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Summary
Objectives: We developed a novel system for in home functional capacities assessment in frail 
older adults by analyzing the Timed Up and Go movements. This system aims to follow the older 
people evolution, potentially allowing a forward detection of motor decompensation in order to 
trigger the implementation of rehabilitation. However, the pre-experimentations conducted on the 
ground, in different environments, revealed some problems which were related to KinectTM oper-
ation. Hence, the aim of this actual study is to develop methods to resolve these problems.
Methods: Using the KinectTM sensor, we analyze the Timed Up and Go test movements by 
measuring nine spatio-temporal parameters, identified from the literature. We propose a video pro-
cessing chain to improve the robustness of the analysis of the various test phases: automatic detec-
tion of the sitting posture, patient detection and three body joints extraction. We introduce a real-
istic database and a set of descriptors for sitting posture recognition. In addition, a new method for 
skin detection is implemented to facilitate the patient extraction and head detection. 94 experi-
ments were conducted to assess the robustness of the sitting posture detection and the three joints 
extraction regarding condition changes.
Results: The results showed good performance of the proposed video processing chain: the global 
error of the sitting posture detection was 0.67%. The success rate of the trunk angle calculation 
was 96.42%. These results show the reliability of the proposed chain, which increases the robust-
ness of the automatic analysis of the Timed Up and Go.
Conclusions: The system shows good measurements reliability and generates a note reflecting the 
patient functional level that showed a good correlation with 4 clinical tests commonly used. We 
suggest that it is interesting to use this system to detect impairment of motor planning processes.

Correspondece to
Asma Hassani
Université de Bourgogne, Laboratoire LE2I, Bâtiment 
I3M,
64 rue de Sully,
21000, Dijon.
Tel.: +33 3 80 39 36 08
Fax: +33 3 80 39 59 10
Email: hassani.asma@gmail.com

Appl Clin Inform 2017; 8: 454–469
https://doi.org/10.4338/ACI-2016-11-RA-0199
received: November  29, 2016
accepted: February 11, 2017
published: May 10, 2017
Citation: Hassani A, Kubicki A, Mourey F, Yang F. Ad-
vanced 3D movement analysis algorithms for robust 
functional capacity assessment. Appl Clin Inform 2017; 
8: 454–469 
 https://doi.org/10.4338/ACI-2016-11-RA-0199

Research Article

A Hassani et al.: 3D movement analysis algorithms for functional capacity assessment

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



455

© Schattauer 2017

1. Introduction
Geriatric rehabilitation constitutes a major public health issue. The biomechanical deficits such as 
the loss of muscle mass and muscle power, are considered to play a crucial role in the frailty process 
[1]. However, motor planning impairments could also lead to declines in physical functions [2]. In 
this context of functional capacities impairment, physiotherapists and other health professionals are 
interested in motor function in order to maintain or improve it as much as possible. The functional 
abilities assessment is mainly conducted by health professionals in care units. However, home care is 
most often the wish of older adults to maintain their independence and thus to help improve the 
quality of life [3]. It seems then interesting to move this analysis as much as possible to the frail 
elderly patients‘ homes.

The Timed Up and Go (TUG) is a quick and simple clinical test that allows a qualitative analysis 
of the patient’s stability during the various test phases [4–6] and has been shown to predict falls risk 
in the elderly [7–9]. Moreover, it requires no special equipment or training and the risk of musculo-
articular injury is low when performing the TUG [10]. This test consists in standing up from a chair, 
walking a distance of 3m, turning, and walking back to the chair and sitting down. It includes the 
Sit-To-Stand and Back-To-Sit transfers that are important activities of independent daily living and 
were studied in older adults to assess aging effects on motor planning processes through their kine-
matic features [11–13]. For instance, Mourey et al [11] noted an age-related slowdown when per-
forming the Back-To-Sit, which was attributed to more cautious behavior related to lack of visual in-
formation and probably to a difficulty in dealing with the gravity effects. In the study by Dubost et al 
[12], trunk angles in normal older adults were smaller than in young subjects during the Back-To-
Sit. This lack of trunk tilt was explained by a non-optimal behavior related to changes in motor plan-
ning processes and that aims to decrease the risk of anterior disequilibrium. The results of both 
these studies showed that older adults had a greater difficulty to perform the Back-To-Sit. For these 
reasons, we chose to reproduce an automatic analysis of the TUG, which is satisfactory for our pur-
poses: to allow functional capacities assessment, to be safe, easy and can be made without the direct 
participation of a health professional.

