1
I − uε,n+1

I ||L2

where wn+1
I denotes the spectral interpolation approximation of wn+1. On

the right hand side of (3.5), the first term gives the operator splitting error
(3.4), and the second term gives the spectral approximation error which is
bounded by Cm(Δx

ε )m, where m can be any positive integer, which depends
on the regularity of the solution (see [22]).

Now we focus on the last term on the right hand side of (3.5). With
the spectral approximation, we have for any periodic function f ∈ L2(a, b),
||fI ||L2 = ||f ||l2 . In the SL-TS method, the potential step governed by op-
erator B is solved analytically, while the kinetic step and convection step
governed by operators A and C are evolved by numerical approximations,
denoted by ASP and CSL respectively. So once again, by triangle inequality:

||wn+1
I − uε,n+1

I ||L2 = ||wn+1 − uε,n+1||l2
(3.6)

= ||eCΔteBΔteAΔtuε(tn)− eCSLΔteBΔteASPΔtuε,n||l2
� ||eCΔteBΔteAΔtuε(tn)− eCΔteBΔteASPΔtuε(tn)||l2
+ ||eCΔteBΔteAspΔtuε(tn)− eCSLΔteBΔteAspΔtuε(tn)||l2
+ ||eCSLΔteBΔteAspΔtuε(tn)− eCSLΔteBΔteAspΔtuε,n||l2 .

Note that, the first term on the right hand side of (3.6) measures the spectral
approximation of uε(tn), so by Theorem3 from [22], this term is of order
O((Δx

ε )m) for any positive integer m. According to Remark 3, the error in
computing the shifted grid points is much smaller than the interpolation
error, so the second term on the right hand side is bounded by the M th order
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polynomial interpolation error, which is O((Δx
ε )M ). It can easily be shown

that the operators eAΔt, eBΔt and eCΔt (in the Coulomb gauge) are unitary
operators with respect to periodic smooth functions in the L2 norm, which
implies ‖eAΔt‖L2 = ‖eBΔt‖L2 = ‖eCΔt‖L2 = 1. Bao, Jin and Markowich
in [5] have proved that ASP is also unitary with respect to uεI , the spectral
approximation of smooth L2 function. Note, eCSLΔt is not a unitary operator,
but with stability constraint as in Section 2.3, we have ‖eCSLΔt‖nL2 � C ′ for
some constant C ′ and nΔt � T . So, the last term on the right hand side
of (3.6)

||eCSLΔteBΔteASPΔtuε(tn)− eCSLΔteBΔteASPΔtuε,n||l2
�

∥∥eCSLΔt
∥∥
L2

∥∥eBΔteASPΔtuε(tn)− eBΔteASPΔtuε,n
∥∥
l2

�
∥∥eCSLΔt

∥∥
L2

∥∥uε(tn)− uε,nI

∥∥
L2 .

This leads to

||wn+1
I − uε,n+1

I ||L2 �
∥∥eCSLΔt

∥∥
L2

∥∥u(tn)− uε,nI

∥∥
L2 + C ′

m

(
Δx

ε

)m

+ C ′′
M

(
Δx

ε

)M

,

where C ′
m and C ′′

M are some constants, which are t, x, ε independent. So
now, we have derived a recursive relation

||uε(tn+1)− uε,n+1
I ||L2 �

∥∥eCSLΔt
∥∥
L2 ||uε(tn)− uε,nI ||L2

+ C1

(
Δx

ε

)m

+ C2

(
Δx

ε

)M

+ C3

(
Δt2

ε

)
where C1, C2 and C3 are some constants, which are t, x, ε independent.

Based on the recursive relation for ||uε(tn)− uε,nI ||L2 , by induction, one
concludes that,

(3.7) ||uε(tn)− uε,nI ||L2 � Gm,M
T

Δt

[(
Δx

ε

)
m +

(
Δx

ε

)
M

]
+

CTΔt

ε
.

This completes the proof.

We remark that, in practice, if the solution is sufficiently regular, the
error introduced by polynomial interpolation is dominant in spatial dis-
cretization since m can be chosen to be fairly large. Then in practice, it
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suffices to consider the following error bound

(3.8) ||uε(tn)− uε,nI ||L2 � G̃M
T

Δt

(
Δx

ε

)
M +

CTΔt

ε
.

