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Summary
Background: Clinical time-series data acquired from electronic health records (EHR) are liable to 
temporal complexities such as irregular observations, missing values and time constrained at-
tributes that make the knowledge discovery process challenging. 
Objective: This paper presents a temporal rough set induced neuro-fuzzy (TRiNF) mining frame-
work that handles these complexities and builds an effective clinical decision-making system. TRiNF 
provides two functionalities namely temporal data acquisition (TDA) and temporal classification. 
Method: In TDA, a time-series forecasting model is constructed by adopting an improved double 
exponential smoothing method. The forecasting model is used in missing value imputation and 
temporal pattern extraction. The relevant attributes are selected using a temporal pattern based 
rough set approach. In temporal classification, a classification model is built with the selected at-
tributes using a temporal pattern induced neuro-fuzzy classifier. 
Result: For experimentation, this work uses two clinical time series dataset of hepatitis and throm-
bosis patients. The experimental result shows that with the proposed TRiNF framework, there is a 
significant reduction in the error rate, thereby obtaining the classification accuracy on an average 
of 92.59% for hepatitis and 91.69% for thrombosis dataset.
Conclusion: The obtained classification results prove the efficiency of the proposed framework in 
terms of its improved classification accuracy.
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Introduction
In the healthcare sector, due to the advancement of medical equipment, the state of patient health is 
monitored periodically and the results of the laboratory test are captured and maintained as elec-
tronic health records (EHR). The clinical time series data that have been obtained from these EHR 
stores enormous medical knowledge. This medical knowledge describes the temporal relationships 
among the various clinical observations. There are two ways of extracting medical knowledge: First, 
from the medical expert and Second, through knowledge discovery methods. The extracted medical 
knowledge is used to construct clinical decision-support systems to assist clinical activities such as 
diagnosis, monitoring, prognosis and drug discovery [1–3]. Though clinical data contain useful 
medical knowledge, they are also liable to temporal complexities such as irregular observations, 
missing values and time constrained attributes. Clinical time series data is irregular, since the obser-
vation of these data does not happen in regular (equal) interval of time and the number of observa-
tions done may vary for each patient.

The importance of managing time-oriented concept and knowledge discovery in medicine was 
investigated in many research studies [4–8]. Bellazzi and Zupan [2] have presented a detailed review 
about the usage and challenges of predictive data mining in the medical domain. A detailed study 
about the merits and demerits of various classification methods discussed provides the guidelines 
required for carrying research studies in clinical data mining. Although there are many existing re-
search works carried out in temporal abstraction, reasoning and mining with clinical data, the pres-
ence of temporal complexities in clinical time series data challenges the effectiveness of the know-
ledge discovery process. The aim of this paper is to build an effective classification model for 
unevenly spaced clinical time series data. This classification model is used in constructing a clinical 
decision-making system to classify the stages of the diseases, which helps the physician in decision-
making task.

1.1 Outline of the paper
This paper presents a temporal rough set induced neuro-fuzzy (TRiNF) framework that handles the 
temporal complexities and builds an effective classification model. TRiNF consists of two func-
tionalities namely temporal data acquisition (TDA) and temporal classification. TDA process aims 
at pre-processing the temporal complexities in clinical time series data. An enhanced double expo-
nential smoothing (DES) method presented by Wright [9] is adopted for constructing a time-series 
forecasting model. Missing value imputation and temporal pattern extraction are done using the 
forecasting model. Temporal pattern refers to the trend and state of the clinical attribute. The rel-
evant attributes are selected for classification using a temporal pattern based rough set approach. In 
the temporal classification process, an effective classification model is built using a temporal pattern 
induced neuro-fuzzy classifier. The fuzzy sets for the classifier are defined using the trend pattern of 
each clinical attribute. Experimental results show that the proposed system overcomes the temporal 
complexities and improves the classification accuracy.

The rest of the paper is organized as follows. Related works are discussed in Section 2. In Section 
3 Materials and Methods used in the proposed approach are discussed. Experimental results and 
discussions are presented in Section 4. Conclusion and scope for future works are presented in Sec-
tion 5.

2. Related Work
This section reviews the works carried out by the researchers in the field of temporal abstraction, 
time series classification and handling irregularly sampled data.

2.1 Temporal abstraction
Temporal abstraction aims to transform low level quantitative descriptions of time series data to 
high level qualitative descriptions. These qualitative descriptions provide a summarized interpre-
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tation of all time-stamped variables. Shahar [10] describes the temporal abstraction in clinical do-
main as the process of interpreting the clinical temporal parameters and events in time stamped data 
as states and trends. The task of temporal abstraction plays a vital role in temporal reasoning that 
aids the process of time series data analysis. Combi and Shahar [11] have presented a study about 
temporal reasoning and temporal data maintenance to develop time-oriented medical systems. In-
vestigations into these two concepts summarize the challenging research works identified in collab-
orating temporal reasoning and temporal data maintenance. Adlassnig et al. [3] have presented a de-
tailed discussion about relating temporal representation and reasoning to clinical tasks such as 
monitoring, treatment, etc. The authors examined several concepts related to temporal databases, 
handling uncertainties in clinical data and reasoning on temporal clinical data for mining. Stacey 
and Mcgregor [12] have presented a detailed survey on temporal abstraction based clinical data 
analysis. The authors have discussed several works that illustrate the development of temporal ab-
straction systems like RESUME [13], TRENDX [14], VIE-VENT [15], ECHO [16], RASTA [17] etc. 
Tu et al. [18] have proposed a temporal abstraction approach for extracting knowledge from hepati-
tis dataset collected from Chiba University hospital. The temporal abstraction process extracts the 
states and trends for each patient for a particular lab test within a specified episode. It is inferred that 
various machine-learning methods can be applied to the abstracted data in order to extract know-
ledge that can be used by physicians.

2.2 Time series classification
Time series classification is a task in temporal data mining, which aims at building a trained classifi-
cation model for time stamped data. Classification of time series data is challenging as they are liable 
to several temporal intervals and abstracted interpretations in addition to the time stamped data 
points. In general a time series data can be categorized as univariate or multivariate based on the 
presence of single variable or multiple variables respectively.

Moskovitch et al. [19] presented a novel framework called KarmaLegoSi�cation (KLS) for clas-
sifying multivariate time series data. It includes three processes, namely the symbolic representation 
of data points, identifying frequent temporal interval relation patterns (TRIP) and classification 
using the patterns generated as attributes. The experiments that were carried out using benchmark 
clinical datasets, prove the efficiency of the system in terms of its classification accuracy.

