
Communications in Information and Systems

Volume 14, Number 1, 57–78, 2014

A novel efficient homotopy continuation method
in tracking

Yueh-Cheng Kuo, Wen-Wei Lin, and Shing-Tung Yau

Tracking a moving object by Doppler effect is an important tool
to locate the position and to estimate the velocity of a moving ob-
ject. Suppose that we have N (N � 6) observation stations which
measure the relative speed of the moving object by Doppler effect.
Theoretically, the corresponding movement of the moving object
can be formulated by a system of 2N polynomials in N + 6 un-
knowns. In this paper, we propose a novel simplification to reduce
the original system to a system ofN−2 polynomials in 4 unknowns.
Then using this simplified system we develop an efficient homotopy
continuation method to trace the moving object. Numerical experi-
ments show that the position and the velocity of the moving object
can be solved efficiently and reliably by the homotopy continuation
method.

1. Introduction

Tracking a moving object by Doppler effect is an important subject in many
applications [2, 3, 10]. Suppose that u(t) = (x(t), y(t), z(t))T is the position
of a moving object with respect to time t and {sj ≡ (xj , yj , zj)}Nj=1 are
locations of N fixed observation stations. In general, the relative speeds of
the moving object can be measured by Doppler effect by those N observa-
tion stations. The distances, rj(t), between u(t) and sj can be formulated
as

(x(t)− xj)
2 + (y(t)− yj)

2 + (z(t)− zj)
2 = rj(t)

2,(1)

j = 1, . . . , N . Differentiating (1) with respect to t, we obtain

(x(t)− xj)ẋ(t) + (y(t)− yj)ẏ(t) + (z(t)− zj)ż(t) = rj(t)ṙj(t),(2)

j = 1, . . . , N . In practice, the datas {ṙj(t)}Nj=1 in (2) are measured by
Doppler effect.
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Suppose that the relative speeds of the moving object, {ṙj(t)}Nj=1, are
given in each time-step by those N observation stations. From (1) and (2),
it is easily seen the position of the object, (x, y, z), and the associated ve-
locity, (ẋ, ẏ, ż), satisfy a system of nonlinear equations F(v) = 0, where
F ≡ (F1, . . . , FN ) : R6 → R

N , v = (x, y, z, ẋ, ẏ, ż)T ∈ R
6 with

Fj(v) =
(x− xj)ẋ+ (y − yj)ẏ + (z − zj)ż√
(x− xj)2 + (y − yj)2 + (z − zj)2

− ṙj .(3)

Note that F(v) = 0 has 6 unknowns. Naturally, we consider six (N = 6)
measured datas {ṙj}6j=1, and hence, generically, the system of equations
F(v) = 0 has only isolated solutions. When N < 6, the solution set of
the system F(v) = 0 is not isolated, hence, it is impossible to trace the
moving object. In this paper, we consider the Doppler tracking with N � 6
observation stations.

To track the moving object, a homotopy continuation method has been
proposed in [7] for computing all isolated solutions of polynomial equations
of (1) and (2) with N = 6 at each time t. For given measured datas {ṙj}6j=1,
(1) and (2) have 12 equations and 12 unknowns {x, y, z, ẋ, ẏ, ż, r1, . . . , r6}.
In [7], authors first reduce those 12 polynomial equations to 4 polynomial
equations in 4 unknowns {r3, r4, r5, r6}, and then, employ the homotopy
method [1, 8] to compute all isolated solutions. If x = (r3, r4, r5, r6)

T is
a solution of this reduced system, where r3, r4, r5 and r6 represent the
distances between the moving object and the observation stations s3, s4, s5
and s6, respectively, then the position of the moving object, (x, y, z), and the
associated velocity, (ẋ, ẏ, ż), can be obtained by the solution x. In general,
the system of polynomial equations (1) and (2) with N = 6 has 48 complex
solutions and we are only interested in the real solution.

In this paper, we propose an efficient homotopy continuation method to
trace the moving object with the observation stations N � 6. In Section 2
we reduce the system of 2N equations (1) and (2) to a new system of N − 2
equations in 4 unknowns. In Section 3 we develop two algorithms, one for
the case N = 6 and the other for the case N > 6, to trace the moving
object. The numerical experiments will be presented in Section 4. Finally, a
conclusion is given in Section 5.

Throughout this paper, we use bold face letters or symbols to denote
matrices or vectors. In is defined by an identity matrix of order n and e =
(1, 1, . . . , 1)T . For v = (v1, v2, . . . , vn)

T , w = (w1, w2, . . . , wn)
T , v ◦ w =

(v1w1, v2w2, . . . , vnwn)
T denotes the Hadamard product of v and w and

[|v|] := diag(v) denotes the diagonal matrix of v.
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2. Simplification of systems of polynomials

In this paper, we consider the Doppler tracking with six or more than six
observation stations (N � 6). The original system of polynomial equations
(1) and (2) has 2N equations andN+6 unknowns {x, y, z, ẋ, ẏ, ż, r1, . . . , rN}.
Note that when N > 6 the original system is an overdetermined system. In
this section, we will propose a novel simplification to reduce the original
system to a new system of N − 2 equations in 4 unknowns.