This implies that, if one wants to control the error of the wave function

in the L2norm so that ||uε(tn) − uε,nI ||L2 < δ, the corresponding meshing

strategy is

(3.9)
Δt

ε
= O(δ),

Δx

ε
= O

(
δ1/MΔt1/M

)
.

For higher order operator splitting technique, similar analysis can be

done, which is omitted in this paper.

4. Computing the physical observables

In general, if one only cares about the physical observables, weaker con-

ditions in the meshing strategy may be sufficient (see [20, 5]). The Wigner

transform can be used to illustrate this point. For f, g ∈ L2(Rd), the Wigner

transform is defined as a phase-space function

(4.1) wε(f, g) (t, x, ξ) =
1

(2π)d

∫
Rd

eiy·ξf̄
(
x+

ε

2
y
)
g
(
x− ε

2
y
)
dy.

Recall that uε(t, x) is the exact solution of equation (2.1). Denote wε =

wε(uε, uε), which satisfies the Wigner equation

(4.2) ∂tw
ε + ξ · ∇xw

ε +Θ[V + |A|2/2]wε + Γ[A]wε = 0,

in which two pseudo-differential operators are defined by

Θ[U ]wε :=
i

(2π)dε

∫
Rd

(
U
(
x+

ε

2
α
)
− U

(
x− ε

2
α
))

ŵε(x, α, t)eiα·ξdα;

(4.3)

Γ[A]wε := − 1

(2π)d

∫
Rd

A
(
x+

ε

2
α
)
· ∇xū

(
x+

ε

2
α
)
u
(
x− ε

2
α
)
eiα·ξdα

(4.4)

− 1

(2π)d

∫
Rd

ū
(
x+

ε

2
α
)
A

(
x− ε

2
α
)
· ∇xu

(
x− ε

2
α
)
eiα·ξdα.
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By Weyl’s Calculus, as ε → 0, the Wigner measure w0 =
limε→0w

ε(uε, uε) satisfies the classical Liouville equation

(4.5) w0
t + (ξ −A) · ∇xw

0 + ((ξ −A) · ∇xA−∇xU) · ∇ξw
0 = 0,

with

(4.6) w0(t = 0, x, ξ) = w0
I (x, ξ) := lim

ε→0
wε(uε0, u

ε
0).

All the limits above are defined in an appropriate weak sense (see [31, 11]).
Now let a(x, ξ) be a smooth real-valued phase space function with suffi-

cient decay at infinity, called a semi-classical symbol. Then the self-adjoint
pseudo-differential operator Aε := a(x, εD)W is called an observable, where
D = i∇x, and “W” stands for the Weyl quantization (see [11]). If one speci-
fies a quantum state uε(t, x), then the average of this observable in this state
is defined as

(4.7) Eε
a(t) =

∫
Rd

ūε(t, x)
(
a(x, εD)Wuε(t, x)

)
dx.

One significant property of the Wigner transform is that it establishes the
duality identity in the following sense

(4.8)

∫
Rd

ūε(t, x)
(
a(x, εD)Wuε(t, x)

)
dx =

∫
Rd×Rd

wε(t, x, ξ)a(x, ξ)dxdξ.

As a consequence, Eε
a(t) can be taken to the semi-classical limit via

(4.9) lim
ε→0

Eε
a(t) =

∫
Rd×Rd

w0(t, x, ξ)a(x, ξ)dxdξ.

These semi-classical limits have been mathematically justified in [30, 23].
Let w̃ε be theWigner transform of the numerical approximation solution.

One can easily prove the following inequality (see [5])

(4.10) |Eε
a − Ẽε

a| � ||a||E · ||wε − w̃ε||E∗ � C||a||E · ||uε − ũε||L2(a,b),

where E is the Banach space

E =
{
φ ∈ C0

(
R
d
x × R

d
ξ

)
: (Fξ→vφ) ∈ L1

(
R
d
v;C0

(
R
d
x

))}
.

F denotes the Fourier transform and E∗ is the dual space of E (see [19]).
This inequality is not sharp, but it shows that, the L2 approximation of
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the wave function at least implies approximation of mean value of physical
observables in the same order.