Batal et al. [20] have presented a temporal pattern mining technique named Minimal Predictive 
Temporal Patterns (MPTP), for performing classification of medical health records. MPTP algo-
rithm combines the pattern selection and frequent pattern mining. . The health records of heparin 
induced thrombocytopenia (HPT) patients, were used for experimentation. This MPTP framework 
extracts useful features for classification, which is used in developing a clinical decision-making sys-
tem. Moerchen [21] has presented an effective unsupervised algorithm to perform mining from the 
temporal concepts extracted by temporal language time series knowledge representation (TSKR) 
based on sequential pattern and itemset mining. The usage of TSKR in mining has overcome the 
limitations of Allens [22] interval relations and is demonstrated using a sport medicine dataset.

Bodyansky et al. [23] have presented a neuro-fuzzy network using the Kolmogorov’s superposi-
tion theorem named neuro-fuzzy Kolmogorov’s network (NFKN). The output layer in NFKN is 
trained using least square method (LSM) and the hidden layer is trained using the gradient descent 
method. The NFKN is highly suited for classification since it effectively handles the dimensionality 
complexity using a two level structure based on KST. However, the training process requires im-
provement in the convergence behavior and in extending the classification process to support 
multiple class labels. Petkovic et al. [24] have used an adaptive neuro-fuzzy inference system 
(ANFIS) network presented by Jang [25] to study the impact of autonomic nervous system (ANS) 
on the significant heart rate variability (HRV) parameters. For analysis, they have extracted 14 pa-
rameters of HRV signal. They have done a detailed investigation to identify the HRV parameters 
that are affected by the ANS functions. Two ECG datasets were used for the analysis, namely MIT 
Arrhythmia Database and epilepsy database. A comparative analysis between the ANFIS prediction 
method and linear regression model with respect to its regression error shows that the performance 
of ANFIS model is improved over the linear regression model.
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Mcnameea et al. [26] presented a neuro-fuzzy inference system (NFIS) to simulate heart rate 
variations. They have developed a system to predict the changes in a patient’s health conditions in 
the neurological intensive care unit (NICU). They have demonstrated the NFIS model with both ob-
served and simulated data from NICU patients. The experimental results indicate that the NFIS is 
capable of effectively predicting the changes in heart rate. Khanna et al. [27] have proposed a clinical 
decision making process using four different mining techniques, namely association rule mining, 
decision tree, neural network and neuro-fuzzy along with the temporal constraints. These ap-
proaches extract temporal rules, validate it and store the rules in the knowledge base. For experi-
mentation the authors have used two time series datasets of hepatitis and thrombosis patients [28, 
29].

The literatures [30, 31] present a mining technique used for building classification model for 
clinical data. Vijaya et al. [30] have proposed a diagnosis system using fuzzy neuro-genetic approach 
for predicting the severity of the cardiovascular diseases. The fuzzified continuous input variables 
are fed as input to the neural network. Genetic algorithm is used to train the neural network. Nahato 
et al [31] have presented a rough set indiscernibility relation method with back-propagation neural 
network (RS-BPNN) classifier to extract knowledge from clinical data. The classifier is experi-
mented with datasets obtained from the University of California at Irvine (UCI) machine learning 
repository namely Wisconsin breast cancer, hepatitis and Statlog heart disease. From the experi-
ment, it can be inferred that the RS-BPNN classifier achieves significant improvement in classifi-
cation accuracy.

2.3 Handling irregularly sampled data
The irregular data refers to the data observed at unequal time intervals. In clinical domain, data are 
often considered as irregular since different patients are observed at different time points and a pa-
tient’s health state is observed at unequal time intervals. Liu et al. [32] have presented a new hier-
archical system framework that builds a temporal model for irregularly sampled time series data to 
support clinical decision making. The authors have presented algorithms to learn temporal models 
from the data. Moreover, these models accurately predict future values. The framework uses ma-
chine learning and data mining algorithms such as linear dynamical system (LDS) and Gaussian 
process (GP) [33, 34]. GP models irregular time series data that accurately predict future values [34]. 
GP makes observations as a function of time and there is no need to mark when the observations 
were made and whether they are regularly or irregularly spaced. LDS [33] defines a state-space pro-
cess with linear transitions between two consecutive states taken at discrete time points. However, in 
most of the real world applications time series is not discrete. Hence, GP is used at lower levels over 
time windows for modeling irregular time series data. LDS then tracks the transition in the GP pro-
cess.

Two methods are used for analysis of an irregularly sampled data; namely, direct value interpo-
lation [35–39] and windows-based segmentation [40, 41]. The former assumes that all values are 
collected regularly with a pre-specified sampling frequency and converts time series with irregular 
observations to discrete time observation sequences. The later first segments time series to fixed-
sized windows. From this summary statistic is calculated. Like LDS, Autoregressive model (AR) is a 
discrete time series model used to represent a stochastic process. Prediction is carried out by taking 
an initial sequence using AR or LDS model. The correctness of the system was proved using mean 
absolute prediction error and absolute percentage error. The framework was used over a univariate 
time series data. CBC (complete blood count) lab time series data was used and 3.13% average pre-
diction accuracy improvement was achieved when it was compared against the best performing 
baseline (AR, LDS, GP and other window based segmentation method. The authors have concluded 
that their work has a limitation that it works only with univariate time series data and it was ex-
tended to support multivariate time series data.

Bahadori et al. [42] have presented a Generalized Lasso Granger (GLG) method that discovers 
the temporal dependencies from irregular time series data. The authors also have presented a review 
on various techniques used in analyzing irregular time series. The general methods available for 
analyzing irregular time series are namely the repair approach, Lomb-Scargle Periodogram(LSP), 
wavelets and Kernel methods [38, 39, 43, 44]. GLG uses kernel functions to simplify the inner prod-
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uct for irregular time series. The authors have presented a theoretical analysis and simulated experi-
ments with four synthetic datasets to prove the effectiveness of their proposed work. An application 
of the GLG method with the datasets of δ18O (a radio isotope of Oxygen) is provided to detect the 
moisture transfer patterns. GLG is likely to have lower absolute errors because it predicts the actual 
observations without additional repair error. GLG becomes more accurate when there is a decrease 
in probability of missing a data. However, the authors have concluded that GLG approach has limi-
tations with respect to the scalability in data analysis.