For given N positions {(xj , yj , zj)}Nj=1 of observation stations and the

measured speeds {ṙj}Nj=1 by Doppler effect, we denote

V0 =

⎡
⎢⎢⎢⎣

x1 y1 z1
x2 y2 z2
...

...
...

xN yN zN

⎤
⎥⎥⎥⎦ , ṙ =

⎡
⎢⎢⎢⎣

ṙ1
ṙ2
...
ṙN

⎤
⎥⎥⎥⎦ , sj =

⎡
⎣ xj

yj
zj

⎤
⎦ ,

for j = 1, 2, . . . , N . For the unknown values, we denote

u =

⎡
⎣ x

y
z

⎤
⎦ , u̇ =

⎡
⎣ ẋ

ẏ
ż

⎤
⎦ , r =

⎡
⎢⎢⎢⎣

r1
r2
...
rN

⎤
⎥⎥⎥⎦ .(4)

Subtracting the 1st equation from the jth equation (j �= 1) in (1) and
(2), respectively, yield

CV0u =
1

2
C(n− r ◦ r),(5)

CV0u̇ = −C[|ṙ|]r,(6)

where

n =
(
‖s1‖2, ‖s2‖2, . . . , ‖sN‖2

)T
, C = [−e, IN−1] ∈ R

(N−1)×N

with e = (1, . . . , 1)T . Suppose thatN observation stations are not on a plane.
Then, it is easily seen that CV0 is of full rank and the matrix VT

0 C
TCV0

is invertible. Note that if CV0 is of full rank, then so is V0. From (5) and
(6) u and u̇ can be written as

u = Aq, u̇ = Ap,(7)
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where

A = (VT
0 C

TCV0)
−1(VT

0 C
TC),

p = −ṙ ◦ r ≡ (p1, . . . , pN )T , q = 1
2(n− r ◦ r).

(8)

Equation (7) shows that the unknowns u and u̇ in (4) can be represented
in terms of q and p, respectively, and the vectors q and p are dependent on
the unknowns {rj}Nj=1. Substituting (7) into (1) and (2), we obtain

qTATAq− 2sTj Aq+ sTj sj = ṙ−2
j p2j ,(9)

and

qTATAp− sTj Ap = −pj ,(10)

respectively, for j = 1, . . . , N .

Next, we show that those N unknowns {rj}Nj=1 satisfy some relations.
Subtracting the 2nd equation from the jth equation (j = 3, . . . , N) in (10),
yields

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

(s2 − s3)
T

(s2 − s4)
T

...
(s2 − sN )T

⎤
⎥⎥⎥⎦A+ Ĉ

⎞
⎟⎟⎟⎠ (ṙ ◦ r) ≡ Â(ṙ ◦ r) = 0,(11)

where Ĉ = [0,−e, IN−2] and Â ∈ R
(N−2)×N . In fact, the rank of Â can be

shown, generically, to be N−4 (see Appendix). In fact, if s2+s3+ · · ·+sN �=
(N−1)s1, then rank(Â) = N−4. Let Â = Q

[
T1 T2

0 0

]
be the QR factorization

of Â, where T1 ∈ R
(N−4)×(N−4) is invertible and T2 ∈ R

(N−4)×4. Suppose
that ṙj �= 0 for j = 1, . . . , N − 4. It follows from (11) that

⎡
⎢⎢⎢⎣

r1
r2
...

rN−4

⎤
⎥⎥⎥⎦ = −Ṙ−1

1 T−1
1 T2Ṙ2

⎡
⎢⎢⎣

rN−3

rN−2

rN−1

rN

⎤
⎥⎥⎦ ,(12)

where Ṙ1 = diag(ṙ1, . . . , ṙN−4) and Ṙ2 = diag(ṙN−3, . . . , ṙN ). Hence, the
unknown variables r1, . . . , rN−4 can be represented in terms of variables
rN−3, rN−2, rN−1 and rN .
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Substituting p and q in (8) into the equations (9) and (10) with j = 1,
yield

1
4(r ◦ r)TATA(r ◦ r)− ŝT1 A(r ◦ r) + ĉ = r21,
1
2(r ◦ r)TATA(ṙ ◦ r)− ŝT1 A(ṙ ◦ r) = r1ṙ1,

(13)

where

ŝ1 =
1

2
An− s1, ĉ =

1

4
nTATAn− sT1An+ sT1 s1.(14)

Subtracting the 2nd equation from the jth equation (j = 3, . . . , N) in (9),
we obtain⎛

⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

(s2 − s3)
T

(s2 − s4)
T

...
(s2 − sN )T

⎤
⎥⎥⎥⎦A+ Ĉ

⎞
⎟⎟⎟⎠ (r ◦ r− n) ≡ Â(r ◦ r− n) = 0.(15)

From the relation in (12), the equations (13) and (15) can be simplified
to equations in variables rN−3, rN−2, rN−1 and rN . Since the matrix Â is
generically of rank N−4, we can choose N−4 linearly independent equations
in (15), say the first N − 4 equations.