In each time step t ∈ [tn, tn+1] after operator splitting, the error in the
wave function is introduced due to spectral approximation and polynomial
approximation. By Theorem4 and the estimate (4.10), the error in the cor-
responding Wigner transform can be estimated. Although it might not be
optimal, the spatial meshing strategy Δx

ε = O(δ1/MΔt1/M ) is sufficient to
guarantee an O(δ) error in all physical observables caused by spectral and
polynomial approximations on the time interval [0, T ].

The splitting error in computing the physical observables can be under-
stood in the following way. The time splitting in solving the Schrödinger
equation corresponds to the time splitting of the Wigner equations: one
firstly solves

wε
t + ξ · ∇xw

ε = 0, t ∈ [tn, tn+1],

followed by solving

wε
t + Γ[A]wε = 0, t ∈ [tn, tn+1],

and then followed by solving

wε
t +Θ[V +

1

2
|A|2]wε = 0, t ∈ [tn, tn+1].

For fixed Δt, one can take the limit ε → 0, and obtain the time splitting
of the classical Liouville equation: one firstly solves

w0
t + ξ · ∇xw

0 = 0, t ∈ [tn, tn+1],

followed by solving

w0
t −A · ∇xw

ε + ξ · ∇xA · ∇ξw
0 = 0, t ∈ [tn, tn+1],

and then followed by solving

w0
t − (A · ∇xA+∇xV ) · ∇ξw

0 = 0, t ∈ [tn, tn+1].

Consider the SL-TS method introduced in Section 2. As is summarized
at the end of Section 2, if the interpolation points are chosen properly ac-
cording to Theorem3, the whole SL-TS method is stable even when Δt � ε.
Next, note that no ε−dependent error is introduced by the splitting. In the
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kinetic step and the potential step, the time integrations are performed ex-
actly. In the convection part, the backward characteristic tracing is done
in a preprocessed step with sufficiently fine yet ε independent time steps.
Therefore, there is no ε−dependent error at all in time discretizations.

After all these considerations, we conclude that with the SL-TS method,
large time steps satisfying Δt � ε can be taken to capture correct physical
observables. In other words, with time step Δt = O(δ) and spatial meshing
strategy (3.9), one gets numerical solutions with O(δ) error in the Wigner
functions as ε → 0, and as a result, O(δ) error in all the physical observables.

Remark 6. When the vector potential A is time dependent, the above anal-
ysis still holds, because A is ε−independent, and thus in the backward char-
acteristic tracing step, Δ̃t is also ε−independent.

5. Extension to multidimensional cases

In this section, we discuss how to extend the SL-TS method to the multidi-
mensional cases. The Schrödinger equation (1.1) can be written as

iε∂tu
ε = −ε2

2
Δuε + iεA · ∇uε +

1

2
|A|2uε + V uε, x ∈ Πi=1,··· ,d[ai, bi],

(5.1)

t ∈ R
+; uε(0, x) = uε0(x), x ∈ Πi=1,··· ,d[ai, bi]

with periodic boundary condition. By operator splitting technique, for every
time step t ∈ [tn, tn+1], we solve the kinetic step

(5.2) iε∂tu
ε = −ε2

2
Δuε = −ε2

2

d∑
l=1

∂2
xl
uε, t ∈ [tn, tn+1];

followed by the potential step

(5.3) iε∂tu
ε =

1

2
|A|2uε + V uε, t ∈ [tn, tn+1],

and then followed the convection step

(5.4) ∂tu
ε = A · ∇uε =

d∑
l=1

Al(x1, · · · , xd)∂xl
uε, t ∈ [tn, tn+1].

We remark that the kinetic step and the potential step are exactly the
original TSSP method as in [5] without vector potential, while the convection
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step can be done by dimensional splitting. In fact the dimensional splitting
will not introduce ε dependent error in time because the classical Liouville
equation is also well separated in the same dimensional splitting for the
convection step. Note that, the convection step of the Liouville equation can
be reformulated as

(5.5) ∂tw
0 −

d∑
l=1

Al∂xl
w0 +

d∑
l=1

ξl∇xAl · ∇ξw
0 = 0, t ∈ [tn, tn+1].

After dimensional splitting one still observes the one-to-one correspondence
between the equations (5.4) and (5.5). In addition, the semi-classical limit of
the Schrödinger equation in each dimension is exactly the counterpart of the
classical Liouville equation. Therefore, all numerical methods can be carried
out by the same means and the meshing strategy would stay unchanged.

