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This work develops properties of a class of multi-type mean-field
models represented by solutions of stochastic differential equations
with random switching. Using stochastic calculus, we prove the
existence and uniqueness of the global solution and its positivity.
In addition to deriving bounds on the moments of the solutions,
we derive upper and lower bounds of the growth, and decay rates
of the solutions.
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1. Introduction

Mean-field models are originated from statistical mechanics and physics (for
instance, in the derivation of Boltzmann or Vlasov equations in kinetic gas
theory). They are concerned with many particle systems having weak inter-
actions. To overcome the complexity of interactions due to a large number
of particles (or many body problems), all interactions with each particle are
replaced by a single average interaction. Studying the limits of mean-field
models has been a long-standing problem and presents many technical diffi-
culties. Some of questions were concerned with characterization of the limit
of the empirical probability distribution of the systems when the size of the
systems tend to infinity, the fluctuations and large deviations of the systems
around the limit. The first breakthroughs were due to Henry McKean; see,
e.g., [25, 26]. The problems were then subsequently investigated in various
contexts by a host of authors such as Braun and Hepp [4], Dawson [9, 12],
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Tanaka and collaborators [31–34], etc. A very nice and systematic intro-
duction to the topic and many related problems can be found in Sznitman
[30].

There has been interest in mean-field models in the past decades. Ini-
tiated independently by Huang, Malhamé, and Caines [14, 15], and Lasry
and Lions [21–23], mean-field differential games have drawn much attentions
and became a very active area of research; see Huang et al. [16], Nguyen and
Huang [27], Nourian and Caines [29], Bensoussan et al. [2], Carmona et al.
[6], among others. Along with the renewed interest in the classical models,
the studies for some other type of mean-field models were also carried out;
see for example, the regime-switching models [35] and models with two-time
scales [13]. Another type of mean-field models being investigated recently
is the class of models with multi-types. In these models, the particles come
from finitely many different populations or types, which appear in social
sciences [8], statistical mechanics [7], neurosciences [1], as well as finance [3].
In particular, in [1], the authors established a result on law of large num-
bers and propagation of chaos for a class of such models. In [5], the authors
study fluctuations about the law of large numbers of a class of multi-type
mean-field models where there is one more driving Brownian motion used
by all particles in the system. In [3], the authors considered a sector-wise
allocation in a portfolio consisting of a very large number of stock modeled
by a multi-type mean-field model. The authors established the existence
and uniqueness and the McKean-Vlasov limit of the model. However, in the
aforementioned study, the regularity and asymptotic properties with a fixed
and finite number of particles have not been considered yet. This work aims
to provide a better understanding about the system in this direction.

The rest of the paper is organized as follows. Section 2 provides the
detailed problem formulation. Section 3 proceeds with the main results. We
prove the existence and uniqueness of the strong solution for the model
and establish certain bounds on the moments. Section 4 concentrates of
asymptotic bounds. In addition to positive recurrent, we derive estimates on
the upper and lower bounds of the growth, and decay rates of the solutions.
We conclude the paper with some further remarks in Section 5.

2. Problem formulation

This section provides the set up of our problem and gives the assump-
tions and notations used throughout the paper. Let (Ω, {Ft}{t≥0},F ,P) be
a filtered probability space satisfying the usual conditions, i.e. the filtra-
tion is increasing, right continuous and complete. For N ≥ 1, denote R

N
+ :=
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{(x1, . . . , xN ) : xi > 0, i = 1, . . . , N}; and for each x ∈ R
N , denote S(x) =∑N

i=1 xi, and denote by |x| the Euclidean norm of x. We will use C to denote
a generic constant whose value may change from appearance to appearance
in the paper. Let xN1 , . . . , xNN be R-valued stochastic processes that represent
trajectories ofN particles, each belongs to one ofK types (populations) with
membership map denoted by p : {1, . . . , N} → {1, . . . ,K} := K. So the i-th
particle is of type α if p(i) = α. For α ∈ K, let Nα = {i ∈ N : p(i) = α} and
we use Nα to denote the number of particles belonging to the α-th popula-
tion, namely Nα = |Nα|, the cardinal of Nα . The dynamics of the system
are given by a collection of stochastic differential equations. The N stochas-
tic processes interact with each other through the coefficients of the SDEs
which, for the i-th process, with p(i) = α, depend on not only the i-th state
process and the α-type but also the empirical measures defined as follows:
For any Borel set A ⊂ R,

μγ,N (t, A) =
1

Nγ

∑
j:p(j)=α

δxN
j (t)(A)(2.1)

=
1

Nγ
{# of j’s : j ∈ {1, . . . , N},

p(j) = γ, xj(t) ∈ A}, γ ∈ K.

To simplify the notation, we shall suppress the A in what follows and write
it simply as μγ,N (t) instead. To be more precise, for i ∈ Nα, α ∈ K

dxNi (t) = xNi (t)

K∑
γ=1

〈bαγ(xNi (t), ·), μγ,N (t)〉dt

+ xNi (t)

K∑
γ=1

〈σαγ(xNi (t), ·), μγ,N (t)〉dwγ(t)

xNi (0) = xNi,0.

(2.2)

where bαγ : R× R → R and σαγ : R× R → R are suitable functions where
the related conditions will be specified later. Here w = (w1(·), . . . , wK(·)) is
an R

K-valued standard Brownian motion. We also use the notation 〈f, μ〉
to denote the integral

∫
fdμ of a function f with respect to a probability

measure μ. Since we concentrate on the asymptotic properties of the fixed
and finite size system, we will, from now on, suppress the superscript N in
the solution xNi as well as the induced empirical measure μγ,N .
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Throughout the paper, we use L to denote the infinitesimal generator
associated with the system (2.2). For any sufficient smooth real-valued func-
tion V : RN

+ → R (e.g., V ∈ C2
c (R

N )), LV is defined by

LV (x) =

N∑
i=1

∂V

∂xi
(x)xi

K∑
γ=1

〈bp(i)γ(xi, ·), μγ〉(2.3)

+
1

2

N∑
i,j=1

∂2V

∂xixj
xixj ãp(i)p(j)(xi, xj),

where

ãp(i)p(j)(xi, xj) =

K∑
γ=1

〈σp(i)γ(xi, ·), μγ〉〈σp(j)γ(xj , ·), μγ〉

and μγ is the empirical measure induced by components of x that belong
to the population γ as was defined in (2.1). We assume the following as-
sumptions on the drift and diffusion part of the system (2.2) throughout the
paper.

A1. For all α, γ ∈ K, the function bαγ are locally Lipschitz, continuous
and there exists c2 ∈ R and d2 ∈ R+ such that

bαγ(x, y) ≤ c2 − d2y, for all x, y ∈ R+,

where R+ is the set of positive real numbers.
The above condition indicates that the growth of bα,γ can be controlled

by a linear function. Along with the above condition, we will discuss the
results corresponding to the two following set of conditions regarding the
diffusion coefficients.