Ceusters et al. [45] have presented a work that generates Instance Unique Identifier to hold de-
scriptions of relevant facts and assumptions about a patient’s medical condition, his treatment and 
risk factors. The referent tracking system proposed by the authors may be used as an aid to support 
any application of information systems at the point where EHRs and other existing clinical termi-
nologies integrate together. When information systems dealing with temporal data have to be ap-
plied to cases in spatiotemporal reality with respect to patients, their disorders and the particular 
treatments, then the suggested referent tracking approach will certainly reduce the complexity of the 
system, in terms of handling ambiguities, inconsistency and noise in the data. Our work provides 
the core framework for handling clinical temporal data. If the entities in the temporal window are 
mapped to unique referents, then the computational cost of processing may increase, but the per-
formance of the system from an user-oriented perspective will certainly increase in terms of sem-
antic interoperability of computer systems, patient management, diagnosis and prognosis.

There has been many works in the literature that addresses the task of mining in time series data. 
However, these methodologies have restrictions to work with multivariate time series data observed 
at irregular intervals because they are either tuned to support regular time series data or irregular 
univariate time series data. Clinical observations are often irregular and multivariate. Hence, mining 
in such clinical time series data is a challenging area of research. Compared to the works discussed 
in the literature the proposed work is different in the following ways: First, this paper proposes the 
incorporation of time series forecasting model into the pre-processing of temporal complexities like 
irregularities, missing values and into the derivation of the temporal patterns such as trend and state 
for each clinical attribute. Since, clinical data are observed at irregular intervals, an enhanced DES 
method that supports forecasting in irregular time-series presented by Wright [9] was adopted. Sec-
ond, the derived temporal patterns for each clinical attribute are used in the attribute selection and 
classification process instead of using the actual observed value. A temporal rough set induced at-
tribute selection process is presented to identify the relevant attributes. Third, the fuzzification of in-
puts for the temporal pattern induced neuro-fuzzy classifier is done using membership functions 
derived from the temporal trend pattern of each clinical attribute.

3. Materials and Method

3.1 Dataset description
For experimentation, this work uses two time series clinical data sets of hepatitis and thrombosis pa-
tients. The datasets were released in Principles and Practice of Knowledge Discovery in Databases 
(PKDD) discovery challenge for a data mining contest [28, 29]. These datasets were collected from 
Chiba hospital, which contains clinical records stored from 1981 to 2001 and 1980 to 1999 respect-
ively. These datasets were used in our previous work [27]. Currently access to the data sets is un-
available. ▶ Table 1 shows the general dataset summary for the hepatitis and thrombosis patients.
Hepatitis data set consists of 771 patient’s laboratory test reports of Hepatitis B and C. Each patient 
has undergone 983 laboratory tests. It has to be noted that not all the laboratory tests taken are re-
lated to hepatitis. The expert guidance and the dataset descriptions given by Ohsaki [46] were con-
sidered and 29 suggested tests have been selected for experimentation with hepatitis dataset. The 
average missing value percentage in hepatitis dataset is 11. Thrombosis data set consist of laboratory 
test report pertaining to 1000 patients. Each patient has undergone 564 laboratory tests. The expert’s 
knowledge and dataset descriptions given in [47-49] were considered and 33 suggested tests have 
been identified for experimentation with thrombosis dataset. The average missing value percentage 
in thrombosis dataset is 8.
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The observations of a few patients were not recorded properly and their EHR reports contain 
more than 30% of incomplete data and hence those patients were not included for experimentation. 
Thus, for Hepatitis datasets 499 records and for thrombosis data sets 770 records only were con-
sidered in further experimentation.

The suggested lab tests of hepatitis and thrombosis patients along with their date of examination 
is considered as temporal input attribute set for demonstrating the effectiveness of the proposed 
temporal mining framework.

3.2 Methods
The framework for the proposed system is shown in the ▶ Figure 1. The major components of the
system are temporal data acquisition and temporal classification. To demonstrate the work two 
clinical time-series datasets of hepatitis and thrombosis patients were used. 

3.2.1 Temporal Data Acquisition (TDA)
In TDA process, the temporal complexities like irregular observations, missing values and time con-
strained attributes that occur in the clinical time series data are preprocessed. The clinical attribute 
corresponds to the laboratory test taken on each patient that exhibits temporal patterns namely 
trend and state. The trend is the overall growth rate of the attribute and is referred as increase, de-
crease and stable. The state represents the range of the attribute and is referred as low, high and nor-
mal. 

3.2.1.1 Missing data imputation and temporal pattern extraction
The importance of imputing the missing values in time series and its approaches is discussed by 
Little et al. and Enders [50, 51]. The following are the few traditional techniques that are commonly 
used for imputing missing value, namely mean, median imputation, K-nearest neighbor (KNN), 
hot-deck, maximum likelihood etc., [51]. The proposed TRiNF framework uses a time-series fore-
casting model to handle the missing value and to extract the temporal patterns by adopting the 
mathematical framework of an improved DES method presented by Wright [9].

The adopted method builds a forecasting model by computing the growth rate and level for each 
clinical attribute over a period of observations. The temporal patterns (trend and state) for the clini-
cal attributes are obtained from the computed growth rate and level value. The forecasted value of 
each clinical attributes observed value is calculated with their previous observed trend and state.  In 
the proposed framework, for each clinical attribute, its missing value at a time-period is imputed 
using its corresponding forecasted value. 

A brief description about the classical DES method presented by Holt [52] is discussed. The clas-
sical DES method computes the trend and level for each observation using two smoothing constant 
parameters α and β respectively. The value for α and β is chosen to be in the range of 0 and 1 and this 
value remains constant for all the computations. However, a wrong choice of this constant value af-
fects the accuracy of the forecasting results. To overcome these limitations and to extend DES for ir-
regular time series too, Wright [9] suggested that, instead of assigning a constant value to the 
smoothing constant parameter, dynamic assignment can be done based on the interval spacing’s 
among the observations. Let   be an irregular time series, where 

 is the observation time for a patient, T is the set of observation time points , A be attribute set, 
 is the value of ith attribute at time  ,   is the level for ith attribute at time  ,   is 

the growth rate for ith attribute at time  ,   and   is the smoothing constant for the 
level and trend of ith attribute at time  ,   and   is the initial smoothing constants for level and 
trend,   and   represents the initial value of level and trend. The values of   and   is initial-
ized using least square estimation. Here, attribute refers to lab test taken by a patient.

To build a time-series forecasting model for clinical time series data, the following estimations 
were made using Wright enhanced DES mathematical model 
(i) Smoothing constants: In this work for each clinical attribute the smoothing constants  ,   

 and  , are updated based on the interval days between each observation 
as defined in the equation (1), (2), (3) and (4) respectively. 

