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This paper introduces a new approach of treating platoon systems
using mean-variance control formulation. The underlying system
is a controlled switching diffusion in which the random switching
process is a continuous-time Markov chain. This switching pro-
cess is used to represent random environment and other random
factors that cannot be represented by stochastic differential equa-
tions driven by a Brownian motion. The state space of the Markov
chain is large in our setup, which renders practically infeasible
for a straightforward implementation of the mean-variance control
strategy obtained in the literature. By partitioning the states of
the Markov chain into sub-groups (or clusters) and then aggregat-
ing the states of each cluster as a super state, we are able to obtain
a limit system of much reduced complexity. The justification of the
limit system is rigorously supported by establishing certain weak
convergence results.

Keywords and Phrases: platoon control, mean-variance con-
trol, two-time-scale model, weak convergence, reduction of com-
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1. Introduction

Highway vehicle control is a critical task in developing intelligent trans-
portation systems. Platoon formation has been identified as one promising
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strategy for enhanced safety, improved highway utility, increased fuel econ-
omy, and reduced emission toward autonomous or semi-autonomous vehicle
control. The goal of longitudinal platoon control is to ensure that all the
vehicles move in the same lane at the same speed with desired inter-vehicle
distances.

Platoon control has been studied in the contexts of intelligent high-
way control and automated highway systems for many years with numerous
methodologies and demonstration systems [3, 8]. Many control methodolo-
gies have been applied, including PID controllers, state feedback, adaptive
control, state observers, among others, with safety, string stability, and team
coordination as the most common objectives [1, 6, 11].

A platoon may be viewed as a networked system consisting of individual
subsystems whose operations and resource consumptions must be carefully
coordinated to achieve desired performance for the entire platoon. Platoon
control and performance optimization bear certain similarity to portfolio
management in mathematical finance in which optimal distribution of avail-
able resources to different subsystems (stocks or mutual funds) can lead
to increased return and reduced risk. By borrowing the basic idea of mean-
variance control from mathematical finance, we study its potential extension
and applications to platoon control systems.

The origin of the mean-variance optimization problem can be traced
back to the Nobel-prize-winning work of Markowitz [7]. The salient feature
of the model is that, in the context of finance, it enables an investor to seek
highest return after specifying the acceptable risk level quantified by the
variance of the return. The mean-variance approach has become the foun-
dation of modern finance theory and has inspired numerous extensions and
applications. Using the stochastic linear-quadratic (LQ) control framework,
Zhou and Li [17] studied the mean-variance problem for a continuous-time
model. Note that the problem becomes fundamentally different from the tra-
ditional LQ problem studied in literature. In the classical time-honored LQ
theory, the matrix related to the control (known as control weight) needs
to be positive definite. In the mean variance setup for linear systems, the
control weight is non-positive definite. In our previous work [18], the mean-
variance problems for switching diffusion models were treated and a number
of results including optimal portfolio selection, efficient frontier, and mutual
fund theory were discovered.

In this study, we identify the following three scenarios in platoon control
problems in which resource allocation and risk management lead naturally
to mean-variance formulations.
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1) Consider the longitudinal inter-vehicle distance control. To increase
highway utility, it is desirable to reduce the total length of a platoon,
which intends to reduce inter-vehicle distances. This strategy, how-
ever, will increase the risk of collision in the presence of vehicle traffic
uncertainties. This tradeoff amounts to maximizing benefits at a tol-
erable risk. This may be compared to financial portfolio management
problems in which one wants to maximize profit return but control the
risk too. Consequently, the basic idea of mean-variance (MV) control
becomes useful. The MV approach has never been applied to platoon
control. It offers several distinct advantages: 1) Unlike heuristic meth-
ods such as neural network optimization and genetic algorithms, the
MV method is simple but rigorous; 2) the MV method is computa-
tionally efficient; 3) the form of the solution (i.e., efficient frontier)
is readily applicable to assessing risks in platoon formation, hence is
practically appealing.

2) Consider communication resource allocation of bandwidths for vehicle
to vehicle (V2V) communications. For a given maximum throughput
of a platoon communication system, the communication system oper-
ator must find a way to assign this resource to different vehicle-to-
vehicle channels. Each channel’s bandwidth usage is the state of the
subsystem. Their summation is a random process and is desired to
approach the maximum throughput (the desired mean at the terminal
time) with small variations. Consequently, it becomes a mean-variance
control problem.

3) We may view platoon fuel consumption (or similarly, total emission)
in the MV setting. The platoon fuel consumption is the summation
of vehicle fuel consumptions. Due to variations in vehicle sizes and
speeds, each vehicle’s fuel consumption is a controlled random process.
Tradeoff between a platoon’s team acceleration/maneuver capability
and fuel consumption can be summarized as a desired platoon fuel
consumption rate. Assigning allowable fuel consumption rates to dif-
ferent vehicles result in coordination of vehicle operations modeled by
subsystem fuel rate dynamics. To control the platoon fuel consump-
tion rate to be close to the designated value, one may formulate this
as a mean-variance control problem.

Due to vehicle mobility and network resource fluctuations, platoon net-
work topologies or random environment may vary dynamically. To capture
this common feature in platoon control, we model the network topology or
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the environment as a continuous-time Markov chain. The resulting system
becomes one having regime switching. We assume that the Markov chain
has a large state space in order to deal with complex systems. To treat the
platoon problems, we could in principle apply the results in [18]. Neverthe-
less, the large state space of the Markov chain renders a straightforward
implementation of the mean-variance control strategy obtained in [18] prac-
tically infeasible. The computational complexity becomes a major concern.
Inspired by the idea in the work [10], to exploit the hierarchical structure
of the underlying systems, and to fully utilize the near decomposability
[2, 9] by means of considering fast and slow switching modes, the work [16]
treated near-optimal control problems of LQG with regime switching. How-
ever, only positive definite control weights were allowed there under the
usual quadratic control criteria. In our current setup, the control weights
are indefinite, so the main assumption in [16] does not hold. Physically, only
part of the network topology or random environment will change at a time
such as the addition/departure of a vehicle, or the loss/addition of a com-
munication link. Some parts of the chain vary rapidly (e.g., when vehicles
pass some bridges that block signal transmissions) and others change slowly
(e.g., when vehicles are moving smoothly in open space). The fast and slow
variations are in high contrast, resulting in a two-time-scale formulation.
This paper, together with its companion paper [13], sets up a new formu-
lation towards resolving platoon coordination and optimization issues with
reduced computational complexity.