A2. For all α, γ ∈ K, the functions σα,γ : R× R → R are Lipschitz con-
tinuous. Moreover, for all α, γ ∈ K, for all x ∈ R

N
+ , we have ãα,γ(·, ·) ≥ 0,

ãα,α(·, ·) > 0 and there exists Λ1,Λ2 > 0 such that

|x|2
Λ1

≤
N∑

i,j=1

ãp(i)p(j)(xi, xj) ≤ Λ1|x|2,

|x|4
Λ2

≤
N∑

i,j=1

xixj ãp(i)p(j)(xi, xj) ≤ Λ2|x|4.

A2’. For all α, γ ∈ K, the functions σα,γ : R× R → R are Lipschitz con-
tinuous. Moreover, for all α, γ ∈ K, for all x ∈ R

N
+ , we have ãα,γ(·, ·) ≥ 0,
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ãα,α(·, ·) > 0 and there exists Λ1,Λ2 > 0 such that

1

Λ1
≤

N∑
i,j=1

ãp(i)p(j)(xi, xj) ≤ Λ1,
|x|2
Λ2

≤
N∑

i,j=1

xixj ãp(i)p(j)(xi, xj) ≤ Λ2|x|2.

Remark 2.1. We note the following points regarding the assumptions
(A1), (A2), (A2’) and the driving Brownian motion.

(i) By localization procedure and using some simple estimates in the
proofs, we can indeed weaken the assumption (A1) as follows: There
exists cα ∈ R, dα,γ ∈ R+ such that for all α, γ ∈ K, the function bαγ
satisfy bαγ(x, y) ≤ cα − dα,γy, for x, y ∈ R+ large enough. To maintain
the clarity of the exposition and avoid cumbersome computations, we
will however content with assumption (A1).

(ii) We can easily see that if all σα,γ are of the form σx and σ > 0, the
assumption (A2) holds; if σα,γ are positive constants, the assumption
(A2’) trivially holds.

(iii) In (2.2), if we replace dwγ by dwi,γ and dwi,γ are independent for all
i = 1, . . . , N, γ ∈ K, i.e., the random fluctuations now depend both on
the state of the particle and the population that the particle interacts
with, we can still obtain the similar results by using the same method
with some minors changes in arguments and computations.

3. Existence and uniqueness of solution

In this section, we prove the existence and uniqueness of the solution to the
system (2.2). First, we derive here some estimates regarding the coefficients
of the system to be used frequently in the paper. For x ∈ R

N
+ , using (A1)

and the definition of the empirical measure μγ we have

K∑
γ=1

〈bp(i)γ(xi(s), ·), μγ,N (s)〉 =
K∑
γ=1

1

Nγ

∑
j:p(j)=γ

bp(i)γ(xi(s), xj(s))(3.1)

≤
K∑
γ=1

(
c2 − d2

Nγ

∑
p(i)=γ

xi(s)

)

≤ Kc2 − d2
minγ∈KNγ

S(x).
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For p ≥ 1, an application of Schwartz inequality gives us Sp(x)
np/2 ≤ |x|p ≤

Sp(x). Using this inequality, under assumption (A2), we have

S2(x)

NΛ1
≤ |x|2

Λ1
≤

N∑
i,j=1

ãp(i)p(j)(xi, xj) ≤ Λ1|x|2 ≤ Λ1S
2(x)(3.2)

S4(x)

N2Λ2
≤ |x|4

Λ2
≤

N∑
i,j=1

xixj ãp(i)p(j)(xi, xj) ≤ Λ2|x|4 ≤ Λ2S
4(x),(3.3)

for all x ∈ R
N
+ . Similarly, using (A2’), we derive

(3.4)
S2(x)

NΛ2
≤ |x|2

Λ2
≤

N∑
i,j=1

xixj ãp(i)p(j)(xi, xj) ≤ Λ2|x|2 ≤ Λ2S
2(x).

We first prove the existence and uniqueness of the solution to (2.2) and
establish some bounds on the moments of the solution. Note that in [3], the
authors used a comparison principle coupled with Khasminskii’s criterion
to prove the global existence of the solution. Here we use the Lyapunov
function to obtain the same conclusion. Moreover, using this technique, we
are also able to prove that the solution is indeed a.s positive at every t ≥ 0.
This is an important property that was only mentioned briefly in a simple
case there.

Theorem 3.1. Assume (A1) and (A2). Then for any initial conditions
x(0) = x0 ∈ R

N
+ , there is a unique solution x(t) to (2.2) on t ≥ 0, and the

solution remains in R
N
+ a.s. (almost surely), i.e., x(t) ∈ R

N
+ a.s. for any

t ≥ 0.

Proof. Since the coefficients of (2.2) are locally Lipschitz, there is a unique
local solution x(t) on t ∈ [0, ζ), where ζ is the explosion time (please see
[19]). Let k0 ∈ N be sufficiently large such that every components of the
initial value x0 are contained in the open interval ( 1

k0
, k0). For each k ≥ k0,

we define the corresponding stopping time

(3.5) τk := inf

{
t ∈ [0, ζ) : xi(t) /∈ (

1

k
, k) for some i = 1, 2, . . . , N

}

It is straight forward to see that the sequence τk is non-decreasing. Let
τ∞ := limk→∞ τk, then τ∞ ≤ ζ. We prove τ∞ = ∞ and thus ζ = ∞ and the
solution is indeed the global one. Assume that τ∞ < ∞, then there would
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exist T > 0 and ε > 0 such that P{τ∞ ≤ T} > ε. By the definition of τk,
there exists k1 > k0 such that

(3.6) P{τk ≤ T} > ε, for all k ≥ k1.

We now consider the following Lyapunov function

V (x) =

N∑
i=1

(
x
1/2
i − 1− 1

2
lnxi

)
x ∈ R

N
+

It is clear that V (x) ≥ 0 for every x ∈ R
N
+ and for i, j = 1, 2, . . . , N ,

∂V

∂xi
(x) =

1

2
(x

−1/2
i − x−1

i );
∂2V

∂x2i
(x) =

1

4
(2x−2

i − x
−3/2
i )

∂2V

∂xixj
(x) = 0, for i 
= j.