Thus, for making the patient involved in his own care to optimize his following rehabilitation at 
home and maintain his functional independence, we developed a low-cost, robust and home-based 
system for real-time 3D TUG movements analysis to assess functional capacities in the elderly. The 
system includes the KinectTM sensor to track the patient’s 3D skeleton without placing markers on 
his body. Indeed, KinectTM has been used in several applications such as students’ physical rehabili-
tation in schools [14], the evaluation postural control [15], fall detection [16], static lifting move-
ments’ assessment [17] and face recognition [18]. This sensor can also integrate complex and con-
tinually adaptive exercises requiring specific movements and track the extent to which these move-
ments are performed [19]. In addition, KinectTM is a low-cost and portable device that combines an 
RGB camera, a depth sensor and a multi-array microphone. It provides inexpensive depth sensing 
for a large variety of emerging applications in computer vision, augmented reality and robotics. 

Three experiments allowed the TUG analysis of young subjects, frail and non-frail aged adults 
using the proposed system in heterogeneous environments: patients’ homes [2], laboratory [20] and 
geriatric day-hospital [20]. As a first step, the aim was to verify the adaptation of the system in dif-
ferent places and with different subjects. They showed a good measurement reliability of the ident-
ified parameters. Then, we measured the influence of age-related frailty effects on motor planning 
processes through the kinematic features of the Sit-To-Stand and Back-To-Sit transfers in order to 
weight the different parameters related to the functional level of the subject and thus assign a motor 
control note during the automatic analysis of the TUG. The results showed that frail patients with 
the lowest functional level reached the lower trunk angle during the Back-To-Sit. In addition of 
motor control parameters, the most discriminating criterion between frail aged adults and young 
subjects was the TUG duration. Based on the different results of these experiments, we introduced a 
motor control note that reflects the patient functional level and correlates with 4 clinical tests com-
monly used [21].

However, the field tests also revealed some malfunction of KinectTM. For instance, when the sub-
ject stands up or sits down with a large trunk tilt, the KinectTM cannot correctly identify the center of 
mass and shoulders. Thus, we propose a video processing chain applied to the color image stream 
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and the depth map provided by KinectTM for improving the robustness and accuracy of the system: 
automatic detection of the sitting posture, patient detection and three body joints extraction.

2. The Timed Up and Go description and experimental setup
The TUG is a clinical measure of balance and mobility in the elderly and in neurological populations 
[22]. The time taken to complete the test allows predicting the risk of falling [7, 23]. The average 
TUG duration is 25.8s in non-fallers, 33.2s in subjects having fallen once and 35.9s in multiple 
fallers [24]. Moreover, a score between 13.51s and 35.57s is consistent with a frail subject and a score 
less than or equal to 13.5s correlates with the locomotor independence state [8]. The TUG move-
ments allow estimating nine spatio-temporal parameters that were identified in the literature as rel-
evant for balance assessment: a) movement duration, b) trunk angle, c) ratio, d) shoulder path cur-
vature and e) TUG duration. The first four parameters were calculated for each Sit-To-Stand and 
Back-To-Sit.

Our system includes the KinectTM sensor for detecting the subjects’ movements. This sensor pro-
duces accurate results, especially when tracking shoulder movements (segment lengths and angle es-
timation) [25, 26]. It was placed at a height of 50-60cm from the ground and at a distance of 2-2.5m 
from the chair with a tilt angle of 20° (▶ Figure 1). No markers or wearable sensors were attached to 
the participant body. The KinectTM skeleton data are used for the real-time calculation of the balance 
assessment parameters, which starts (ends) when the sitting posture is recognized. Extracted fea-
tures correspond to the shoulder displacement kinematics during the Sit-To-Stand and Back-To-Sit 
and the TUG duration that corresponds to the time interval between the moment when the forward 
phase starts and the moment when the backward phase ends. The shoulder movement duration 
during Sit-To-Stand corresponds to the time interval between the moment when the shoulder depth 
component (anterior–posterior axis) exceeds 8.5% of its initial position, corresponding to the lift-off 
of the buttocks from the seat and the moment when the head vertical component reaches or exceeds 
94% of the person’s size (i.e., when the maximum hip, trunk, knee extension and maximum head 
flexion velocity are reached). The thresholds were experimentally determined. In the Back-To-Sit, it 
is defined as the time interval between the moment when the shoulder vertical component drops its 
peak value and the moment when the hip vertical components reach their minimum values and the 
trunk angle reaches its limit. The movement duration was measured in seconds.