Let {sj = (xj , yj , zj)
T }Nj=1 be N positions of observation stations and

{ṙj}Nj=1 be the measured Doppler data. Then the distances between the

moving object and the N stations, {rj}Nj=1, satisfy the relation in (12), i.e.,

if x ≡ (rN−3, rN−2, rN−1, rN )T is given, then r1, . . . , rN−4 can be obtained
by (12). The vector x should satisfy N − 2 equations: Ĝ(x) = 0, where
Ĝ : R4 → R

N−2 and

Ĝ(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
4(r ◦ r)TATA(r ◦ r)− ŝT1 A(r ◦ r)− r21 + ĉ
1
2(r ◦ r)TATA(ṙ ◦ r)− ŝT1 A(ṙ ◦ r)− r1ṙ1

(s2 − s3)
TA(r ◦ r)− r22 + r23 + ĉ3
...

(s2 − sN−2)
TA(r ◦ r)− r22 + r2N−2 + ĉN−2

⎤
⎥⎥⎥⎥⎥⎥⎦
,(16)

where ŝ1, ĉ are given in (14) and ĉj = sT2 s2 − sTj sj − (s2 − sj)
TAn for

j = 3, . . . , N − 2.

Remark 2.1. Given N positions of observation stations {sj}Nj=1 and the

measured Doppler data {ṙj}Nj=1 (ṙj �= 0, for j = 1, . . . , N) such that the
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first N − 4 rows of the matrix Â defined in (11) are linearly indepen-
dent. It is easily seen that the system of equations (1) and (2) has so-
lution (x, y, z, ẋ, ẏ, ż, r1, . . . , rN ) if and only if (rN−3, rN−2, rN−1, rN ) is a
solution of Ĝ(x) = 0. Furthermore, (x, y, z, ẋ, ẏ, ż) is real if and only if
(rN−3, rN−2, rN−1, rN ) is real.

Remark 2.2. In the case N = 6, the system Ĝ(x) = 0 can theoretically
be simplified to a system of 2 polynomial equations of degree 16 and of de-
gree 12 in 2 unknowns. The simplification method has been well developed
in [7]. Compared to Ĝ(x) = 0, the number of unknowns in the simplifi-
cation system is reduced from 4 to 2. However, the maximum of degrees
amount all equations in the system is increased from 4 to 16. In the case
N > 6, the overdetermined system Ĝ(x) = 0 can be simplified to a system
of N − 4 polynomial equations in 2 unknowns by using the same simpli-
fication method, two of which are polynomials of degree 16 and of degree
12, respectively. However, in the practical situation in numerical continu-
ation, the 2-variable polynomial system with higher degrees is much more
troublesome than Ĝ(x) = 0.

WhenN > 6, Ĝ(x) = 0 is an overdetermined system. In general, Ĝ(x) =
0 has no solution due to Doppler effect. We can choose 4 equations of Ĝ(x) =
0, say G(x) = 0, to compute its solutions, where G : R4 → R

4. The system
of equations G(x) = 0 have many solutions, e.g., if G(x) = 0 is the system
of the first 4 equations of Ĝ(x) = 0, then, generally, it has 48 solutions
(see [7, 8]). Because {ṙj}Nj=1 are the measured speeds of a moving object,
generically, there is only one real solution x∗ of G(x) = 0 such that the
residual ‖Ĝ(x∗)‖ has the same order with the error of measured data. Next,
we define a desired solution of G(x) = 0.

Definition 2.3. Let G(x) = 0 be a system of 4 equations chosen from
Ĝ(x) = 0. Then x ∈ R

4 is called a desired solution of G(x) = 0 if x is
a regular solution of G(x) = 0 such that the residual ‖Ĝ(x)‖ attains its
minimum.

If x is the desired solution of G(x) = 0, then the position u = (x, y, z)T

and the velocity u̇ = (ẋ, ẏ, ż)T of the moving object can be obtained by
using formulas (12) and (7).

3. Homotopy continuation methods

In this section, we develop an efficient algorithm to trace the moving ob-
ject. Let {sj}Nj=1 be N (N � 6) positions of observation stations such that
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s2 + s3 + · · · + sN �= (N − 1)s1. Then rank(Â) = N − 4 (see Appendix),

where Â is defined in (11). Let the first N − 4 rows of the matrix Â be

linearly independent. Suppose that {ṙ0j ≡ ṙj(t0)}Nj=1 and {ṙ1j ≡ ṙj(t1)}Nj=1

are measured speeds of a moving object by Doppler effect from those N

stations at time t0 and t1, respectively, where t0 < t1 and t0 � t1. Let Ĝ
0(x)

and Ĝ1(x) be given in (16) with parameters ṙj = ṙ0j and ṙj = ṙ1j , respec-

tively. Suppose that x0 ≡ (r0N−3, r
0
N−2, r

0
N−1, r

0
N )T is a desired solution of

G0(x) = 0, where G0(x) = ÊT Ĝ0(x) and Ê ∈ R
(N−2)×4 is a matrix formed

by selecting 4 columns of identity matrix IN−2. Note that if N = 6 then

Ê = I4 and G0(x) = Ĝ0(x). In order to compute the desired solution of

G1(x) = 0, where G1(x) = ÊT Ĝ1(x), we consider the homotopy

H(x, t) = ÊT Ĝ(x, t), 0 � t � 1,(17)

where Ĝ(x, t) is the system of equations of Ĝ(x) with parameter ṙj = (1−
t)ṙ0j + tṙ1j . Then we follow the path of H(x, t) = 0 from t = 0 to 1 with the

starting point x0 by the continuation method.