We remark that, the dimension splitting is only one of possible tech-
niques to use. Multidimensional semi-Lagrangian method is also applicable,
see [28, 18, 6].

In Section 6, we implement this method to a particular three dimensional
model from physics, which can be reduced to a two dimensional one, to verify
the numerical properties of the SL-TS method in higher dimensions.

6. Numerical examples

In the series of numerical tests, the reference solution is computed by time
splitting method with sufficiently fine mesh grids, but the convection part
is numerically evolved by the time-explicit spectral method (TESP), which
means we apply the spectral approximation for spatial derivative and an
explicit ODE solver (here we use the fourth order Runge-Kutta method)
is used in time discretization. The SL-TS method is implemented with the
fourth order (four-point) Lagrange polynomial interpolation. In the following
sets of examples, we want to test improved stability, convergence in space
and time and the ability of capturing correct physical observables with large
time step when the vector potential is time dependent, or when caustics
are formed. We also test an essentially 2-D problem to verify the SL-TS in
higher dimensions.

The error in wave functions is measured in the L2 norm, but the error
in physical observables is measured in the weak sense. We define cumulative
distribution function of physical observable b(x, t) as

B(x, t) =

∫ x

−∞
b(s, t)ds.
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Figure 6.1: Reference solution: Δx = 2π
5120 , Δt = 1

4096 . SL-TS method: Δx =
2π
5120 , Δt = 1

50 ,
1

100 ,
1

200 ,
1

400 ,
1

800 . ◦ ◦ ◦: error in wave function uε; ∗ ∗ ∗: error
in mass density n; · · ·: error in flux density I.

We compute the l2 norm of the error in these cumulative distribution func-
tions instead since the physical observables may converge only in the weak
sense (see [7, 12]).

Example 1. In the construction of the SL-TS scheme, we assume the
vector potential is time independent. But, this method can handle time
dependent vector potentials with little modification. In this example, we
test the following one dimensional problem with a time dependent vector
potential. We choose the computation domain C = [0, 2π] and compute
from t0 = 0 till T = 0.5. The scalar potential is chosen as V (x) = (x− π)2

and the vector potential is A(x, t) = sin(x − 2t). The initial condition is
chosen as ϕ0 = e−5(x−π)2ei cos(x)/ε.

We firstly test the improved stability condition of the scheme and conver-
gence in time. We choose ε = 1

128 , the reference solution is computed by the
TESP method with Δx = 2π

5120 and Δt = 1
4096 . We test the scheme with the

same spatial mesh grids but different time steps: Δt = 1
50 ,

1
100 ,

1
200 ,

1
400 ,

1
800 .

As can be seen from Figure 6.1, even with Δt � Δx, the scheme is still sta-
ble and gives correct first order of convergence in time for wave functions
and physical observables.

Next, we test whether one can compute physical observables with the
meshing strategy Δt = O(σ) and roughly Δx = O(ε). We test our scheme for
ε = 1

128 ,
1

256 ,
1

512 ,
1

1024 ,
1

2048 with Δt = 0.01 and sufficiently fine spatial grids.
We plot numerical approximation of mass density n and current density I (in
circles) together with the reference solution (in solid lines) for ε = 1

128 ,
1

2048
in Figure 6.2.
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Figure 6.2: Left: ε = 1
128 , reference solution Δx = 2π

2560 , Δt = 1
1280 ; SL-TS

mthod Δx = 2π
2560 , Δt = 0.01. Right: ε = 1

2048 , reference solution Δx = 2π
40960 ,

Δt = 1
20480 ; SL-TS method Δx = 2π

40960 , Δt = 0.01.

Figure 6.3: SL-TS method: fixed Δt = 0.01 for ε = 1
128 ,

1
256 ,

1
512 ,

1
1024 ,

1
2048 ,

and correspondingly Δx = 2π
2560 ,

2π
5120 ,

2π
10240 ,

2π
20480 ,

2π
40960 .

With fixed large time step and Δx = O(ε), we expect that error in the

wave function increases as ε decreases, but the error in physical observables

would stay the same order. This set of numerical tests have confirmed the

expectation as shown in Figure 6.3.