           (1)
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            (2)

where δ is the average interval spacing.

        (3)

       (4)

(ii) Level Estimate: This calculates the level value of an observed clinical attribute at a specified time 
say   using the  .

 (5) 
(iii) Growth Rate Estimate: This calculates the growth rate value of an observed clinical attribute at a 

specified time say   using the  . 
  (6)

(iv) Forecasted Value: The forecasted value of an observed clinical attribute at a specified time is cal-
culated from its previous observed level and trend.    

        (7)  
The algorithm temporal_preprocessing summarizes the steps followed in missing value impu-

tation and temporal pattern extraction.
Algorithm 1: temporal_preprocessing (Y, α, β, L, N,  ) 
Input: Y be an irregular time series, α and β are Smoothing Constants, L is the number of lab test, N 

is the number of observations,   and   is initial estimate of trend and growth rate.
Output: Level set (M), Growth rate (G), Forecasted Value (F)
1. Initialize the level and trend Smoothing Constants   and   using equation (1) and (2).
2. Initialize the   and   using least square estimation.
3. For i= 1 to L do
4. For j= 1 to N do
5. If  is missing then 
6. =  //missing value imputed for ith lab test at time  
7. End
8. Compute  and   using equation (3) and (4). 
9. Compute  using equation (5), (6) and (7).
10.End for
11.Return  
12.End for 

▶ Figure 2 shows a worked example for illustrating the steps carried out in temporal_preprocessing
algorithm with few samples of data taken from hepatitis dataset. The Exam_date column shows the 
date of observation for lab test T-BIL taken for the patient whose medical identity (MID) is 1. For 
T-BIL examination the 147 th observation was taken on 17/12/97 and was assumed missing. TDA 
process effectively imputes it using the forecasted value derived from its previous 146 th observation 
growth rate and level value calculated using the adopted improved double exponential method. The 
temporal patterns trend (T) and state (S) for each clinical attribute is obtained from the growth rate 
estimate   and level   in TDA process. Before using these patterns in the temporal attribute 
selection and classification a min-max normalization [53] is used to normalize the trend value in the 
scale of (-1 to 1).

3.2.1.2 Temporal attribute selection
Clinical time series data are susceptible to a high dimensional set of attributes which represents the 
lab test taken on each patient.

Since lab test reports taken for most of the patients include common tests which may not be rel-
evant to diagnosis of a particular disease, it is often not necessary to include all the attributes for 
classification. Therefore, in this paper, identifying and eliminating such irrelevant attributes is con-
sidered as a pre-requisite before the classification process. Rough set is a mathematical concept pro-
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posed by Pawlak [54] and is widely used in attribute selection. Dash et al. [55] presented a detailed 
study about various attribute selection techniques proposed for classification tasks. 

The importance of using rough set in attribute selection as pre-processing in knowledge dis-
covery has been illustrated in [56, 57]. Chouchoulas et al. [58] have investigated the application of 
rough set concept in dimensionality reduction. They have illustrated the popular quick reduct algo-
rithm, which identifies the minimal reduct using degree of dependency among the attributes. Pra-
dipta et al. [59] have proposed an optimized way to perform attribute selection based on 
fuzzy–rough sets by concurrently selecting and extracting the attributes using the perception of its 
significance. Rough set performs attribute selection with the information extracted from the at-
tributes in the data and there is no need for providing additional information or any domain expert 
knowledge for the attribute selection process. This is the major advantage of using rough sets in at-
tribute selection process. However, attribute selection in a time series data is a challenging task since 
the data exhibits temporal pattern (trend) and state that changes over time. In addition, if the time 
series data is observed at irregular intervals the complexity of applying the traditional attribute selec-
tion algorithms increase. So to handle these complexities, this paper presents a temporal pattern 
based rough set concept for identifying relevant attribute set from irregular time series data. This 
work performs attribute selection by incorporating the temporal patterns (trend and state) obtained 
for each clinical attribute in the rough set concepts.

The concept of rough set is described using information system and topological operations 
known as approximations. An information system is a form of data representation that is utilized by 
rough set for defining topological operations. In rough sets, an information system is represented as 
I=( ,A), where ={x1, . . . , xi, . . xj . , xn} is called as an universe which is a nonempty set of finite ob-
jects and A={ a1,a2. . . , am } is the knowledge in Universe which is the non-empty finite set of at-
tributes [54]. For clinical time-series data an object in the universe refers to a patient and knowledge 
refers to the attributes (lab test) of a patient. From the information system rough set generates indis-
cernibility relation which is defined as the relation between two or more objects with respect to the 
subset of attributes. 

The notations used in this work by the rough sets are described. Let  ={x1, . . . , xi, . . xj . , xn} is the 
universe; where xi denotes the ith object in the universe, A={ a1, . . , ak, . . , am} is the Knowledge(at-
tribute set); where ak denotes the kth attribute in attribute set ak   A , X is the subset of universe X⊆ , 

 is the subset of knowledge A, B⊆A,  denotes the trend   and state   of   for the at-
tribute ’ ak ’, Q is the decision attribute,  indiscernible relation or equivalence class, 
temporal lower approximation,  temporal positive region, K temporal degree of de-
pendency,  reduct approximation error , C is the condition attribute set, R is the reduced at-
tribute set.

To perform temporal attribute selection this paper defines the temporal pattern based rough 
equivalence class  , temporal lower approximation  , temporal B-positive region 

, temporal degree of dependency   and reduct approximation error   using 
the equations (8) to (12) respectively.
(i) Temporal pattern based rough equivalence denoted as   partitions the universe which rep-

resents an elementary portion of temporal knowledge that can be extracted. This is generated 
based on the equivalence among objects temporal patterns in the universe  . It is also denoted as 

 where X⊆ ,
tempIND   (8)
(ii) Temporal lower approximation of X denoted as  contains all elements that surely belong 

to the set X. 
   (9)

(iii) Temporal B-positive region of X  contains all the objects of ’ ’ that can be classi-
fied to equivalence classes of ’ /Q’ such that using the information in the attributes ’B’.

    (10)
(iv) Temporal degree of dependency   or  is measure that is used to identify the depen-

dencies in the attributes . It is computed using equation (11).

 (11)
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(v) Reduct approximation error   is a measure that represents how a reduced attribute (R) 
approximates the condition attribute set (C) in association to the decision attribute (Q). It is cal-
culated using equation (12) adopted from [56].

