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Abstract. We present the first complete axiomatisation for quantifier-free separation
logic. The logic is equipped with the standard concrete heaplet semantics and the proof
system has no external feature such as nominals/labels. It is not possible to rely completely
on proof systems for Boolean BI as the concrete semantics needs to be taken into account.
Therefore, we present the first internal Hilbert-style axiomatisation for quantifier-free
separation logic. The calculus is divided in three parts: the axiomatisation of core formulae
where Boolean combinations of core formulae capture the expressivity of the whole logic,
axioms and inference rules to simulate a bottom-up elimination of separating connectives,
and finally structural axioms and inference rules from propositional calculus and Boolean
BI with the magic wand.

1. Introduction

The virtue of axiomatising program logics. Designing a Hilbert-style axiomatisation
for your favourite logic is usually quite challenging. This does not lead necessarily to
optimal decision procedures, but the completeness proof usually provides essential insights
to better understand the logic at hand. That is why many logics related to program
verification have been axiomatised, often requiring non-trivial completeness proofs. By way
of example, there are axiomatisations for the linear-time µ-calculus [Kai95, Dou17], the
modal µ-calculus [Wal00] or for the alternating-time temporal logic ATL [GvD06], the full
computation tree logic CTL˚ [Rey01], for probabilistic extensions of µ-calculus [LMX16]
or for a coalgebraic generalisation [SV18]. Concerning the separation logics that extend
Hoare-Floyd logic to verify programs with mutable data structures (see e.g. [OP99, Rey02,
IO01, O’H12, PSO18]), a Hilbert-style axiomatisation of Boolean BI has been introduced
in [GLW06], but remained at the abstract level of Boolean BI. More recently, HyBBI [BV14],
a hybrid version of Boolean BI has been introduced in order to axiomatise various classes of
abstract separation logics; HyBBI naturally considers classes of abstract models (typically
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˚ This is the long version of the first part of [DLM20].
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preordered partial monoids) but it does not fit exactly the heaplet semantics of separation
logics. Furthermore, the addition of nominals (in the sense of hybrid modal logics, see
e.g. [ABM01]) extends substantially the object language. Other frameworks to axiomatise
classes of abstract separation logics can be found in [DP18, Doc19] and in [HCGT18],
respectively with labelled tableaux calculi and with sequent-style proof systems.

Our motivations. Since the birth of separation logics, there has been a lot of interest in the
study of decidability and computational complexity issues, see e.g. [COY01, BDL09, BIP10,
CHO`11, DGLWM17, BK18, DLM18a, Man18, Man20], and comparatively less attention
to the design of proof systems, and even less with the puristic approach that consists in
discarding any external feature such as nominals or labels in the calculi. The well-known
advantages of such an approach include an exhaustive understanding of the expressive power
of the logic and discarding the use of any external artifact referring to semantical objects.
For instance, a tableaux calculus with labels for quantifier-free separation logic is designed
in [GM10], whereas Hilbert-style calculi for abstract separation logics with nominals are
defined in [BV14]. Similarly, display calculi for bunched logics are provided in [Bro12] but
such calculi extend Gentzen-style proof systems by allowing new structural connectives,
which provides an elegant means to simulate labels. In this paper, we advocate a puristic
approach and aim at designing a Hilbert-style proof system for quantifier-free separation
logic SLp˚, ´̊ q (which includes the separating conjunction ˚ and implication ´̊ , as well as
all Boolean connectives) and more generally for other separation logics, while remaining
within the very logical language (see the second part of [DLM20]).1 Consequently, in this
work, we only focus on axiomatising separation logics, and we have no claim for practical
applications in the field of program verification with separation logics. Aiming at internal
calculi is a non-trivial task as the general frameworks for abstract separation logics make
use of labels, see e.g. [DP18, HCGT18]. We cannot rely on label-free calculi for BI, see
e.g. [Pym02, GLW06], as separation logics are usually understood as Boolean BI interpreted
on models of heap memory and therefore require calculi that cannot abstract as much as
it is the case for Boolean BI. Finally, there are many translations from separation logics
into logics or theories, see e.g. [CGH05, PWZ13, BDL12, RISK16]. However, completeness
cannot in general be inherited by sublogics as the proof system should only use the sublogic
and therefore the axiomatisation of sublogics may lead to different methods. A more detailed
discussion about the related work can be found in Section 7.

Our contribution. We propose a modular axiomatisation of quantifier-free separation
logic, starting with a complete axiomatisation of a Boolean algebra of core formulae, and
incrementally adding support for the spatial connectives: the separating conjunction and the
separating implication (a.k.a. the magic wand). The same approach could be followed for
other fragments of separation logic, as we did in the conference version of this paper [DLM20]
(see also a similar approach in [DFM19]). Thus, our approach can be considered with the
broader perspective of a generic method for axiomatising separation logics. Let us be a bit
more precise.

In Section 3, we present the first Hilbert-style proof system for SLp˚, ´̊ q that uses axiom
schemas and rules involving only formulae of this logic. We mainly introduce our approach

1We aim at defining internal calculi according to the terminology from the Workshop on External and
Internal Calculi for Non-Classical Logics, FLOC’18, Oxford, http://weic2018.loria.fr.

http://weic2018.loria.fr
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and present the notations that are used throughout the paper. Each formula of SLp˚, ´̊ q
is equivalent to a Boolean combination of core formulae: simple formulae of the logic
expressing elementary properties about the models [Loz04b]. Though core formulae (also
called test formulae) have been handy in several occasions for establishing complexity results
for separation logics, see e.g. [BDL09, DLM18a, Man18, EIP19], in the paper, these formulae
are instrumental for the axiomatisation. Indeed, the axiomatisation of SLp˚, ´̊ q is designed
starting from an axiomatisation of Boolean combinations of core formulae (introduced in
Section 4), and adding axioms and rules that allow to syntactically transform every formula of
SLp˚, ´̊ q into such Boolean combinations. This transformation is introduced in Section 5 and
in Section 6: the former section shows how to eliminate the separating conjunction ˚, whereas
the latter one treat the separating implication ´̊ . Schematically, for a valid formula ϕ, we
conclude $ ϕ from $ ϕ1 and $ ϕ1 ô ϕ, where ϕ1 is a Boolean combination of core formulae.
Our methodology leads to a calculus that is divided in three parts: (1) the axiomatisation
of Boolean combinations of core formulae, (2) axioms and inference rules to simulate a
bottom-up elimination of the separating conjunction, and (3) axioms and inference rules to
simulate a bottom-up elimination of the magic wand. Such an approach that consists in first
axiomatising a syntactic fragment of the whole logic (in our case, the core formulae), is best
described in [Dou17] (see also [Wal00, vB11, WC13, Lüc18, DFM19]). Section 7 compares
works from the literature with our contribution, either for separation logics (abstract versions,
fragments, etc.) or for knowledge logics for which the axiomatisation has been performed by
using a reduction to a strict syntactic fragment though expressively complete.

This paper is the complete version of the first part of [DLM20] dedicated to quantifier-
free separation logic SLp˚, ´̊ q. The complete version of the second part of [DLM20] dedicated
to the new separation logic SLp˚, D:ùq is too long to be included in the present document.
A technical appendix contains syntactic derivations omitted from the body of the paper.

2. Preliminaries

2.1. Quantifier-free separation logic. We present the quantifier-free separation logic
SLp˚, ´̊ q, that includes standard features such as the separating conjunction ˚, the separating
implication ´̊ and closure under Boolean connectives. Let VAR “ tx, y, . . .u be a countably
infinite set of program variables. The formulae ϕ of SLp˚, ´̊ q and its atomic formulae π are
built from the grammars below where x, y P VAR.

π ::“ x “ y | x ãÑ y | emp ϕ ::“ π |  ϕ | ϕ^ ϕ | ϕ ˚ ϕ | ϕ ´̊ ϕ.

The connectives ñ, ô and _ are defined as usually. In the heaplet semantics, the formulae
of SLp˚, ´̊ q are interpreted on memory states that are pairs ps, hq where s : VARÑ LOC is
a variable valuation (the store) from the set of program variables to a countably infinite
set of locations LOC “ t`0, `1, `2, . . .u, whereas h : LOCÑfin LOC is a partial function with
finite domain (the heap). We write domphq to denote its domain and ranphq to denote its
range. A memory cell of h is understood as a pair of locations p`, `1q such that ` P domphq
and `1 “ hp`q. As usual, the heaps h1 and h2 are said to be disjoint , written h17h2, if
domph1q X domph2q “ H; when this holds, we write h1`h2 to denote the heap corresponding
to the disjoint union of the graphs of h1 and h2, hence domph1 ` h2q “ domph1q Z domph2q.
When the domains of h1 and h2 are not disjoint, the composition h1 ` h2 is not defined.
Moreover, we write h1 Ď h to denote that domph1q Ď domphq and for all locations ` P domph1q,
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we have h1p`q “ hp`q. If h1 Ď h then h1 is said to be a subheap of h. The satisfaction relation |ù
is defined as follows (we omit standard clauses for the Boolean connectives  and ^):

ps, hq |ù x “ y
def
ô spxq “ spyq,

ps, hq |ù emp
def
ô domphq “ H,

ps, hq |ù xãÑy
def
ô spxq P domphq and hpspxqq “ spyq,

ps, hq |ù ϕ1 ˚ ϕ2
def
ô there are h1, h2 such that h17h2, ph1 ` h2q “ h,

ps, h1q |ù ϕ1 and ps, h2q |ù ϕ2,

ps, hq |ù ϕ1 ´̊ ϕ2
def
ô for all h1 such that h17h and ps, h1q |ù ϕ1,

we have ps, h` h1q |ù ϕ2.

We denote with K the contradiction x ‰ x, and with J its negation  K. The septraction

operator f́ (kind of dual of ´̊ ), defined by ϕ f́ψ
def
“  pϕ ´̊  ψq, has the following semantics:

ps, hq |ù ϕ f́ ψ
def
ô there is a heap h1 such that h7h1, ps, h1q |ù ϕ, and ps, h` h1q |ù ψ.

