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Summary
Background: Important information to support healthcare quality improvement is often recorded 
in free text documents such as radiology reports.  Natural language processing (NLP) methods may 
help extract this information, but these methods have rarely been applied outside the research lab-
oratories where they were developed.
Objective: To implement and validate NLP tools to identify long bone fractures for pediatric emerg-
ency medicine quality improvement.
Methods: Using freely available statistical software packages, we implemented NLP methods to 
identify long bone fractures from radiology reports.  A sample of 1,000 radiology reports was used 
to construct three candidate classification models. A test set of 500 reports was used to validate 
the model performance. Blinded manual review of radiology reports by two independent physicians 
provided the reference standard. Each radiology report was segmented and word stem and bigram 
features were constructed.  Common English “stop words” and rare features were excluded.  We 
used 10-fold cross-validation to select optimal configuration parameters for each model.  Accuracy, 
recall, precision and the F1 score were calculated. The final model was compared to the use of diag-
nosis codes for the identification of patients with long bone fractures.
Results: There were 329 unique word stems and 344 bigrams in the training documents. A support 
vector machine classifier with Gaussian kernel performed best on the test set with accuracy=0.958, 
recall=0.969, precision=0.940, and F1 score=0.954. Optimal parameters for this model were 
cost=4 and gamma=0.005.  The three classification models that we tested all performed better than 
diagnosis codes in terms of accuracy, precision, and F1 score (diagnosis code accuracy=0.932, re-
call=0.960, precision=0.896, and F1 score=0.927).
Conclusions: NLP methods using a corpus of 1,000 training documents accurately identified acute 
long bone fractures from radiology reports. Strategic use of straightforward NLP methods, imple-
mented with freely available software, offers quality improvement teams new opportunities to 
extract information from narrative documents.
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1. Background and Significance
Electronic health records (EHRs) provide opportunities for quality improvement and research that 
were previously infeasible. Unfortunately, improvements in healthcare quality have not been consist-
ently observed after EHR implementation [1, 2]. One barrier to supporting quality improvement ef-
forts is that significant amounts of information needed for these efforts are only available in a nar-
rative format [3, 4]. Also, data entry in many coded fields, such as diagnoses, may be driven by ad-
ministrative or billing activities, which may reduce their clinical accuracy [3, 5–7]. Changes in ter-
minology over time, such as the transition from ICD-9 to ICD-10 in the United States, present addi-
tional challenges [8]. 

Radiology reports of diagnostic tests are one particularly rich source of clinical diagnostic infor-
mation. Several researchers have described methods for extracting information from these reports 
using natural language processing (NLP) [9–11]. Unfortunately, despite the potential of NLP, clinical 
researchers and quality improvement teams have not broadly adopted these methods. This may be 
because reliable NLP methods are relatively new, and also in part due to a perception that NLP 
methods are complex and should not be used without highly specialized experts specifically trained 
in these methods. For example, sophisticated NLP systems typically require user input to optimize 
text processing steps such as correction of spelling errors, analyzing document structure, splitting 
sentences, word sense disambiguation, negation detection, and part-of-speech tagging [18]. At pres-
ent, even the most sophisticated NLP systems require local adjustments or problem-specific adjust-
ments to ensure information is extracted with sufficient accuracy. Also, the lack of NLP evaluation 
studies has been cited as an important barrier to implementation [12].

The Pediatric Emergency Care Applied Research Network (PECARN) has constructed a clinical 
registry of structured and narrative data from electronic health records at seven emergency depart-
ments associated with four health systems [13, 14]. Investigators implemented a quality improve-
ment intervention addressing multiple clinical domains using audit and feedback reports derived 
from this registry. One quality improvement metric involved the pain management for children 
presenting the emergency department with acute long bone fractures. Concerns regarding the inclu-
sivity of diagnosis code data for fractures resulted in a decision to pursue NLP as a method for more 
accurately identifying children with long bone fractures. In this manuscript, we describe our ap-
proach to identifying long bone fractures in radiology reports to support a multi-site quality im-
provement effort using NLP and machine learning tools that are widely available at no cost. To 
achieve our goals, we sought to use readily available software familiar to research teams with typical 
statistical skills to ensure local experts may remain involved to maintain the system over time.

2. Objective
Our objective was to implement and prospectively validate NLP methods for identifying long bone 
fractures in radiology reports to support a pediatric emergency medicine quality improvement project.