Using (A1), (A2), (3.1), and (3.2), we compute

LV (x) =
1

2

N∑
i=1

(x
1/2
i − 1)

K∑
γ=1

〈bp(i)γ(xi, ·), μγ〉(3.7)

+
1

8

N∑
i=1

(2− x
1/2
i )ãp(i)p(i)(xi, xi)

≤
N∑
i=1

(x
1/2
i − 1)

(
c2 − d2

minγ∈KNγ
S(x)

)

+
NΛ1

4
|x|2 − 1

8Λ1

N∑
i=1

x
1/2
i |x|2

≤ C

N∑
i=1

(x
1/2
i − 1)− d2

minγ∈KNγ

N∑
i=1

x
3/2
i + CS(x)

+
NΛ1

4
|x|2 − 1

8Λ1

N∑
i=1

x
1/2
i |x|2 ≤ C,

for some positive constant C. This fact is obtained by noting that the coef-
ficient of the leading term in the last expression is negative. It then follows
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from Itô’s formula that for any k ≥ k1,

V (x(τk ∧ T ))− V (x(0))

=

∫ τk∧T

0
LV (x(s))ds+

N∑
i=1

∫ τk∧T

0
(xi − 1)

K∑
γ=1

〈σαγ(xi(s), ·), μγ(s)〉dwγ .

Taking expectation on both sides, using (3.7) and noting the last term being
a martingale, we get

EV (x(τk ∧ T ))− V (x(0)) = E

∫ τk∧T

0
LV (x(s))ds ≤ CT

and it follows that,

(3.8) CT + V (x(0)) ≥ EV (x(τk ∧ T )) ≥ E[V (x(τk ∧ T )1l{τk≤T})].

Note that on the set {τk ≤ T}, there is some component i of x such that
xi(τk) ≥ k or xi(τk) ≤ 1

k . Hence, by properties of V , one deduces that on
{τk ≤ T}

(3.9) V (x(τk)) ≥
(
k1/2 − 1− 1

2
ln k

)
∧
(

1

k1/2
− 1− 1

2
ln

1

k

)

Therefore, in view of (3.6), (3.9), and (3.8), we get

CT + V (x(0)) ≥ ε

[(
k1/2 − 1− 1

2
ln k

)
∧
(

1

k1/2
− 1− 1

2
ln

1

k

)]
.

Sending k → ∞ we get a contradiction and thus τ∞ = ∞ a.s. �
Using (A1) and (A2’), we can obtain the following lemma regarding the

existence of global solution to the system (2.2).

Lemma 3.2. Assume (A1) and (A2’). Then for any initial conditions
x(0) = x0 ∈ R

N
+ , there is a unique solution x(t) to (2.2) on t ≥ 0, and the

solution remains in R
N
+ almost surely.

Proof. The proof can be carried out by considering the Lyapunov function,
V (x) =

∑N
i=1(xi − 1− lnxi), x ∈ R

N
+ and repeating the arguments of Theo-

rem 3.1. �

Theorem 3.3. Assume (A1) and (A2’) hold. Then the following assertions
hold.
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(i) For any p > 0, supt≥0 ES
p(x(t)) < ∞,

(ii) The process x(t) is stochastically bounded. That is, for any ε > 0, there
exists a constant H = H(ε) such that lim supt→∞ P{|x(t)| ≤ H} ≥ 1−
ε for any x0 ∈ R

N
+ .

Proof. To prove (i), let V (x) = Sp(x), x ∈ R
N
+ . A straightforward calculation

gives us

∂V

∂xi
(x) = pSp−1(x), and

∂2V

∂xixj
(x) = p(p− 1)Sp−2(x),

and thus, by (2.3),

LV (x) = pSp−1(x)

N∑
i=1

xi

K∑
γ=1

〈bp(i)γ(xi, ·), μγ〉(3.10)

+
1

2
p(p− 1)Sp−2

N∑
i,j=1

xixj ãp(i)p(j)(xi, xj)

≤ pSp−1(x)

N∑
i=1

xi

(
Kc2 − d2

minγ∈KNγ
S(x)

)

+
1

2
p(p− 1)Sp−2Λ2S

2(x)

≤
(
Kpc2 +

1

2
p(p− 1)Λ2

)
Sp(x)− pd2

minγ∈KNγ
Sp+1(x)

≤ C,

for some constant C. Applying the Itô lemma to etV (x(t)), we have

Eet∧τkV (x(t ∧ τk))

= V (x(0)) +

∫ t∧τk

0
es(V + LV )(x(s))ds

+ p

N∑
i=1

∫ t∧τk

0
esxpi (s)

K∑
γ=1

〈σp(i)γ(xi(s), ·), μγ(s)〉dwγ(s).

where τk is the stopping time defined in (3.5). Thus taking expectation both
sides, one yields

Eet∧τkV (x(t ∧ τk)) ≤ V (x(0)) + E

∫ t∧τk

0
Cesds ≤ V (x(0)) + C(et − 1).
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Recall that limk→∞ τk = ∞, as in the proof of Theorem 3.1, letting k →
∞ and applying Fatou’s lemma yields, EetSp(x(t)) ≤ Sp(x(0)) + C(et − 1),
or ESp(x(t)) ≤ e−tSp(x(0)) + C(1− e−t) < ∞. We then obtain the desired
claim by taking sup with respect to t ≥ 0. An application of Chebysev in-
equality gives us (ii). �

Lemma 3.4. Let assumption (A1) and (A2’) hold and assume further that
for all α, γ ∈ K and x, y ∈ R+, there exists c1 > 0, d1 > 0 such that

c1 − d1y ≤ bαγ(x, y).

and Λ2

2 −Kc1 < 0. Then for any given initial value x(0) ∈ R
N
+ , there exists a

constant θ > 0 such that lim supt→∞ E( 1
Sθ(x(t))) ≤ C, where C is a constant.

Proof. By similar calculation as in (3.1), with the additional assumption on
bα,γ we can derive

(3.11)

K∑
γ=1

〈bp(i)γ(xi(s), ·), μγ,N (s)〉 ≥ Kc1 − d1
N

S(x(s))

We now choose θ, ρ > 0 and small enough and such that Λ2

2 θ(θ + 1) + ρ−
θKc1 < 0. This can be done thanks to our assumptions. For such θ and ρ,
let U : RN

+ → R be defined by U(x) = 1
S(x) and let V (x) = (1 + U(x))θ. It is

straightforward to compute that

∂V

∂xi
= −θU2(x)(1 + U(x))θ−1

∂V

∂xi∂xj
= θ(θ − 1)U4(x)(1 + U(x))θ−2 + 2θU3(x)(1 + U(x))θ−1.

Using (3.1), (3.4) and (3.11), we derive the following estimate

LV (x) = −θU2(x)(1 + U(x))θ−1
N∑
i=1

xi

K∑
γ=1

〈bp(i),γ(xi, ·), μγ〉(3.12)

+
1

2

[
θ(θ − 1)U4(x)(1 + U(x))θ−2

+ 2θU3(x)(1 + U(x))θ−1
]

×
N∑

i,j=1

xixj ãp(i)p(j)(xi, xj)
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≤ −θU2(x)(1 + U(x))θ−1

(
Kc1S(x)− d1

minγ∈KNγ
S2(x)

)

+
1

2

[
θ(θ − 1)U4(x)(1 + U(x))θ−2

+ 2θU3(x)(1 + U(x))θ−1
]
Λ2S

2(x)

= θ(1 + U(x))θ−2

[
− (1 + U(x))U2(x)(Kc1S(x)

− d1
minγ∈KNγ

S2(x))

+ (1 + U(x))U3(x)Λ2S
2(x)

+
1

2
(θ − 1)U4(x)Λ2S

2(x)

]

≤ θ(1 + U(x))θ−2

[(
Λ2

2
(θ + 1)−Kc1

)
U2(x)

+

(
Λ2 −Kc1 +

d1
minγ∈KNγ

)
U(x)

+
d1

minγ∈KNγ

]
.