We adopt the standard precedence between classical connectives, and extend it for the
connectives of separation logic as follows: t u ą t^,_, ˚u ą tñ, ´̊ , f́u ą tôu. Notice that
the separating conjunction ˚ has a higher precedence than the separating implication ´̊ ,
and it has the same precedence as the (classical) conjunction ^. For instance, ϕ ˚ ψ ñ χ
and  ϕ ´̊ ψ ˚ ψ stand for pϕ ˚ ψq ñ χ and p ϕq ´̊ pψ ˚ ψq, respectively.

A formula ϕ is valid if ps, hq |ù ϕ for all memory states ps, hq (and we write |ù ϕ). For
a complete description of separation logic, see e.g. [Rey02]. Given a set of formulae Γ, we
write Γ |ù ϕ (semantical entailment) whenever ps, hq |ù ϕ holds for every memory state
ps, hq satisfying every formula in Γ.

It is worth noting that quantifier-free SLp˚, ´̊ q axiomatised in the paper admits a
PSpace-complete validity problem, see e.g. [COY01], and should not be confused with
propositional separation logic with the stack-heap models shown undecidable in [BK14,
Corollary 5.1] (see also [DD15, Section 4]), in which there are propositional variables
interpreted by sets of memory states.

2.2. Core formulae. We introduce the following well-known shortcuts, that play an im-
portant role in the sequel. Let x P VAR and β P N.

Shortcut: Definition: Semantics:

allocpxq
def
“ px ãÑ xq´̊ K ps, hq |ù allocpxq iff spxq P domphq

size ě β
def
“

$

’

&

’

%

J if β “ 0

 emp if β “ 1

 emp ˚ size ě β´1 otherwise

ps, hq |ù size ě β iff cardpdomphqq ě β

We use size“β as a shorthand for sizeěβ^ sizeěβ`1. We also write cardpXq to denote
the cardinality of the set X.

The core formulae are expressions of the form x “ y, allocpxq, x ãÑ y and size ě β,
where x, y P VAR and β P N. As we can see, the core formulae are simple SLp˚, ´̊ q formulae.
It is well-known, see e.g. [Yan01, Loz04a], that these formulae capture essential properties
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of the memory states. In particular, every formula of SLp˚, ´̊ q is logically equivalent to a
Boolean combination of core formulae [Loz04a].

As a simple but crucial insight, since the core formulae are formulae of SLp˚, ´̊ q, we
can freely use them to help us defining the proof system for SLp˚, ´̊ q, and preventing us
from going outside the original language. Having this in mind, the resulting proof system
is Hilbert-style and completely internal (the formal definition of these types of systems is
recalled below).

Given X Ďfin VAR and α P N, we define CorepX, αq as the set

tx “ y, allocpxq, x ãÑ y, size ě β | x, y P X, β P r0, αsu.

BoolpCorepX, αqq is defined as the set of Boolean combinations of formulae from CorepX, αq,
whereas ConjpCorepX, αqq is the set of conjunctions of literals built upon CorepX, αq. As
usual, a literal is understood as a core formula or its negation. Let ϕ “ L1 ^ ¨ ¨ ¨ ^ Ln P
ConjpCorepX, αqq be a conjunction of literals L1, . . . , Ln. We write Ltpϕq for tL1, . . . , Lnu.
In forthcoming developments, we are interested in the maximum β (if any) of formulae
of the form size ě β occurring positively in a conjunction of literals, if any. For this
reason, we write maxsizepϕq for maxptβ P N | size ě β P Ltpϕqu Y t0uq. For instance, given
ϕ “ allocpxq ^ size ě 2^ size ě 4, we have Ltpϕq “ tallocpxq, size ě 2, size ě 4u,
and maxsizepϕq “ 2. Given two conjunctions of literals ϕ P ConjpCorepX, α1qq and ψ P
ConjpCorepX, α2qq, ψ ĎLt ϕ stands for Ltpψq Ď Ltpϕq. Finally, we introduce a few more
shortcuts and we write

‚ χ ĎLt tϕ | ψu for “χ ĎLt ϕ or χ ĎLt ψ”,

‚ tϕ | ψu ĎLt χ for “ϕ ĎLt χ or ψ ĎLt χ”.

‚ χ ĎLt tϕ ; ψu for “χ ĎLt ϕ and χ ĎLt ψ”,

Given a finite set of formulae Γ “ tϕ1, . . . , ϕnu, we write
Ź

Γ as a shorthand for ϕ1^¨ ¨ ¨^ϕn.
Similarly, ˚Γ stands for ϕ1 ˚ . . . ˚ ϕn. It is important to notice that, similarly to the
classical conjunction, the separating conjunction ˚ is associative and commutative (see the
axioms (A˚

8) and (A˚
7) in Figure 1), and therefore the semantics of ˚Γ is uniquely defined,

regardless of the choice of ordering for ϕ1, . . . , ϕn.

2.3. Hilbert-style proof systems. A Hilbert-style proof system H is defined as a set
of tuples ppΦ1, . . . ,Φnq,Ψq with n ě 0, where Φ1, . . . ,Φn,Ψ are formula schemata (a.k.a
axiom schemata). When n ě 1, ppΦ1, . . . ,Φnq,Ψq is called an inference rule, otherwise it
is an axiom. As usual, formula schemata generalise the notion of formulae by allowing
metavariables for formulae (typically ϕ,ψ, χ), for program variables (typically x, y, z) or for
any type of syntactic objects in formulae, depending on the context. The set of formulae
derivable from H is the least set S such that for all ppΦ1, . . . ,Φnq,Ψq P H and for all
substitutions σ, if Φ1σ, . . . ,Φnσ P S then Ψσ P S. We write $H ϕ if ϕ is derivable from H.
A proof system H is sound if all derivable formulae are valid. H is complete if all valid
formulae are derivable. We say that H is adequate whenever it is both sound and complete.
Lastly, H is strongly complete whenever for all sets of formulae Γ and formulae ϕ, we have
Γ |ù ϕ (semantical entailment) if and only if $HYΓ ϕ.

Interestingly enough, there is no strongly complete proof system for SLp˚, ´̊ q, as strong
completeness implies compactness and separation logic is not compact. Indeed, the set
tsize ě β | β P Nu is unsatisfiable, as heaps have finite domains, but all finite subsets of
it are satisfiable. Even for the weaker notion of completeness, deriving an Hilbert-style
axiomatisation for SLp˚, ´̊ q remains challenging. Indeed, the satisfiability problem for
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(AC
1) x “ x

(AC
2) ϕ^ x “ yñ ϕryÐxs

(AC
3) x ãÑ yñ allocpxq

(AC
4) x ãÑ y^ x ãÑ zñ y “ z

(A˚7) pϕ ˚ ψq ô pψ ˚ ϕq

(A˚8) pϕ ˚ ψq ˚ χô ϕ ˚ pψ ˚ χq

(A˚11) ϕô ϕ ˚ emp

(A˚13) allocpxq ˚ allocpxq ô K

(A˚14) e˚J ñ e đre P t emp, x “ y, x ‰ y, x ãÑ yus

(A˚15)  allocpxq ˚  allocpxq ñ  allocpxq

(A˚16) pallocpxq ^  x ãÑ yq ˚ J ñ  x ãÑ y

(A˚17) allocpxq ñ pallocpxq ^ size “ 1q ˚ J

(A˚18)  empñ size “ 1 ˚ J

(A˚19)  sizeěβ1 ˚ sizeěβ2 ñ sizeěβ1`β2
.́ 1

(A˚20) allocpxq ^ allocpyq ^ x ‰ yñ size ě 2

(A´̊21) psize “ 1^
Ź

xPX allocpxqq f́ J đrX Ďfin VARs

(A´̊22)  allocpxq ñ px ãÑ y^ size “ 1 f́ Jq

(A´̊23)  allocpxq ñ ppallocpxq ^ size “ 1^
Ź

yPX x ãÑ yq f́ Jq đrX Ďfin VARs

˚-Intro:
ϕñ χ

ϕ ˚ ψ ñ χ ˚ ψ
˚-Adj:

ϕ ˚ ψ ñ χ
ϕñ pψ ´̊ χq

´̊ -Adj:
ϕñ pψ ´̊ χq
ϕ ˚ ψ ñ χ

(axioms and modus ponens from propositional calculus are omitted)

Figure 1: The proof system HCp˚, ´̊ q.

SLp˚, ´̊ q reduces to its validity problem, making SLp˚, ´̊ q an unusual logic from a proof-
theoretical point of view. Let us develop a bit further this point.

Let ϕ be a formula built over program variables in X Ďfin VAR, and let « be an

equivalence relation on X. The formula ψ«
def
“ pemp^

Ź

x«y x “ y^
Ź

xffy x ‰ yq ñ pϕ f́Jq

can be shown to be valid iff for every store s agreeing on «, there is a heap h such that
ps, hq |ù ϕ. It is known that for all stores s, s1 agreeing on «, and every heap h, the memory
states ps, hq and ps1, hq satisfy the same set of formulae having variables from X. Since the
antecedent of ψ« is satisfiable, we conclude that ψ« is valid iff there are a store s agreeing on
« and a heap h such that ps, hq |ù ϕ. To check whether ϕ is satisfiable, it is sufficient to find
an equivalence relation « on X such that ψ« is valid. As the number of equivalence relations
on X is finite, we obtain a Turing reduction from satisfiability to validity. Consequently, it
is not possible to define sound and complete axiom systems for any extension of SLp˚, ´̊ q
admitting an undecidable validity problem (as long as there is a reduction from satisfiability
to validity, as above). A good example is the logic SLp˚, ´̊ , lsq [DLM18b] (extension of
SLp˚, ´̊ q with the well-known list-segment predicate ls); see also the first-order separation
logic in [BDL12]. Indeed, to obtain a sound and complete axiom system, the validity problem
has to be recursively enumerable (r.e.). However, this would imply that the satisfiability
problem is also r.e.. As a formula ϕ is not valid if and only if  ϕ is satisfiable, we then
conclude that the set of valid formulae is recursive, hence decidable, a contradiction.