The trunk angle corresponds to the maximal trunk angle reached by participants during each 
transfer. These maximal trunk angles, computed in the sagittal plane, were measured in degrees be-
tween the trunk axis and the vertical axis passing through the center of mass of the body. Concern-
ing the ratio, it represents the ratio between the shoulder vertical and horizontal movements du-
rations. As regards the shoulder path curvature, shoulder paths during forward and backward dis-
placements were similar and almost straight, therefore the curvatures of path for upward and down-
ward displacements were only calculated [27]. Curvature is defined as:
cur=Dmax/L
where L corresponds to a straight line passing between the initial and the final position of shoulder 
displacement and Dmax means the maximal perpendicular distance measured from the actual path 
to the straight line.

In the next section we will present the processing chain proposed to overcome the problems en-
countered during the various experiments that are related to KinectTM.

3. Overview of the video processing system
Experiments were performed in a geriatric day-hospital to test the system in a real environment, its 
installation requirements and its adaptation to the different types of patients. Through these experi-
ments, some limits and constraints related to KinectTM have been identified. Indeed, when the trunk 
inclination is greater than 70°, KinectTM cannot correctly identify the center of mass and shoulders. 
Also, when wearing loose clothing or the subject suffers from a significant genu valgus, it is some-
times difficult to detect the correct positions of the joints constituting the skeleton. Similarly, if the 
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person uses a cane or in case of the close presence of a caregiver, the sensor cannot properly dissoci-
ate the subject. These problems have an impact on measures to perform. Therefore, we propose a 
video processing chain to resolve them, which consists of a sitting posture detection method and an 
algorithm for 3 body joints extraction.

▶ Figure 2 shows an overview of the operating process of the system. The sitting posture detec-
tion method is used to trigger the TUG analysis and detect its end. It is based on the Support Vector 
Machine (SVM) classification method. Regarding the joints extraction method, it is applied only 
during the Sit-To-Stand and Back-To-Sit when the 3D skeleton produced by KinectTM is poorly de-
tected. The skeleton is poorly detected if:

where H, S and Hd represent the mass center, the shoulder center and the head center, respectively. 
yth and angleth are threshold values of the vertical component of the head and the trunk angle, re-
spectively that were determined empirically. We first carry out a patient detection and then compute 
the center of mass. Finally, a method for detecting the head and shoulders is applied to extract the 
positions of their centers. Thanks to these points, we can track shoulder movements during the two 
transfers and hence calculate the spatio-temporal parameters.

4. Sitting posture detection
The human movements’ interpretation and analysis can be performed by using 3D parameters such 
as joint angles and positions, which require a 3D tracking of the entire body or some of its parts. The 
proposed method consists in representing the sitting posture based on a set of characteristics 
extracted from 3D skeleton joints. Indeed, this posture is a rest position in which the body rests on 
the bottom, with the trunk vertically or with a slight body bending forward or backward and also 
characterized by knees flexion. Based on these characteristics, a total of 16 features has been 
extracted for each frame for representing the sitting posture (▶ Figure 3):
• The trunk angle θ,
• The angle between trunk and leg β,
• The distance between head and hip center DHdH,
• The differences DHKL and DHKR between the distance between hip center and knee at the y-axis 

and that at x and z axes, for the left and right body,
• The distance between shoulder center and hip center at x-axis DSHx,
• The distance between shoulder center and hip center at z-axis DSHz,
• The 3D coordinates of the head, the shoulder center and hip center: Hdx, Hdy, Hdz, Sx, Sy, Sz, Hx, 

Hy and Hz.

The SVM classifier with the radial basis function kernel has been used to classify two postures: sit-
ting and non-sitting. To get closer to a real operation of the system under realistic conditions, the 
training data are retrieved from 15 individuals performing the TUG in different environments, vari-
ous illuminations and different conditions. Performance evaluation of different combinations is 
based on the calculation of sensitivity, specificity, recall, precision and the global error.