        (12)
Where C is the condition attribute, Q is the decision attribute, R is the reduced attribute set 

. If  , then R is reduct of C. The minimal level of reduct approximation error is 
proved to increase the accuracy of the classification process [56].

A temporal rough attribute selection procedure is presented in this work for selecting relevant at-
tributes, which is an extension of quick reduct algorithm [57]. In quick reduct, attributes observed 
values are used in forming equivalence class, lower approximation, positive region and degree of de-
pendency whereas in the presented approach temporal patterns derived for each attributes are used 
in these computations. Before starting the attribute selection process the normalized trend value is 
grouped under three categories. The positive value (>0) in the trend shows an increase in the trend 
denoted as “I” and negative value (<0) shows a decrease in the trend denoted as “D”, zero value indi-
cates that it is stable with respect to the patient date of test denoted as “S”. This trend representation 
is considered to be an important factor in identifying the short term and long term changes in the 
lab tests. The state represents the levelled (or mean) value for the lab test at a particular observed 
point. The normal range and descriptions for each clinical lab test (attribute) is obtained from panel 
of experts in clinical domain. Based on these, we have discretized the state into “Low” (L), “Normal” 
(N) and “High” (H). The following algorithm 2 illustrates the steps used in selecting relevant at-
tributes. 
Algorithm 2: temporal_Rough_attributeSelection 
Input: Clinical attribute set A={ a1,a2........am}, Trend (T) and State (S) for the corresponding clinical 

attributes.
Output: Reduced attribute set R.
1. Generate temporal tolerance class for the attributes in {A} using equation (8).
2. Determine lower approximation, positive region based on temporal patterns using equation (9)

and (10).
3. Compute significance of each attribute using temporal degree of dependency using equation (11).
4. Select the significant attribute a  A with high degree of dependency, include it in reduced at-

tribute set (R).
5. Remove the attribute ‘a’ from A.
6. If there are attributes from (A) to form a subset with attributes in (R) then
7. Generate a superfluous set (SS) which contains candidate attribute subset of A & R
8. Repeat step 2–6 for every attribute subset in SS.
9. End if
10.Compute the reduct approximation error using equation (12).
11.Return reduced attribute set (R) and its reduct approximation error.

▶ Table 2 shows the subset of normalized and discretized temporal pattern derived from TDA pro-
cess for the lab examination (T-BIL, GPT) of five patients selected at random. To add a clear expla-
nation to the proposed algorithm a worked example with a subset of Hepatitis data is provided.

The temporal classes generated for the attributes T-BIL, GPT and decision attribute Hepatitis are 
as follows,

 = {{1, 2}, {3}, {4}, {5}},
 = {{1, 2, 4}, {3}, {5}},
 = {{1, 2, 5}, {3, 4}}  

The lower approximations for the decision attribute Hepatitis based on derived temporal patterns 
of lab examination T-BIL and GPT is calculated as follows,

 {1, 2, 5}= {1, 2},    {3, 4} = {}
 {1, 2,5} = {1, 2 } ,   {3,4} = {}

The positive region for the obtained approximations of lab examination T-BIL and GPT is con-
structed as follows,

 =  {1, 2, 5} {3, 4} = 
{1,2}
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[Formel: ]=   {1, 2,5}   {3,4} = {1, 2}
Like-wise positive regions are calculated for all the other attributes. Finally based on positive re-

gions, the tolerance degree of dependency (K) with temporal similarity measure for lab examination 
T-BIL and GPT is computed as follows,

 = 2/5
 = 2/5

The attributes with highest dependency is selected and subset of these attributes is formed. The 
above steps are repeated and the attribute subset with high dependency is selected to be in the sig-
nificant reduced set. This process continues until there are no attributes left to form new subsets. 
The significant reduced set returns the identified relevant attributes.

3.2.2 Temporal classification
The selected attributes and its temporal trend pattern obtained from the TDA process is used in the 
temporal classification process. A temporal pattern induced neuro-fuzzy classifier which adopts a 
five-layer feed forward back propagated neuro-fuzzy network structure [25] is used to build a tem-
poral classification model. The sugeno-type ANFIS network model is considered. ▶ Figure 3 shows
the neuro-fuzzy network structure and the fuzzy membership graph for the trend pattern of clinical 
attributes derived using guassian functions. Each input node in the layer 1 corresponds to the se-
lected clinical attribute (lab test). The nodes in layers 2, 3 and 5 represent nodes that are used for 
propagating and fixing the firing strength of the rule, whereas the nodes in layer 1 and layer 2 have 
parameters to be learnt. The network is trained using back propagation learning with Levenberg-
Marquardt optimization [25, 53]. 

The fuzzy rules are generated by partitioning the input space using CART algorithm [60]. Fuzzy 
membership values are defined for each input clinical attribute using the temporal trend pattern ob-
tained for each clinical lab test in TDA process. Let V={v1,v2,…..vn} represents the set of input nodes 
in the network; where n is the number of input nodes, FS= {“Increase”, “Decrease”, “Stable”} repre-
sents the fuzzy set. The fuzzy set is defined by membership function represented as  , 

,   where   V, i=1,2..n. For example, if the input node representing for 
lab test GPT shows a gradual increase, the trend identified in TDA process is denoted by positive 
value over a period of observation. Similarly, a negative value of trend denotes a decrease and zero 
denotes that it is stable. Categorizing these transitions in trend as increase (I), decrease (D) or stable 
(S) is considered to be a trend pattern for the attribute GPT. Fuzzification layer derives the member-
ship value for each attributes trend pattern. The fuzzy rule layer forms the antecedent part of the 
fuzzy rule and the firing strength of each rule is computed using T-Norm operation [25]. The defuz-
zification layer uses a least square method for mapping the antecedent with the appropriate conse-
quent.The output is computed by taking summation.

4. Experiment Results and Discussions
The work proposed was initiated with an experiment by applying the TDA and classification 
(TRiNF) method to the hepatitis and thrombosis datasets. This section provides a detailed dis-
cussion about the experimental results and observations. The raw data was randomly divided into 
two sets train and test which contains 75% and 25% of patient’s respectively. In TDA, for each clini-
cal attribute its growth rate, level and forecasted values were computed over a period of time. The 
growth rate and level at each observed time was used to compute the forecast value. This forecasted 
value was used to impute the missing values of the corresponding attribute. To construct a forecast-
ing model, missingness is randomly incorporated for the known data points during training. The 
TDA process is allowed to forecast the value and the error rates were calculated. A subset of result 
from TDA process derived for a patient with medical identity 1 for the lab test (T-BIL) taken in the 
year 1984 is shown in the ▶ Table 3. The initial values for growth rate and level are calculated from
least square estimation. For this record the initial values for Level (Mt0 ) and growth rate (Gt0) are as-
signed with value of 0.8239 and –0.0008 respectively. The positive value in the growth rate column 

Research Article

Jane N.Y. et al.: Temporal Mining Framework for Classifying Un-Evenly Spaced Clinical 
Data

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



11

© Schattauer 2016

(Gt) of ▶ Table 3 shows an increase in the trend and negative value shows a decrease in the trend
with respect to the date of lab test of the patient. This increase or decrease in the trend indicates the 
short term and long term changes in the lab test.