3. Hilbert-style proof system for SLp˚, ´̊ q

In Figure 1, we present the proof system HCp˚, ´̊ q that shall be shown to be sound and
complete for quantifier-free separation logic SLp˚, ´̊ q. HCp˚, ´̊ q and all the subsequent
fragments of HCp˚, ´̊ q contain the axiom schemata and modus ponens for the propositional
calculus (we omit these rules in the presentation). In the axioms (A˚

14), (A´̊
21) and (A´̊

23),
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the notation ϕ đrBs refers to the axiom schema ϕ assuming that the Boolean condition B
holds. We highlight the fact that, in these three axioms, B is a simple syntactical condition.
In the axiom (A˚

19), a .́ b, where a, b P N, stands for maxp0, a´ bq.
Though the full proof system HCp˚, ´̊ q is presented quite early in the paper, its final

design remains the outcome of a refined analysis on principles behind SLp˚, ´̊ q tautologies.
Fortunately, we do not start from scratch as the calculus must contain the axioms and rules
from the Hilbert-style proof system for Boolean BI [GLW06]. At first glance the system
HCp˚, ´̊ q may seem quite arbitrary, but the role of the different axioms shall become clearer
during the paper. In designing the system, we tried to define axioms that are as simple as
possible, which helps highlighting the most fundamental properties of SLp˚, ´̊ q. Note that
we have not formally proved that our proof system HCp˚, ´̊ q is minimal (though we have
tried our best to have a small amount of small axioms). Such an investigation would be out
of the scope of the paper, mainly for lack of space. The standard way to proceed would be
to design models different from memory states and to establish that all axioms but one are
valid (which would prove that this axiom is needed when all the other axioms are present).

We insist: the core formulae in HCp˚, ´̊ q should be understood as mere abbreviations,
which makes all the axioms in Figure 1 belong to the original language of SLp˚, ´̊ q. In order
to show the completeness of HCp˚, ´̊ q, we first establish the completeness for subsystems
of HCp˚, ´̊ q, with respect to syntactical fragments of SLp˚, ´̊ q. In particular, we consider

‚ HC: an adequate proof system for the propositional logic of core formulae (see Figure 4),
‚ HCp˚q: an extension of HC that is adequate for the logic SLp˚, allocq, i.e. the logic

obtained from SLp˚, ´̊ q by removing the separating implication ´̊ at the price of adding
the formula allocpxq (see Figure 5).

‚ The full HCp˚, ´̊ q, which can be seen as an extension of HCp˚q that allows to reason about
the separating implication (see Figure 7).

For the completeness of HC and HCp˚q, we add intermediate axioms that reveal to be
useless when the full proof system HCp˚, ´̊ q is considered, as they become derivable. By
convention, the axioms whose name is of the form A?

i are axioms that remain in HCp˚, ´̊ q
(see Figure 1) whereas those named I?

i are intermediate axioms that are instrumental for
the proof of completeness of a subsystem among HC and HCp˚q (and therefore none of
them occur in Figure 1). The numbering of the axioms in Figure 1 is not consecutive, as
intermediate axioms shall be placed within the holes. It is worth noting that the axiom (A˚

13)
had an intermediate status in [DLM20] but we realised that actually this axiom does need
to be considered as a first-class axiom in the proof system HCp˚, ´̊ q.

The choice of introducing HC and HCp˚q naturally follows from the main steps required
for the completeness of HCp˚, ´̊ q. In particular, the main “task” of HCp˚q is to produce a
bottom-up elimination of the separating conjunction ˚, at the price of introducing Boolean
combinations of core formulae, which can be proved valid thanks to HC. Similarly, the
axioms and rules added to HCp˚q to define HCp˚, ´̊ q are dedicated to perform a bottom-up
elimination of the separating implication. A merit of this methodology is that only the
completeness of the calculus HC is proved using the standard countermodel method. The
additional steps required to prove the completeness of HCp˚q and HCp˚, ´̊ q are (almost)
completely syntactical. For instance, to show the completeness of HCp˚q, we consider arbitrary
Boolean combinations of core formulae ϕ and ψ, and exhibiting a Boolean combination of
core formulae χ such that ϕ ˚ψ ô χ is valid. We show that this validity can be syntactically



17:8 S. Demri, E. Lozes, and A. Mansutti Vol. 17:3

proved within HCp˚q, and then rely on the fact that HC is complete for Boolean combination
of core formulae to deduce that HCp˚q is complete for SLp˚, allocq.

Along the paper, we shall have the opportunity to explain the intuition between the
axioms and rules. Below, we provide a few hints. The axioms (AC

1)– (AC
4) deal with the core

formulae and are quite immediate to grasp. More interestingly, whereas the axioms (A˚
7)–

(A˚
11) are quite general about separating conjunction and are inherited from Boolean BI,

the axioms (A˚
14)–(A˚

20) state how separating conjunction behaves with the core formulae.
As for Boolean combinations of core formulae involved in the axioms (AC

1)– (AC
4), these

axioms (A˚
14)–(A˚

20) are also not difficult to understand. Besides, the inference rules ˚-Adj
and ´̊ -Adj simply reflect that separating conjunction and separating implication are adjoint
operators, and are taken from Boolean BI, see e.g. [GLW06]. The axioms (A´̊

21)–(A´̊
23)

dedicated to the interaction between the separating implication and core formulae are
expressed with the help of the septraction operator f́ to ease the understanding but as
well-known, septraction is defined with the help of the separating implication and Boolean
negation. For instance, the axiom (A´̊

22) states that it is always possible to add some
one-memory-cell heap h1 to some heap h while none of the variables from a finite set X is
allocated in h1. This natural property in our framework would not hold in general if LOC
were not infinite. Obviously, the septraction f́ is also understood as an abbreviation.

As a sanity check, we show that the proof system HCp˚, ´̊ q is sound with respect to
SLp˚, ´̊ q. The proof does not pose any specific difficulty (as usual with most soundness
proofs) but this is the opportunity for the reader to further get familiar with the axioms
and rules from HCp˚, ´̊ q.

Lemma 3.1. HCp˚, ´̊ q is sound.

The validity of the axioms (AC
1), (AC

2), (AC
3) and (AC

4) is straightforward. Moreover, the
validity of the axioms (A˚

7), (A˚
8) and (A˚

11) and the three inference rules (˚-Intro, ˚-Adj
and ´̊ -Adj) is inherited from Boolean BI (see [BV14] and [GLW06, Section 2]). Below, we
show the validity of the remaining axioms, thus proving Lemma 3.1.

Validity of the axiom (A˚
13). Let us show that pallocpxq˚allocpxqq is not satisfiable. Ad ab-

surdum, suppose there is a memory state ps, hq such that ps, hq |ù pallocpxq ˚ allocpxqq.
By definition of |ù, there are h1, h2 such that h1Kh2, ph1 ` h2q “ h, ps, h1q |ù allocpxq

and ps, h2q |ù allocpxq. Thus, spxq P domph1q and spxq P domph2q, which leads to a
contradiction with h1Kh2.

Validity of the axiom (A˚
14). The proof of the validity of every instantiation of (A˚

14) is
similar (and quite easy), therefore we show just the case with x ãÑ y ˚ J ñ x ãÑ y. Suppose
ps, hq |ù x ãÑ y ˚ J. Then, there is a subheap h1 Ď h such that ps, h1q |ù x ãÑ y. Hence,
h1pspxqq “ spyq. As h1 Ď h, we obtain hpspxqq “ spyq, which implies ps, hq |ù x ãÑ y.

Validity of the axiom (A˚
15). Suppose ps, hq |ù  allocpxq˚ allocpxq. Then, there are two

disjoint heaps h1, h2 such that h “ h1 ` h2, ps, h1q |ù  allocpxq and ps, h2q |ù  allocpxq.
Then spxq R domph1q and spxq R domph2q. Since h “ h1`h2, domphq “ domph1qYdomph2q

and therefore spxq R domphq. We conclude that ps, hq |ù  allocpxq.

Validity of the axiom (A˚
16). Suppose ps, hq |ù pallocpxq ^  x ãÑ yq ˚ J. Then there is

a subheap h1 Ď h such that ps, h1q |ù allocpxq ^  x ãÑ y. Hence, spxq P domph1q and
h1pspxqq ‰ spyq. As h1 Ď h, we obtain spxq P domphq and hpspxqq ‰ spyq which by definition
implies ps, hq |ù  x ãÑ y.
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1 empñ  size ě 1 (  I) and def. of size ě 1

2 allocpxq ^ size “ 1 ñ  size ě 2 (^Er)

3 emp ˚ pallocpxq ^ size “ 1q ñ  size ě 1 ˚  size ě 2 ˚-Ilr, 1, 2

4  size ě 1 ˚  size ě 2 ñ  size ě 2 (A˚
19)

5 emp ˚ pallocpxq ^ size “ 1q ñ  size ě 2 ñ-Tr, 3, 4

6 empñ
`

allocpxq ^ size “ 1 ´̊  size ě 2
˘

˚-Adj, 5

Figure 2: A proof of empñ
`

pallocpxq ^ size “ 1q ´̊  size ě 2
˘

.

Validity of the axiom (A˚
17). Suppose ps, hq |ù allocpxq. Let h1

def
“ tspxq ÞÑ hpspxqqu

As spxq P domphq, h1 Ď h and ps, h1q |ù allocpxq ^ size “ 1. We define h2 as the unique
heap such that h2`h1 “ h. As ps, h2q |ù J, we have ps, hq |ù pallocpxq^size “ 1q˚J.

The proof of axiom (A˚
18) is similar to the one of (A˚

17), and hence omitted herein.

Validity of the axiom (A˚
19). Suppose ps, hq |ù  size ě β1 ˚ size ě β2, where β1, β2 ě 0.

Since  size ě 0 is not satisfiable, this implies that necessarily β1, β2 ě 1. Hence,
the axiom (A˚

19) is trivially valid when β1 “ 0 or β2 “ 0. In the sequel, β1, β2 ě 1.
Then, there are heaps h1, h2 such that h17h2, h1 ` h2 “ h, ps, h1q |ù  size ě β1 and
ps, h2q |ù  size ě β2. By definition, cardpdomph1qq ď β1 ´ 1 and cardpdomph2qq ď β2 ´ 1.
Since domphq “ domph1q Y domph2q, we obtain cardpdomphqq ď β1 ` β2 ´ 2, which implies
ps, hq |ù  size ě β1 ` β2

.́ 1.