3. Methods
We developed NLP methods to identify long bone fractures using radiology reports for children 
treated in seven pediatric emergency departments associated with 4 health systems and using two 
distinct EHR vendors. The emergency departments involved with the registry include four pediatric 
emergency departments within academic children’s hospitals and three satellite community pediat-
ric emergency departments each affiliated with one of the main emergency departments. The an-
nual census of the sites ranged from 29,735 to 92,568 patient visits with 878,349 total patients visits 
over the two-year study period. As our intent was to use these methods in a quality improvement en-
deavor that would provide audit and clinician feedback regarding long bone fracture care, we 
required an NLP algorithm that identified long bone fractures with high precision (positive predic-
tive value). Our pre-specified performance goals for the algorithm were a precision of at least 0.95 
and recall (sensitivity) of at least 0.8.
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3.1 Study population and setting

We included de-identified radiology reports for children aged 0 to 18 years receiving treatment at 
any of the seven pediatric emergency departments affiliated with the four health systems participat-
ing in the PECARN Registry between 1/1/2013 and 12/31/2014. The PECARN Registry data resides 
in a centralized database at the DCC. This registry contains data extracted from electronic health 
records and includes comprehensive emergency department disease, treatment, and outcome infor-
mation [13, 14]. All narrative documents, including radiology reports, were de-identified using an 
automated process at each study location prior to submission to the DCC [15, 16].

Our study was conducted in two phases. In the first phase we developed NLP methods using a sample 
of radiology reports collected between 1/1/2013 and 7/31/2014. In the second phase we prospectively 
validated the ongoing performance of these methods using a sample of radiology reports collected be-
tween 8/1/2014 and 12/31/2014. The accuracy of coded encounter diagnoses for identifying long bone 
fractures was also assessed in this phase (relevant ICD-9 codes are listed in ▶ Table 1). All analyses were 
performed in R version 3.1.3 [17]. The following additional R packages were required: “glmnet” (regular-
ized logistic regression), “e1071” (support vector machine), “randomForest” (random forest algorithm), 
“tm” (text mining), “SnowballC” (word stemming), and “RWeka” (multiple machine learning tools).

3.2 NLP development phase
The following sections describe our methods for selecting a training sample of radiology reports, 
pre-processing the reports to construct feature vectors, developing the NLP models, and visualizing 
the behavior of these models. Resource constraints were important considerations throughout our 
project. These constraints were particularly important in the NLP development phase. We needed to 
invest effort in manually reviewing documents to establish a training corpus of reasonable size be-
fore any additional work was possible. We chose our initial training sample (N=1,000 training docu-
ments) based on what the project team considered reasonable and feasible with a plan to re-evaluate 
based on “learning curves,” which are discussed in the subsequent sections.

Selection of radiology reports enriched in long bone fractures
We used orders for ketamine—the preferred procedural sedation agent for long bone fracture reduction at 
all study sites—as a marker to identify visits more likely to be associated with long bone fractures where 
pain management was required. From these visits, we extracted a random sample of 500 plain film radio-
graph reports. Another sample of 500 reports was extracted from visits where there was no ketamine order. 
These 1000 reports, which included all types of plain film radiographs (e.g. extremity, chest, abdomen, etc), 
were manually reviewed and independently labeled by two clinician authors (RG and EA) to identify the 
subset where an acute long bone fracture was present. The reference standard definition of a radiology re-
port positive for long bone fracture was the description of an acute long bone (clavicle, humerus, radius, 
ulna, femur, tibia, or fibula) fracture on any plain film radiograph examination. Reports related to healing 
fractures, fractures of other non-long bones, or those without mention of any long bone fractures were con-
sidered negative. When managing fractures in the pediatric emergency department setting, the treatment 
team must ultimately decide whether or not a child has a fracture. Consequently, reports with ambiguous 
phrases (e.g. “possible fracture,” and “fracture versus normal variant”) were reconciled by consensus of the 
two clinician reviewers as either positive or negative in a binary fashion based on their impression of 
whether fracture treatment was required based on the findings described in the radiology report.

Radiology report pre-processing
Our approach to converting radiology report text into a format (vector of numerical features) suit-
able as input for machine learning classifiers, involved a series of NLP steps derived from successful 
approaches described in prior manuscripts [9, 18]. We used a sequence of regular expressions—a 
text pattern matching technique—to segment each radiology report into the four sections: (1) clini-
cal history, (2) description of comparison films, (3) findings, and (4) impression. These regular ex-
pressions, along with all the code developed for this project, are included in the online appendix. 
When present, we used text from the “findings” section for the NLP analysis. Text from the sum-
mary “impression” section was used for the NLP analysis only when there was no section describing 
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the detailed study findings. We excluded text from the clinical history and comparison film from 
further analysis, because these sections frequently described previous fractures or clinical concerns 
for fracture and decreased the precision of the NLP algorithm.

Document normalization
To reduce feature scarcity and improve algorithm performance, we normalized radiology reports by 
replacing all specific anatomic references to long bones with the word stem “longbon.” We used 
regular expressions to identify terms such as “clavicle,” “clavicular”, “humerus,” “supracondylar” and 
“femur” that relate to long bones or specific regions of long bones. We were concerned that the nu-
merous descriptions of hand and wrist bones in anatomic relation to forearm long bones would de-
grade the usefulness of long bone terms as features in our models. Therefore, we also normalized 
these terms by replacing them with the word stem “handbon.” We also replaced all sequences of nu-
meric digits with the letter “N.” We then removed a limited set of English language “stop words” that 
occurred commonly in many radiology reports such as “the” and “a” [19]. All negation terms were 
retained (e.g. “no” and “not”).