3.1. Algorithm 1 for N = 6

In this subsection we develop an algorithm for tracking the moving object

with N = 6 observation stations. Suppose that C0 = {(x(s), t(s))| s ∈ R} is

the solution path of H(x, t) = 0 with (x(0), t(0)) = (x0, 0), where H(x, t)

is defined in (17) and s is the arc length parameter. Next, we show that,

generally, this path is regular, that is,

rank[Hx(x(s), t(s)),Ht(x(s), t(s))] = 4 for s ∈ R.

Remark 3.1. Suppose that C0 is regular. By Implicit Function Theorem

we know that for each point (x(s0), t(s0)) ∈ C0, there is a unique solution

curve {(x(s), t(s))| s0 − ε < s < s0 + ε} of H(x, t) = 0, where ε > 0. This

means that there is no other solution path of H(x, t) = 0 which intersects

with C0. The path C0 may have the fold bifurcation point (turning point)

when Hx(x(s), t(s)) is singular.

Now, we consider another homotopy

HF ≡ (HF1
, . . . , HF6

) : V × [0, 1] → R
6,(18)
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where v = (x, y, z, ẋ, ẏ, ż)T , V = {R3\
⋃6

j=1{sj}} × R
3 and

HFj
(v, t) =

(x− xj)ẋ+ (y − yj)ẏ + (z − zj)ż√
(x− xj)2 + (y − yj)2 + (z − zj)2

+ t(ṙ0j − ṙ1j )− ṙ0j .(19)

Suppose that t(ṙ0j − ṙ1j ) − ṙ0j �= 0 for each t ∈ [0, 1] and j = 1, . . . , 6. From
Remark 2.1, we know that

• if CF = {(x(s), y(s), z(s), ẋ(s), ẏ(s), ż(s), t(s))| s ∈ [0, ξ]} is the solu-
tion path of HF(v, t) = 0 such that {t(s)| s ∈ [0, ξ]} ⊆ [0, 1], then
C = {(r3(s), r4(s), r5(s), r6(s), t(s))| s ∈ [0, ξ]} is a solution path of
H(x, t) = 0, where

rj(s) =
√

(x(s)− xj)2 + (y(s)− yj)2 + (z(s)− zj)2, j = 3, 4, 5, 6.

• if C = {(r3(s), r4(s), r5(s), r6(s), t(s))| s ∈ [0, ξ]} is a solution path of
H(x, t) = 0 such that {t(s)| s ∈ [0, ξ]} ⊆ [0, 1], then

CF = {(u(s), u̇(s), t(s))| s ∈ [0, ξ]}

is the solution path of HF(v, t) = 0, where u(s), u̇(s) can be obtained
by (7), (8) and (12).

Hence, C is regular if and only if CF is regular. Furthermore, C has a fold
bifurcation point at s = s0 if and only if CF has a fold bifurcation point at
s = s0. In the following, we show that each solution path of HF(v, t) = 0 is
regular. To prove this, we need the sard’s Theorem (see [9])

Theorem 3.2. [Sard’s Theorem] Let F : U → R
m be a smooth function for

some open set U ⊆ R
n. Then the set

{F(w)| w ∈ U and rank(Fw(w)) < min(m,n)}

is measure zero in R
n.

In fact, the Doppler datas {ṙj}6j=1 contain measurement errors, i.e.,
ṙj = ṙej + ε, where ṙej is the exact value of the relative speed and ε is the
measurement error which can be considered as a white noise. From Sard’s
Theorem, we have the following result.

Theorem 3.3. Suppose that {ṙ0j}6j=1 and {ṙ1j}6j=1 are measured Doppler
datas at different times. Then each solution path of HF(v, t) = 0 is regular.
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Proof. Since {ṙ0j}6j=1 and {ṙ1j}6j=1 are measured Doppler datas, there are

exact value of relative speeds ṙ0ej , ṙ1ej and measurement errors ε0j , ε
1
j such

that

ṙ0j = ṙ0ej + ε0j and ṙ1j = ṙ1ej + ε1j .

Let εj = ε0j − ε1j for j = 1, . . . , 6. Then from (19), we have

HFj
(v, t)=

(x− xj)ẋ+ (y − yj)ẏ + (z − zj)ż√
(x− xj)2 + (y − yj)2 + (z − zj)2

+ t(ṙ0ej − ṙ1ej + εj)− ṙ0ej − ε0j .