This two-time-scale scenario provides an opportunity to reduce compu-
tational complexity for the Markov chain. The main idea is a decomposi-
tion of the large space into sub-clusters and aggregation of states in each
sub-cluster. That is, we partition the state space of the Markov chain into
subspaces (or sub-groups or sub-clusters). Then, in each of the sub-clusters,
we aggregate all the states into one super state. Thus the total number of
discrete states is substantially reduced. In the companion paper [13], we
obtained near-optimal controls by designing controls using a “limit system”
and such constructed controls are nearly optimal. This paper focuses on jus-
tifying the limit system by means of weak convergence methods. The weak
convergence result is proved using a martingale problem formulation. As a
first step in this direction, this paper presents the key mathematical frame-
work and core results. Their usage can be expanded by considering further
system details in practical applications with concrete model structures, sizes,
resource definitions, and physical limitations. These will be investigated and
reported elsewhere.
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The rest of the paper is arranged as follows. Section 2 formulates the
two-time-scale platoon problems. Section 3 proceeds with the study of the
underlying mean-variance problem. Section 4 derives weak convergence of
underlying systems using martingale problem formulation, which rigorously
justifies the use of the limit system. The limit system has a substantially
fewer number of discrete states, resulting in much reduced complexity. Sec-
tion 5 recalls the near-optimal controls obtained in [13] and presents numeri-
cal experiments that further illustrate the near optimality. Finally, Section 6
concludes the paper with some final remarks.

2. Problem formulation

We work with a complete probability space (Ω,F , P ). Suppose that α(t)
is continuous-time Markov chain with state space M = {1, 2, . . . ,m}, that
w(t) = (w1(t), w2(t), . . . , wd(t))

′ is a standard d-dimensional Brownian mo-
tion, where a′ denotes the transpose of a ∈ Rl1×l2 with li ≥ 1, and Rr×1 is
simply written as Rr in what follows. Suppose that w(t) and the Markov
chain are independent of each other. In [18], a mean-variance portfolio selec-
tion problem in which the environment is randomly varying and modeled by
a regime-switching system was treated. In this paper, we continue to use the
same setup as in [18]. In addition to the finance applications, we are par-
ticularly interested in platoon control problems. Mathematically, the new
feature considered here is that the state space of the discrete event process
α(·) is large. Obtaining the optimal strategy in such a large-scale system
involves high computational complexity, optimal control a difficult task. To
reduce the computational complexity, we note that in the Markov chain,
some groups of states vary rapidly whereas others change slowly. Using the
distinct transition rates, we decompose the state space M into subspaces
M = ∪li=1Mi such that within each Mi, the transitions happen frequently
and among different clusters the transitions are relatively infrequent. To
reflect the different transition rates, we let α(t) = αε(t) where ε > 0 is a
small parameter so that the generator of the Markov chain is given by

(2.1) Qε =
Q̃

ε
+ Q̂.

We consider a network that contains d1 + 1 nodes. The flow of one of the
nodes is given by stochastic ODE

(2.2)
dxε0(t) = r(t, αε(t))xε0(t)dt

xε0(0) = x0, αε(0) = α.
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where for each j ∈M, r(t, j) ≥ 0 is the growth rate corresponding to xε0(t).
The flows of the other d1 nodes follow geometric Brownian motion models
under random environments (random switching)

(2.3)
dxεi (t) = xεi (t)ri(t, α

ε(t))dt+ xεi (t)σi(t, α
ε(t))dw(t)

xεi (0) = xi, αεi (0) = α, for i = 1, 2, . . . , d1.

where

σi(t, α
ε(t)) = (σi1(t, α

ε(t)), σi2(t, α
ε(t)), . . . , σid(t, α

ε(t))) ∈ R1×d,

w(t) = (w1(t), w2(t), . . . , wd(t))
′ ∈ Rd×1,

and ri(t, j) ∈ R (with i = 1, . . . , d1 and j ∈M) is the drift rate for the flow
of the ith node. We can represent the total flows of the whole network system
as a 1-dimensional variable xε(t) for which we need to decide the proportion
ni(t) of flow xεi (t) to put on node i, i.e.,

xε(t) =

d1∑
i=0

ni(t)x
ε
i (t).

By assuming that the interaction among these d1 + 1 nodes occurs continu-
ously, we have

(2.4)

dxε(t) =

d1∑
i=0

ni(t)dx
ε
i (t)

= [r(t, αε(t))xε(t) +B(t, αε(t))u(t)]dt+ u′(t)σ(t, αε(t))dw(t)

xε(0) = x =

d1∑
i=1

ni(0)xi, αε(0) = α, for 0 ≤ t ≤ T,

where

B(t, αε(t)) = (r1(t, α
ε(t))− r(t, αε(t)), r2(t, αε(t))− r(t, αε(t)), . . . ,

rd1(t, α
ε(t))− r(t, αε(t))),

σ(t, αε(t)) = (σ1(t, α
ε(t)), . . . , σd1(t, α

ε(t)))′ ∈ Rd1×d,
u(t) = (u1(t), . . . , ud1(t))

′ ∈ Rd1×1,

and ui(t) = ni(t)xi(t) is the total amount of flow for node i at time t for i =
1, 2, . . . , d1. We assume throughout this paper that all the functions r(t, i),
B(t, i), and σ(t, i) are measurable and uniformly bounded in t. We also
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assume the non-degeneracy condition is satisfied, i.e., there is a δ > 0 such
that a(t, i) = σ(t, i)σ′(t, i) ≥ δI for any t ∈ [0, T ] and i ∈M. We denote by
L2
F (0, T ;Rl0) the set of all Rl0-valued, measurable stochastic processes f(t)

adapted to {Ft}t≥0 such that E
∫ T
0 |f(t)|2dt < +∞.

Let U be the set of controls which is a compact set in Rd1×1. The u(·)
is said to be admissible if u(·) ∈ L2

F (0, T ;Rd1) and the Equation (2.4) has a
unique solution xε(·) corresponding to u(·). In this case, we call (xε(·), u(·))
an admissible (total flow, flow distribution) pair. Our objective is to find
an admissible control u(·) among all the admissible controls given that the
expected terminal flow value of the whole system is Exε(T ) = z for some
given z ∈ R so that the risk measured by the variance at the terminal of the
flow is minimized. Specifically, we have the following performance measure

(2.5)
min

{
J(x, α, u(·)) = E[xε(T )− z]2

}
subject to Exε(T ) = z.