Feature construction
Each document was tokenized into individual words with the RWeka library, and word stemming 
(reduction of inflection or derived words to root form) was performed with the Snowball algorithm 
[20, 21]. We included these word stems and bi-grams constructed from those stems (i.e. N-grams of 
length 2) as candidate features in our models. We created a binary feature matrix for each document 
where matrix element m,n = 1 or 0 indicated the presence or absence, respectively, of word or bi-
gram n in document m. The resulting matrix had 9,908 features, which proved to be computation-
ally intractable for fitting several of the models used in this project. We therefore excluded the 9,235 
features that were present in less than 1% of documents to reduce dimensionality and improve com-
putational efficiency during the model construction tasks. In the case of the random forest algo-
rithm, model fitting with the reduced set of features was computationally 30-fold faster, which 
greatly facilitated cross-validation tasks. The remaining features that were present in at least 1% of 
documents were saved in a dictionary for use during the testing phases.

Model construction
We evaluated the performance of three machine learning classifier models: one with a linear decision 
boundary (regularized logistic regression), and two with non-linear decision boundaries (support vec-
tor machine with a Gaussian kernel, and random forests) [22, 23]. Using the documents in the train-
ing corpus, optimal model configuration parameters (e.g. regularization constant) were selected using 
available cross-validation functions in R (“cv.glmnet” for the regularized logistic regression, 
“tune.svm” for the support vector machine, and “tuneRF” for the random forest model). To ensure the 
models were appropriately fit to the training data, learning curves were plotted for each model with 
model accuracy, (true positives + true negatives) / number documents, as the outcome. To construct 
these plots, we first stratified the training corpus by the document label determined from manual 
chart review (fracture present vs. absent). Within these strata we then partitioned the training data 
into 10 groups of equal size (100 documents each) and constructed 10 learning curves per model 
using each group as a hold out validation set for one of the learning curves. In each learning curve, 
documents from the other nine groups were sequentially added. With each addition of training docu-
ments, model coefficients were fit to the subgroup of training data, and the accuracy of the model was 
measured against both the documents used to train the model as well as the 100 held-out validation 
documents. Consistently high accuracy on the training samples in the learning curves with poor accu-
racy on the validation samples implies high variance (i.e. the model is “over-fit” to the training data). 
Poor accuracy on the training samples typically indicates bias (i.e. the model is “under-fit”). We also 
inspected the slope of the learning curves to determine whether expanding our training corpus 
beyond the initial sample of 1,000 manually reviewed documents was likely to yield higher accuracy. 

Model visualization
For the purposes of illustration and to understand potential differences between the models, we vis-
ualized the decision boundary where a document would transition from being classified as positive 
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for a long bone fracture to negative. To construct these figures we transformed the matrix of features 
using principal component analysis. Each component was normalized to have a mean of zero and 
variance of one. We then fit each of the models to the transformed data and visualized the predicted 
proportion of positive documents occurring at each point along the first two principal coordinates, 
assuming independent normal distributions for the remaining components. 

3.4 NLP testing phase
After selecting optimal features and model parameters for the three models, a new set of 500 radiology 
reports was extracted from the time period after the model was constructed (8/1/2014 to 12/31/2014). 
Similar to our approach in developing the training corpus, we ensured adequate numbers of positive 
fractures were available in the test corpus of radiology reports by selecting 250 reports from en-
counters where ketamine was used, and 250 from encounters where it was not used. The same authors 
who reviewed the training documents (RG and EA) independently reviewed the test set reports to 
identify the presence of acute long bone fractures. The Kappa statistic for inter-rater agreement was 
calculated based on the authors’ initial review, and disagreements were resolved by consensus to estab-
lish the reference standard. These new reports were pre-processed using the same steps described pre-
viously with the exception that the feature matrix was constructed using the dictionary of word stems 
and bi-grams selected for the training documents. Consequently, novel features in the test set that 
were not seen in the training set did not contribute to classification. The models were then used to 
predict whether an acute long bone fracture was documented. Recall, precision and F1 score were 
measured for each model. We used bootstrap sampling (10,000 iterations) to estimate confidence in-
tervals for each performance statistic, and to calculate the two-tailed p-value for the difference be-
tween each model’s performance and the performance of diagnosis codes.

3.5 Sensitivity analyses
We performed two sensitivity analyses to better understand the performance of the machine learn-
ing classification models. For our first sensitivity analysis, we calculated accuracy, recall, precision 
and F1 score for the classification models within each of the four healthcare systems participating in 
this project. Site level analysis (N=7 sites) was not feasible due to small numbers of radiology reports 
describing long bone fractures available in the test corpus from some of the smaller pediatric emerg-
ency departments.