We built our own dataset for sitting posture recognition in several conditions and environments 
to train the classifier and evaluate descriptors. We acquired a total number of 1611 training vectors 
containing sitting position and several motions such as body transfers and walking. The experiences 
were performed by taking account of the main difficulties of realistic TUG test execution by older 
adults at home environment. In order to test the sitting posture detection method, 12 participants 
wearing different clothes including ample clothes performed various TUG tests in different condi-
tions: 2 persons in the KinectTM field of view, a great trunk tilt, lower limbs completely glued and 
variable illumination and environment (home, laboratory). They aged twenty six to fifty years.
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5. Person tracking method presentation

5.1 Related works
The purpose of this step is to locate the target person in the scene and extract three 3D points corre-
sponding to three human body joints: the mass center, the head center and the center of the line be-
tween both shoulders (shoulder center). There are several approaches for people detection and 
tracking in the literature of computer vision and robotics, which can be classified into two broad cat-
egories: motion-based analysis approaches [28-30] and appearance-based approaches [31, 32]. For 
the first category, the motion detection consists in segmenting the moving regions to locate moving 
objects in a sequence. These approaches can be classified into three categories: background subtrac-
tion, methods based on optical flow calculation and those based on temporal difference.

The background subtraction method consists in carrying out the difference between the current 
image and a background image that has been modeled previously. The quality of the extracted re-
gions depends on that of the background image modeling. This method requires a reference image 
that is difficult to obtain and should be updated during the sequence to take into account possible 
changes such as moving objects and the illumination change. Thus, the background subtraction dif-
ficulty lies not only in the subtraction but also in background maintenance [33, 34]. These methods 
can be very effective in scenes where the background is well known and whose appearance does not 
change much over time.

With respect to the methods based on the optical flow, they consist in calculating at time t the 
displacement d of point p = (x, y). The optical flow calculation is particularly useful when the came-
ra is moving, but its estimation is both expensive in terms of calculation time and very sensitive to 
high amplitude movements. In addition, estimates are generally noisy at the borders of moving ob-
jects and difficult to obtain in large homogeneous regions. It also assumes that the differences of im-
ages can be explained as a consequence of a movement, while they can also be related to changes in 
the characteristics of objects, backgrounds and lighting.

Regarding the temporal difference, it consists in detecting the movement region based on the dif-
ferences of successive images. This method can detect moving objects with low computational cost. 
However, the simultaneous extraction of fast objects and slow objects is usually impossible and 
therefore, it is difficult in this case to find a compromise between the number of missed targets and 
false detections.

Based-appearance approaches can be global or local. Global approaches, such as Principal Com-
ponent Analysis, involve taking a single decision for the entire image. Regarding local approaches, 
we distinguish between methods based on extraction points or areas of interest and methods based 
on regular path of the image. The spatio-temporal interest points are widely used in the recognition 
of human actions and movements. In [35], the author proposed a method of spatio-temporal detec-
tion of local areas where there is a strong spatio-temporal joint variation. This represents an exten-
sion of the method of detecting the spatial points of interest of Harris and Stephens [36] and Fostner 
et al [37]. Indeed, the interest points correspond to a strong local spatial variation (edges, corners, 
textures …).

Among the methods based on regular path of the image, the most popular method is that pro-
posed by Viola and Jones [38], which is particularly characterized by its speed. It is based on Haar 
features to locate faces and uses integral images to calculate the characteristics. Training and feature 
selection are performed by the AdaBoost in cascade: at each stage of the cascade, the search area is 
increasingly reduced by eliminating a large portion of the areas not containing faces and then classi-
fiers become more complex.

5.2 Skin detection
Skin detection is an essential step in the person tracking algorithm since it reduces the search area of 
subjects in the image and facilitates the head detection. There are several methods to distinguish the 
skin regions from the rest of the scene and build a skin color model [39, 40]. In this study, we 
adopted a method called Explicit Skin Cluster that consists in explicitly defining the boundaries of 
the skin area in an appropriate color space. The advantage of methods using the pixel tone is the 
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simplicity of skin detection rules used, leading to a fast classification and that they require no prior 
training. However, their major problem is the difficulty in empirically determining a color space and 
the relevant decision rules that provide a high recognition rate. Although the color of the skin can 
vary significantly, recent research shows that the main difference is in the intensity rather than 
chrominance [41]. Various color spaces are used to label the pixels as color skin pixels such as RGB 
[42], HSV [43] and YCbCr [44]. However, we must choose the most robust space to adapt different 
conditions such as the distance between the subject and the sensor.