Initially the smoothing constant ’α’ and ’β’ is taken to be 0.2 and 0.4 respectively and based on the 
interval spacing between the observations the smoothing factors are adjusted using the equation (1), 
(2), (3) and (4). The smoothing factor ’α’ for level and ’β’  for trend used in the smoothing factor cal-
culation as specified in equation (3) and (4) is any value chosen between 0 and 1. However, when ’α’ 
closer to 1 it denotes that more weight is given to the recent observations. If stable predictions with 
smoothed random variation are desired then a small value of ’α’ is desire. If a rapid response to a real 
change in the pattern of observations is desired, a large value of ’α’ is appropriate. Similarly, when ’β’ 
is closer to 1 the trend estimate is updated with respect to forecast error. If ’β’ is closer to 0 the trend 
estimate is updated constantly. The performance measures such as MSE (Mean Squared Error), 
MAD (Mean Absolute Deviation), error rate, MAPE (Mean Absolute Percentage Error) are derived 
[61]. A 10-fold cross validation method was used to obtain the performance of the forecasting 
model. The ▶ Figure 4 shows the value of MSE for different combinations of smoothing constant ’α’
and ’β’ for the hepatitis dataset patient record with MID 1. The changes in the values of ’α’ , ’β’ and 
the variations in MSE over different observation time points are shown in ▶ Figure 4. From this fig-
ure, it can be inferred that by adjusting its smoothing constant ’α’ and ’β’ over different observations 
there is a decrease in MSE value. A statistical paired t-test [62] was carried out to check whether 
there is a significant improvement in the performance of presented DES based imputation technique 
over other imputation techniques such as mean, median imputation, K-nearest neighbor (KNN), 
hot-deck (HD), maximum likelihood (ML) with significant level of 0.05. For hepatitis data set, the 
 -value obtained for DES based imputation over mean, median, HD and ML was found to be less 
than 0.05. For thrombosis data set, the  -value obtained for DES based imputation over mean, 
median, HD and ML was found to be less than 0.05. The  -value obtained for presented DES based 
imputation was less than 0.05, so a reject in null hypothesis is considered which means DES based 
imputation over mean, median, HD and ML provides effective performance results.

In the attribute selection process, a temporal equivalence class is generated using rough set based 
on the trend and state of each clinical attribute. The temporal degree of dependency for each at-
tribute is computed using the equation defined in (11). The attribute with the highest degree of de-
pendency is taken to be a first candidate in the selected attribute set.

Temporal degree of dependency is calculated for the generated subset and the highest degree of 
dependency is considered to be the second candidate in the selected attribute set. This process con-
tinues till all the possible attribute subset combinations with respect to the selected attribute set are 
extracted and processed. ▶ Figure 5 shows the first level degree of dependency computed for the
clinical attributes (lab tests) from the hepatitis dataset using temporal rough sets. In ▶ Figure 5, the
attribute GPT for hepatitis patients has the highest degree of dependency. Hence, GPT is considered 
to be the first candidate in the selected dimension set. Subsets are generated in the combination of 
GPT with remaining attributes.

▶ Table 4 shows the results of attribute selection. For hepatitis patients from total attributes of 29,
the temporal pattern based rough set forms most significant attribute set with 25 attributes. Finally, 
for thrombosis patients the temporal rough set forms the most significant attribute set with 32 at-
tributes from the total attributes of 33. The reduct approximation error   for hepatitis and throm-
bosis dataset is computed using the equation (12). For hepatitis dataset reduct approximation error 

 is 0.147 and for thrombosis   is 0.168. This approximation error illustrates 
how a reduced attribute set approximates the condition attribute set in association to the decision at-
tribute. The lower reduct approximation error ensures the improvement in the classification accu-
racies [56]. For evaluation, we have used different combinations of reduced attribute set using Ro-
setta toolkit [63] and found that the approximation error derived using the identified reduced at-
tribute set is minimal. This ensures that there will be no loss in the information while selecting the 
relevant attributes which improves the classifier performance.

The presented attribute selection process has selected 25 attributes out of 29 attributes from hepa-
titis dataset and 32 attributes out of 33 attributes from thrombosis dataset. The number of reduced 
attributes varies, but still it shows a significant improvement in classification results since it removes 
the irrelevant attributes before classification without compromising any loss in the information. The 
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selected significant attributes are considered in the classification process. In this work a sugeno type 
inference model with 25 input parameters for hepatitis dataset and 32 input parameters for throm-
bosis dataset is used.

For hepatitis datasets 269 fuzzy rules and for thrombosis 217 fuzzy rules were formed by parti-
tioning the input space using CART [60]. The trend pattern for every input parameter (lab_test) is 
used to form fuzzy sets and membership functions. The training parameters for neural network type 
classifiers were decided after experimenting the data with different network sizes, activation func-
tions and learning algorithms back propagation with optimization functions like Levenberg-Mar-
quardt, Gradient descent, Gradient descent with momentum and Scaled Conjugate Gradient etc., 
that was available in neural network toolbox in MATLAB 2013 [64]. From the experimental settings, 
the network structure with one hidden layer, 20 hidden nodes, sigmoid activation trained with Le-
venberg-Marquardt learning optimization function for 160 epochs gives an effective RMSE value. 
These parameters were considered for training the neural network.