Note that in this case, the objective function does not involve control u.
Thus, the LQG problem is one with zero control weight hence the problem
becomes one with indefinite control weights.

3. Feasibility and optimal controls

To begin, we present the following lemma, whose proof can be found in [18,
Theorem 3.3].

Lemma 3.1. The mean variance problem (2.5) is feasible for every z ∈ R
if and only if

E

{∫ T

0
|B(t, αε(t))|2dt

}
> 0.

To study optimality and to handle the constraint in (2.5), we apply the
Lagrange multiplier technique and get unconstrained problem (see, e.g.,[18])
with multiplier λ ∈ R:

(3.1)
min

{
J(x, α, u(·), λ) = E[xε(T ) + λ− z]2 − λ2

}
subject to (xε(·), u(·)) admissible .

To find the minimum of J(x, α, u(·), λ), it suffices to select u(·) such that
E(xε(T ) + λ− z)2 is minimized. We regard this part as Jε(x, α, u(·)) in the
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sequel. Let vε(x, α) = infu(·) J
ε(x, α, u(·)) be the value function. First define

(3.2) ρ(t, i) = B(t, i)[σ(t, i)σ′(t, i)]−1B′(t, i), i ∈ {1, 2, . . . ,m}.

Consider the following two systems of ODEs for i = 1, 2, . . . ,m:

(3.3)
Ṗ ε(t, i) = P ε(t, i)[ρ(t, i)− 2r(t, i)]−

m∑
j=1

qεijP
ε(t, j)

P ε(T, i) = 1.

and

(3.4)

Ḣε(t, i) = Hε(t, i)r(t, i)− 1

P ε(t, i)

m∑
j=1

qεijP
ε(t, j)Hε(t, j)

+
Hε(t, i)

P ε(t, i)

m∑
j=1

qεijP
ε(t, j),

Hε(T, i) = 1.

The existence and uniqueness of solutions to the above two systems of equa-
tions are easy to obtain since they are both linear in the continuous state
variable. Applying the generalized Itô’s formula to

vε(t, xε(t), i) = P ε(t, i)(xε(t) + (λ− z)Hε(t, i))2,

by employing the completing square techniques, we obtain

dP ε(t, i)[xε(t) + (λ− z)Hε(t, i)]2(3.5)

= 2P ε(t, i)[xε(t) + (λ− z)Hε(t, i)]dxε(t) + P ε(t, i)(dxε(t))2

+

m∑
j=1

qεijP
ε(t, j)[xε(t) + (λ− z)Hε(t, j)]2dt

+ Ṗ ε(t, i)[xε(t) + (λ− z)Hε(t, i)]2dt

+ 2P ε(t, i)[xε(t) + (λ− z)Hε(t, i)](λ− z)Ḣε(t, i)dt.
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Therefore, after plugging in the dynamic equation of P ε(t, i) and Hε(t, i),
integrating from 0 to T , and taking expectation, we obtain

E[xε(T ) + λ− z]2(3.6)

= P ε(0, α)[x+ (λ− z)Hε(0, α)]2

+ E

∫ T

0
(λ− z)2

m∑
j=1

qεijP
ε(t, j)[Hε(t, j)−Hε(t, i)]2dt

+ E

∫ T

0
P ε(t, i)(u(t)− uε,∗(t))′(σ(t, i)σ′(t, i))(u(t)− uε,∗(t))dt.

This leads to the optimal control of the form

uε,∗(t, αε(t), xε(t)) = −(σ(t, αε(t))σ′(t, αε(t)))−1(3.7)

·B′(t, αε(t))[xε(t) + (λ− z)Hε(t, αε(t))].

To proceed, we state a lemma below for subsequent use. The proof of the
lemma is omitted.

Lemma 3.2. The following assertions hold.

• The solutions of Equations (3.3) and (3.4) satisfy 0 < P ε(t, i) ≤ c and
0 < Hε(t, i) ≤ 1 for all t ∈ [0, T ], i = 1, 2, . . . ,m.

• For i ∈M, the solutions of (3.3) and (3.4) are uniformly Lipschitz on
[0, T ].

4. Weak convergence results

Although the optimal solution of the mean-variance control problem for the
regime-switching system can be obtained using the methods developed in
[18], the difficulty is that |M| = m is large and we have to solve a large-scale
system, which is computationally intensive and practically unattractive. As
a viable alternative, we focus on an decomposition-aggregation approach.

Assume that Q̃ is of the block-diagonal form Q̃ = diag(Q̃1, . . . , Q̃l) in
which Q̃k ∈ Rmk×mk are irreducible for k = 1, 2, . . . , l and

∑l
k=1mk = m,

and Q̃k denotes the kth block matrix in Q̃. Let Mk = {sk1, sk2, . . . , skmk
}

denote the states corresponding to Q̃k and let M =M1 ∪M2 . . . ∪Ml =
{s11, s12, . . . , s1m1

, . . . , sl1, sl2, . . . , slml
}. The slow and fast components are

coupled through weak and strong interactions in the sense that the under-
lying Markov chain fluctuates rapidly within a single group Mk and jumps
less frequently among groups Mk and Mj for k 6= j.



i
i

“5-Yang˙etal” — 2015/11/9 — 16:50 — page 66 — #10 i
i

i
i

i
i

66 Z. X. Yang, G. Yin, L. Y. Wang and H. W. Zhang

By aggregating the states inMk as one state k, we can obtain an aggre-
gated process αε(·). That is, αε(t) = k when αε(t) ∈Mk. By virtue of [14,
Theorem7.4], αε(·) converges weakly to α(·) whose generator is given by

(4.1) Q = diag(µ1, µ2, . . . , µl) Q̂diag(1m1
, 1m2

, . . . , 1ml
),

where µk is the stationary distribution of Q̃k, k = 1, 2, . . . , l, and 1n = (1, 1,
. . . , 1) ∈ Rn. Define an operator Lε by

Lεf(x, t, ι) =
∂f(x, t, ι)

∂t
+ [r(t, ι)x+B(t, ι)u(t)]

∂f(x, t, ι)

∂x
(4.2)

+
1

2
[u′(t)σ(t, ι)σ′(t, ι)u(t)]

∂2f(x, t, ι)