Validity of the axiom (A˚
20). Suppose ps, hq |ù allocpxq ^ allocpyq ^ x ‰ y. By definition,

spxq ‰ spyq, and spxq, spyq P domphq. Hence, cardpdomphqq ě 2, and ps, hq |ù size ě 2.

Validity of the axiom (A´̊
21). Let X Ďfin VAR and ps, hq be a memory state. Let h1 be a heap

of size one such that h1p`q “ ` for some ` R domphq Y spXq. We write spXq to denote the set
tspxq | x P Xu. Trivially ps, h1q |ù size “ 1^

Ź

xPX allocpxq. Moreover h17h holds, hence
h1`h2 is defined and ps, h`h1q |ù J. Then, ps, hq |ù psize “ 1^

Ź

xPX allocpxqq f́J.

Validity of the axiom (A´̊
22). Suppose ps, hq |ù  allocpxq. Let h1 be the heap of size

one such that h1pspxqq “ spyq. Trivially, ps, h1q |ù x ãÑ y ^ size “ 1. Moreover, as
spxq R domphq, h17h holds. Therefore, h1 ` h is defined, and ps, h ` h1q |ù J. Then,
ps, hq |ù px ãÑ y^ size “ 1q f́ J.

Validity of the axiom (A´̊
23). Suppose ps, hq |ù  allocpxq. Let X Ďfin VAR and h1

def
“

tspxq ÞÑ `u, where ` R spXq. Hence, ps, h1q |ù allocpxq ^ size “ 1 ^
Ź

yPX x ãÑ y. Since

spxq R domphq, h17h. Therefore, the heap h ` h1 is defined and ps, h ` h1q |ù J. Then,
ps, hq |ù pallocpxq ^ size “ 1^

Ź

yPX x ãÑ yq f́ J.

Example 3.2. To further familiarise with the axioms and the rules of HCp˚, ´̊ q, in Figure 2,
we present a proof of emp ñ

`

allocpxq ^ size “ 1 ´̊  size ě 2
˘

. In the proof, a line
“j | χ A, i1, . . . , ik” states that χ is a theorem denoted by the index j and derivable by the
axiom or the rule A. If A is a rule, the indices i1, . . . , ik ă j denote the theorems used as
premises in order to derive χ. When a formula is obtained as a propositional tautology or
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by propositional reasoning from other formulae, we may write “PC” (standing for short
‘Propositional Calculus’). Similarly, we provide any useful piece of information justifying the
derivation, such as “Ind. hypothesis”, “See . . . ” or “Previously derived”. In the example, we
use the rule ˚-Adj, which together with the rule ´̊ -Adj states that the connectives ˚ and
´̊ are adjoint operators, as well as the axiom (A˚

19), stating that cardpdomphqq ď β1`β2

holds whenever a heap h can be split into two subheaps whose domains have less than β1`1
and β2`1 elements, respectively. We also use the following theorems and rules:

(^Er) ψ ^ ϕñ ϕ (  I) ϕñ   ϕ ñ-Tr:
ϕñ χ χñ ψ

ϕñ ψ
˚-Ilr:

ϕñ ϕ1 ψ ñ ψ1

ϕ ˚ ψ ñ ϕ1 ˚ ψ1

The first two theorems and the first rule are derivable by pure propositional reasoning. By
way of example, we show that the inference rule ˚-Ilr is admissible.

1 ϕñ ϕ1 Hypothesis

2 ψ ñ ψ1 Hypothesis

3 ϕ ˚ ψ ñ ϕ1 ˚ ψ ˚-Intro, 1

4 ψ ˚ ϕ1 ñ ψ1 ˚ ϕ1 ˚-Intro, 2

5 ϕ1 ˚ ψ ñ ψ ˚ ϕ1 (A˚
7)

6 ψ1 ˚ ϕ1 ñ ϕ1 ˚ ψ1 (A˚
7)

7 ϕ ˚ ψ ñ ψ ˚ ϕ1 ñ-Tr, 3, 5

8 ϕ ˚ ψ ñ ϕ1 ˚ ψ1 ñ-Tr twice, 7, 4, 6

Remark 3.3. Note that an alternative proof of theorem 5 in Figure 2 consists in applying
ñ-Tr to theorem 2 and emp ˚

`

allocpxq ^ size“1
˘

ñ allocpxq ^ size“1, which holds by
the axioms (A˚

11) and (A˚
7).

Example 3.4. In Figure 3, we develop the proof of empñ pallocpxq^size “ 1´̊ size “ 1q
as a more complete example. We use the following theorems and rules:

(´̊^-DistrL) pϕ ´̊ ψq ^ pϕ ´̊ χq ñ pϕ ´̊ ψ ^ χq (^JIL) ϕñ J^ ϕ ^-InfL:
ϕñ χ

ϕ^ ψ ñ χ^ ψ

The rightmost axiom and the only rule are derivable by propositional reasoning. We show
the admissibility of the axiom (´̊^-DistrL).

1 pϕ f́ ψ _ χq ñ pϕ f́ ψq _ pϕ f́ χq (I´̊6.3.8), Lemma 6.3

2  pϕ ´̊  p ψ _ χqq ñ  pϕ ´̊   ψq _  pϕ ´̊   χq Def. f́, 1

3  pϕ ´̊ ψ ^ χq ñ  pϕ ´̊ ψq _  pϕ ´̊ χq Replacement of equivalents, 2

4 pϕ ´̊ ψq ^ pϕ ´̊ χq ñ pϕ ´̊ ψ ^ χq PC, 3

Main ingredients of the method. Before showing completeness of HCp˚, ´̊ q, let us
recall the key ingredients of the method we follow, not only to provide a vade mecum for
axiomatising other separation logics (which, in the second part of [DLM20], we illustrate on
the newly introduced logic SLp˚, D:ùq), but also to identify the essential features and where
variations are still possible. The Hilbert-style axiomatisation of SLp˚, ´̊ q shall culminate
with Theorem 6.5 that states the adequateness of the proof system HCp˚, ´̊ q.

In order to axiomatise SLp˚, ´̊ q internally, as already emphasised several times, the
core formulae play an essential role. The main properties of these formulae is that their
Boolean combinations capture the full logic SLp˚, ´̊ q [Loz04a] and all the core formulae can
be expressed in SLp˚, ´̊ q. Generally speaking, our axiom system naturally leads to a form
of constructive completeness, as advocated in [Dou17, Lüc18]: the axiomatisation provides
proof-theoretical means to transform any formula into an equivalent Boolean combination
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1 J ˚ pallocpxq ^ size “ 1q ñ pallocpxq ^ size “ 1q ˚ J (A˚
7)

2 allocpxq ^ size “ 1 ñ size ě 1 (^Er)

3 pallocpxq ^ size “ 1q ˚ J ñ size ě 1 ˚ J ˚-Intro, 2

4 size ě 1 ˚ J ñ size ě 1 (A˚
14) (size ě 1

def
“  emp)

5 J ˚ pallocpxq ^ size “ 1q ñ size ě 1 ñ-Tr twice, 1, 3, 4

6 J ñ pallocpxq ^ size “ 1 ´̊ size ě 1q ˚-Adj, 5

7 empñ pallocpxq ^ size “ 1 ´̊  size ě 2q See Example 3.2

8 pallocpxq ^ size “ 1 ´̊  size ě 2q ñ

J^ pallocpxq ^ size “ 1 ´̊  size ě 2q (^JIL)

9 J^ pallocpxq ^ size “ 1 ´̊  size ě 2q ñ
`

pallocpxq ^ size “ 1 ´̊ size ě 1q^

pallocpxq ^ size “ 1 ´̊  size ě 2q
˘

^-InfL, 6

10
`

pallocpxq ^ size “ 1 ´̊ size ě 1q^

pallocpxq ^ size “ 1 ´̊  size ě 2q
˘

ñ

pallocpxq ^ size “ 1 ´̊ size “ 1q (´̊^-DistrL) + Def. size

11 pallocpxq ^ size “ 1 ´̊  size ě 2q ñ

pallocpxq ^ size “ 1 ´̊ size “ 1q ñ-Tr twice, 8, 9, 10

12 empñ pallocpxq ^ size “ 1 ´̊ size “ 1q ñ-Tr, 7, 11

(recall that size “ β is a shortcut for size ě β ^ size ě β`1)

Figure 3: A proof of empñ pallocpxq ^ size “ 1 ´̊ size “ 1q.

of core formulae, and it contains also a part dedicated to the derivation of valid Boolean
combinations of core formulae (understood as a syntactical fragment of SLp˚, ´̊ q). What is
specific to each logic is the design of the set of core formulae and in the case of SLp˚, ´̊ q,
this was already known since [Loz04a].

Derivations in the proof system HCp˚, ´̊ q shall simulate the bottom-up elimination of
separating connectives (see forthcoming Lemmata 5.5 and 6.2) when the arguments are
two Boolean combinations of core formulae. To do so, HCp˚, ´̊ q contains axiom schemas
that perform such an elimination in multiple “small-step” derivations, e.g. by deriving a
single allocpxq predicate from allocpxq ˚ J (with forthcoming intermediate axiom (I˚12)).
Alternatively, it would have been possible to include “big-step” axiom schemas that, given
the two Boolean combinations of core formulae, derive the equivalent formula in one single
derivation step (see e.g. [EIP19]). The main difference is that small-step axioms provide a
simpler understanding of the key properties of the logic.
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(AC
1) x “ x

(AC
2) ϕ^ x “ yñ ϕryÐxs

(AC
3) x ãÑ yñ allocpxq

(AC
4) x ãÑ y^ x ãÑ zñ y “ z

(IC
5) size ě β`1 ñ size ě β

(IC
6)

Ź

xPXpallocpxq ^
Ź

yPXztxu x ‰ yq ñ size ě cardpXq

Figure 4: Proof system HC for Boolean combinations of core formulae.