Suppose that ṙ0j − ṙ1j = ṙ0ej − ṙ1ej + εj for j = 1, . . . , 6 are given and fixed.

Then the measurement error ε0j can be considered as a random number. It
follows from Sard’s Theorem that each solution path of HF(v, t) = 0 is
regular.

Assume that t(ṙ0j − ṙ1j ) − ṙ0j �= 0 for each t ∈ [0, 1] and j = 1, . . . , 6.
Let (x0, 0) be a real solution of H(x, t) = 0, where H(x, t) is defined in
(17). Suppose that C0 = {(x(s), t(s))| s ∈ [0, ξ]} is a real solution path of
H(x, t) = 0 with (x(0), t(0)) = (x0, 0), where {t(s)| s ∈ [0, ξ]} ⊆ [0, 1], ξ > 0
and t(ξ) ∈ {0, 1}. From Theorem 3.3 we know that the solution path C0 is
regular. Suppose that

• there is no fold bifurcation point on C0:
We can employ the homotopy continuation method (see [5]) to follow
the path C0 in the real variable t ∈ [0, 1]. In this case, it holds that
t(ξ) = 1. Hence, the solution, x1 = x(ξ), of H(x, 1) = 0 can be
achieved.

• C0 contains fold bifurcations:
Suppose that (x∗, t∗) ∈ C0 is a fold bifurcation point on C0. In [6, 4],
it shows that there are two branches of solution paths, C0 and Cc

0,
passing through (x∗, t∗), where Cc

0 is complex curve. If φ ∈ R
5 is the

tangent vector of the path of C0 at (x∗, t∗), then the tangent vector
of Cc

0 is the direction of iφ (see Figure 1). To compute a solution x1

of H(x, 1) = 0 which connects with the starting point x0, we need
to follow the complex bifurcation branch Cc

0 from the fold bifurcation
point (x∗, t∗). Since the coefficients of H(x, t) are real, the path Cc

0

consists of a complex path and its complex conjugacy, hence, we only
need to follow one of them with tangent vector iφ or −iφ. Note that
the computed solution x1 may be complex if those two paths of Cc

0

(the complex path and its complex conjugacy) do not intersect before
t goes to 1.
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Figure 1: Two solution paths C0 and Cc
0.

Figure 2: Two solution paths Cc
p and Cp = C1

p ∪ C2
p .

Remark 3.4. If the real path C0 contains a fold bifurcation point, then the
computed solution x1 of H(x, 1) = 0 may be complex. Since the solution x1

describes the distances between the moving object and stations, x1 should
be real and positive. So, if the starting point x0 of C0 represents the distances
between the moving object and stations, then the computed solution x1 is
complex because of measurement errors in measured datas. Intuitively, the
complex path will bifurcate and produce two real paths when we follow the
path of the homotopy Hk(x, t), where Hk(x, t) is formed by Ĝ(x) in (16)
with ṙj = (1 − t)ṙkj + tṙk+1

j , {ṙkj }6j=1 and {ṙk+1
j }6j=1 are measured datas at

times tk and tk+1, respectively.
Let Cc

k = {(xk(t), t)| 0 � t � 1} be the complex solution path of
Hk(x, t) = 0 for k = 1, . . . , p− 1 such that x1(0) = x1 and xk(0) = xk−1(1)
for k > 1. Suppose that the complex branch, Cc

p = {(xp(s), t(s))| s ∈ [0, ξp]}
with xp(0) = xp−1(1), contains a real fold bifurcation point (xp∗, t∗) ≡
(xp(s∗), t(s∗)) ∈ R

5. If ϕp = iφp (φp ∈ R
5) is the tangent vector of the

path of Cc
p at (xp∗, t∗), then the tangent vector of the real bifurcation branch

Cp = C1
p ∪ C2

p is the direction of φp (see Figure 2). Because we do not know
which one of bifurcation paths, C1

p or C2
p , can be used to trace the moving

object, hence, we need to follow both of them.

Remark 3.5. Due to the measurement errors of the measured data, if a
complex solution x = xR + ixI is obtained when we trace the solution path
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of a homotopy, then we set (r3, r4, r5, r6) = xR and compute the position u
and velocity u̇ of the moving object by (7), (8) and (12).

Given N = 6 stations {sj}6j=1 such that the first N−4 rows of the matrix

Â defined in (11) are linearly independent. Suppose that {ṙkj }6j=1 for k =
0, 1, . . . ,m are measured Doppler datas at times t0, t1, . . . , tm, respectively.
Let Hk(x, t) for k = 0, . . . ,m − 1 be the homotopy which formed by Ĝ(x)
in (16) with ṙj = (1− t)ṙkj + tṙk+1

j . Suppose that x0 = (r03, r
0
4, r

0
5, r

0
6)

T ∈ R
4

is a solution of H0(x, 0) = 0, where r0j describes the distance between the
moving object and the station sj at time t0. We design an efficient proce-
dure for tracking the moving object at times t0, t1, . . . , tm. The flowchart of
Algorithm 1 is shown in Figure 3.