The classification results were compared with classical fuzzy neural network (FN), neural net-
work (NN), Decision tree inductions C4.5, ID3, Support Vector Machine (SVM), Naïve Bayes (NB), 
K-nearest neighbour (KNN) [25, 65-67]. In this work a back-propagation algorithm was used to 
train the FN and NN. Decision tree induction is a classification technique. ID3 and C4.5 are the 
decision tree classifier algorithms taken for comparison [66, 67]. The main difference among these 
algorithms is in the splitting criteria they choose for identifying test attribute during the decision 
tree construction. The FN is the fuzzy rule based neural network classifier that trains the network 
based on the rules extracted from an expert or learning methodologies [65]. The classification re-
sults were evaluated with the following performance measures: accuracy, sensitivity, specificity, error 
rate, precision, positive likelihood ratio (PLR), Negative likelihood ratio (NLR), positive predictive 
value (PPV), negative predictive value (NPV) [53, 68]. The obtained result shows that the classifi-
cation accuracy rate is increased in TRiNF on an average of 92.59% for hepatitis and 91.69% for 
thrombosis patients. The Wilcoxon rank sum test and paired t-test presented by Wilcoxon [69] and 
Zimmerman et al. [62] was carried out with significant level of 0.05 to identify whether there was any 
significant improvement in the classification accuracy of TRiNF compared with classical FN, NN, 
C4.5 and ID3 methods. For TRiNF, the   value of less than 0.05 is obtained for hepatitis and throm-
bosis dataset, which proves that the classification result of TRiNF is improved compared to FN, NN, 
C4.5 and ID3 classification methods. Since the distribution of clinical time series data is near normal 
there is no difference between the Wilcoxon rank sum test and Paired t-test.

It has been observed that the temporal data acquisition and temporal rough set induction in the 
neuro-fuzzy construction on an average had improved the performance of the TRiNF classification 
system compared to FN, NN, C4.5, ID3, SVM, NB, KNN, KLS and NKFN. ▶ Table 5 shows the
comparisons for classification results of TRiNF, FN, NN, C4.5, ID3, SVM, NB, KNN, KLS and 
NKFN based on performance measures namely classification accuracy, sensitivity, specificity, preci-
sion and error rate for hepatitis and thrombosis patients.

In the ▶ Table 5, values in the parenthesis refer to the classification results obtained without ap-
plying proposed TDA process. The state-of -art method discussed in the literature [19, 23] uses the 
traditional classifiers to perform classification. The authors of these literatures have demonstrated 
their work with different sets of data. Hence, the classification results obtained from their experi-
mentation cannot be used directly in comparison study with the proposed work. Therefore, to prove 
the efficiency of TRiNF with those state-of-art methods we have implemented and tested them with 
our hepatitis and thrombosis data. Thus, the classification results for the related studies mentioned 
in the ▶ Table 5 were derived after testing them with the hepatitis and thrombosis dataset.

5. Conclusions
Due to the presence of temporal complexities such as irregular observations, missing values and 
large time constrained attributes in clinical time series data, knowledge discovery from these data is 
considered as a challenging area of research. In this paper, a temporal rough set induced neuro-fuzzy 
(TRiNF) classification framework that constructs a classification model for effective decision mak-
ing process is presented. An improved DES method proposed by Wright [9] is adopted to handle 
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temporal complexities and to derive temporal patterns for each clinical attribute in the time series 
datasets. The temporal patterns are used further in attribute selection and classification process. A 
temporal pattern induced rough set is proposed for performing attribute selection to identify rel-
evant attributes for building the TRiNF classification model. The trained TRiNF model effectively 
classifies the stages of disease. The observed mining results show that, the proposed TRiNF has 
handled the temporal complexities and increased the classification accuracy on an average of 
92.59% for hepatitis and 91.69% for thrombosis patients compared to the FN, NN, C4.5, ID3, SVM, 
NB, KNN, KLS and NKFN classifiers. There are many interesting aspects for future research. Since 
clinical time series data are often considered to be irregular, extracting temporal patterns from the 
clinical variables is a challenging task. Research studies can be carried out to efficiently handle the 
temporal complexities in clinical data, thereby improving the classification accuracy.

Clinical Relevance Statement
Knowledge discovery from clinical time series data becomes challenging due to its temporal com-
plexities. The proposed temporal mining framework effectively handles the complexities such as 
missing values, time constrained attributes and irregular observations to build a classification 
model. This model can assist the clinicIan in clinical decision making.
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Fig. 1 Proposed framework- TRiNF

Fig. 2 Illustration of missing data imputation and temporal pattern extraction for Hepatitis patient (MID=1)

Fig. 3 Network training process: (a) Network Structure and (b) Membership function plot for trend patterns of lab 
test (ALB, GOT, ZTT, ………GPT
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Fig. 4 Plot to depict MSE for different alpha and beta: hepatitis patient (patient_ MID=1, lab examination = T-BIL)

Fig. 5 First level degree of dependency
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Dataset

Hepatitis

Thrombosis

Total Records

1565876

57543

Expert Suggested 
Lab test

29

33

Total Patients

771

1000

Average Missing 
value (%)

11

8

Table 1 Dataset summary

Table 2 Normalized temporal patterns for subset of lab examination (T-BIL, GPT)

Patients
(random selection)

1

2

3

4

5

T-BIL

State ( )

H

H

L

N

L

Trend ( )

D

D

I

I

D

GPT

State ( )

H

H

L

H

N

Trend ( )

I

I

I

I

D

Class Hepatitis

B

B

C

C

B

Patient 
(MID)

1

1

1

1

1

1

1

1

1

1

1

1

1

Observation 
d Date

19/02/1981

26/03/1981

23/04/1981

28/05/1981

02/07/1981

29/07/1981

02/09/1981

30/09/1981

14/10/1981

28/10/1981

11/11/1981

02/12/1981

23/12/1981

Interval 
(days)

------

1

35

28

35

35

27

35

28

14

14

14

21

21

Value 
Ytn

-----

0.7

0.7

0.7

0.8

0.7

0.6

0.8

0.7

0.7

0.9

1.1

1.2

1.1

Level 
Mt

0.8239

0.7984

0.6994

0.6998

0.8000

0.7001

0.6001

0.7999

0.7005

0.6979

0.8910

1.0993

1.2020

1.1019

Trend 
Gt

-0.0008

-0.0107

-0.0028

0.0000

0.0029

-0.0029

-0.0037

0.0057

-0.0035

-0.0002

0.0138

0.0149

0.0049

-0.0048

Forecast 
Ft

-----

0.8230

0.7877

0.6966

0.6999

0.8028

0.6972

0.5964

0.8056

0.6970

0.6977

0.9048

1.1142

1.2069

% Error

17.5779

12.5355

0.4838

12.5175

14.6886

16.2046

25.4561

15.0821

0.4353

22.4736

17.7459

7.1525

9.7195

MSE

0.0151

0.0114

0.0076

0.0082

0.0087

0.0088

0.0135

0.0132

0.0117

0.0146

0.0168

0.0160

0.0156

MADt

0.1230

0.1054

0.0714

0.0786

0.0834

0.0857

0.1026

0.1029

0.0918

0.1029

0.1113

0.1092

0.1090

MAPEt

17.5779

15.0567

10.1990

10.7787

11.5606

12.3346

14.2091

14.3183

12.7757

13.7455

14.1092

13.5294

13.2364

Table 3 Results of wright updated DES method for hepatitis patient_ Mid=1, Lab Test = T-BIL, Year= 1981
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Dataset