By virtue of Itô’s lemma, we have

deρtV (x) = (ρeρtV (x) + eρtLV (x))dt

+

N∑
i=1

eρt
∂V (x)

∂xi
xi

K∑
γ=1

〈σp(i)γ(xi, ·), μγ〉dwγ .

Using the estimate (3.12),

ρeρtV (x) + eρtLV (x)(3.13)

≤ eρt(1 + U(x))θ−2

[
ρ(1 + U(x))2 + θ(

Λ2

2
(θ + 1)−Kc1)U

2(x)

+ θ(Λ2 −Kc1 +
d1

minγ∈KNγ
)U(x) +

θd1
minγ∈KNγ

]

= eρt(1 + U(x))θ−2[(
Λ2

2
θ(θ + 1) + ρ− θKc1)U

2(x)

+ (Λ2θ −Kc1θ +
θd1

minγ∈KNγ
+ 2ρ)U(x)

+ (ρ+
θd1

minγ∈KNγ
)].
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Thanks to the way we chose θ and ρ, we deduce that

sup
x∈RN

+

(1 + U(x))θ−2

[(
Λ2

2
θ(θ + 1) + ρ− θKc1

)
U2(x)(3.14)

+

(
Λ2θ −Kc1θ +

θd1
minγ∈KNγ

+ 2ρ

)
U(x)

+

(
ρ+

θd1
minγ∈KNγ

)]
≤ C.

Therefore,

EeρtV (x(t ∧ τk)) ≤ V (x(0)) + C

∫ t∧τk

0
eρsds,

where τk is the stopping time defined in (3.5). Combining this fact and
repeating the arguments used at the end of proof of Theorem 3.3 we have

lim sup
t→∞

E

(
1

Sθ(x(t))

)
≤ lim sup

t→∞
E(V (x(t)))θ(3.15)

≤ e−ρt(1 + V (x(0))) +
C

ρ
≤ C.

which is the desired result. �

Theorem 3.5. Assume (A1) and (A2) (or (A2’)) hold. For any initial
condition x(0) ∈ R

N
+ , the solution x(t) of (2.2) is positive recurrent with

respect to the domain Gρ := {x ∈ R
N
+ : 0 < xi < ρ, i = 1, 2, . . . , N}, where ρ

is a positive number to be specified later in the proof.

Proof. Thanks to Theorem 3.9 and Corollary 3.2 in [19], to show the positive
recurrence of x(t), it suffices to prove that it is regular and there exist a
nonnegative twice continuously differentiable function V defined on R

N
+ such

that LV (s) ≤ −1 on R
N
+ −Gρ. By Theorem 3.1, x(t) is regular. Consider

V : RN → R defined by V (x) = S(x). It is easy to see that

LV (x) =

N∑
i=1

xi

K∑
γ=1

〈bp(i)γ(xi, ·), μγ〉

≤
N∑
i=1

xi

(
c2 − d2

minγ∈KNγ
S(x)

)

≤ c2S(x)− d2
minγ∈KNγ

S2(x).



Multi-type mean-field models 501

Since d2 > 0, LV is bounded above on R
N
+ and lim|x|→∞ LV (x) = −∞, hence

there exists ρ > 0 such that LV (x) ≤ −1 on R
N
+ −Gρ. The desired claim

then follows. �

4. Asymptotic bounds

In this section, we prove several bounds on the growth rate of the system
(2.2). The main thrust of the proofs, beside using suitable Lyapunov func-
tions, is to utilize the exponential martingale inequality and the Borel -
Cantelli lemma. These techniques are very popular and used extensively
to investigate the longtime behavior of population models (please see, for
example, [24, 28, 36] and references there in).

4.1. Upper bounds

We first prove some upper bounds on the growth rate of the solution to the
system (2.2) under the assumption (A2) on the diffusion part. We remark
that if we replace (A2) by (A2’) we still achieve the same results as those in
Theorem 4.1 and Theorem 4.2 below by using the same Lyapunov functions
and repeating the same arguments (with some minor changes) as those used
in the Theorems.

Theorem 4.1. Assume (A1) and (A2) hold. Then for any initial condition
x(0) ∈ R

N
+ , the solution x(·) of (2.2) satisfies

lim sup
t→∞

1

t

[
lnS(x(t)) +

1

4κ

∫ t

0
S2(x(s))ds

]
≤ C a.s.,

where κ and C are constants (to be specified in the proof).

Proof. Define V (x) = lnS(x), x ∈ R
N
+ . Then we can readily verify that

∂V

∂xi
(x) =

1

S(x)
, and

∂2V

∂xixj
(x) = − 1

S2(x)
.
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Applying Itô’s lemma to V (·) yields,

lnS(x(t))− lnS(x(0))(4.1)

=

∫ t

0

[
1

S(x)

N∑
i=1

xi

K∑
γ=1

〈bp(i)γ(xi(s), ·), μγ(s)〉

− 1

2S2(x(s))

N∑
i,j=1

xi(s)xj(s)ãp(i)p(j)(xi(s), xj(s))

]
ds+M(t),

where

M(t) =

∫ t

0

N∑
i=1

xi(s)

S(x(s))

K∑
γ=1

〈σp(i)γ(xi(s), ·), μγ(s)〉dwγ(s), i = 1, 2, . . . , N,

is a real-valued continuous local martingale vanishing at t = 0 with quadratic
variation

〈M(t)〉 =
∫ t

0

N∑
i,j=1

xi(s)xj(s)

S2((s))
ãp(i)p(j)(xi(s), xj(s))ds.

For an arbitrary but fixed 0 < ε < 1, for any k ≥ 1, using the exponential
martingale inequality (see [11]) gives us

P

{
sup

0≤s≤k
[Mi(s)− ε

4
〈Mi(s)〉] > 4 ln k

ε

}
≤ 1

k2
.

By virtue of the Borel - Cantelli lemma, we can find a set Ω0 ⊂ Ω with
P(Ω0) = 1 and for any ω ∈ Ω0, there exists k0(ω) such that, for all k ≥ k0(ω),

sup
0≤s≤k

[
M(s)− ε

4
〈M(s)〉

]
≤ 4 ln k

ε
.

Thus for any ω ∈ Ω0 and for all k ≥ k0(ω).