To show that meshing strategy with Δt = O(δ) gives correct physical

observables but not the correct wave function, we can examine the error in

wave functions and in physical observables when ε = 1
2048 with the Δt = 0.01

and Δx = 2π
40960 . Since Δt � ε, one sees in Figure 6.4 O(1) error in wave

function but O(Δt) error in physical observables.
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Figure 6.4: Left: L2 error in wave functions. Right: L2 error in mass density
and current density.

We remark that, one can get similar numerical results for the problem

with time-independent vector potentials.

Example 2. In this test, we check the solution after caustics forma-

tion. As shown in previous research, most prevailing schemes for Schrödinger

equation, for example the Crank–Nicolson spectral method (CNSP) and the

Crank–Nicolson finite difference method (CNFD), may fail to capture the

correct physical observable when wave functions are not resolved either in

space or in time (see [5]). In addition, these methods even require finer mesh

both in spatial grids and time steps to compute accurate wave functions. The

failure in obtaining accurate physical observables with unresolved mesh is

most obvious after caustics formation.

In this example, the scalar potential is chosen as V (x) = 1 and the

vector potential is A(x) = sin(x/2π)/5 + 1/5. Note that, the constant part

in vector potential gives purely spatial translation while the varying part

affects the profile of the wave functions and therefore modify the profile of

physical observables. The initial condition is chosen as in the WKB form,

where

ϕ0 = n0(x)e
iS0(x)/ε, n0(x) = e−25(x−0.5)2 ,

S0 = −1

5
ln
(
e5(x−0.5) + e−5(x−0.5)

)
.

Due to the compressive initial velocity d
dxS0(x), caustics will form. We

now test whether one obtains accurate physical observables with Δt = O(σ)

and roughly Δx = O(ε) meshing strategy. Note that, in order not to affect
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Figure 6.5: Left: ε = 1
128 , reference solution Δx = 1

2560 , Δt = 1
1280 ; SL-

TS method Δx = 1
2560 , Δt = 0.01. Right: ε = 1

2048 , reference solution
Δx = 1

40960 , Δt = 1
20480 ; SL-TS method Δx = 1

40960 , Δt = 0.01.

the caustics too much, we choose scalar and vector potential to be less
spatially varying.

We choose the computation domain C = [0, 1] and compute from t0 = 0
till T = 0.54. We test the SL-TS scheme for ε = 1

128 ,
1

256 ,
1

512 ,
1

1024 ,
1

2048
with Δt = 0.01 and O(ε) spatial grids. We plot numerical approximation
of mass density and current density (in dots) together with the reference
solution (in solid lines) for ε = 1

128 ,
1

2048 in Figure 6.5, which shows good
agreements.

With fixed large time step and Δx = O(ε), we expect that error in the
wave function increases as ε decreases, but the error in physical observables
would stay almost the same order. This set of numerical tests have confirmed
the expectation as shown in Figure 6.6.

At last, we test spatial convergence. We fix ε = 1
128 , and compute this

test problem with fine time steps and Δx/ε = 1
5 ,

1
10 ,

1
20 ,

1
40 . The reference

solution is computed with sufficiently fine mesh, Δx = 1
10240 and Δt = 1

20480 .
We plot the reference wave function (both real and imaginary parts) and
physical observables in Figure 6.7.

Since we use the four-point Lagrangian interpolation approximation for
the convection step, according to meshing strategy (3.9), the convergence
order in spatial grids should be slightly worse than O(Δx4). Figure 6.8
shows the convergence order in spatial grids is between 3 and 4.

Example 3. In this example, we test our method for an essentially 2-D
model. This is a commonly-used physics model (see [25]). A charged particle
is moving in the three dimensional space when the magnetic field is pointing
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Figure 6.6: SL-TS method: fixed Δt = 0.01 for ε = 1
128 ,

1
256 ,

1
512 ,

1
1024 ,

1
2048 ,

and correspondingly Δx = 1
2560 ,

1
5120 ,

1
10240 ,

1
20480 ,

1
40960 .

Figure 6.7: ε = 1
128 . Left: the wave function (real part and imaginary part).