Hepatitis

Thrombosis

Attribute Selection -Temporal Rough Sets

Relevant
Attributes

25

32

Selected Attributes

ALB, ALP, AMY, CHE, CL, CRE, D-BIL, F-A/G, F-ALB, F-CHO, 
G_GL, G-GTP, GOT, GPT, I-BIL, LAP, LDH, T-BIL, T-CHO, TP, TTT, 
UA, UN, ZTT,FG

aCL IgG , ANA, aCL IgA, KCT, LAC, CPK, GLU, WBC, RBC, HGB, 
HCT, PLT, PT, APTT, FG, A2PI, U-PRO, IGG, IGA, SC170, CRP, 
RNP, SM, SSA, SSB, CENTROMEA, DNA, RVVT, RA,, RF, IGM, 
CRE.

Reduct
Aproximation
error

0.147

0.168

Table 4 Results of temporal attribute selection
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Data-
sets

Hepatitis

Thrombo-
sis

( ) value inside the parentheses represents the classification results without TDA process
* state of art methods

Classi-
fiers

TRiNF

FN [65]

NN [53]

C4.5 [67]

ID3 [66]

SVM [53]

NB [53]

KNN [53]

KLS [19] *

NFKN [23] *

TRiNF

FN [65]

NN [53]

C4.5 [67]

ID3 [66]

SVM [53]

NB [53]

KNN [53]

KLS [19] *

NFKN [23] *

Performance measures

Accuracy

92.59
(78.36 )

88.38
(72.34)

81.76
(70.54)

80.16
(69.34)

73.55
(62.93)

79.16
(69.74)

80.96
(70.94)

76.55
(67.33)

90.78
(77.15)

91.18
(77.56)

91.69
(77.14)

87.27
(74.03)

80.65
(69.74)

79.35
(67.53)

70.26
(61.17)

81.56
(71.30)

82.73
(71.82)

79.61
(69.61)

90.13
(76.62)

89.22
(75.06)

Sensitivity

93.75
(81.45)

89.12
(74.64)

83.16
(73.33)

81.91
(71.28)

76.10
(65.85)

83.05
(70.17)

85.08
(70.51)

81.02
(66.78)

91.19
(80)

91.53
(80.34)

93.04
(81.91)

90.08
(78.60)

84.31
(74.36)

84.29
(72.55)

76.60
(69.04)

77.86
(71.90)

79.76
(73.10)

74.05
(65.95)

88.81
(73.57)

92.86
(74.05)

Specificity

91.00
(74.55)

87.38
(69.51)

79.91
(67.25)

77.88
(66.82)

70.48
(59.07)

73.53
(69.12)

75.00
(71.57)

70.10
(68.14)

90.20
(73.04)

90.69
(73.53)

89.53
(69.67)

82.77
(66.78)

73.99
(62.42)

70.71
(59.67)

59.58
(48.29)

86.00
(70.57)

86.29
(70.29)

86.29
(74.0)

91.71
(80.29)

84.86
(76.29)

Error Rate

7.41
(21.64)

11.62
(27.66)

18.24
(29.46)

19.84
(30.66)

26.45
(37.07)

20.84
(30.26)

19.04
(29.06)

23.45
(32.67)

9.22
(22.85)

8.82
(22.44)

8.31
(22.86)

12.73
(25.97)

19.35
(30.26)

20.65
(32.47)

29.74
(38.83)

18.44
(28.70)

17.27
(28.18)

20.39
(30.39)

9.87
(23.38)

10.78
(24.94)

Precision

93.43
(79.72)

90.39
(75.18)

84.64
(72.53)

82.8
(73.63)

75.55
(68.00)

81.94
(76.67)

83.11
(78.20)

79.67
(75.19)

93.08
(81.10)

93.43
(81.44)

93.43
(80.88)

89.33
(78.94)

85.51
(75.81)

83.43
(73.81)

76.13
(68.61)

86.97
(74.57)

87.47
(74.70)

86.63
(75.27)

92.79
(81.75)

88.04
(78.93)

PLR

10.41
(3.20)

7.06
(2.45)

4.14
(2.24)

3.70
(2.15)

2.58
(1.61)

3.14
(2.27)

3.40
(2.48)

2.71
(2.1)

9.3
(2.97)

9.83
(3.04)

8.88
(2.70)

5.23
(2.37)

3.24
(1.98)

2.88
(1.8)

1.9
(1.34)

5.56
(2.44)

5.82
(2.46)

5.40
(2.54)

10.72
(3.73)

6.13
(3.72)

NLR

0.07
(0.25)

0.12
(0.36)

0.21
(0.4)

0.23
(0.43)

0.34
(0.58)

0.23
(0.43)

0.20
(0.41)

0.27
(0.49)

0.1
(0.27)

0.09
(0.27)

0.08
(0.26)

0.12
(0.32)

0.21
(0.41)

0.22
(0.46)

0.39
(0.64)

0.26
(0.4)

0.23
(0.38)

0.30
(0.46)

0.12
(0.33)

0.08
(0.74)

PPV

0.93
(0.80)

0.90
(0.75)

0.85
(0.73)

0.83
(0.74)

0.76
(0.68)

0.82
(0.77)

0.83
(0.78)

0.80
(0.75)

0.93
(0.81)

0.93
(0.81)

0.93
(0.81)

0.89
(0.79)

0.86
(0.76)

0.83
(0.74)

0.76
(0.69)

0.87
(0.75)

0.87
(0.75)

0.87
(0.75)

0.93
(0.82)

0.88
(0.79)

NPV

0.91
(0.77)

0.86
(0.69)

0.78
(0.68)

0.77
(0.64)

0.71
(0.57)

0.75
(0.62)

0.78
(0.63)

0.72
(0.59)

0.88
(0.72)

0.88
(0.72)

0.89
(0.71)

0.84
(0.66)

0.72
(0.61)

0.72
(0.58)

0.6
(0.49)

0.76
(0.68)

0.78
(0.69)

0.73
(0.64)

0.87
(0.72)

0.91
(0.71)

Table 5 Comparison of the classification results
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