3.2. Algorithm 2 for N > 6

When N > 6, Ĝ(x) = 0 in (16) is an overdetermined system. In this sub-
section, we propose a method to choose a suitable subsystem G�(x) = 0
of Ĝ(x) = 0 and compute its desired solution. Suppose that we have a
subsystem G(x) = 0 with the desired solution x0. Intuitively, a suitable
subsystem G�(x) = 0 should have a good condition number of Jacobian
matrix G�

x(x0) ∈ R
4×4. Let Ĝx(x0) ∈ R

(N−2)×4 be the Jacobian matrix of
Ĝ(x) = 0 at x = x0. Then G�

x(x0) is a submatrix of Ĝx(x0). Let

Ĝx(x0)
TE = QR,

be the QR factorization with column pivoting of Ĝx(x0)
T , where E is a

permutation matrix. The suitable system G�(x) can be easily chosen by

G�(x) = ÊT Ĝ,

where Ê = E(:, 1 : 4). If G�(x) �= G(x), then we can follow the path of the
homotopy

H(x, t) = (1− t)G(x) + tG�(x)(20)

from t = 0 to 1 with the starting point x0 to compute a solution x∗ of
G�(x) = 0.

Remark 3.6. Let N > 6 and {ṙj}Nj=1 be the speeds of the moving object
with respect to the observation stations. Then the overdetermined system
F(v) = 0 has exactly one solution, where F = (F1, . . . , FN ) is given in (3).
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Figure 3: The flowchart of Algorithm 1 for the Doppler tracking procedure
with N = 6.

Then it is easily seen that Ĝ(x) = 0 in (16) has exactly one solution x0 by
Remark 2.1. Since G(x) and G�(x) are subsystems of Ĝ(x), {(x0, t)| 0 �
t � 1} is the solution path of the homotopy in (20), hence x∗ = x0 and
x∗ is also a desired solution of G�(x) = 0. If those N measured Doppler
datas {ṙj}Nj=1 are perturbed and x0 is the desired solution of G(x) = 0,
then the terminating point, x∗, of the solution path of the homotopy in (20)
will approximate x0 (x∗ ≈ x0) and is also a desired solution of G�(x) = 0.

Assume that {ṙ0j }Nj=1 and {ṙ1j}Nj=1 are measured speeds of a moving ob-
ject by Doppler effect from those N > 6 stations at time t0 and t1, respec-
tively, where t0 � t1. Let Ĝ

0(x) and Ĝ1(x) be given in (16) with parameters
ṙj = ṙ0j and ṙj = ṙ1j , respectively. Suppose that G0(x) = ÊT Ĝ0(x) is the
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Figure 4: The flowchart of Algorithm 2 for the Doppler tracking procedure
with N > 6.

suitable subsystem and x0 is the desired solution of G0(x) = 0. Then the
solution path with the starting point x0 for the homotopy, H(x, t) = 0 de-
fined in (17), always has no fold bifurcation. We design an efficient procedure
for tracking the moving object at times t0, t1, . . . , tm when N > 6 and the
flowchart of Algorithm 2 is shown in Figure 4.

4. Numerical experiments

In this section we will show some numerical results of tracking a moving
object. Given N = 6 observation stations located at

s1 = 103 × (449,−17,−122)T s2 = 103 × (24,−13,−384)T

s3 = 103 × (181,−5, 166)T s4 = 103 × (396,−14, 142)T

s5 = 103 × (51,−4, 209)T s6 = 103 × (147,−3,−89)T .

We take the real trajectory of a moving object and the associated velocity
from t = 0 to t = 110 (seconds) provided by [11] and shown in Figure 5.
We divide the time interval into m = 2200 subintervals using 2201 equally
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Figure 5: The real position and the real velocity of the moving object.

spaced nodes tk = 0.05 × k, k = 0, . . . ,m. Let ue
k = (x(tk), y(tk), z(tk))

T

and u̇e
k = (ẋ(tk), ẏ(tk), ż(tk))

T , be the real position and the real velocity of
the moving object at time tk. Then the speeds of the moving object with
respect to the stations sj at time tk can be computed by

ṙe,kj =
(ue

k − sj)
T u̇e

k

‖ue
k − sj‖

, j = 1, . . . , 6.