4. A simple calculus for the core formulae

To axiomatise SLp˚, ´̊ q, we start by introducing the proof system HC dedicated to Boolean
combinations of core formulae, see Figure 4. As explained earlier, it also contains the axiom
schemata and modus ponens for the propositional calculus. Moreover, the axioms whose
name is of the form AC

i are axioms that remain in the global system for SLp˚, ´̊ q, whereas
those named IC

i are intermediate axioms that are removed when considering the axioms
dealing with the separating connectives. As explained before, the intermediate axioms are
handy to establish results about the axiomatisation of Boolean combinations of core formulae
but are not needed when all the axioms and rules of HCp˚, ´̊ q are considered.

In the axiom (AC
2), ϕryÐxs stands for the formula obtained from ϕ by replacing with

the variable x every occurrence of y. Let ps, hq be a memory state. The axioms state
that “ is an equivalence relation (first two axioms), hpspxqq “ spyq implies spxq P domphq
(axiom (AC

3)) and that h is a (partial) function (axiom (AC
4)). Furthermore, there are

two intermediate axioms about size formulae: (IC
5) states that if domphq has at least β`1

elements, then it has at least β elements, whereas (IC
6) states instead that if there are β

distinct memory cells corresponding to program variables, then indeed domphq ě β. It is
easy to check that HC is sound (see also Lemma 3.1). In order to establish its completeness
with respect to Boolean combinations of core formulae, we first show that HC is complete
for a subclass of Boolean combinations of core formulae, namely for core types defined below.
Then, we show that every formula in BoolpCorepX, αqq is provably equivalent to a disjunction
of core types (Lemma 4.2).

Introduction to core types. Let XĎfinVAR and α P N`. We write CoreTypespX, αq to
denote the set of core types defined by

 

ϕ P ConjpCorepX, αqq
ˇ

ˇ for all ψ P CorepX, αq, tψ |  ψu ĎLt ϕ, and pψ ^ ψq ­ĎLt ϕ
(

.

Note that if ϕ P CoreTypespX, αq, then ϕ is a conjunction such that for every ψ P CorepX, αq,
there is exactly one literal in ϕ built upon ψ.

Lemma 4.1 (Refutational completeness). Let ϕ P CoreTypespX, αq, where α ě cardpXq. The
formula  ϕ is valid if and only if $HC

 ϕ.

Proof. We show that ϕ is unsatisfiable if and only if $HC
 ϕ. The “only if” part follows

from the soundness of HC, so we prove the “if” part. Let ϕ P CoreTypespX, αq be such that
&HC

ϕñ K, and let us prove that ϕ is satisfiable. By the axioms (AC
1) and (AC

2), there is an
equivalence relation « on X such that x « y iff x “ y occurs positively in ϕ. We write rxs to
denote the equivalence class of x with respect to «. By the axioms (AC

2) and (AC
4), there is a

partial map f : pX{ «q Ñ pX{ «q on equivalence classes such that x ãÑ y occurs positively iff
fprxsq is defined and fprxsq “ rys. Let D “ trxs | allocpxq occurs positively in ϕu. By the
axiom (AC

3), dompfq Ď D. Let n “ maxsizepϕq. We recall that, by definition of maxsizep.q,
n is the greatest β such that size ě β occurs positively in ϕ (or zero if there are none).
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Let us show that n ě cardpDq. Ad absurdum, suppose that n ă cardpDq. From
the axiom (IC

6), $HC
ϕ ñ size ě cardpDq and by definition of n and the fact that

α ě cardpXq ě cardpDq, $HC
ϕ ñ size ě n and $HC

ϕ ñ  psize ě pn ` 1qq since both
size ě n and psize ě pn` 1qq (possibly negated) occur in ϕ as α ě cardpXq. By using the
axiom (IC

5) and propositional reasoning, we can get that $HC
ϕñ  psize ě cardpDqq since

$HC
ϕñ  psize ě pn` 1qq, which leads to a contradiction. Consequently, n ě cardpDq.

Let `0, `1, . . . , `n P LOC be n ` 1 distinct locations, and let us fix an enumeration
C1, . . . , CcardpDq on the equivalence classes of «. Let ps, hq be defined by

‚ spxq
def
“ `i if rxs is the ith equivalence class Ci,

‚ hp`iq
def
“ `j if 0 ă i ď cardpDq and the ith equivalence class is mapped to the jth one by f ,

‚ hp`iq
def
“ `0 if either 0 ă i ď cardpDq and the ith equivalence class is not in the domain of

f , or i ą cardpDq.

Then, by construction, ps, hq satisfies all positive literals of the form x “ y or x ãÑ y or
allocpxq that occur positively in ϕ, and all negative literals that occur in ϕ. It also satisfies
size ě n, falsifies size ě n` 1 (assuming n` 1 ď α), and by the axiom (IC

5), it satisfies
all size literals in ϕ.

By classical reasoning, one can show that every ϕ P BoolpCorepX, αqq is provably equiv-
alent to a disjunction of core types. Together with Lemma 4.1, this implies that HC is
adequate with respect to the propositional logic of core formulae.

To prove forthcoming Theorem 4.3, let us first establish the following simple lemma.

Lemma 4.2 (Core Types Lemma). Let ϕ P BoolpCorepX, αqq. There is a disjunction
ψ “ ψ1 _ . . ._ ψn with ψi P CoreTypespX,maxpcardpXq, αqq for all i such that $HC

ϕô ψ.

Proof. Let ψ1 _ . . . _ ψn be a formula in disjunctive normal form logically equivalent
to ϕ. If ψi is not a core type in CoreTypespX,maxpcardpXq, αqq, there is a core formula
χ P CorepX,maxpcardpXq, αqq that occurs neither positively nor negatively in ψi. Replacing
ψi with pψi ^ χq _ pψi ^ χq, and repeating this for all missing core formulae and for all i,
we obtain a disjunction of core types of the expected form. Since all equivalences follow
from pure propositional reasoning, the equivalence between ϕ and the obtained formula can
be proved in HC.

Theorem 4.3 (Adequacy). A Boolean combination of core formulae ϕ is valid iff $HC
ϕ.

Proof. Let ϕ be a Boolean combination of core formulae in CoreTypespX, αq for some X and α.
As all the axioms are valid (Lemma 3.1), $HC

ϕ implies that ϕ is valid. Let us assume that ϕ
is valid, and let us prove that $HC

ϕ. By Lemma 4.2, there is a disjunction ψ “ ψ1_ . . ._ψn
of core types in CoreTypespX,maxpcardpXq, αqq such that $HC

p ϕq ô ψ. As ϕ is valid, the
formulae  ϕ, ψ and all the ψi’s are unsatisfiable. By Lemma 4.1, $HC

ψi ñ K, for all i. By
propositional reasoning, $HC

ϕ.

5. Axiomatisation for SLp˚, allocq

We write SLp˚, allocq to denote the fragment of SLp˚, ´̊ q in which the separating implication
is removed at the price of adding the atomic formulae of the form allocpxq. We define an
Hilbert-style axiomatisation for SLp˚, allocq, obtained by enriching HC with axioms and one
inference rule that handle the separating conjunction ˚, leading to the proof system HCp˚q.
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(A˚7) pϕ ˚ ψq ô pψ ˚ ϕq

(A˚8) pϕ ˚ ψq ˚ χô ϕ ˚ pψ ˚ χq

(I˚9) pϕ_ ψq ˚ χñ pϕ ˚ χq _ pψ ˚ χq

(I˚10) pK ˚ ϕq ô K

(A˚11) ϕô ϕ ˚ emp

(I˚12) allocpxq ˚ J ñ allocpxq

(A˚13) pallocpxq ˚ allocpxqq ô K

˚-Intro:
ϕñ χ

ϕ ˚ ψ ñ χ ˚ ψ

(A˚14) e ˚ J ñ e đre P t emp, x “ y, x ‰ y, x ãÑ yus

(A˚15)  allocpxq ˚  allocpxq ñ  allocpxq

(A˚16) pallocpxq ^  x ãÑ yq ˚ J ñ  x ãÑ y

(A˚17) allocpxq ñ pallocpxq ^ size “ 1q ˚ J

(A˚18)  empñ size “ 1 ˚ J

(A˚19)  size ě β1 ˚  size ě β2 ñ  size ě β1`β2
.́ 1

(A˚20) allocpxq ^ allocpyq ^ x ‰ yñ size ě 2

(a .́ b “ maxp0, a´ bq)

Figure 5: Additional axioms and rule for HCp˚q.

Fundamentally, as we work now within SLp˚, allocq, the core formula size ě β can be
encoded in the logic. According to its definition, given in Section 2.2, we see size ě 0 as J,
size ě 1 as  emp and size ě β`2 as  emp ˚ size ě β`1.

The axioms and the rule added to HC in order to define HCp˚q are presented in Figure 5.
Their soundness has been proved in Lemma 3.1, with the exception of the three intermediate
axioms (I˚9), (I˚10) and (I˚12), which are used for the completeness of HCp˚q with respect
to SLp˚, allocq, but are discharged from the proof system for SLp˚, ´̊ q (Figure 1), as they
become derivable (Lemma 6.1).

Lemma 5.1. HCp˚q is sound.

Proof. The axioms (I˚9) and (I˚10) are inherited from Boolean BI (see [BV14] and [GLW06,
Section 2]). The soundness of (I˚12) is straightforward. Indeed, suppose ps, hq |ù allocpxq˚J.
So, there is h1Ďh such that ps, h1q |ù allocpxq. By definition of allocpxq, spxq P domph1q.
By h1Ďh, spxq P domphq. We conclude that ps, hq |ù allocpxq.

Let us look further at the axioms in Figure 5. The axioms deal with the commuta-
tive monoid properties of p˚, empq and its distributivity over _ (as for Boolean BI, see
e.g. [GLW06]). The rule ˚-Intro, sometimes called “frame rule” by analogy with the rule
of the same name in program logic, states that logical equivalence is a congruence for ˚.
HCp˚q is designed with the idea of being as simple as possible. On one side, this helps
understanding the key ingredients of SLp˚, allocq. On the other side, this makes the proof
of completeness of HCp˚q more challenging. To work towards this proof while familiarising
with the new axioms, we first show a set of intermediate theorems (see Appendix A).