∂x2

+Qεf(x, t, ι), ι ∈M,

where

(4.3) Qεf(x, t, ·)(ι) =
∑
`6=ι

qει`(f(x, t, `)− f(x, t, ι)),

and for each ι ∈M, f(·, ·, ι) ∈ C2,1 (that is, f(·) has continuous derivatives
up to the second order with respect to x and continuous derivative with
respect to t up to the first order). Note that the operator, in fact, is u-
dependent, so it may be written as Lu. In this paper, we work with a fixed u.
We could also consider a feedback system with ε-dependence in the control.
In such a setup, we can use a relaxed control formulation. However, we will
not proceed in this line here. Define

Lf(x, t, k) =
∂f(x, t, k)

∂t
+ [r(t, k)x+B(t, k)u(t)]

∂f(x, t, k)

∂x
(4.4)

+
1

2
[u′(t)σ(t, k)σ′(t, k)u(t)]

∂2f(x, t, k)

∂x2

+Qf(x, t, k), k ∈M,

where Q is defined in (4.1) and

r(t, k) =

mk∑
j=1

µkj r(t, skj), B(t, k) =

mk∑
j=1

µkjB(t, skj),

σ2(t, k) =

mk∑
j=1

µkjσ
2(t, skj).
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The following theorems are concerned with the weak convergence of a pair
of processes.

Theorem 4.1. Suppose that the martingale problem with operator L defined
in (4.4) has a unique solution for each initial condition. Then the pair of
processes (xε(·), αε(·)) converges weakly to (x(·), α(·)), which is the solution
of the martingale problem with operator L.

The proof is divided into the following steps. First, we prove the tightness
of xε(·). Once the tightness is verified, we proceed to obtain the convergence
by using a martingale problem formulation.

Step (i): Tightness. We first show that a priori bound holds.

Lemma 4.2. Let xε(t) denote flow of system corresponding to αε(t). Then

sup
0≤t≤T

E|xε(t)|2 = O(1).

Proof. Recall that

dxε(t) = [r(t, αε(t))xε(t)− ρ(t, αε(t))xε(t)− ρ(t, αε(t))(λ− z)H(t, αε(t))]dt

+

d∑
i=1

√√√√( d1∑
n=1

uε,∗n (t, xε(t), αε(t))σni(t, αε(t))

)2

dwi(t)

xε(0) = x.

So,

E|xε(t)|2 ≤ K|x|2 + E

∣∣∣∣∫ t

0
(r(ν, αε(ν)) + ρ(ν, αε(ν)))xε(ν))dν

∣∣∣∣2
+KE

∫ t

0

(
d1∑
n=1

uε,∗n (ν, xε(ν), αε(ν))σni(ν, α
ε(ν))

)2

dν

≤ K +KE

∫ t

0
|xε(ν)|2dν.

Here, recall that σ(t, αε(t)) = (σni(t, α
ε(t))) ∈ Rd1×d and note that uε,∗n is the

nth component of the d1 dimensional variable. Using properties of stochas-
tic integrals, Hölder inequality, and boundedness of r(·), B(·), σ(·), by Gron-
wall’s inequality, we obtain the second moment bound of xε(t) as desired. �
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Lemma 4.3. {xε(·)} is tight in D([0, T ] : R), the space of real-valued func-
tions defined on [0, T ] that are right-continuous, and have left limits endowed
with the Skorohod topology.

Proof. Denote by Fεt the σ-algebra generated {w(s), αε(s) : s ≤ t} and by
Eεt the conditional expectation w.r.t. Fεt . For any T <∞, any 0 ≤ t ≤ T ,
any s > 0, and any δ > 0 with 0 < s ≤ δ, by properties of stochastic integral
and boundedness of coefficients,

Eεt |xε(t+ s)− xε(t)|2

≤ KEεt
∫ t+s

t
|(r(ν, αε(ν)) + ρ(ν, αε(ν)))xε(ν)|2dν

+KEεt

∫ t+s

t

(
d1∑
n=1

uε,∗n (ν, xε(ν), αε(ν))σni(ν, α
ε(ν))

)2

dν

≤ Ks+KEεt

∫ t+s

t
|xε(ν)|2dν.

Thus we have

lim
δ→0

lim sup
ε→0

sup
0≤s≤δ

{
E[Eεt |xε(t+ s)− xε(t)|2]

}
= 0.

Then the tightness criterion [4, Theorem 3] yields that process xε(·) is tight.
Here and in the following part, K is a generic constant which takes different
values in different context. �

Step (ii): Using the techniques given in [14, Lemma 7.18], it can be shown
that the martingale problem with operator L has a unique solution for each
initial condition.

Step (iii): To complete the proof, we characterize the limit process. Since
(xε(·), αε(·)) is tight, we can extract a weakly convergent subsequence. For
notional simplicity, we still denote the subsequence by (xε(·), αε(·)) with
limit (x(·), α(·)). By Skorohod representation with no change of notation, we
may assume (xε(·), αε(·)) converges to (x(·), α(·)) w.p.1. We next show that
the limit (x(·), α(·)) is a solution of the martingale problem with operator
L defined by (4.4).

Lemma 4.4. The process x(·) is the solution of the martingale problem
with the operator L.
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Proof. To obtain the desirable result, we need to show

f(x(t), t, α(t))− f(x, 0, α)−
∫ t

0
Lf(x(ν), ν, α(ν))dν is a martingale,

for i ∈M, f(·, i) ∈ C2,1
0 ([0, T ],Rr). This can be done by showing that for

any integer n > 0, any bounded and measurable function hp(·, ·) with p ≤ n,
and any t, s, tp > 0 with tp ≤ t < t+ s ≤ T ,

E

n∏
p=1

hp(x
ε(tp), α

ε(tp))[f(x(t+ s), t+ s, α(t+ s))− f(x(t), t, α(t))

−
∫ t+s

t
Lf(x(ν), ν, α(ν))dν] = 0.

We further deduce that

lim
ε→0

E

n∏
p=1

hp(x
ε(tp), α

ε(tp))(4.5)

· (f(xε(t+ s), t+ s, αε(t+ s))− f(xε(t), t, αε(t)))

= E

n∏
p=1

hp(x(tp), α(tp))

· (f(x(t+ s), t+ s, α(t+ s))− f(x(t), t, α(t))).