Right: mass density and current density.

along z axis and the scalar potential vanishes, namely V = 0. We write wave

function as uε(t,X), where X = (x, y, z) ∈ R3. For simplicity, we assume

the components of the vector potential are

Ax = A1(x, y), ,Ay = A2(x, y), Az = 0.

Note that, when Ax = −1
2By, Ay = 1

2Bx, Az = 0, the vector potential

corresponds to uniform magnetic field with magnitude B along z direction.

Obviously, the Coulomb gauge is satisfied, ∇X ·A = 0. The magnitude of the

magnetic field in this simplified model is ∂xA2−∂yA1. Then the Hamiltonian
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Figure 6.8: Spatial grids convergence for ε = 1
128 , with fixed Δt = 1

2560 and
Δx = 1

640 ,
1

1280 ,
1

2560 ,
1

5120 .

can be written as

(6.1) H = −ε2

2
(Δx +Δy) + iεA1∂x + iεA2∂y +

1

2

(
|A1|2 + |A2|2

)
− ε2

2
Δz.

This means that, the particles have only free motion in the z direction. So
it makes perfect sense to consider the motion of the particle on the x − y
plane only by introducing the reduced Hamiltonian,

(6.2) H̃ = −ε2

2
(Δx +Δy) + iεA1∂x + iεA2∂y +

|A1|2 + |A2|2
2

.

We remark that, this simple model can help to derive the Larmor fre-
quency, which plays an essential role in magnetic or spin resonance.

For numerical simulation, the computation domain is chosen as [−π, π]×
[−π, π]. The vector potential is chosen as A = (A1, A2, 0) = (−1

2 cos(y),
1
2 cos(x), 0) and scalar potential vanishes V = 0. The initial wave function
is well localized at the point (0.05, 0.1) with O(ε) oscillation

u0(x, y) = e−20(x−0.05)2−20(y−0.1)2ei sin(x) sin(y)/ε.

We choose ε = 1
64 , Δx = Δy = 2π

1280 , and compare numerical solutions
by fine time step Δt = 1

640 and by coarse time step Δt = 1
20 at T = 0.2 and

T = 0.4, respectively. We plot level curves of mass density in each case in
Figure 6.9.
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Figure 6.9: Level curves of mass density for ε = 1
64 at T = 0.2, 0.4. Left:

Δx = Δy = 2π
1280 , Δt = 1

640 . Right: Δx = Δy = 2π
1280 , Δt = 1

20 .

We choose ε = 1
128 and repeat this test. We choose Δx = Δy = 2π

2560 ,
and compare numerical solutions by fine time step Δt = 1

1280 and by coarse
time step Δt = 1

20 at T = 0.2 and T = 0.4, respectively. The level curves of
mass density in each case are plotted in Figure 6.10.

In Figures 6.9 and 6.10, the pictures on the left column show particle
density when ε−dependent, fully resolved time step is taken. The pictures
on the right side are plots of particle density when ε−independent time step
is taken. One can see the good agreements in results from the two sets of
tests. This numerical example shows that the SL-TS method can successfully
capture correct physical observables when ε−independent time step is taken
in the multidimensional cases.

7. Conclusion

In this paper, we introduced and studied a semi-Lagrangian time splitting
scheme for the Schrödinger equation in the presence of electromagnetic field
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Figure 6.10: Level curves of mass density for ε = 1
128 at T = 0.2, 0.4. Left:

Δx = Δy = 2π
2560 , Δt = 1

1280 . Right: Δx = Δy = 2π
2560 , Δt = 1

20 .

when the semi-classical parameter ε 
 1. Numerically, the burden from

O(ε) oscillations both in space and time have been reduced by the spec-

tral approximation and the semi-Lagrangian method with polynomial inter-

polation. This method is easy to implement, can be extended to multidi-

mensional cases and has better stability constraints. We proved the uncon-

ditional stability properties when the vector potential is spatially variant,

which allows one to take Δt � ε. We established the error estimate for the

SL-TS method in the L2 approximation of the wave function, and derived

the corresponding meshing strategy. It was also shown that the meshing

strategy can be much relaxed, namely Δt = o(1), Δx = O(ε), if only phys-

ical observables are needed, with the help of the Wigner transform and its

classical limit. Many numerical tests have confirmed our numerical analysis

results.

In the future, we will explore the extension of this method to the Schrö-

dinger equation with fast varying periodic potentials.
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