Lemma 5.2. The following rules and axioms are admissible in HCp˚q:

(I˚5.2.1) x „ y^ pϕ ˚ ψq ñ pϕ^ x „ yq ˚ ψ, where „ stands for “ or ‰.

(I˚5.2.2) x “ y^ ppϕ^ allocpxqq ˚ ψq ñ pϕ^ allocpyqq ˚ ψ.

(I˚5.2.3) pϕ^ allocpxqq ˚ ψ ñ ϕ ˚ pψ ^ allocpxqq.

(I˚5.2.4)  allocpxq ^ pϕ ˚ ψq ñ pϕ^ allocpxqq ˚ ψ.

(I˚5.2.5) allocpxq ^ pϕ ˚ p allocpxq ^ ψqq ñ pϕ^ allocpxqq ˚ p allocpxq ^ ψq

(I˚5.2.6) x ãÑ y^ ppϕ^ allocpxqq ˚ ψq ñ pϕ^ x ãÑ yq ˚ ψ.

(I˚5.2.7)  x ãÑ y^ pϕ ˚ ψq ñ pϕ^ x ãÑ yq ˚ ψ.
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In HCp˚q, the axioms (IC
5) and (IC

6) of HC are superfluous and can be removed. Indeed,
notice that both axioms do not appear in the proof system HCp˚, ´̊ q given in Figure 1.

Lemma 5.3. The axioms (IC
5) and (IC

6) are derivable in HCp˚q.

Derivability of (IC
5). The proof is by induction on β.

base case: β “ 0: The instance of the axiom (IC
5) with β “ 0 amounts to derive the

formula size ě 1 ñ size ě 0. By definition size ě 1 “  emp and size ě 0 “ J,
and therefore, by propositional reasoning, $HCp˚q

size ě 1 ñ size ě 0.
induction step: β ą 0: By induction hypothesis, assume $HCp˚q

size ě β ñ size ě β´1.
The formula size ě β ` 1 ñ size ě β is derived as follows:

1 size ě β ñ size ě β ´ 1 Induction hypothesis

2 psize ě βq ˚  empñ psize ě β ´ 1q ˚  emp ˚-Intro, 1

3 size ě β ` 1 ñ size ě β 2, def. of size

Before proving the validity of (IC
6), we derive the intermediate theorem below. Let X Ďfin VAR.

(I´̊5.3.1)
Ź

xPXpallocpxq ^
Ź

yPXztxu x ‰ yq ñ p˚xPXpallocpxq ^ size “ 1qq ˚ J.

Derivability of (I´̊5.3.1). The proof is by induction on the size of X. We distinguish two base
cases, for cardpXq “ 1 and cardpXq “ 0.

base case: cardpXq “ 1: In this case, (I´̊5.3.1) is exactly (A˚
17).

base case: cardpXq “ 0: In this case, (I´̊5.3.1) is J ñ J ˚ J.

1 empñ J PC

2 J ñ J ˚ emp (A˚
11)

3 J ˚ empñ emp ˚ J (A˚
7)

4 emp ˚ J ñ J ˚ J ˚-Intro, 1

5 J ñ J ˚ J ñ-Tr, 2, 3, 4

induction step: cardpXq ě 2: Let z P X. By induction hypothesis,

$HCp˚q

Ź

uPXztzupallocpuq ^
Ź

vPXztu,zu u ‰ vq ñ p˚uPXztzupallocpuq ^ size “ 1qq ˚ J.

We write χ for the premise
Ź

uPXztzupallocpuq ^
Ź

vPXztu,zu u ‰ vq above. Below, we

aim for a proof of

$HCp˚q

Ź

xPXpallocpxq ^
Ź

yPXztxu x ‰ yq ñ pallocpzq ^ size “ 1q ˚ χ.

In this way, the provability of (I´̊5.3.1) follows directly by induction hypothesis together
with (A˚

7) and ˚-Intro. We have

1
Ź

xPXpallocpxq ^
Ź

yPXztxu x ‰ yq ñ pallocpzq ^ size “ 1q ˚ J (A˚
17) and PC

2 J ñ χ_ χ PC

3 pallocpzq ^ size “ 1q ˚ J ñ pallocpzq ^ size “ 1q ˚ pχ_ χq ˚-Intro, (A˚
7), 2

4 pallocpzq ^ size “ 1q ˚ pχ_ χq ñ
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ppallocpzq ^ size “ 1q ˚ χq _ ppallocpzq ^ size “ 1q ˚  χq (A˚
7) and (I˚9)

5
Ź

xPXpallocpxq ^
Ź

yPXztxu x ‰ yq ñ

ppallocpzq ^ size “ 1q ˚ χq _ ppallocpzq ^ size “ 1q ˚  χq ñ-Tr 1, 3, 4

By propositional reasoning,  χ is equivalent to
Ž

uPXztzup allocpuq_
Ž

vPXztu,zu u “ vq.

Due to the complexity of this formula, we proceed now rather informally, but our
arguments entail the existence of a proper derivation. We aim at showing that

$HCp˚q

ľ

xPX

pallocpxq ^
ľ

yPXztxu

x ‰ yq ^ ppallocpzq ^ size “ 1q ˚  χq ñK . (:)

By propositional calculus and (I˚9), we can distribute conjunctions and separating
conjunctions over disjunctions. We derive:

$HCp˚q

ľ

xPX

pallocpxq ^
ľ

yPXztxu

x ‰ yq ^ ppallocpzq ^ size “ 1q ˚  χq ñ γ1 _ γ2,

where γ1 and γ2 are defined, respectively, as
Ž

uPXztzu

´

Ź

xPXpallocpxq ^
Ź

yPXztxu x ‰ yq^ ppallocpzq ^ size “ 1q ˚ allocpuqq
¯

,

Ž

uPXztzu
vPXztz,uu

´

Ź

xPXpallocpxq ^
Ź

yPXztxu x ‰ yq ^ ppallocpzq ^ size “ 1q ˚ u “ vq
¯

.

In order to deduce (:) it is sufficient to prove, in HCp˚q, that every disjunct of γ1 and
γ2 implies K. Clearly, if γ1 and γ2 do not have any disjunct, i.e. when Xztzu is empty,
then the formula is propositionally equivalent to K, which allows us to conclude (:).
Otherwise, let us consider each disjunct in γ1 and γ2 (separately), and prove their
inconsistency.
case: γ1: Let u P Xztzu. We show the inconsistency of

γ
def
“

Ź

xPXpallocpxq ^
Ź

yPXztxu x ‰ yq^ ppallocpzq ^ size “ 1q ˚ allocpuqq.

6
Ź

xPXpallocpxq ^
Ź

yPXztxu x ‰ yq ñ allocpuq ^ u ‰ z PC

7 γ ñ allocpuq ^ u ‰ z^ ppallocpzq ^ size “ 1q ˚ allocpuqq PC

8 allocpuq ^ ppallocpzq ^ size “ 1q ˚ allocpuqq ñ

ppallocpzq ^ size “ 1^ allocpuqq ˚ allocpuqq (I˚5.2.5)

9 u ‰ z^ ppallocpzq ^ size “ 1^ allocpuqq ˚ allocpuqq ñ

ppallocpzq ^ size “ 1^ allocpuq ^ u ‰ zq ˚ allocpuqq (I˚5.2.1)

10 allocpzq ^ allocpuq ^ u ‰ zñ size ě 2 (A˚
20)

11 size “ 1 ñ  size ě 2 PC

12 allocpzq ^ size “ 1^ allocpuq ^ u ‰ zñK ñ-Tr, PC, 10, 11

13 γ ñ pallocpzq ^ size “ 1^ allocpuq ^ u ‰ zq ˚  allocpuq PC, 7, 8, 9

14 pallocpzq ^ size “ 1^ allocpuq ^ u ‰ zq ˚  allocpuq ñ K˚ allocpuq ˚-Intro, 12

15 K ˚ allocpuq ñK (I˚10), 14

16 γ ñK PC, 13, 15
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Since γ is an arbitrary disjunct appearing in γ1, we conclude that $HCp˚q
γ1 ñK.

case: γ2: Let u P Xztzu and v P Xztz, uu. Notice that if u or v do not exist, then γ2 is
defined as K and so the proof is complete. Otherwise, we show the inconsistency
of

pγ
def
“

Ź

xPXpallocpxq ^
Ź

yPXztxu x ‰ yq ^ ppallocpzq ^ size “ 1q ˚ u “ vq.

17
Ź

xPXpallocpxq ^
Ź

yPXztxu x ‰ yq ñ u ‰ v PC

18 allocpzq ^ size “ 1 ñ J PC

19 pallocpzq ^ size “ 1q ˚ u “ vñ u “ v ˚ J ˚-Intro, 18, (A˚
7)

20 u “ v ˚ J ñ u “ v (A˚
14)

21 ppallocpzq ^ size “ 1q ˚ u “ vq ñ u “ v ñ-Tr, 19, 20

22 pγ ñK PC, 17, 21

Since pγ is an arbitrary disjunct appearing in γ2, we conclude that $HCp˚q
γ2 ñK.

From $HCp˚q
γ1 ñK and $HCp˚q

γ2 ñK we conclude that (:) holds. From the theorem
5 derived in this proof, this allows us to conclude that

$HCp˚q

Ź

xPXpallocpxq ^
Ź

yPXztxu x ‰ yq ñ pallocpzq ^ size “ 1q ˚ χ,

which concludes the proof, as explained at the beginning of the induction step.

We complete the proof of Lemma 5.3 by showing a derivation of (IC
6).

Derivability of (IC
6). Let X Ďfin VAR. If X “ H, then the instance of the axiom (IC

6) becomes
J ñ size ě 0, which, by definition of size ě 0, is syntactically equivalent to J ñ J and
hence valid by propositional reasoning. Below, assume X ‰ H and fix z P X.