Moreover,

lim
ε→0

E

n∏
p=1

hp(x
ε(tp), α

ε(tp))

[∫ t+s

t

∂f(xε(ν), ν, αε(ν))

∂ν
dν

]
(4.6)

= E

n∏
p=1

hp(x(tp), α(tp))

[∫ t+s

t

∂f(x(ν), ν, α(ν))

∂ν
dν

]
by the weak convergence of (xε(·), αε(·)) and the Skorohod representation.

For any f(·) chosen above, define

f̂(xε(t), t, αε(t)) =

l∑
i=1

f(xε(t), t, i)I{αε(t)∈Mi}

since (xε(t), αε(t)) is a Markov process, we have

f̂(xε(t), t, αε(t))− f̂(x, 0, α)−
∫ t

0
Lεf̂(xε(ν), ν, αε(ν))dν
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is a martingale. Consequently,

E

n∏
p=1

hp(x
ε(tp), α

ε(tp))(f̂(xε(t+ s), t+ s, αε(t+ s))− f̂(xε(t), t, αε(t))

−
∫ t+s

t
Lεf̂(xε(ν), ν, αε(ν))dν) = 0.

Note that f̂(xε(t), t, αε(t)) = f(xε(t), t, αε(t)).
Next we need to show that

lim
ε→0

E

n∏
p=1

hp(x
ε(tp), α

ε(tp))

∫ t+s

t
Lεf̂(xε(ν), ν, αε(ν))dν

= E

n∏
p=1

hp(x(tp), α(tp))

∫ t+s

t
Lf(x(ν), ν, α(ν))dν.

Note that we can rewrite E
∏n
p=1 hp(x

ε(tp), α
ε(tp))

∫ t+s
t Lεf̂(xε(ν), ν, αε(ν))dν

as

E

n∏
p=1

hp(x
ε(tp), α

ε(tp))

∫ t+s

t

l∑
k=1

mk∑
j=1

Qεf̂(xε(ν), ν, ·)(skj)I{αε(ν)=skj}dν

+

∫ t+s

t

l∑
k=1

mk∑
j=1

∂f̂(xε(ν), ν, skj)

∂x
I{αε(ν)=skj}[r(ν, skj)x

ε(ν) +B(ν, skj)u(ν)]dν

+

∫ t+s

t

1

2

l∑
k=1

mk∑
j=1

[u′(ν)σ(ν, skj)σ
′(ν, skj)u(ν)]

∂2f̂(xε(ν), ν, skj)

∂x2
I{αε(ν)=skj}

dν.
Since Q̃k1mk

= 0, we have

Qεf̂(xε(t), t, ·)(skj) = Q̂f̂(xε(t), t, ·)(skj).

We decompose

E

n∏
p=1

hp(x
ε(tp), α

ε(tp))

∫ t+s

t
Lεf̂(xε(ν), ν, αε(ν))dν
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as Hε
1(t+ s, t) +Hε

2(t+ s, t). In which

Hε
1(t+ s, t) = E

n∏
p=1

hp(x
ε(tp), α

ε(tp))

·

 l∑
k=1

mk∑
j=1

∫ t+s

t
µkj
∂f̂(xε(ν), ν, skj)

∂x
I{αε(ν)=k}[r(ν, skj)x

ε(ν)+B(ν, skj)u(ν)]dν

+
1

2

l∑
k=1

mk∑
j=1

∫ t+s

t
µkj [u

′(ν)σ(ν, skj)σ
′(ν, skj)u(ν)]

∂2f̂(xε(ν), ν, skj)

∂x2
I{αε(ν)=k}dν

+

l∑
k=1

mk∑
j=1

∫ t+s

t
µkj Q̂f̂(xε(ν), ν, ·)(skj)I{αε(ν)=k}dν


and Hε

2(t+ s, t) can be represented as

Hε
2(t+ s, t) = E

n∏
p=1

hp(x
ε(tp), α

ε(tp))

·

(
l∑

k=1

mk∑
j=1

∫ t+s

t
(I{αε(ν)=skj} − µ

k
j I{αε(ν)=k})

∂f̂(xε(ν), ν, skj)

∂x

· [r(ν, skj)xε(ν) +B(ν, skj)u(ν)]dν

+

l∑
k=1

mk∑
j=1

∫ t+s

t
(I{αε(ν)=skj} − µ

k
j I{αε(ν)=k})Q̂f̂(xε(ν), ν, ·)(skj)dν

+
1

2

l∑
k=1

mk∑
j=1

∫ t+s

t
(I{αε(ν)=skj} − µ

k
j I{αε(ν)=k})

· [u′(ν)σ(ν, skj)σ
′(ν, skj)u(ν)]

∂2f̂(xε(ν), ν, skj)

∂x2
dν

)
.

By virtue of Lemma 5.1, [14, Theorem7.14], Cauchy-Schwartz inequality,
boundedness of hp(·), r(·) and B(·), for each k = 1, 2, . . . , l; j = 1, 2, . . . ,mk,
as ε→ 0

E

∣∣∣∣∣
n∏
p=1

hp(x
ε(tp), α

ε(tp))

∫ t+s

t
(I{αε(ν)=skj} − µ

k
j I{αε(ν)=k})

∂f̂(xε(ν), ν, skj)

∂x

· [r(ν, skj)xε(ν) +B(ν, skj)u(ν)]dν

∣∣∣∣∣
2

→ 0.
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Similarly as ε→ 0,

E

∣∣∣∣∣
n∏
p=1

hp(x
ε(tp), α

ε(tp))

∫ t+s

t
(I{αε(ν)=skj} − µ

k
j I{αε(ν)=k})

· [u′(ν)σ(ν, skj)σ
′(ν, skj)u(ν)]

·
∂2f̂(xε(ν), ν, skj)

∂x2
dν

∣∣∣∣∣
2

→ 0,

and

E

∣∣∣∣∣
n∏
p=1

hp(x
ε(tp), α

ε(tp))

∫ t+s

t
(I{αε(ν)=skj} − µ

k
j I{αε(ν)=k})

· Q̂f̂(xε(ν), ν, ·)(skj)dν

∣∣∣∣∣
2

→ 0.