In this study, we take in account of stern constraints for robust skin region extraction facing some 
conditions: brightness change, distance from the sensor and similarity of clothes or background co-
lors and skin color (▶ Figure 4). We conducted a combination of two color spaces:  of the 
Color Logarithmic Image Processing (CoLIP) framework [45] and RGB.   represent the 
hue, the saturation and the lightness, respectively. The segmentation procedure consists in finding 
the pixels that meet the following constraints:

The idea is to combine hue and saturation components of CoLIP model with the R, G and B compo-
nents of the RGB space to have a variable domain for skin color and thus improve the robustness of 
the detection method. Indeed, the hue is in relation to saturation which itself depends on the lumi-
nance: when the luminance is close to 0 or 1, the dynamics of saturation decreases and the hue con-
tains information that is increasingly irrelevant. Hue physically corresponds to the dominant wave-
length of a color stimulus. Saturation is the colorfulness of an object relative to its own brightness 
and measures the color purity. Thus, the combination of hue and saturation defines a fixed area of 
skin color. The objective of the R, G and B is to privilege some colors and to neglect others.

A median filter is applied to the image in CoLIP space ( ) in order to avoid the noise 
caused by the image acquisition conditions. The proposed approach is based not only on color infor-
mation as traditional skin detection methods, but also on the depth and area of the regions detected 
as skin (▶ Figure 5).

5.3 Joints extraction
In this study, we focus on appearance-based approaches. The motion information is not used since it 
does not allow extracting simultaneously fast and slow objects. The aim is to distinguish the older 
person from the background during the completion of a clinical test. The way to perform the Sit-To-
Stand and Back-To-Sit transfers varies from person to another, depending on their functional abil-
ities. For example, it may be fast when the person drops the chair and slow when it has trouble get-
ting up. Since color is very important information to better understand and interpret a scene and an 
essential element for the person detection in the image, the patient detection algorithm is based on 
the combination of the color image, represented in the CoLIP space (an appearance-based method) 
and the depth map provided by KinectTM (see previous subsection). We chose the CoLIP framework 
that enables better segmentation after making a series of comparisons with the color spaces L*a*b* 
and HSL. We used its antagonist representation, represented by a logarithmic achromatic tone   
and two logarithmic chromatic antagonist tones denoted   (red-green opposition) and   (yellow-
blue opposition) and its Hue/saturation/lightness representation   [46]. In the experience con-
ducted, the CoLIP framework is more robust to changes in lighting.

The depth is also very important information. It reduces the person‘s search box, especially in our 
case since we know about the range of the distance between the patient and the sensor. We therefore 
use the depth map associating with each pixel of the color image, the distance between the object 
represented by this pixel and the sensor in mm. A morphological opening is applied to the depth 
map to smooth the depth values and reduce the noise due to its acquisition. The scene to be ana-
lyzed contains information about the human body, but also its environment. To keep only the 
human body information, a threshold is applied.

The patient detection algorithm comprises four main steps as follows (▶ Figure 6):
1. Subtraction of a part of the background,
2. Subjects detection,
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3. If the subjects number is 2, patient extraction,
4. Restoration of the human body missing regions.

In the first step, a threshold according to the objects depths in the image is made. The deleted part 
and the remaining part are denoted DP and RP, respectively. Then, we seek the regions belonging to 
DP and connected to RP according to these 2 criteria:

where i ∈ RP, j ∈ DP and ã is the logarithmic achromatic tone. m1 and m2 are two empirical values. 
  represents the distance between two colors ci and cj and is defined as follows:

The ÷ denotes the angular difference between two hues. Let hi and hj 2 hues ∈ [0°, 360°]. The differ-
ence between these two values [47] is defined as:

In other words, we seek the adaptive neighborhoods of each pixel x belonging to DP: with each point 
x of the image f is associated a set of adaptive neighborhoods belonging to the spatial support D ⊆ R2 
of f. A neighborhood Vh of x is a connected and homogeneous set with respect to an analysis cri-
terion h. h is a combination of the brightness and the distance between the color of x and that of a 
neighboring pixel.