1
Ź

xPXpallocpxq ^
Ź

yPXztxu x ‰ yq ñ

p˚xPXpallocpxq ^ size “ 1qq ˚ J (I´̊5.3.1)

2 allocpxq ^ size “ 1 ñ size ě 1 PC, def. of size “ 1

3 p˚xPXpallocpxq ^ size “ 1qq ˚ J ñ p˚xPXsize ě 1q ˚ J multiple applications of

˚-Intro, 2, (A˚
7) and ñ-Tr

4 p˚xPXsize ě 1q ˚ J ñ psize ě 1 ˚ Jq ˚ p˚xPXztzusize ě 1q (A˚
7), (A˚

8), def. of z

5 size ě 1 ˚ J ñ size ě 1 (A˚
14), def. of size ě 1

6 psize ě 1 ˚ Jq ˚ p˚xPXztzusize ě 1q ñ p˚xPXsize ě 1q ˚-Intro

7 p˚xPXsize ě 1q ñ size ě cardpXq (A˚
8), def. of size ě cardpXq

8
Ź

xPXpallocpxq ^
Ź

yPXztxu x ‰ yq ñ size ě cardpXq ñ-Tr, 1, 3, 4, 6, 7

From now on, we understand HCp˚q as the proof system obtained from HC by adding
all schemata from Figure 5 but by removing (IC

5) and (IC
6). We show that HCp˚q enjoys

the ˚ elimination property when the argument formulae are core types. That is, given two
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ľ

 

x „ y ĎLt tϕ | ψu
ˇ

ˇ„P t“,‰u
(

^
ľ

tallocpxq ĎLt tϕ | ψuu

^
ľ

t allocpxq ĎLt tϕ ; ψuu ^
ľ

 

 x ãÑ y
ˇ

ˇ allocpxq ^  x ãÑ y ĎLt tϕ | ψu
(

^
ľ

 

x ‰ x
ˇ

ˇ allocpxq ĎLt tϕ ; ψu
(

^
ľ

"

size ě β1`β2

ˇ

ˇ

ˇ

ˇ

size ě β1 ĎLt ϕ
size ě β2 ĎLt ψ

*

^
ľ

tx ãÑ y ĎLt tϕ | ψuu ^
ľ

"

 size ě β1`β2
.́ 1

ˇ

ˇ

ˇ

ˇ

 size ě β1 ĎLt ϕ
 size ě β2 ĎLt ψ

*

Figure 6: The formula x˚ypϕ,ψq.

satisfiable core types ϕ and ψ, in CoreTypespX, αq, we show that the formula ϕ˚ψ is provably
equivalent to the formula x˚ypϕ,ψq in ConjpCorepX, 2αqq, defined in Figure 6.

Lemma 5.4. Let X Ďfin VAR and α ě cardpXq. If ϕ and ψ are two satisfiable core types in
CoreTypespX, αq, then $HCp˚q

ϕ ˚ ψ ô x˚ypϕ,ψq.

The equivalence ϕ ˚ ψ ô x˚ypϕ,ψq is reminiscent to the one in [EIP19, Lemma 3] that is
proved semantically. In a way, because HCp˚q will reveal to be complete, the restriction of
[EIP19, Lemma 3] to SLp˚, allocq can be replayed completely syntactically within HCp˚q.

Structure of the proof of Lemma 5.4. Before presenting the technical developments, let us
explain the structure of the whole proof of Lemma 5.4, which might help to follow the
different steps. In order to show that $HCp˚q

ϕ ˚ ψ ô x˚ypϕ,ψq, we start showing that
$HCp˚q

ϕ ˚ ψ ñ x˚ypϕ,ψq. This can be done rather mechanically since for every literal L
of x˚ypϕ,ψq, one can construct a derivation for $HCp˚q

ϕ ˚ ψ ñ L. The main difficulty in
the proof rests on showing that $HCp˚q

x˚ypϕ,ψq ñ ϕ ˚ ψ. To do so, we build a sequence of

formulae ϕp1q˚ ψp1q, ϕp2q˚ ψp2q, . . . , ϕpkq˚ ψpkq satisfying the following conditions:

‚ for all i P r1, ks, $HCp˚q
x˚ypϕ,ψq ñ ϕpiq ˚ψpiq, the formulae ϕpiq and ψpiq are conjunctions

of core formulae, and
‚ for all j P r1, is, ϕpjq ĎLt ϕ

piq and ψpjq ĎLt ψ
piq.

‚ ϕ “ ϕpkq and ψ “ ψpkq (modulo associativity/commutativity of the classical conjunction).

In order to build ϕi`1 (resp. ψi`1), we identify a literal L in ϕ (resp. in ψ) that does not

occur yet in ϕi and we show that $HCp˚q
x˚ypϕ,ψq ñ ϕpi`1q ˚ ψpi`1q with ϕi`1 def

“ ϕpiq ^ L

(resp. ψpi`1q def
“ ψpiq ^ L) and ψpi`1q def

“ ψpiq (resp. ϕpi`1q def
“ ϕpiq). The case analysis on the

shape of the literal L is rather mechanical but it remains to specify how the first formulae
ϕp1q and ψp1q are designed. In short, ϕp1q (resp. ψp1q) is dedicated to the part of ϕ (resp. ψ)
related to the size of the heap domain and to the allocated variables. Details will follow.

To construct these above-mentioned derivations, some additional derivations are instru-
mental in particular to establish that the formulae below are derivable in HCp˚q:

size ě β1 ` β2 ñ size “ β1 ˚ size ě β2, size “ β1 ` β2 ñ size “ β1 ˚ size “ β2.

Such derivations can be found in Appendix B. We now develop the proof of Lemma 5.4.

Proof of Lemma 5.4. First of all, let us briefly explain what is the rationale for having literals
of the form x ‰ x in the definition of x˚ypϕ,ψq. Recall that allocpxq ĎLt tϕ ; ψu is a shortcut
to state that allocpxq occurs in both the core types ϕ and ψ. Since pallocpxq ^ ϕ1q ˚
pallocpxq ^ ψ1q is unsatisfiable, allocpxq ĎLt tϕ ; ψu entails that x˚ypϕ,ψq should be
unsatisfiable. That is why, if allocpxq ĎLt tϕ ; ψu, then x ‰ x is part of x˚ypϕ,ψq.
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(ñ): Let us show that $HCp˚q
ϕ ˚ψ ñ x˚ypϕ,ψq. We establish that $HCp˚q

ϕ ˚ψ ñ L holds
for every literal L of x˚ypϕ,ψq. We reason by a case analysis on L ĎLt x˚ypϕ,ψq.

case: L is an (in)equality or L “ x ãÑ y: For all the equalities and inequalities in ϕ or
ψ, as well as all the literals of the form x ãÑ y, $HCp˚q

ϕ ˚ ψ ñ L follows from the
rule ˚-Intro and the axiom (A˚

14). Let us provide below the proper derivation when
L is a literal in ϕ that is an equality, an inequality or of the form x ãÑ y.

1 ϕñ L PC

2 ψ ñ J PC

3 ϕ ˚ ψ ñ L ˚ J ˚-Ilr, 1, 2

4 L ˚ J ñ L (A˚
14)

5 ϕ ˚ ψ ñ L ñ-Tr, 3, 4

Assume there is a literal x ‰ x that occurs in x˚ypϕ,ψq. As both ϕ and ψ are satisfiable,
and thanks to (AC

1), this is necessarily due to allocpxq occurring both in ϕ and ψ.

1 ϕñ allocpxq PC

2 ψ ñ allocpxq PC

3 ϕ ˚ ψ ñ allocpxq ˚ allocpxq ˚-Ilr, 1, 2

4 allocpxq ˚ allocpxq ñK (A˚
13)

5 Kñ x ‰ x PC

6 ϕ ˚ ψ ñ x ‰ x ñ-Tr, 4, 5

case: L “ allocpxq: Follows from (I˚12) and ˚-Intro.
case: L “  allocpxq: Follows from (A˚

15) and ˚-Intro.
case: L “  x ãÑ y: Let x ãÑ y be a literal occurring in x˚ypϕ,ψq. So, allocpxq ^  x ãÑ y

occurs in ϕ or ψ, say in ϕ (the other case is equivalent, due to (A˚
7)).

1 ϕñ allocpxq ^  x ãÑ y PC

2 ψ ñ J PC

3 ϕ ˚ ψ ñ pallocpxq ^  x ãÑ yq ˚ J ˚-Ilr, 1, 2

4 pallocpxq ^  x ãÑ yq ˚ J ñ  x ãÑ y (A˚
16)

5 ϕ ˚ ψ ñ  x ãÑ y ñ-Tr, 3, 4

case : L “ size ě β1 ` β2, where size ě β1 ĎLt ϕ and size ě β2 ĎLt ψ:

1 ϕñ size ě β1 PC

2 ψ ñ size ě β2 PC

3 ϕ ˚ ψ ñ size ě β1 ˚ size ě β2 ˚-Ilr, 1, 2

4 ϕ ˚ ψ ñ size ě pβ1 ` β2q Def. size

Notice that, as ϕ and ψ are satisfiable core types, size ě 0 appears positively in both
these formulae, and thus appears in x˚ypϕ,ψq.

case: L “  size ě β1 ` β2
.́ 1, where  size ě β1 ĎLt ϕ and  size ě β2 ĎLt ψ:

1 ϕñ  size ě β1 PC

2 ψ ñ  size ě β2 PC

3 ϕ ˚ ψ ñ  size ě β1 ˚  size ě β2 ˚-Ilr, 1, 2

4  size ě β1 ˚  size ě β2 ñ  size ě β1 ` β2
.́ 1 (A˚

19)

5 ϕ ˚ ψ ñ  size ě β1 ` β2
.́ 1 ñ-Tr, 3, 4
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(ð): Let us show that $HCp˚q
x˚ypϕ,ψq ñ ϕ ˚ ψ. If x˚ypϕ,ψq is unsatisfiable, then by

completeness of HC (Theorem 4.3), $HC
x˚ypϕ,ψq ñK, and thus $HC

x˚ypϕ,ψq ñ ϕ ˚ ψ.
Since HCp˚q includes HC, we conclude that $HCp˚q

x˚ypϕ,ψq ñ ϕ ˚ ψ. Otherwise, below, we
assume x˚ypϕ,ψq to be satisfiable. In particular, this implies that no literals of the form
x ‰ x or  size ě 0 appear in x˚ypϕ,ψq. Moreover, by definition of x˚ypϕ,ψq, this implies
that ϕ, ψ and x˚ypϕ,ψq agree on the satisfaction of the core formulae x “ y, i.e. ϕ, ψ and
x˚ypϕ,ψq contain exactly the same (in)equalities. Since ϕ is satisfiable, these equalities define
an equivalence relation. Let x1, . . . xn be a maximal enumeration of representatives of the
equivalence classes (one per equivalence class) such that allocpxiq occurs in x˚ypϕ,ψq. As it
is maximal, for every allocpxq ĎLt x˚ypϕ,ψq there is i P r1, ns such that xi is syntactically
equal to x. Consequently, from the definition of x˚ypϕ,ψq, if allocpxq occurs in ϕ or in ψ,
then there is some xi such that x “ xi occurs in ϕ (and therefore also in ψ and in x˚ypϕ,ψq).
Let us define the formula Alloc below:

Alloc
def
“

`

allocpx1q ^ size “ 1
˘

˚ ¨ ¨ ¨ ˚
`

allocpxnq ^ size “ 1
˘

.