As a second sensitivity analysis, we sought to determine whether the pre-processing steps were 
truly necessary. For this analysis we repeated the process of building the three machine learning 
models, but without segmenting the documents to extract the findings or impression portion of the 
document as described previously in the radiology report pre-processing section. We also omitted 
the step of replacing references to specific long bones and hand bones as described in the section on 
document normalization. We compared model performance on the test set both re-using the model 
configuration parameters established during the original model construction tasks, as well as after 
re-tuning these parameters using the features that resulted from omitting the pre-processing steps. 

4. Results
Manual review of 1,000 de-identified radiology reports in the training corpus identified 454 (45.4%) 
with acute long bone fractures. After pre-processing the text and constructing features, there were 
329 word stems and 344 bigrams in at least 1% of the radiology reports. The most frequent examples 
are shown in ▶ Table 2. For our logistic regression model (glmnet), the optimal value for the regular-
ization parameter lambda was 0.01, for the support vector machine with Gaussian kernel (SVM) the 
optimal parameters were gamma=0.005 and cost=4, and for random forests the model default pa-
rameters were optimal (ntree=500 and mtry=25, which is the square root of the number of features). 
Measures of variable importance for selected terms based on the regularized logistic regression and 
random forest models are shown in ▶ Table 3. As shown, some variables that were highly predictive
in the logistic regression model had relatively low importance in the random forest model.
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4.1 Learning curves and cross-validation accuracy

The learning curves for all three models with these parameters showed that good predictive per-
formance was achieved on the validation set with only 400 to 500 documents for training. There 
were only slight increases in accuracy as additional documents were added to the training set (▶ Fig-
ure 1). In 10-fold cross-validation using all available training documents, the models all achieved 
similar, high accuracy. Across the 10 folds of cross-validation, the glmnet model had a mean accu-
racy of 0.952 (SD= .029), SVM had a mean accuracy of 0.961 (SD=.020), and the random forest 
model had a mean accuracy of 0.949 (SD=.028).

4.2 Visualization of decision boundary
After plotting documents from the training set in principal component coordinates, a linear deci-
sion boundary was visible (▶ Figure 2). The shaded colors represent the probability that a document
mapping to a particular location in the first two principal component coordinates would be classi-
fied as a positive document by each model. In these conceptual visualizations that used a dataset 
with lower dimensionality, the decision boundaries for the linear model (glmnet), and non-linear 
models (SVM and random forests) were remarkably similar. However, it is possible that model beha-
viors may differ in a higher dimensional space.

4.3 Test set performance
The prospectively collected test set of 500 documents contained 225 (45%) positive reports describ-
ing long bone fractures. There were only three disagreements between the two reviewers 
(kappa=0.988). After discussion between the reviewers, all three reports were coded as positive by 
consensus. Using the results of our manual review as the reference standard, ICD-9 CM diagnosis 
codes for these patient records identified presence of a long bone fracture in radiology reports with 
93.2% accuracy (recall 0.96, precision 0.896, F1 score 0.927). All three NLP models achieved high 
levels of accuracy, recall, and precision on the prospectively collected test set. The performance stat-
istics of our NLP models in this analysis were not different from the performance of diagnosis codes 
at traditional levels of statistical significance (See ▶ Table 4, model performance with pre-process-
ing). Recall (sensitivity) for diagnosis codes was slightly higher than regularized logistic regression 
(recall 0.951), but was lower than the other models. Overall SVM performed best with an accuracy 
of 95.8% (recall 0.969, precision 0.94, and F1 score 0.954). Salient examples of radiology reports with 
the most positive or negative coefficients in the support vector machine are included in the online 
appendix.

4.4 Sensitivity analyses
Omitting the pre-processing steps related to document segmentation and targeted word replace-
ment for bone names yielded a small, but unexpected improvement in performance. This improve-
ment was sufficient for several of the performance statistics in this sensitivity analysis to be superior 
to the performance of diagnosis codes with two-tailed p-values < 0.05 (▶ Table 4, model perform-
ance without pre-processing). Retuning the configuration parameters for each model in this sensi-
tivity analysis had a negligible effect on classification performance (data not shown).