In the second step, the subjects’ detection is based on the skin regions depth: an automatic thresh-
olding is applied to the remaining regions after background subtraction (▶ Figure 7). This thresh-
olding depends on the maximum skin depth (maxd) and its minimum depth (mind). Thus, the sub-
jects corresponds to the connected regions whose depth ∈ [mind − m0, maxd + m0] where m0 is a tol-
erance value. Next, another thresholding is applied depending both on the surfaces and the dimen-
sions of the objects.

The third step of the algorithm is to extract the patient as follows:
• If the number of connected objects is 2, the patient is the person to the left,
• Else (either a single person or 2 persons):

– Cut the object into 2 parts according to its gravity center,
– Calculate the distance d between the two peaks corresponding to 2 parts,
– If d < d0, there is one person, else, the patient corresponds to the left part, where d0 is a thresh-

old value.

In the fourth step, the purpose is to recover the missing body parts. It consists in finding the regions 
that are connected to the body under the following constraints:

where p is the pixel depth. h0, a0 and p0 are thresholds. Morphological filters to plug the holes, re-
move small items and classics morphological operations (dilation, erosion) are applied to obtain 
cleaned binary images that can be labeled.

After detecting the patient, we extract 3D points represented through (X, Y, Z) where X and Y are 
the point coordinates in the image and Z is its depth relative to the KinectTM sensor. The mass center 
extraction is relatively simple. It is to seek the gravity center of the body region.

The head detection method consists in extracting the region that is defined as skin and satisfies 
the following criteria:
• C1: region surface ∈ [sc- s1, sc + s2] where sc represents 9% of the total body surface and s1 and s2 

are 2 tolerance values.
• C2: region size ∈ [t1c, t2c] where t1c and t2c are 1/10 and 1/7 of the body size, respectively.
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• C3: region surface ∈ [sce – sc1, sce + sc2] where sce is the surface of the circle whose diameter = re-
gion size. sc1 and sc2 are 2 tolerance values.

The C1 criterion is based on the Wallace rule of nines that assigns 9% of the total body surface area 
for the head and neck. The C2 criterion was defined based on anthropometry. Regarding the C3 cri-
terion, based on the assumption that at any camera angle where the head contour is visible, the head 
is assumed to be nearly a full circle, we calculate the surface of the circle whose diameter is the object 
height and we compare this surface with that of the object. Thus, the head position corresponds to 
the center of the detected object.

Based on anthropometric values corresponding to the body segments lengths [48], we delineated 
the shoulder area by the interval [d1/3.5, 1.65d1/3.5] where d1 is the distance between the top of the 
head and the mass center. The shoulder center corresponds to the center of this region.

6. Experiment evaluations
We firstly evaluated the sitting position detection process at the classifier output level by computing 
the precision, the specificity, the accuracy, the recall and the classification error rate. We based on 
the results of experiments conducted by the 12 subjects. The test data and the training data were 
composed of 6504 vectors and 1611 vectors of 16 attributes, respectively. The results obtained are 
presented in the ▶ Table 1 and show the efficiency of the classifier to separate the two classes: sitting 
and non-sitting posture (error rate is 0.67%), which results subsequently, in a precision in the 
measurement of the duration of the TUG, the Sit-To-Stand and Back-To-Stand transfers.

Then, we evaluated the joints extraction method reliability by calculating the trunk angle. With 
this processing chain, 94 experiments were performed under the various conditions mentioned pre-
viously. We compared the trunk angles calculated according to the 3D skeleton provided by Ki-
nectTM to those calculated based on 3D points resulting from the proposed method. ▶ Figure 8 pres-
ents some joints extraction results. We applied this method on 84 images where trunk angles calcu-
lated using the KinectTM skeleton were wrong. The success rate of the proposed method is 96.42%.

7. Conclusions and prospects
We developed a real-time 3D TUG test movement analysis system for in-home functional abilities 
assessment in older adults, using the KinectTM sensor. This system allows to assign a motor control 
note indicating the motor frailty. However, field experiments revealed some limitations associated 
with KinectTM. Thus, we proposed a video processing chain in order to increase the robustness of 
this sensor and then that of the analysis of the various TUG phases. We developed a new method for 
detecting the sitting posture and evaluated its robustness using a realistic database. It showed good 
efficiency: the global error is 0.67% and seems acceptable to real applications of sitting posture de-
tection.