(4.2) M(s) <
ε

4
〈M(s)〉+ 4 ln k

ε
, for all 0 ≤ s ≤ k.
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Substituting (4.2) into (4.1) we get

lnS(x(t)) +

∫ t

0

1

4S2(x(s))

N∑
i,j=1

xi(s)xj(s)ãp(i)p(j)(xi(s), xj(s))(4.3)

≤ lnS(x(0)) +

∫ t

0

[
1

S(x)

N∑
i=1

xi

K∑
γ=1

〈bp(i)γ(xi(s), ·), μγ(s)〉

− 1− ε

4S2(x(s))

N∑
i,j=1

xi(s)xj(s)ãp(i)p(j)(xi(s), xj(s))

]
ds+

4 ln k

ε
,

Using (3.2) and letting κ = N2Λ2, we have

(4.4)
S4(x)

κ
≤

N∑
i,j=1

xixj ãp(i)p(j)(xi, xj) ≤ κS4(x), ∀x ∈ R
N
+ .

This implies

lnS(x(t)) +

∫ t

0

1

4S2(x(s))

N∑
i,j=1

xi(s)xj(s)ãp(i)p(j)(xi(s), xj(s))

≥ lnS(x(t)) +
1

4κ

∫ t

0
S2(x(s))ds.

Using (3.1), we deduce

1

S(x)

N∑
i=1

xi

K∑
γ=1

〈bp(i)γ(xi, ·), μγ〉 ≤ 1

S(x)

N∑
i=1

xi

(
Kc2 − d2

minγ∈KNγ
S(x)

)

≤ Kc2 − d2
minγ∈KNγ

S(x).

Combining this inequality and (4.4), we get

1

S(x)

N∑
i=1

xi

K∑
γ=1

〈bp(i)γ(xi, ·), μγ〉 − 1− ε

4S2(x)

N∑
i,j=1

xixj ãp(i)p(j)(xi, xj)

≤ Kc2 − d2
minγ∈KNγ

S(x)− (1− ε)

4κ
S2(x) ≤ C,
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for some constant C. We therefore arrive at

lnS(x(t)) +
1

4κ

∫ t

0
S2(x(s))ds ≤ ln(S(x(0))) +

∫ t

0
Cds+

4 ln k

ε

≤ ln(S(x(0))) + Ct+
4 ln k

ε
,

for any ω ∈ Ω0, k ≥ k0(ω) and 0 ≤ t ≤ k. Hence, if k − 1 ≤ t ≤ k with k ≥
k0(ω) then

1

t

[
lnS(x(t)) +

1

4κ

∫ t

0
S2(x(s))ds

]
≤ C +

1

t

[
ln(S(x(0))) +

4 ln k

ε

]

≤ C +
1

t

[
ln(S(x(0))) +

4 ln(t+ 1)

ε

]
,

so

lim sup
t→0

1

t

[
lnS(x(t)) +

1

4κ

∫ t

0
S2(x(s))ds

]
≤ C

as desired. �

Theorem 4.2. Assume (A1) and (A2) hold. Then for any initial condition
x(0) ∈ R

N
+ , the solution x(t) of (2.2) satisfies

(4.5) lim sup
t→∞

lnS(x(t))

ln t
≤ 1 a.s.

Proof. Define V (t, x) = et lnS(x) for (t, x) ∈ [0,∞)× R
N
+ . Applying Itô’s

lemma to V (·, ·), one obtains

et lnS(x(t))− lnS(x(0))(4.6)

=

∫ t

0

es

S(x(s))

N∑
i=1

xi(s)

K∑
γ=1

〈bp(i)γ(xi(s), ·), μγ(s)〉ds

−
∫ t

0

es

2S2(x(s))

N∑
i,j=1

xi(s)xj(s)ãp(i)p(j)(xi(s), xj(s))ds

+

∫ t

0
es lnS(x(s))ds

+

∫ t

0
es

N∑
i=1

xi(s)

S(x(s))

K∑
γ=1

〈σp(i)γ(xi(s), ·), μγ(s)〉dwγ(s).
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Let

M(t) =

∫ t

0
es

N∑
i=1

xi(s)

S(x(s))

K∑
γ=1

〈σp(i)γ(xi(s), ·), μγ(s)〉dwγ(s).

Then M(t) is a real-valued continuous local martingale whose quadratic
variation is

〈M(t)〉 =
∫ t

0
e2s

N∑
i,j=1

xi(s)xj(s)

S2((s))
ãp(i)p(j)(xi(s), xj(s))ds.

By virtue of the exponential martingale inequality, and the Borel-Cantelli
lemma, for 0 < ε < 1, θ > 1 and λ > 0, there exists Ω1 ⊂ Ω such that P(Ω1) =
1 and for each ω ∈ Ω1, there exists k1(ω) such that for every k ≥ k1(ω),

(4.7) M(t) ≤ εe−kλ

2
〈M(t)〉+ θekλ ln k

ε
, 0 ≤ t ≤ λk.

Combining (4.6) and (4.7), we have that

et lnS(x(t))− lnS(x(0))

(4.8)

=

∫ t

0

es

S(x(s))

N∑
i=1

xi(s)

K∑
γ=1

〈bp(i)γ(xi(s), ·), μγ(s)〉ds

−
∫ t

0

es

2S2(x(s))

N∑
i,j=1

xi(s)xj(s)ãp(i)p(j)(xi(s), xj(s))ds

+

∫ t

0

εe−kλ

2

e2s

S2(x(s))

N∑
i,j=1

xi(s)xj(s)ãp(i)p(j)(xi(s), xj(s))ds+
θekλ ln k

ε
.

Using similar arguments as that in Theorem 4.1, we can prove that for all
0 ≤ s ≤ kλ and x ∈ R

N
+ ,

es

S(x(s))

N∑
i=1

xi(s)

K∑
γ=1

〈bp(i)γ(xi(s), ·), μγ(s)〉(4.9)

− es(1− εe−kλ+s)

2S2(x(s))

N∑
i,j=1

xi(s)xj(s)ãp(i)p(j)(xi(s), xj(s))

≤ esKc2 − esd2
minγ∈KNγ

S(x(s))− es(1− εe−kλ+s)

2κ
S2(x(s)) ≤ C.
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From (4.8) and (4.9), it follows that for all 0 ≤ t ≤ kλ with k ≥ k1(ω),

et lnS(x(t)) ≤ lnS(x(0)) +

∫ t

0
Cesds+

θekλ ln k

ε

= lnS(x(0)) + C(et − 1) +
θekλ ln k

ε

and thus

lnS(x(t)) ≤ e−t lnS(x(0)) + C(1− e−t) + e−t θe
kλ ln k

ε
.

Hence for (k − 1)λ ≤ t ≤ kλ and k ≥ k1(ω), we have

lnS(x(t))

ln t
≤ e−(k−1)λ

ln(k − 1)λ
(lnS(x(0))− C) +

C

ln(k − 1)λ
+

θeλ ln k

ln(k − 1)λ
.