Therefore, Hε
2(t+ s, t) converges to 0 in probability. On the other hand, we

obtain

E

n∏
p=1

hp(x
ε(tp), α

ε(tp))

l∑
k=1

mk∑
j=1

∫ t+s

t
µkj
∂f̂(xε(ν), ν, skj)

∂x
(4.7)

· [r(ν, skj)xε(ν) +B(ν, skj)u(ν)]

· I{αε(ν)=k}dν

→
l∑

k=1

mk∑
j=1

E

n∏
p=1

hp(x(tp), α(tp))

∫ t+s

t
µkj
∂f(x(ν), ν, α(ν))

∂x

· [r(ν, skj)x(ν) +B(ν, skj)u(ν)]

· I{α(ν)=k}dν

=

l∑
k=1

E

n∏
p=1

hp(x(tp), α(tp))

∫ t+s

t

∂f(x(ν), ν, α(ν))

∂x

· [r(ν, α(ν))x(ν) +B(ν, α(ν))u(ν))]

· I{α(ν)=k}dν

=E

n∏
p=1

hp(x(tp), α(tp))

∫ t+s

t

∂f(x(ν), ν, α(ν))

∂x

· [r(ν, α(ν))x(ν) +B(ν, α(ν))u(ν)]dν.
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Similarly,

E

n∏
p=1

hp(x
ε(tp), α

ε(tp))

l∑
k=1

mk∑
j=1

∫ t+s

t
µkj [u

′(ν)σ2(ν, skj)u(ν)]

(4.8)

·
∂2f̂(xε(ν), ν, skj)

∂x2
I{αε(ν)=k}dν

→E

n∏
p=1

hp(x(tp), α(tp))

∫ t+s

t

∂2f(x(ν), ν, α(ν))

∂x2
[u′(ν)σ2(ν, α(ν))u(ν)]dν.

Note that

l∑
k=1

mk∑
j=1

∫ t+s

t
µkj I{αε(ν)=k}Q̂f̂(xε(ν), ν, ·)(skj)dν

=

∫ t+s

t
Qf(xε(ν), ν, ·)(αε(ν))dν.

So as ε→ 0,

E

n∏
p=1

hp(x
ε(tp), α

ε(tp))

∫ t+s

t
Qf(xε(ν), ν, ·)(αε(ν))dν(4.9)

→E

n∏
p=1

hp(x(tp), α(tp))

∫ t+s

t
Qf(x(ν), ν, ·)(α(ν))dν.

Combining the results from (4.7) to (4.9), we have

lim
ε→0

E

n∏
p=1

hp(x
ε(tp), α

ε(tp))

∫ t+s

t
Lεf̂(xε(ν), ν, αε(ν))dν(4.10)

=E

n∏
p=1

hp(x(tp), α(tp))

∫ t+s

t
Lf(x(ν), ν, α(ν))dν

Finally, piecing together the results obtained, the proof of the theorem is
completed. �

To proceed, we can further deduce the following result. The proof is
omitted.
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Theorem 4.5. For k = 1, 2, . . . , l and j = 1, 2, . . . ,mk, P ε(t, skj)→ P (t, k)
and Hε(t, skj)→ H(t, k) uniformly on [0, T ] as ε→ 0, where P (t, k) and
H(t, k) are the unique solutions of the following differential equations for
k = 1, 2, . . . , l,

(4.11)
Ṗ (t, k) = (ρ(t, k)− 2r(t, k))P (t, k)−QP (t, ·)(k)

P (T, k) = 1.

and

(4.12)

Ḣ(t, k) = r(t, k)H(t, k)− 1

P (t, k)
QP (t, ·)H(t, ·)(k)

+
H(t, k)

P (t, k)
QP (t, ·)(k)

H(T, k) = 1.

5. Near optimality and numerical examples

This section establishes near optimality of the control obtained from the
limit system and presents related numerical results.

5.1. Near Optimality

By the convergency of P ε(t, skj) to P (t, k) and Hε(t, skj) to H(t, k), we
have vε(t, skj , x)→ v(t, k, x) as ε→ 0, in which v(t, k, x) = P (t, k)(x+ (λ−
z)H(t, k))2. Here, v(t, k, x) corresponds to the value function of a limit prob-
lem. In view of Theorem 4.1, for the limit problem, let U be the control set
U = {U = (U1, U2, . . . , U l) : Uk = (uk1, uk2, . . . , ukmk), ukj ∈ Rd1}. Define

Φ(t, x, k, U) =

mk∑
j=1

µkj r(t, skj)x+

mk∑
j=1

µkjB(t, skj)u
kj(t) and

Ψ(t, k, U) = ((g1(t, k, U)), . . . , gd(t, k, U)) with

Ψi(t, k, U) =

√√√√√mk∑
j=1

µkj

(
d1∑
n=1

ukjn σni(t, skj)

)2

.

Here, recall that σ(t, αε(t)) = (σni(t, skj)) ∈ Rd1×d and note that ukjn is the
nth component of the d1 dimensional variable. The corresponding dynamic
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system is given by

(5.1) dx(t) = Φ(t, x(t), α(t), U(t))dt+

d∑
i=1

Ψi(t, α(t), U(t))dwi(t),

where α(·) ∈ {1, 2, . . . , l} is a Markov chain generated by Q with α(0) = α.
It can be shown that the optimal control for this limit problem is

U∗(t, x) = (U1∗(t, x), U2∗(t, x), . . . , U l∗(t, x))

with

Uk∗(t, x) = (uk1∗(t, x), uk2∗(t, x), . . . , ukmk∗(t, x))

and

ukj∗(t, x) = −(σ(t, skj)σ
′(t, skj))

−1B′(t, skj)[x+ (λ− z)H(t, k)].

Using such controls, we construct

(5.2) uε(t, αε(t), x) =

l∑
k=1

mk∑
j=1

I{αε(t)=skj}u
kj∗(t, x)

for the original problem. This control can also be written as if

αε(t) ∈Mk, u
ε(t, αε(t), x) = −(σ(t, αε(t))σ′(t, αε(t)))−1

·B′(t, αε(t))[x+ (λ− z)H(t, αε(t))].

It can be shown that our constructed control is nearly optimal. We present
the following lemmas first.

Lemma 5.1. For any k = 1, 2, . . . , l, j = 1, 2, . . . ,mk, we have the following
result hold.

(5.3) E

∣∣∣∣∫ t

0
[I{αε(ν)=skj} − µ

k
j I{αε(ν)=k}]x

ε(ν)r(ν, αε(ν))dν

∣∣∣∣2 → 0 as ε→ 0.

Proof. For 0 < δ < 1 and any t ∈ [0, T ], let N = [t/ε1−δ] partition [0, t] into
subintervals of equal length ε1−δ and denote the partition boundaries by
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tk = kε1−δ for 0 ≤ k ≤ N − 1. Define the auxiliary function

F̃ (ν) = r(ν, αε(ν))xε(tk), for u ∈ [tk, tk+1].