We also implemented a robust method for detecting the skin region. This is an important step of 
the extraction algorithm of the 3D points: head center, shoulder center and center of mass. These 
three joints are used to track the patient, including shoulder movements, while performing the 
TUG. Patient detection is based on the combination of an appearance-based method and the depth 
information. Evaluating this method by the trunk angle calculation, the success rate is 96.42%.

Thanks to these results, we suggest that the proposed system allows the automatic functional ca-
pacities assessment in older adults with good measurement reliability. In addition, the motor control 
note biomarker can allow a forward detection of a motor decompensation and thus to optimize the 
process of rehabilitation and to follow the evolution of a frail patient status.

As prospects, it could be interesting to test the system on a large population of elderly people at 
home. This study could show whether the system allows a reliable assessment of motor function 
under real conditions at home. The aim would be to propose this system at home to follow the pa-
tient‘s evolution after hospitalization for example. It is therefore interesting to undertake tests taking 
place over a long period so as to allow performing a longitudinal follow-up, in time, of the patient‘s 
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functional abilities. This could help to verify the ability of the system to detect changes in their func-
tional level. In addition, these experiments are needed to confirm the acceptability of the system on 
a larger scale.

On the other hand, we want to improve the automatic extraction module of the skin regions. We 
think to model and deepen the results of skin detection using other available databases. This ap-
proach can be integrated with other interesting applications such as the identification of persons and 
facial emotion recognition.

Finally, it should also establish an optimized ergonomic human-machine interface to facilitate its 
use by the elderly and the health professional. It is also possible to make the system generic by adapt-
ing it to other sensors.

Question
What is the most appropriate method for tracking patient’s movements?
A)  the background subtraction
B) methods based on optical flow calculation
C) methods based on temporal difference
D) appearance-based methods.

The correct answer is the appearance-based methods. Indeed, motion-based approaches (A, B and 
C) of people tracking consist mostly in determining which pixels are moving by the difference be-
tween successive images or the background subtraction. This evaluation leads to image segmen-
tation, generally into two regions (pixels in movement and motionless pixels). From this binary 
image, we can extract a number of geometrical characteristics allowing the recognition of the shape 
or the action. However, these approaches have problems such as they are expensive in terms of cal-
culation time, the need of a reference image or they do not allow extracting simultaneously fast and 
slow objects, while the TUG movements are variable that depend on the functional capacities of the 
patient: they can be slow or fast. In addition, the test can be carried out in different, more or less 
complex environments. For these reasons, we applied an appearance-based methods combined with 
the depth information for patient detection.

Clinical Relevance Statement
This study presents an innovative system for automatic and real-time analysis of the clinical test 
Timed Up and Go. It introduces a new method for the sitting posture detection that enables a ro-
bust analysis of the TUG. This system allows the automatic functional capacities assessment in 
older adults with good measurement reliability.
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Fig. 1 Overview of the 
experimental setup of the 
automatic analysis of the 
TUG. Abbreviations: STS: 
Sit-To-Stand; BTS: Back-
To-Sit.

Fig. 2 Global TUG movements’ analysis diagram using the proposed video processing chain.
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Fig. 3 Characteristics of the sitting 
posture.

Fig. 4 Overview of skin detection 
method.
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Fig. 5 Final results of skin detection after depth and area filtering.
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Fig. 6 Patient detection: case of two persons. (a) Initial image. (b) Background subtraction. (c) Subjects detection. 
(d) Patient detection and restoration of the missing information.

Fig. 7  
The extraction process 
of 3D points corre-
sponding to three 
joints in the body: the 
head center, the 
shoulder center and 
the center of mass.

Research Article

A Hassani et al.: 3D movement analysis algorithms for functional capacity assessment

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



467

© Schattauer 2017

Fig. 8 Detection of the shoulder center (green circle), the head center (yellow circle) and the center of mass (pink 
circle); and comparison between the angle α1 calculated according to the Kinect skeleton and α2 calculated according 
to 3D extracted points using the proposed method. (a) α1=47.47°; α2=71.02°. (b) α1=16.77°; α2=99.53°. (c) 
α1=28.31°; α2=82.02°. (d) α1=51.47°; α2=84.80°. (e) α1=51.64°; α2=84.61°. (f) α1=49.67°; α2=104.63°.

Table 1 Sitting posture detection performance (%).

Specificity

99.64

Accuracy

99.32

Precision

99.54

Recall

98.92

Error rate

0.67
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