Now letting k → ∞ (and so t → ∞), we then obtain lim supt→∞
lnS(x(t))

ln t ≤
θeλ

ε a.s. Finally, the above inequality holds for every λ > 0, ε < 1 and θ > 1,

by sending λ ↓ 0, ε ↑ 1, and θ ↓ 1, we have lim supt→∞
lnS(x(t))

ln t ≤ 1 a.s. The
proof is complete. �

4.2. Lower bounds

We are now in position to prove a lower bound on the growth rate of the
solution to the system (2.2) under the assumption (A2’).

Theorem 4.3. Suppose the assumptions of Lemma 3.4 hold. Then, with
probability 1, the solution x(t) of (2.2) with any initial value x(0) ∈ R

N
+

satisfies

(4.10) lim inf
t→∞

lnS(x(t))

ln t
≥ −1

θ
.

Proof. Similar to the proof of Lemma 3.4, let U : RN
+ → R be defined by

U(x) = 1
S(x) and let V (x) = (1 + U(x))θ. Thanks to (3.12), we have

LV (x) ≤ θ(1 + U(x))θ−2

[(
Λ2

2
(θ + 1)−Kc1

)
U2(x)

+

(
Λ2 −Kc1 +

d1
minγ∈KNγ

)
U(x) +

d1
minγ∈KNγ

]
.
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Hence

d[(1 + U(x))θ](4.11)

≤ θ(1 + U(x))θ−2[C1U
2(x) + C2U(x) + C3]

− θ(1 + U(x))θ−1U2(x)

N∑
i=1

xi

K∑
γ=1

〈σp(i),γ(xi, ·), μγ〉dwγ .

where C1, C2, and C3 are some constants. As a by product of Lemma 3.4,
E[(1 + U(x(t))θ] ≤ C, for all t ≥ 0, which together with (4.11) implies that
for k = 1, 2, . . . and for any given δ > 0,

E

[
sup

(k−1)δ<t<kδ
(1 + U(x(t)))θ

]
(4.12)

≤ E

[
1 + U(x((k − 1)δ)))θ

]
+ E

[
sup

(k−1)δ<t<kδ

∣∣∣∣
∫ t

(k−1)δ
θ(1 + U(x(s)))θ−2

× (C1U
2(x(s)) + C2U(x(s)) + C3)ds

∣∣∣∣
]

+ E

[
sup

(k−1)δ<t<kδ

∣∣∣∣
∫ t

(k−1)δ
θ(1 + U(x))θ−1U2(x)

×
N∑
i=1

xi

K∑
γ=1

〈σp(i),γ(xi, ·), μγ〉dwγ

∣∣∣∣
]
.

We now compute

E

[
sup

(k−1)δ<t<kδ

∣∣∣∣
∫ t

(k−1)δ
θ(1 + U(x(s)))θ−2(4.13)

(C1U
2(x(s)) + C2U(x(s)) + C3)ds

∣∣∣∣
]

≤ E

[ ∫ kδ

(k−1)δ

∣∣θ(1 + U(x(s)))θ−2

(C1U
2(x(s)) + C2U(x(s)) + C3)

∣∣ds]

≤ δθCE

[
sup

(k−1)δ<t<kδ
(1 + U(x(s)))θ

]
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By the well-known Burkholder-Davis-Gundy inequality, and using the as-
sumption (A2’), we have the following estimate for the stochastic integral

E

[
sup

(k−1)δ<t<kδ

∣∣∣∣∣
∫ t

(k−1)δ
θ(1 + U(x))θ−1U2(x)(4.14)

N∑
i=1

xi

K∑
γ=1

〈σp(i),γ(xi, ·), μγ〉dwγ

∣∣∣∣∣
]

≤ 3θCE

[∫ kδ

(k−1)δ
(1 + U(x))2(θ−1)U2(x)

1

|x(s)|2

×
N∑

i,j=1

xi(s)xj(s)ãp(i),p(j)(xi(s), xj(s))ds

] 1

2

≤ 3θCE

[ ∫ kδ

(k−1)δ
(1 + U(x))2θds

] 1

2

≤ 3δ
1

2 θCE

[
sup

(k−1)δ<t<kδ
(1 + U(x))θ

]

Substituting (4.13) and (4.14) into (4.12) yields

E

[
sup

(k−1)δ<t<kδ
(1 + U(x(t)))θ

]
(4.15)

≤ E

[
1 + U(x((k − 1)δ)))θ

]

+ Cθ(δ + δ
1

2 )E

[
sup

(k−1)δ<t<kδ
(1 + U(x))θ

]
.

Choosing δ small enough so that Cθ(δ + δ
1

2 ) < 1
2 and using the fact that

E[1 + U(x((k − 1)δ)))θ] is bounded we obtain that

E

[
sup

(k−1)δ<t<kδ
(1 + U(x(t)))θ

]
≤ C.

Let ε > 0 be arbitrary. Then, by the Chebyshev inequality, we have

P

{
ω : sup

(k−1)δ<t<kδ
(1 + U(x(t)))θ > (kδ)1+ε

}
≤ C

(kδ)1+ε
, k = 1, 2, . . . .
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By virtue of Borel-Cantelli lemma again, there exist Ω2 such that P(Ω2) = 1
and for all ω ∈ Ω2, there exists k2(ω) >

1
δ + 2 such that

sup
(k−1)δ<t<kδ

(1 + U(x(t)))θ ≤ (kδ)1+ε

holds whenever k > k2(ω). Consequently, for almost all ω ∈ Ω, if k > k2(ω)
and (k − 1)δ < t < kδ,

ln(1 + U(x(t)))θ

ln t
≤ (1 + ε) ln(kδ)

ln((k − 1)δ)
→ 1 + ε.

Hence, we have

lim sup
t→∞

ln(1 + U(x(t)))θ

ln t
≤ 1 + ε a.s.

Letting ε → 0, we have

lim sup
t→∞

ln(1 + U(x(t)))θ

ln t
≤ 1 a.s.

By definition of U , from the previous estimates we obtain

lim sup
t→∞

ln( 1
S(x(t)))

θ

ln t
≤ 1 a.s.

which further implies

lim inf
t→∞

ln(S(x(t)))

ln t
≥ −1

θ
a.s.

This concludes the proof. �

4.3. Bounds on decay rate

In this section we study the decay rate to zero of the system (2.2) under
the assumption (A2) on the diffusion part. The idea is to use the time
change method and comparison principle (please see [17, Section 4, Chapter
IV and Section 4, Chapter VI respectively]) to study a one-dimensional
stochastic differential equation that is closely related to S−1(x(t)). This
investigation is inspired by the work [28] and the motivation for it comes
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from the following observation. Let us consider the following one-dimensional
stochastic differential equation

dy(t) = y(t)(c+ dy(t))dt+ σ(x(t))dw(t),

where the coefficients satisfy c > 0, d < 0 and C1

x2 < σ2(x) < C2

x2 for some con-
stants C1, C2 > 0. Then by Theorem 3.1 in Chapter VI of [17], we have that

P(lim inf
t→∞ y(t) = 0) = P(lim sup

t→∞
y(t) = ∞) = 1.