Performance of the three classification models as well as the accuracy of coded diagnoses was 
generally similar across the four health systems with the exception that precision was lower for all 
the models at one of the health systems (▶ Table 5). The precision of coded diagnoses at this same
health system was also lower than for the other health systems. Excluding this health system from 
the analysis improved the precision of the best performing classification model (SVM) across the re-
maining three health systems to 0.962 and the precision of diagnosis codes to 0.908. Manual review 
of the documents incorrectly labeled as positive by the classification models at the health system 
with lowest precision revealed that most of the false positive radiology reports contained the phrase 
“fracture or dislocation visualized” in the context of negation (e.g. “No pelvis or hip fracture or dislo-
cation visualized”). This phrase structure, which separates the negation term “no” from both the 
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words “fracture” and “dislocation,” did not occur in the radiology reports from any of the other 
health systems. Other reasons for false positive reports that occurred across all four health systems 
included hand bone fractures that were described in relation to forearm bones (e.g. “fracture line ex-
tending from the ulnar metaphysis of the proximal phalanx”), and the presence of findings that may 
suggest a fracture (e.g. “irregularity at the medial condylar surface of the distal humerus.”)

5. Discussion
Using widely available free NLP and machine learning software and a corpus of 1,000 training docu-
ments, we successfully constructed predictive models to identify radiology reports that describe 
acute long bone fractures with high recall (sensitivity) and precision (positive predictive value) in a 
prospective validation experiment. The classification models performed well within each of the four 
healthcare systems with the exception of one health system where the performance was somewhat 
lower. Although in our primary analyses the performance of these models was not superior to 
ICD-9 diagnosis codes at traditional levels of statistical significance, the estimated performance 
more closely achieved our pre-specified performance criteria (recall 0.8 and precision 0.95). Inter-
estingly, statistical significance was achieved for several performance characteristics in our sensitiv-
ity analysis, which involved less pre-processing of the original text. It is possible that the clinical his-
tory information that we thought would be distracting (e.g. “rule out fracture”) actually contained 
important predictors of long bone fracture (e.g. “motor vehicle accident”). Further study is required 
in larger cohorts to determine whether or not clinical history information, combined with the actual 
radiograph findings, truly yields better performance.

5.1 Effectiveness of simple NLP methods
Unlike many NLP pipelines, the approach we used was comparatively simple and did not require 
dictionaries of coded medical terms for named entity recognition, negation detection algorithms, or 
sentiment analysis. Furthermore, the learning curves for all the models we tested achieved maxi-
mum performance with fewer than 500 documents, suggesting these simple NLP approaches may 
provide value even with a smaller corpus of documents than was used in our study. In sensitivity 
analyses the classification models performed similarly well even with further simplification of our 
NLP pipeline. Specifically, document segmentation to extract the radiology “findings” section, and 
targeted word replacement related to the names of specific bones was not necessary to achieve satis-
factory performance from the classification models.

These results are consistent with recent research. For example, Jung et al. found that com-
paratively simple NLP pipelines performed well at information extraction tasks related to pharma-
covigilance [32]. Yadav et al. achieved a high degree of accuracy identifying orbital fractures using a 
decision tree model and raw text word counts as input features [9]. Sevenster et al. extracted 
measurement information with extremely high accuracy using text pattern matching techniques (re-
call and precision both > 0.99) [24]. Recently, one innovative team embedded NLP related specifi-
cally to long bone fractures in a real-time system within a single health system to improve the quality 
of decision-making by radiologists (e.g. to recommend additional imaging tests) [25]. Unlike our 
machine-learning approach, their system used pattern-matching techniques (regular expressions) 
combined with manually developed rules to extract specific anatomic location information. Our 
studies had similar accuracy, but differed in our technical approach and clinical objectives.

Nadkarni et al. hypothesized that NLP software may soon be available as a commodity [18]. To-
wards that goal, sophisticated and freely available NLP packages such as the Apache clinical Text 
Analysis and Knowledge Extraction System (cTAKES) offer excellent performance [26]. Unsuper-
vised NLP methods that support information extraction tasks without the need for large corpuses of 
manually annotated text are also becoming available [27]. Hassanpour and Langlotz have recently de-
veloped an information extraction approach that extracts the majority of clinically significant infor-
mation from radiology reports with high accuracy (recall 0.84 and precision 0.87) [28]. Unfortunately 
these packages have not yet become “commodities” and are typically used only by teams with robust 
programming talent. Given that significant amounts of important health information are recorded in 
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free text within the EHR, the availability of accessible, user-friendly NLP libraries may vastly increase 
the amount of clinical information available for quality improvement and research activities.

5.2 Maintenance considerations
Our NLP pipeline is embedded within a quality improvement project that generates monthly feed-
back reports to pediatric emergency medicine providers regarding pain management of an acute in-
jury. NLP pipelines to support projects of this nature must be simple to run repeatedly over time and 
must be easy to maintain. Formal evaluation of the maintenance process after implementation for 
our NLP system was beyond the scope of this study. However, changes in documentation style (e.g. 
as newly trained radiologists join the workforce or as documentation templates change) and termi-
nology over time—aka “concept drift”—are very likely [29, 30]. We also anticipate the arrival of new 
study sites that may require additional system modifications to achieve the high level of accuracy 
required to support quality improvement activities related to the management of long bone frac-
tures. During the progression of our study, we learned several lessons that inform maintenance tasks 
that will require ongoing vigilance by experts on the project team. These tasks included: (a) periodic 
assembly and hand labeling of additional documents enriched in radiology reports positive for long 
bone fractures; (b) manual verification that documentation segmentation continues to function cor-
rectly; (c) review our hand-curated synonyms for anatomic terms related to long bones and hand 
bones to make sure they remain appropriate; (d) periodic re-evaluation of the model output to en-
sure accuracy meets acceptable thresholds for all study sites; and (e) periodic review of diagnosis 
code accuracy to assess whether NLP is still required (i.e. in the event that diagnosis code accuracy 
improves over time, which is of particular interest at our study sites due to the recent adoption of 
ICD-10 codes).