Lemma 4.3 shows

E|xε(t)− xε(tk)|2 = O(ε1−δ)→ 0 as ε→ 0.

for t ∈ [tk, tk+1], 0 ≤ k ≤ N − 1. Then

E

∣∣∣∣∫ t

0
[I{αε(ν)=skj} − µ

k
j I{αε(ν)=k}]x

ε(ν)r(ν, αε(ν))dν

∣∣∣∣2(5.4)

≤ 2E

∣∣∣∣∫ t

0
[I{αε(ν)=skj} − µ

k
j I{αε(ν)=k}]F̃ (ν)dν

∣∣∣∣2
+ 2E

∣∣∣∣∫ t

0
[I{αε(ν)=skj} − µ

k
j I{αε(ν)=k}](x

ε(ν)r(ν, αε(ν))− F̃ (ν))dν

∣∣∣∣2.
First, we estimate the last term of (5.4). According to Cauchy-Schwartz
inequality, we have

E

∣∣∣∣∫ t

0
[I{αε(ν)=skj} − µ

k
j I{αε(ν)=k}](x

ε(ν)r(ν, αε(ν))− F̃ (ν))dν

∣∣∣∣2
≤ K

∫ t

0
E|xε(ν)r(ν, αε(ν))− F̃ (ν)|2dν

≤ K
N−1∑
k=0

∫ tk+1

tk

E|xε(ν)r(ν, αε(ν))− r(ν, αε(ν))xε(tk)|2dν

≤ KO(ε1−δ)→ 0 as ε→ 0.

For the first term of (5.4), for each k = 1, 2, . . . , l and j = 1, 2, . . . ,mk define

ηε(t) = E

∣∣∣∣∫ t

0
[I{αε(ν)=skj} − µ

k
j I{αε(ν)=k}]F̃ (ν)dν

∣∣∣∣2 .
With the similar idea involved in [14, Lemma 7.14], we get

sup
0≤t≤T

ηε(t) = sup
0≤t≤T

∫ t

0
O(ε1−δ)dν = O(ε1−δ)→ 0 as ε→ 0.

Thus, we conclude the proof by combining the above two parts. �
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Lemma 5.2. For any k = 1, 2, . . . , l, j = 1, 2, . . . ,mk, we have the following
result hold.

(5.5) E(I{αε(s)=k} − I{α(s)=k})2 → 0 as ε→ 0.

Proof. Similar to [14, Thm. 7.30], we can see that (I{αε(·)=1}, . . . , I{αε(·)=l})
converges weakly to (I{α(·)=1}, . . . , I{α(·)=l}) in D[0, T ] as ε→ 0. By means
of Cramér-Word’s device, for each i ∈M, I{αε(·)=i} converges weakly to
I{α(·)=i}. Then with Skorohod representation (with a little bit of abuse of
notation), we may assume I{αε(·)=i} → I{α(·)=i} w.p.1 without change of
notation. Now by dominance convergence theorem, we can conclude the
proof. �

The following result was obtained in [13]. We state the result and omit
the proof.

Theorem 5.3. The control uε(t) defined in (5.2) is nearly optimal in that

lim
ε→0
|Jε(α, x, uε(·))− vε(α, x)| = 0.

Next, we consider the case in which the Markov chain has transient
states. We assume

Q̃ =

(
Q̃r 0

Q̃0 Q̃∗

)
where Q̃r = diag(Q̃1, Q̃2, . . . , Q̃l), Q̃0 = (Q̃1

∗, . . . , Q̃
l
∗). For each k = 1, 2, . . . , l,

Q̃k is a generator with dimension mk ×mk, Q̃∗ ∈ Rm∗×m∗ , Q̃k∗ ∈ Rm∗×mk ,
and m1 +m2 + · · ·+m∗ = m. The state space of the underlying Markov
chain is given by M =M1 ∪M2 ∪ · · · ∪M∗ = {s11, . . . , s1m1

, . . . , sl1 . . . ,
slml

, s∗1, . . . , s∗m∗}, where M∗ = {s∗1, s∗2, . . . , s∗m∗} consists of the tran-
sient states. Suppose for k = 1, 2, . . . , l, Q̃k are irreducible, and Q̃∗ is Hur-
witz, i.e., it has eigenvalues with negative real parts. Let

Q̂ =

(
Q̂11 Q̂12

Q̂21 Q̂22

)

where Q̂11 ∈ R(m−m∗)×(m−m∗), Q̂12 ∈ R(m−m∗)×m∗ , Q̂21 ∈ Rm∗×(m−m∗), and
Q̂22 ∈ Rm∗×m∗ . We define

Q∗ = diag(µ1, . . . , µl)(Q̂111̃ + Q̂12(am1
, am2

, . . . , aml
))
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with 1̃ = diag(1m1
, . . . , 1ml

), 1mj
= (1, . . . , 1)′ ∈ Rmj and, for k = 1, . . . , l,

amk
= (amk,1, . . . , amk,m∗)′ = −Q̃−1∗ Q̃k∗1mk

.

Let ξ be a random variable uniformly distributed on [0, 1] that is independent
of αε(·). For each j = 1, 2, . . . ,m∗, define an integer-valued random variable
ξj by

ξj = I{0≤ξ≤am1,j} + 2I{am1,j<ξ≤am1,j+am2,j} + · · ·+ lI{am1,j+···+aml−1,j<ξ≤1}.

Now define the aggregated process αε(·) by

αε(t) =

{
k, if αε(t) ∈Mk,

ξj , if αε(t) = s∗j.

Note the state space of αε(t) is M = {1, 2, . . . , l} and αε(·) ∈ D[0, T ]. In
addition,

P (αε(t) = i|αε(t) = s∗j) = ami,j .

Then according to [15, Theorem 4.2], αε(·) converges weakly to α(·) where
α(·) ∈ {1, 2, . . . , l} is the Markov chain generated by Q∗. The following two
theorems were also proved in [13].