Since the above equation serves as the one-dimensional prototype for the
system (2.2), we expect that (2.2) behaves somehow the same and this leads
to the question about the decay rate to zero of system (2.2).

Theorem 4.4. Suppose that (A1) and (A2) hold and that for all α, γ ∈ K
and x, y ∈ R+, there exists c1 > 0, d1 > 0 such that

c1 − d1y ≤ bαγ(x, y).

Then, with probability 1, there exists two positive constants Υ1,Υ2 such that

lim sup
t→∞

1√
ln t

∑N
i=1 xi(t)

≥ Υ1,

and

lim sup
t→∞

1

t1+ε
∑N

i=1 xi(t)
≤ Υ2.

Proof. For convenience, for each i ∈ {1, · · · , N}, let

b̄i(x(t)) = xNi (t)

K∑
γ=1

〈bp(i)γ(xNi (t), ·), μγ(t)〉,

and

σ̄iγ(x(t)) = xNi (t)〈σp(i)γ(xNi (s), ·), μγ(t)〉, γ = 1, 2, . . . ,K.

Then (2.2) becomes

(4.16) dxi(t) = b̄i(x(t))dt+

K∑
γ=1

σ̄iγ(x(t))dwγ(t).
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Let p(x) = 1∑N
i=1 xi

= 1
S(x) . It is easy to see that,

Lp(x) =− 1

S2(x)

N∑
i=1

xi

K∑
γ=1

〈bαγ(xi, ·), μγ(s)〉

+
1

S3(x)

N∑
i,j=1

xixj ãp(i)p(j)(xi, xj)

We further define

a(x) :=

N∑
i,j=1

ãp(i)p(j)(x)
∂p

∂xi

∂p

∂xj
(4.17)

=
1

S4(x)

N∑
i,j=1

xixj ãp(i)p(j)(x) > 0, ∀x ∈ R
N
+ ,

b(x) :=
Lp(x)
a(x)

= S(x)− S2(x)

∑N
i=1 xi

∑K
γ=1〈bp(i)γ(xi, ·), μγ〉∑N

i,j=1 xixj ãp(i)p(j)(xi, xj)
.(4.18)

As noticed in (4.4), there exists κ > 0 such that

(4.19)
1

κ
≤ a(x) ≤ κ, ∀x ∈ R

N
+ .

Let {
a+(ξ) = supx∈D(ξ,p) a(x),

b+(ξ) = supx∈D(ξ,p) b(x),

{
a−(ξ) = infx∈D(ξ,p) a(x),

b−(ξ) = infx∈D(ξ,p) b(x),

where D(ξ, p) = {x ∈ R
N
+ : p(x) = ξ} for every ξ > 0. From the definition of

a and since σα,γ are locally Lipschitzian, we can check that a±(ξ) and b±(ξ)
are local Lipschitz positive continuous functions. Let Φ+ and Φ− are two
functions defined by

Φ+(t) =

∫ t

0

a(x(s))

a+(p(x(s))
ds, Φ−(t) =

∫ t

0

a(x(s))

a−(p(x(s)))
ds,

It can be easily seen that

(4.20) Φ+(t) ≤ t ≤ Φ−(t), ∀t ≥ 0.
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Let Ψ+ and Ψ− be the inverse functions of Φ+ and Φ− respectively. From
(4.20), it is also easy to check that

(4.21) Ψ−(t) ≤ t ≤ Ψ+(t), ∀t ≥ 0.

Let x+(t) = x(Ψ+(t)) and x−(t) = x(Ψ−(t)). As in Chapter IV, Section 4
of [17], we can conclude that x+ and x− satisfy the following stochastic
differential equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
dx+i (t) =

[
a+(p(x+(t)))

a(x+(t))

]
b̄i(x

+(t))dt

+
[
a+(p(x+(t)))

a(x+(t))

]1/2∑K
γ=1 σ̄iγ(x

+(t))dB+
γ (t),

x+0 = x0, i = 1, 2, . . . , N,

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
dx−i (t) =

[
a−(p(x−(t)))

a(x−(t))

]
b̄i(x

−(t))dt

+
[
a−(p(x−(t)))

a(x−(t))

]1/2∑K
γ=1 σ̄iγ(x

−(t))dB−
γ (t),

x−0 = x0, i = 1, 2, . . . , N,

where

B+(t) = (B+
1 (t), . . . , B

+
K(t)) B−(t) = (B−

1 (t), . . . , B
−
K(t))

are two K-dimensional Brownian motions defined on (Ω,F , {Ft},P). Using
the Itô formula, we have

dp(x+(t)) =

[
a+(p(x+(t)))

a(x+(t))

]
(Lp(x+(t)))dt

+

[
a+(p(x+(t)))

a(x+(t))

]1/2 N∑
i

∂p

∂xi
(x+(t))

K∑
γ=1

σ̄i,γ(x
+(t))dB+

γ (t).

By (4.17) and Lévy’s celebrated martingale characterization of Brownian
motion (see [18, Theorem 3.16]), if we set

B̃± =
1

a1/2(x±(t))

∫ t

0

N∑
i

∂p

∂xi
(x±(t))

K∑
γ=1

σ̄i,γ(x
±(t))dB±

γ (t)
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then B̃+ and B̃− are 1-dimensional Brownian motions and we have

dp(x+(t)) = a+(p(x+(t)))b(x+(t))dt(4.22)

+ [a+(p(x+(t)))]1/2dB̃+(t),

and similarly,

dp(x−(t))(4.23)

=

[
a−(p(x−(t)))
a(x−(t))

]
(Lp(x−(t)))dt

+

[
a−(p(x−(t)))
a(x−(t))

]1/2 N∑
i=1

∂p

∂xi
(x−(t))

K∑
γ=1

σiγ(x
−(t))dB̃−

γ (t)

= a−(p(x−(t)))b(x−(t))dt+ [a−(p(x−(t)))]1/2dB̃−(t).

From (A1), (4.17), (4.18), and (4.19), it is readily seen that there exists
constants η̄ > 0, λ̄ > 0, and ν̄ > 0 such that

a+(p(x))b(x) ≤ −η̄p(x) +
λ̄

p(x)
+ ν̄.

For any fix ε > 0, by (4.5) we can find T > 0 such that

1

p(x+(t))
= S(x+(t)) ≤ t1+ε, ∀t ≥ T.