At present the availability of NLP experts remains inadequate to directly and indefinitely support 
the ongoing maintenance of information extractions pipelines such as ours. Until such time that 
truly generalizable information extraction pipelines are available (and continuously maintained) as a 
commodity product for typical research and quality improvement teams, we feel the construction of 
a “manual of operations” to support the ongoing maintenance of our NLP pipeline is essential. We 
do not perceive the need for such ongoing maintenance as indication of a failure of the NLP meth-
ods. Instead, this is merely one of numerous components in the ongoing maintenance plan required 
during the life cycle of any project.

The notion that one can “push a button” to extract information from text is unrealistic. Conse-
quently there is a need for local experts to participate in the development and ongoing maintenance 
of NLP systems that use machine learning approaches [31]. To ensure readily available members of 
the project team could adequately maintain our system, we used NLP methods available as standard 
modules in the R statistical software. These modules are readily accessible, free of charge, and 
straightforward to use by teams that are familiar with statistical software, even by those who have 
never previously used NLP. Although we ultimately chose to implement the highest performing 
model for our quality improvement project (support vector machine with Gaussian kernel), the lo-
gistic regression model performed nearly as well. Logistic regression with regularization (penaliz-
ation of high coefficients to avoid over-fitting) is particularly appealing because of its ease of use and 
familiarity among most research and quality improvement teams. Additional research is required to 
monitor the accuracy of NLP over time and to measure the burden of maintenance.

5.3 Limitations
This NLP project was narrowly focused on extracting a single type of information – presence of an 
acute long bone fracture – from radiology reports completed in the pediatric emergency depart-
ments of four academic health systems. Our system does not extract information regarding which 
long bone was fractured. Additionally, we purposefully enriched our study cohort with documents 
describing fractures that required procedural sedation for reduction. Consequently less painful frac-
tures, such as small avulsion fractures, were likely under-represented in our corpus of study docu-
ments, which may limit our NLP pipeline’s ability to identify these fracture types. We attempted to 
mitigate this limitation by including an equal number of radiology reports from ED visits where no 
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procedural sedation occurred. Due to our use of an enriched cohort of documents the performance 
of our NLP pipeline will likely have different performance characteristics than would be observed in 
a completely random cohort. Because there are differences in radiology documentation style at 
other health systems or for different types of clinical problems, the relatively simple NLP pipeline we 
developed may perform differently in other health systems, and could be less successful at extracting 
other types of information. Even within our own experiment the observed performance of the pipe-
line varied across the four health systems. We observed a few occurrences of complex phrase struc-
tures at one particular health system, which would likely require more sophisticated algorithms (e.g. 
ConText or cTAKES) to improve accuracy beyond that of our simpler approach [26, 32]. Notably, 
the accuracy of ICD-9 diagnosis codes also varied across these health systems. Also, our study was 
not designed to test performance over time; it is possible that the performance of this algorithm 
could degrade over time as radiology documentation styles change, and it is possible in the future 
that newer diagnosis coding systems such as ICD-10 may outperform our NLP pipeline. Two clini-
cians who were not radiologists manually review the radiology reports to establish our reference 
standard. We thought this approach was most appropriate for our study because the decision to treat 
a child’s fracture is made by members of the treatment team who are not radiologists. However, it is 
possible that radiologists would have coded the reports differently.

6. Conclusions
Standard NLP methods packaged in freely available software can be used to construct a simple pipe-
line that accurately identifies acute long bone fractures from narrative radiology reports. In the con-
text of a project to improve the quality of pain management for children with long bone fractures, 
the estimated performance of NLP more closely achieved our pre-specified criteria than ICD-9 
coded diagnosis. This NLP performance was achieved without using more sophisticated tools such 
as medical dictionaries, negation detection algorithms, or sentiment analysis. Strategic use of NLP 
methods offers the potential to make use of unstructured narrative documents in quality improve-
ment and clinical research efforts.