Theorem 5.4. As ε→ 0, we have P ε(s, skj)→ P (s, k) and Hε(s, skj)→
H(s, k), for k = 1, 2, . . . , l, j = 1, 2, . . . ,mk, P ε(s, s∗j)→ P ∗(s, j) and
Hε(s, s∗j)→ H∗(s, j), for j = 1, 2, . . . ,m∗ uniformly on [0, T ] where

P ∗(s, j) = am1,jP (s, 1) + · · ·+ aml,jP (s, l),

H∗(s, j) = am1,jH(s, 1) + · · ·+ aml,jH(s, l)

and P (s, k) and H(s, k) are the unique solutions to the following equations.
For k = 1, 2, . . . , l,

(5.6)
Ṗ (t, k) = (ρ(t, k)− 2r(t, k))P (t, k)−Q∗P (t, ·)(k),

P (T, k) = 1.
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And

(5.7)

Ḣ(t, k) = r(t, k)H(t, k)− 1

P (t, k)
Q∗P (t, ·)H(t, ·)(k)

+
H(t, k)

P (t, k)
Q∗P (t, ·)(k)

H(T, k) = 1.

Theorem 5.5. Construct

uε(t, αε(t), x) =

l∑
k=1

mk∑
j=1

I{αε(t)=skj}u
kj∗(t, x)(5.8)

+

m∗∑
j=1

I{αε(t)=s∗j}u
∗j∗(t, x)

for the original problem where

u∗j∗(t, x) = −(σ(t, s∗j)σ
′(t, s∗j))

−1B′(t, s∗j)[x+ (λ− z)H∗(t, j)].

Then control uε(t, αε(t), x) defined in (5.8) is nearly optimal. That is,

lim
ε→0
|Jε(α, x, uε(·))− vε(α, x)| = 0.

5.2. Numerical Examples

In this section, we present a couple of examples to demonstrate the perfor-
mance of our approximation schemes. First, let us consider that the Markov
chain has only recurrent states.

Example 5.6. We consider the networked system in which the Markov
chain αε(t) ∈M = {1, 2, 3, 4}, t ≥ 0 generated by Qε = Q̃/ε+ Q̂ with

Q̃ =


−1 1 0 0

2 −2 0 0
0 0 −1 1
0 0 3 −3

 ,

Q̂ =


−2 0 1 1

1 −2 1 0
0 1 −1 0
1 2 0 −3


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the condition of coefficients for the flows of our system are as follows: consider
the following dynamic system model for t ∈ [0, 5], xε(0) = 0, r(t, 1) = .5,
r(t, 2) = −.1, r(t, 3) = .5, r(t, 4) = −.1, B(t, 1) = 1, B(t, 2) = 2, B(t, 3) =
−1, B(t, 4) = −2, σ(t, 1) = σ(t, 2) = σ(t, 3) = σ(t, 4) = 1. In this case, we
can classify the Markov chain into two recurrent groups M1 and M2. So
the corresponding stationary distribution forM1 is µ1 = {23 ,

1
3} and that of

M2 is µ2 = {34 ,
1
4}. We discretize the equations with step size h = .01. So, in

the corresponding discrete time setting the time horizon is Th = 5
h . Let xε(t)

be the optimal trajectory and x(t) be the nearly optimal trajectory with con-
trol taking as uε(·). Sample paths of αε(t), trajectories of |xε(t)− x(t)| are
given in Figure 1 for ε = 0.1 and in Figure 2 for ε = 0.01. The results below
are based on computations using 100 sample paths. Define

|P ε − P | = 1

Th

Th∑
j=1

(|P ε(jh, 1)− P (jh, 1)|+ |P ε(jh, 2)− P (jh, 1)|

+ |P ε(jh, 3)− P (jh, 2)|+ |P ε(jh, 4)− P (jh, 2)|),

and

|xε − x| = 1

Th

Th∑
j=1

|xε(jh)− x(jh)|.

Then we have the error bounds given in Table 1 for different values of ε.

ε |P ε − P | |xε − x| |Jε − vε|
0.1 1.48 0.02 0.002
0.01 0.52 0.016 0.001
0.001 0.11 0.004 0.0003

Table 1: Error Bounds for Example 5.6
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Figure 1: Sample path with ε = 0.1 in Example 5.6

Example 5.7. We consider the Markov chain αε(t) ∈M = {1, 2, 3, 4, 5, 6}
whose generator Qε is given by (2.1) with

Q̃ =


−1 1 0 0 0 0

2 −2 0 0 0 0
0 0 −1 1 0 0
0 0 3 −3 0 0
0 0 1 1 −3 1
1 0 0 1 1 −3

 ,

Q̂ =


−1 1 0 0 0 0

2 −2 0 0 0 0
0 0 −1 1 0 0
0 0 3 −3 0 0
0 0 1 1 −3 1
1 0 0 1 1 −3

 .
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Figure 2: Sample path with ε = 0.01 in Example 5.6

We use xε(0) = 0, r(t, 1) = .5, r(t, 2) = −.1, r(t, 3) = .5, r(t, 4) = −.1,
r(t, 5) = .2, r(t, 6) = .4, B(t, 1) = 1, B(t, 2) = 2, B(t, 3) = −1, B(t, 4) = −2,
B(t, 5) = 1, B(t, 6) = 2, σ(t, 1) = σ(t, 2) = σ(t, 3) = σ(t, 4) = σ(t, 5) = σ(t,
6) = 1. Sample paths of αε(t), trajectories of |xε(t)− x(t)| are given in Fig-
ure 3 for ε = .1 and in Figure 4 for ε = .01. We omit the error bounds here
yet the result is similar to Example 5.6.

It can be seen from the two graphs that the smaller the ε the more
rapidly αε(·) jumps, which results in better approximations.
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Figure 3: Sample path with ε = 0.1 in Example 5.7

6. Further remarks

Motivated by platoon control systems, this work establishes a weak conver-
gence result that leads to a limit system of much reduced complexity for
mean-variance type of control under randomly regime switching systems.
Our methodology uses a two-time-scale formulation to relate the underly-
ing problem with that of the limit problem. Accompanying our recent work
[13], this paper also demonstrates the near-optimal controls using numer-
ical examples. Our approach provides a systematic method to reduce the
complexity of the underlying system. In lieu of handling large dimensional
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Figure 4: Sample path with ε = 0.01 in Example 5.7

systems, we need only solve a reduced set of limit equations that have
much smaller dimensions. Future research efforts can be directed to the
study of non-definite control problems in the hybrid systems, in which the
Markov chain is a hidden process. Then a Wonham filter may be developed.
Another direction is to look into the possibility of treating distributed con-
trols with built-in communication complexity measures. All of these deserve
more thoughts and further considerations.
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