Therefore (4.22) implies

eη̄tp(x+(t)) = p(x+(T )) +

∫ t

T
eη̄s[a+(p(x+(s)))]1/2dB̃+(s)

+

∫ t

T
eη̄s[a+(p(x+(s))) + η̄p(x+(s))]ds

≤ p(x+(T )) +

∫ t

T
eη̄s[a+(p(x+(s)))]1/2dB̃+(s)

+

∫ t

T
eη̄s

[
λ̄

p(x)
+ ν̄

]
ds

≤ p(x+(T )) +

∫ t

T
eη̄s[a+(p(x+(s)))]1/2dB̃+(s)

+

∫ t

T
eη̄s[λ̄s1+ε + ν̄]ds

.
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Because a+ is bounded we thus have

lim sup
t→∞

∫ t
T eη̄s[a+(p(x+(s)))]1/2dB̃+(s)

eη̄tt1+ε
= 0.

Therefore,

lim sup
t→∞

p(x+(t))

t1+ε
≤ λ̄

η̄
.

By virtue of (4.21), t ≤ Ψ+(t) for every t > 0 it follows that

lim sup
t→∞

p(x(t))

t1+ε
= lim sup

t→∞
p(x(Ψ+(t)))

[Ψ+(t)]1+ε
= lim sup

t→∞
p(x(Ψ+(t)))

t1+ε

t1+ε

[Ψ+(t)]1+ε

≤ lim sup
t→∞

p(x+(t))

t1+ε
≤ λ̄

η̄
.

On the other hand, by (A1), (4.17), (4.18) and (4.19), we can verify that
there exist constants η > 0 and ν > 0 such that

a−(p(x))b(x) ≥ −ηp(x) + ν.

Therefore (4.23) implies

eηtp(x−(t))(4.24)

= p(x−(0)) +
∫ t

0
eηs[a−(p(x−(s)))]1/2dB̃−(s)

+

∫ t

0
eηs[a−(p(x−(s))) + η̄p(x−(s))]ds

≥ p(x−(0)) +
∫ t

0
eηs[a−(p(x−(s)))]1/2dB̃−(s) +

∫ t

0
eηsν̄ds.

Let M(t) be ∫ t

0
eηs[a−(p(x−(s)))]1/2dB̃−(s)

then M is a real-valued continuous martingale with quadratic variation

〈M(t)〉 =
∫ t

0
e2ηs[a−(p(x−(s)))]ds

and, by virtue of law of iterated logarithm, we also have

(4.25) lim sup
t→∞

M(t)

2〈M(t)〉 ln ln〈M(t)〉 = 1 a.s.
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In addition, by (4.4), it is easy to deduce that

1

κ

e2ηt − 1

2η
≤ 〈M(t)〉 ≤ κ

e2ηt − 1

2η
.

Hence

√
2〈M(t)〉 ln ln〈M(t)〉 ≥

√
2
1

κ

e2ηt − 1

2η
ln ln(

1

κ

e2ηt − 1

2η
)

∼
√

1

κη
eηt

√
ln t

and thus

(4.26) lim inf
t→∞

√
2〈M(t)〉 ln ln〈M(t)〉

eηt
√
ln t

≥
√

1

κη
.

Combining (4.25) and (4.26), we get

lim sup
t→∞

M(t)

eηt
√
ln t

≥ lim sup
t→∞

M(t)

2〈M(t)〉 ln ln〈M(t)〉 lim inf
t→∞

√
2〈M(t)〉 ln ln〈M(t)〉

eηt
√
ln t

≥
√

1

κη
.

Using this inequality in (4.24), it then follows that

lim sup
t→∞

p(x−(t))√
ln t

≥
√

1

κη
.

By virtue of (4.21) we have t ≤ Ψ+(t) for every t > 0 and hence

lim sup
t→∞

p(x(t))√
ln t

= lim sup
t→∞

p(x(Ψ−(t)))√
lnΨ−(t)

= lim sup
t→∞

p(x(Ψ−(t)))√
ln t

√
ln t√

lnΨ−(t)

≥ lim sup
t→∞

p(x(Ψ−(t)))√
ln t

= lim sup
t→∞

p(x−(t))√
ln t

≥
√

1

κη
,

or

lim sup
t→∞

1√
ln tS(x(t))

≥
√

1

κη

and the proof is complete. �
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5. Concluding remarks

This paper focuses on multi-type mean-field models. The problems under
consideration enrich the mean-field models and enlarge their applicability.
The equations under consideration are highly nonlinear with an additional
empirical measure. The use of multiple types further complicates the mat-
ter. First, sufficient conditions are presented, under which not only are the
existence and uniqueness of solutions obtained, but also the solutions are
shown to remain in the positive (first) quadrant of RN . Moreover, starting
with a point outside a bounded open set with compact closure, we derive
conditions to ensure that the expect return time to the bounded set is finite.
Such positive recurrence is the key for the study of ergodicity. Furthermore,
we derive upper and lower bounds on the moments of the solutions. These
results will be essential for subsequent study on control, optimization, and
related issues.
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[14] M. Huang, R. P. Malhamé and P. E. Caines, Large population stochastic
dynamic games: closed-loop McKean-Vlasov systems and the Nash cer-
tainty equivalence principle. Commun. Inf., Syst., 6(3): 221–251, 2006.

[15] M. Huang, P. E. Caines and R. P. Malhamé, An invariance principle
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et contrôle optimal (French) [Mean field games. II. Finite horizon and
optimal control], C. R. Math. Acad. Sci. Paris, 343(10):679–684, 2006.

[23] J. M. Lasry and P. L. Lions, Mean field games. Jpn. J. Math, 2(1):
229–260, 2007.

[24] X. Mao, S. Sabais, and E. Renshaw, Asymptotic Behavior of stochastic
Lotka-Volterra model. J. Math. Anal. Appl., 287: 141–156, 2003.

[25] H. P. McKean, A class of Markov processes associated with nonlinear
parabolic equations. Proc. Nat. Acad. Sci. U.S.A., 56: 1907–1911, 1966.

[26] H. P. McKean, Propagation of chaos for a class of non-linear parabolic
equations. In: Stochastic Differential Equations, Arlington: Air Force
Office Sci. Res: 41–57, 1967. [Lecture Series in Differential Equations,
vol. 7.]

[27] S. L. Nguyen and M. Huang, Linear-quadratic-Gaussian mixed games
with continuum-parametrized minor players. SIAM J. Control Optim.,
50(5): 2907–2937, 2012.

[28] D. H. Nguyen and S. H. Vu, Dynamics of a stochastic Lotka-Volterra
model perturbed by white noise. J. Math. Anal. Appl., 324: 82–97, 2006.

[29] M. Nourian and P. E. Caines, ε-Nash mean field game theory for nonlin-
ear stochastic dynamical systems with major and minor agents. SIAM
J. Control Optim, 51(4): 3302–3331, 2013.

[30] A. S. Sznitman, Topics in propagation of chaos. Ecole d’été de Proba-
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