7. Knowledge Assessment
Question 1. What phenomenon is indicated by consistently high accuracy on learning curves for 
training data coupled with poor accuracy on validation samples?
A. Feature bias
B. Data variance
C. Sample independence
D. Sample dependence

Preferred Answer: B. Data variance
Data variance describes situations where predictive models are “over-fit” to the available training 

data. In this situation the model easily fits or “memorizes” the training data and produces high accu-
racy when used to perform predictions on the training data. Unfortunately, in this situation the 
model is not adequately generalized to accurately classify new validation samples that were not pres-
ent in the training set. This occurs when the model has sufficient degrees of freedom (i.e. learnable 
parameters) to be sensitive to variance in the data that may arise because the data generating process 
contains a random component or if the sampled data set does not reflect the true population dis-
tribution. Many additional techniques are often applied to avoid over fitting including cross-vali-
dation, regularization, early stopping, pruning, and Bayesian priors.

Feature bias refers to situations where predictive models are “under-fit” to the available data and 
yields poor accuracy for both the training and validation samples. Sample dependence vs. indepen-
dence refers to situations where the class of some samples may depend on other samples, which can 
reduce the effective sample size (e.g. if members of a sample are highly correlated or similar), but 
this issue does not typically cause the pattern of accuracy described in the question.
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Question 2. Which of the following is the most likely barrier to using electronic health record (EHR) 
data in quality improvement efforts?
A. Vendors rarely provide tools to extract data
B. The amount of data in the EHR is unmanageable
C. Necessary information is often in free text format
D. Patient consent is required to use EHR data

Preferred Answer: C. Necessary information is often in free text format
There are significant amounts of codified information in electronic health records that are pro-

duced by order entry and billing activities. This codified data may be sufficient to determine some 
cohorts or outcomes related to quality improvement. However, crucial information to assure accu-
racy may reside in the free text documentation.

Although there are challenges in extracting and using electronic health record data, vendors typi-
cally provide tools or services related to data extraction as part of their product portfolio. The 
amount of data can be overwhelming, but there exist many tools and robust databases to help man-
age large EHR datasets. Although patient consent is often required for participation in research, it is 
typically not required for quality improvement activities or may not be required for research use of 
de-identified data from the electronic health record.

8. Clinical Relevance Statement
Important information to support healthcare quality improvement is often recorded in free text 
documents. Natural language processing may help extract free text information, but these methods 
have rarely been applied beyond the laboratories where they were developed. As part of an effort to 
improve the quality of pain management for children with long bone fractures, we successfully im-
plemented simple NLP methods using freely available software to identify acute long bone fractures 
from radiology reports with high accuracy.
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Fig. 1  Learning curves showing performance on 
the training set (blue) and validation set (red). Mean 
accuracy and standard deviation (shaded area) are 
shown for 10-fold cross-validation for each of the 
three models.
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Fig. 2 Illustration of decision boundaries for 
each model in principal component coordinates. 
Color shading indicates the proportion of docu-
ments projecting to each area in principal coordi-
nates that are coded as “positive for long bone 
fracture” by each model. 
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Table 1 Complete list of ICD-9 codes for long bone fractures.

ICD-9 Code

733.11

733.12

733.14 – 733.15

733.16

733.93

733.96 – 733.97

810.0 – 810.3

812.00 – 812.59

813.00 – 813.93

818.0 – 818.1

819.0 – 819.1

820.00 – 821.39

823.00 – 823.92

824.0 – 824.9

827.0 – 827.1

828.0 – 828.1

* Pathologic fractures were not the focus of the pain management quality improvement project, but were in-
cluded in our criteria for this NLP project. However, there were no occurrences of these codes in our test sample 
of radiology reports.
† We chose to include these ICD-9 codes in our criteria for this NLP project. It is possible these codes may be used 
in situations where no long bone fracture occurred. In our test sample of radiology reports there was one occur-
rence of the code 827.0, which was used to describe a fracture of the tibia and fibula.

Description

Pathologic fracture of humerus*

Pathologic fracture of radius or ulna*

Pathologic fracture of femur*

Pathologic fracture of tibia or fibula*

Stress fracture of tibia or fibula

Stress fracture of femur

Fracture of clavicle

Fracture of humerus

Fracture of radius or ulna

Ill-defined fractures of upper limb†

Multiple fractures of upper limbs†

Fracture of femur

Fracture of tibia or fibula

Fracture of ankle (malleolus)

Ill-defined fractures of lower limb†

Multiple fractures of lower limbs†

Table 2 Top ten most frequent word stems (as constructed by the Snowball algorithm) and bigrams (sequential 
pairs of word stems) in the 1000 training documents. The percent of documents with at least one occurrence of each 
term is reported by category of document (acute long bone fracture present vs. absent). Note that some of the most 
frequent terms do not specifically relate to fractures.

Word Stem

fractur

longbon*

normal

distal

tissu

soft

align

seen

left

displac

*The term “longbon” was introduced during the normalization process to replace references to specific long 
bones (e.g. tibia, fibula) or specific portions of long bones (e.g. olecranon).