Let F : R6 → R
N be given in (3). The degree of F at ve

k = (ueT

k , u̇eT

k )T

is defined as

deg(F,ve
k) = Sgn(DvF(v

e
k)),

where DvF(v
e
k) ∈ R

6×6 is the Jacobian matrix of F(v) = 0 at v = ve
k. The

degrees of F, for k = 0, 1, . . . ,m, are shown in Figure 6. We see that the
degree changes from 1 to −1 when k = k∗ = 1184 (i.e., deg(F,ve

k∗) = 1
and deg(F,ve

k∗+1) = −1). It follows from Bifurcation Test Theorem (see

[5]) that the solution path of Hk∗

F (v, t) = 0 with the starting point ve
k∗ has

a bifurcation point (transcritical bifurcation point), where the homotopy

Hk∗

F (v, t) is defined in (18) in which ṙ0j and ṙ1j are replaced by ṙe,k
∗

j and

ṙe,k
∗+1

j , respectively.
In the homotopy continuation procedure, it needs to trace a solution

path of the homotopy Hk(x, t) = 0 from t = 0 to t = 1 by the continuation
method for each k = 0, 1, . . . ,m−1. Continuation method mainly consists of
the prediction scheme and the correction scheme. In prediction scheme, the
predictor can be obtained by solving a linear system with an adaptive time-
step. In correction scheme, we employ Newton method to compute a new
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Figure 6: The degree, deg(F,ve
k), for k = 0, 1, . . . ,m.

Figure 7: The relative errors potted by the log scale.

approximation to the solution path. Hence, for tracking the solution path,
it needs to solve a series of linear systems. In the following experiments, we
will show the number of linear systems which need to be solved while the
solution path of the homotopy Hk(x, t) = 0 is followed.

Experiment 1: In this experiment we show the numerical results with the
measured data having no measurement errors (i.e., ṙkj = ṙe,kj , j = 1, . . . , 6,
k = 0, 1, . . . ,m). We use Algorithm 1 (see flowchart in Figure 3) to trace the
moving object time by time. The relative errors for positions and velocities
plotted by the log scale are shown in Figure 7 (a) and (b), respectively. We
see that the average of relative errors is close to 10−13 which is satisfactory
in numerical computation. Figure 8 shows that the numbers of solving linear
systems are between 2 ∼ 4 while the solution path ofHk(x, k) = 0 is followed
from t = 0 to t = 1 with various time-steps: k = 0, 1, . . . ,m−1. Algorithm 1
is efficient and reliable for this case because for almost 99% of time-steps
k, it only needs to solve 3 linear systems to get the next solution xk+1 of
Hk(x, 1) = 0.

Experiment 2: In this experiment, we show the numerical results with
measured data by Doppler effect having measurement errors (i.e., ṙkj =

ṙe,kj + εkj , where εkj is the measurement error provided by [11], j = 1, . . . , 6,
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Figure 8: The number of solving linear systems while we follow the solution
path of Hk(x, t) = 0 from t = 0 to t = 1 for k = 0, 1, . . . ,m− 1.

Figure 9: The positions of two computed orbits, P1 and P2.

k = 0, 1, . . . ,m). As above, using Algorithm 1 (in Figure 3) to trace the
trajectory of the moving object, it will meet six times at fold bifurcation
points (turing points) on the path Ck: Hk(x, t) = 0 for k = 1174, 1177,
1181, 1190, 1192, 1194, caused by the measurement errors by Doppler ef-
fect. More precisely, the solution paths bifurcate into two complex conju-
gate paths for k in the union of intervals: Ic ≡ (1174, 1177) ∪ (1181, 1190) ∪
(1192, 1194), and bifurcate into two real paths for k in the union of inter-
vals: I2p ≡ [1177, 1181] ∪ [1190, 1192] ∪ [1194, 2200]. We denote two com-
puted trajectories of the moving object by P1 and P2, respectively. Note
that P1 = P2 for k ∈ [0, 1174] ∪ Ic and P1 �= P2 for k ∈ I2p. In Fig-
ure 9 we show the positions of computed orbits P1 and P2 for the mov-
ing object. In Figure 10 we show the associated relative errors plotted by
the log scale. The computed orbit P1 oscillates and has large relative error
(about 10−1) near tk∗ = 0.05 × k∗ = 59.2. The position of computed or-
bit P1 projected onto the x, y and z coordinates are shown in Figure 11
(a), (b) and (c), respectively. We see that the z-coordinate of the orbit P1
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Figure 10: The relative errors of two computed orbits, P1 and P2, plotted
by the log scale.

Figure 11: The position of the computed orbit (P1) projected onto the x, y
and z coordinates.

oscillates between 1.6 × 103 and −3 × 102 as t approaches to 59.2. When
t > 65, the relative error of P1 is less than 10−3. Thus, the orbit P1 re-
ally tracks the positions of the moving object. By Bifurcation Test Theo-
rem, in this example, we know that there is another path intersects with
the orbit of moving object. The orbit P2 for t > 59.2 is just the path
which intersects with the orbit of the moving object and is redundant in
the tracking process. Note that the relative errors of P2 are large (about
100) for t > 65. In Figure 12 we show that the number of solving linear
systems of Algorithm 1 while we follow the solution path of Hk(x, t) = 0
from t = 0 to t = 1 with various time-steps: k = 0, 1, . . . ,m − 1. We
see that the continuation method needs to solve about 100 linear systems
to get the solution for the next step when k approaches to k∗ = 1184.
When k < 1174 or k > 1194, the number of solving linear systems is less
than 5.