Percent of Documents

Fracture

96%

98%

22%

76%

39%

39%

38%

22%

22%

43%

No Fracture

41%

14%

66%

10%

37%

37%

13%

25%

22%

4%

Bigram

soft tissu

distal longbon*

tissu swell

longbon longbon*

longbon fractur*

fractur distal

fractur fragment

pleural effus

displac distal

joint effus

Percent of Documents

Fracture

39%

54%

27%

37%

32%

28%

24%

0%

19%

8%

No Fracture

37%

3%

14%

3%

1%

1%

1%

20%

1%

8%
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Table 3 Measures of importance for the word stems and bigrams. The ten terms with the most positive and 
negative coefficients from the regularized logistic regression model are shown alongside the Gini importance measure 
from the random forest model, which approximates the permutation importance of the variable. 

Word Stem or Bigram

longbon*

fractur

close reduct

cast

distal

distal forearm

through

metaphysi

angul

buckl

left elbow

fractur disloc

normal

handbon*

injuri

no visibl

heal

acut fractur

Nth*

no fractur

proxim handbon*

*The terms “longbon,” “handbon,” and “Nth” were introduced during the text normalization process.

Coefficient (Regularized Lo-
gistic Regression)

3.00

1.79

1.44

1.06

0.89

0.79

0.72

0.72

0.66

0.62

0.58

-0.61

-0.73

-0.73

-0.77

-1.03

-1.22

-1.30

-1.31

-1.75

-2.31

Gini Importance 
(Random Forest)

61.76

18.71

0.52

7.75

32.41

0.70

3.28

1.49

16.78

1.95

0.16

1.57

11.73

2.36

0.51

2.50

0.73

0.58

0.55

3.41

1.31

Percent of 
Documents

52.1%

66.0%

2.1%

12.4%

40.1%

1.3%

8.6%

4.4%

19.4%

4.0%

1.2%

5.8%

45.9%

5.9%

1.4%

8.0%

1.8%

2.0%

1.2%

7.3%

1.7%
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Table 4 Performance statistics and 95% confidence intervals of the three models with and without pre-processing 
(document segmentation and targeted word replacement for long bones and hand bones) on the 500 test documents 
compared to the performance of ICD-9 coded emergency department diagnoses. 

ICD-9 Codes

Model performance with pre-processing

Logistic Regression

Support Vector Ma-
chine

Random Forest

Accuracy

0.932
[0.904, 0.950]

0.950
[0.926, 0.966]

0.958
[0.934, 0.972]†

0.950
[0.926, 0.964]

Recall

0.960
[0.927, 0.981]

0.951
[0.916, 0.974]

0.969
[0.938, 0.987]

0.973
[0.945, 0.991]

Precision

0.896
[0.854, 0.931]

0.939
[0.900, 0.965]†

0.940
[0.903, 0.966]†

0.920
[0.881, 0.950]

F1 Score

0.927
[0.899, 0.949]

0.945
[0.920, 0.964]

0.954
[0.931, 0.971]†

0.946
[0.922, 0.964]
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Table 5 Performance statistics of the three classification models as well as diagnosis codes within each of the four 
health systems.

Health System 1

Accuracy

Recall

Precision

F1 score

Health System 2

Accuracy

Recall

Precision

F1 score

Health System 3

Accuracy

Recall

Precision

F1 score

Health System 4

Accuracy

Recall

Precision

F1 score

Regularized Logistic 
Regression

0.967

0.962

0.962

0.962

0.967

0.985

0.941

0.962

0.936

0.910

0.968

0.938

0.923

0.951

0.867

0.907

Support 
Vector Machine

0.967

0.942

0.980

0.961

0.967

0.985

0.941

0.962

0.960

0.955

0.970

0.962

0.933

1.000

0.854

0.921

Random 
Forest

0.967

1.000

0.929

0.963

0.967

0.985

0.941

0.962

0.928

0.925

0.939

0.932

0.904

1.000

0.804

0.891

Coded 
Diagnosis

0.942

0.962

0.909

0.935

0.940

0.985

0.889

0.934

0.928

0.940

0.926

0.933

0.913

0.951

0.848

0.897
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Table 4 Continued

Model performance without pre-processing

Logistic Regression

Support Vector Ma-
chine

Random Forest

*Difference in performance compared to coded diagnoses was statistically significant with p<0.05
†Difference in performance compared to coded diagnoses approached statistical significance with p<0.1, but 
≥0.05

Accuracy

0.954
[0.930, 0.968]

0.960
[0.938, 0.974]*

0.958
[0.936, 0.972]†

Recall

0.951
[0.916, 0.974]

0.960
[0.928, 0.981]

0.978
[0.950, 0.991]

Precision

0.947
[0.911, 0.971]*

0.952
[0.916, 0.974]*

0.932
[0.892, 0.960]†

F1 Score

0.949
[0.924, 0.967]

0.956
[0.933, 0.972]*

0.954
[0.931, 0.971]†
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