In order to report the numerical results by Algorithm 2 with N > 6, we
add an additional station located at s7 = (0, 0, 0)T . The speed of the moving
object with respect to the station s7 at time tk measured by Doppler effect
can be constructed by
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Figure 12: The number of solving linear systems while we follow the solution
path of Hk(x, t) = 0 from t = 0 to t = 1 for k = 0, 1, . . . ,m− 1.

Figure 13: The position and the velocity of the computed orbit.

ṙk7 =
(ue

k − s7)
T u̇e

k

‖ue
k − s7‖

+ εk7, k = 0, 1, . . . ,m,

where the errors εk7 are randomly generated with |εk7| ≈ 0.01× | (u
e
k−s7)T u̇e

k

‖ue
k−s7‖ |.

Experiment 3: In this experiment we show the numerical results by Al-
gorithm 2 (see flowchart in Figure 4 with N = 7) with the measured data

by Doppler effect having measurement errors (i.e., ṙkj = ṙe,kj + εkj , where

εkj is the measured error, j = 1, . . . , 7, k = 0, 1, . . . ,m). In Figure 13, we
show the position and the velocity of the computed orbit for the moving
object which are close to the position and the velocity of the real mov-
ing object in Figure 5. The relative errors in Figure 14 plotted by the
log scale are between 10−3 ∼ 10−5 which are satisfactory. In Figure 15,
we show the numbers of solving linear systems while we follow the solu-
tion path of Hk(x, t) = 0 from t = 0 to t = 1 with various time-steps:
k = 0, 1, . . . ,m − 1. We see that the maximal number is 7 and 99% of
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Figure 14: The relative errors potted by the log scale.

Figure 15: The number of solving linear systems while we follow the solution
path of Hk(x, t) = 0 from t = 0 to t = 1 for k = 0, 1, . . . ,m− 1.

numbers is between 3 ∼ 4. Thus, the Algorithm 2 is quite promising and
robust.

5. Conclusions

In this paper, we propose a novel simplification to reduce the original sys-
tem of a moving object to a system of N − 2 polynomials in 4 unknowns,
where N is the number of observation stations. Using the simplified systems
with different measured Doppler data, we constructed a series of homotopy
functions. Then the position and the velocity of the moving object can be
obtained by following the solution path of those homotopy functions. When
N = 6 we prove that, generically, each solution path of the homotopy is reg-
ular. In this case, we need to deal with the fold bifurcation when we trace
the solution path. When N > 6, the simplified system is overdetermined. In
this case, it needs to choose a suitable subsystem and compute its desired
solution by the continuation method. For the cases N = 6 and N > 6, we de-
velop two homotopy continuation methods, Algorithm 1 and Algorithm 2, to
trace the moving object, respectively. Numerical results show that the new
developed homotopy continuation method is robust, efficient and reliable for
tracking the moving object.
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Appendix

Assume that V0 and CV0 are of full rank. We will show that, generally, Â
in (11) has rank N − 4. From (11), we have

Â = −ĈV0A+ Ĉ = Ĉ(IN −V0A).(21)

Since AV0 = (VT
0 C

TCV0)
−1(VT

0 C
TC)V0 = I3, it can be shown that

the spectrum of V0A, denoted by σ(V0A), is {1, 1, 1, 0, . . . , 0}. Therefore,
σ(IN −V0A) = {0, 0, 0, 1, . . . , 1}. Let V̂ = [V0, e] ∈ R

N×4. Since CV0 is of
full rank, we have rank(V̂) = 4. It follows from the definitions of A and e
that

ÂV̂ =
[
Ĉ(IN −V0A)V0, Ĉ(IN −V0A)e

]
= 0.

Hence, rank(Â) � N − 4.
Since A ∈ R

3×N and rank(A) = 3, the dimension of N (A) is N −
3, where N (A) is the kernel of A. It is easily seen that e ∈ N (A). Let
U ∈ R

N×(N−4) such that the set of column vectors of U form a basis of
{x ∈ N (A) | xTe = 0}. From (21), we have

ÂU = Ĉ(IN −V0A)U = ĈU,(22)

where Ĉ = [0,−e, IN−2]. From (22) and eTU = 0, we know that

there exists a vector x0 in the column space of U such that Âx0 = 0
(it means rank(Â) < N − 4) if and only if ê = [−(N − 1), 1, . . . , 1]T is
in the column space of U.

Since A = (VT
0 C

TCV0)
−1(VT

0 C
TC) and (VT

0 C
TCV0) is invertible, we

obtain that VT
0 C

TCU = 0. Then ê is in the column space of U if and only
if 0 = VT

0 C
TCê = VT

0 C
T [N,N, . . . , N ]T = NVT

0 [(N − 1), 1 . . . , 1]T , which
is equivalent to s2+ s3+ · · ·+ sN = (N − 1)s1. Hence, we have the following
results.
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Theorem 6.1. Assume that V0 and CV0 are of full rank. Then

(i). rank(Â) � N − 4, where Â is defined in (11).
(ii). rank(Â) < N − 4 if and only if s2 + s3 + · · ·+ sN = (N − 1)s1.
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