We have,

1 x˚ypϕ,ψq ñ
Ź

iPr1,nspallocpxiq ^
Ź

jPr1,nsztiu xi ‰ xjq PC, def. of x1, . . . , xn

2
Ź

iPr1,nspallocpxiq ^
Ź

jPr1,nsztiu xi ‰ xjq ñ Alloc ˚ J (I´̊5.3.1)

3 x˚ypϕ,ψq ñ Alloc ˚ J ñ-Tr, 1, 2

Moreover, we show that $HCp˚q
Alloc ñ size ě n and $HCp˚q

Alloc ñ  size ě n`1
(theorems 4 and 7 below), and so $HCp˚q

Alloc ñ size “ n.

1 χ^ size “ 1 ñ size ě 1 PC, def. of size “ 1

2 χ^ size “ 1 ñ  size ě 2 PC, def. of size “ 1

3 Alloc ñ ˚iPr1,nssize ě 1 multiple applications of

˚-Intro, 1, (A˚
7) and ñ-Tr

4 Alloc ñ size ě n 3, def. of size ě n

5 Alloc ñ ˚iPr1,ns size ě 2 multiple applications of

˚-Intro, 2, (A˚
7) and ñ-Tr

6 ˚iPr1,ns size ě 2 ñ  size ě n` 1 n applications of (A˚
19) and ˚-Intro

7 Alloc ñ  size ě n` 1 ñ-Tr, 5, 6

8 Alloc ñ size “ n PC, 4, 7, def. of size “ n

After deriving $HCp˚q
x˚ypϕ,ψq ñ Alloc ˚ J and $HCp˚q

Alloc ñ size “ n, the proof is
divided in three steps: (1) we isolate the allocated cells and the garbage, (2) we distribute
the alloc and size literals according to the goal ϕ ˚ ψ and (3) we add the missing literals.

Step 1, isolating allocated cells and garbage. Since x˚ypϕ,ψq is a conjunction of literals
built from core formulae, we can rely on maxsizepx˚ypϕ,ψqq, i.e. the maximum β among
the formulae size ě β appearing positively in x˚ypϕ,ψq. First, we show some important
properties of x˚ypϕ,ψq, related to maxsizepx˚ypϕ,ψqq.

A. maxsizepx˚ypϕ,ψqq “ maxsizepϕq `maxsizepψq,
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B. If there is β P N such that  size ě β ĎLt x˚ypϕ,ψq, then

 size ě maxsizepϕq ` 1 ĎLt ϕ,  size ě maxsizepψq ` 1 ĎLt ψ.

C. If there is β P N such that  size ě β ĎLt x˚ypϕ,ψq, then

 size ě maxsizepx˚ypϕ,ψqq ` 1 ĎLt x˚ypϕ,ψq.

Proof of (A). By definition of maxsizep.q, we know that size ě maxsizepϕq ĎLt ϕ and
size ě maxsizepψq ĎLt ψ. By definition of x˚ypϕ,ψq, size ě maxsizepϕq `maxsizepψq ĎLt

x˚ypϕ,ψq. Ad absurdum, suppose that maxsizepϕq ` maxsizepψq ‰ maxsizepx˚ypϕ,ψqq
and thus, by definition of maxsizep.q, there is β ą maxsizepϕq ` maxsizepψq such that
size ě β ĎLt x˚ypϕ,ψq. By definition of x˚ypϕ,ψq, we conclude that there are β1 and
β2 such that β1 ` β2 “ β, size ě β1 ĎLt ϕ and size ě β2 ĎLt ψ. As β1 ` β2 ą

maxsizepϕq ` maxsizepψq, either β1 ą maxsizepϕq or β2 ą maxsizepψq. Let us assume
β1 ą maxsizepϕq (the other case is analogous). We have size ě β1 ĎLt ϕ. However, this
is contradictory, since by definition of maxsizep.q for all β1 ą maxsizepϕq, size ě β1 ­ĎLt ϕ.
Thus, maxsizepϕq `maxsizepψq “ maxsizepx˚ypϕ,ψqq.

Proof of (B). Let β P N such that  size ě β ĎLt x˚ypϕ,ψq. By definition of x˚ypϕ,ψq,
this implies that there are β1, β2 P r0, αs such that β “ β1 ` β2

.́ 1,  size ě β1 ĎLt ϕ
and  size ě β2 ĎLt ψ. Since ϕ and ψ are satisfiable, by definition of maxsizep.q, we
derive that β1 ą maxsizepϕq and β2 ą maxsizepψq. This implies that the core formula
size ě maxsizepϕq ` 1 belongs to CorepX, αq and, analogously, that the core formula
size ě maxsizepψq`1 belongs to CorepX, αq. Since ϕ is in CoreTypespX, αq, this implies that
size ě maxsizepϕq ` 1 is an atomic formula appearing in ϕ. By definition of maxsizepϕq,
the formula cannot appear positively, i.e.  size ě maxsizepϕq ` 1 ĎLt ϕ. Analogously, ψ is
in CoreTypespX, αq, which leads to  size ě maxsizepψq ` 1 ĎLt ψ.

Proof of (C). Directly from (A) and (B). Indeed, by definition of x˚ypϕ,ψq, we know that for
every  size ě β ĎLt ϕ and every  size ě β1 ĎLt ψ,  size ě β`β1 .́ 1 ĎLt x˚ypϕ,ψq.

Now, let us consider βg “ maxsizepx˚ypϕ,ψqq
.́ n. We define the formula Garb below:

Garb
def
“

#

size “ βg if  size ě β ĎLt x˚ypϕ,ψq, for some β

size ě βg otherwise,

where we recall that size “ βg stands for size ě βg ^ psize ě βg ` 1q. Notice that Garb

is a conjunction of literals where at least one size ě β occurs positively (i.e. size ě 0).
The objective of this step of the proof is to show that $HCp˚q

x˚ypϕ,ψq ñ Alloc ˚Garb. First,
we focus on the positive part of Garb, and prove $HCp˚q

x˚ypϕ,ψq ñ Alloc ˚ size ě βg. If
βg “ 0 then size ě βg “ J and we have already shown $HCp˚q

x˚ypϕ,ψq ñ Alloc ˚ J. So, let
us assume that βg ą 1. Notice that then maxsizepx˚ypϕ,ψqq

.́ n “ maxsizepx˚ypϕ,ψqq ´ n.
We have

1 J ñ size ě βg _ size ě βg PC

2 Alloc ˚ J ñ Alloc ˚ psize ě βg _ size ě βgq ˚-Intro, (A˚
7), 1

3 Alloc ˚ psize ě βg _ size ě βgq ñ

pAlloc ˚ size ě βgq _ pAlloc ˚  size ě βgq (I˚9), (A˚
7)

4 Alloc ñ  size ě n` 1 Previously derived
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5 Alloc ˚  size ě βg ñ p size ě n` 1q ˚  size ě βg ˚-Intro, 4

6 p size ě n` 1q ˚  size ě βg ñ  size ě maxsizepx˚ypϕ,ψqq (A˚
19), def. of βg

7 Alloc ˚ J ñ pAlloc ˚ size ě βgq _  size ě maxsizepx˚ypϕ,ψqq PC, 2, 3, 5, 6

8 x˚ypϕ,ψq ñ size ě maxsizepx˚ypϕ,ψqq PC, def. of maxsizep.q

9 x˚ypϕ,ψq ñ Alloc ˚ J Previously derived

10 x˚ypϕ,ψq ñ pAlloc ˚ size ě βgq _  size ě maxsizepx˚ypϕ,ψqq ñ-Tr, 7, 9

11 x˚ypϕ,ψq ñ Alloc ˚ size ě βg PC, 8, 10

If for every β,  size ě β ­ĎLt x˚ypϕ,ψq, then by definition of Garb we conclude that

$HCp˚q
x˚ypϕ,ψq ñ Alloc ˚ Garb.

Otherwise, suppose that there is β such that  size ě β ĎLt x˚ypϕ,ψq. So, Garb is de-
fined as size ě βg ^  psize ě βg ` 1q. Directly from (C), we know that  size ě
maxsizepx˚ypϕ,ψqq ` 1 ĎLt x˚ypϕ,ψq. By propositional reasoning,

$HCp˚q
x˚ypϕ,ψq ñ  size ě maxsizepx˚ypϕ,ψqq ` 1.

Then, x˚ypϕ,ψq ñ Alloc ˚ Garb is derived as follows:

1 size ě βg ñ psize ě βg ^ size ě βg ` 1q _ size “ βg PC, def. of size “ βg

2 Alloc ˚ size ě βg ñ

Alloc˚
`

psize ě βg ^ size ě βg`1q _ size “ βg
˘

˚-Intro, (A˚
7), 1

3 Alloc˚
`

psize ě βg ^ size ě βg`1q _ size “ βg
˘

ñ
`

Alloc ˚ psize ě βg ^ size ě βg`1q
˘

_
`

Alloc ˚ size “ βg
˘

(I˚9), (A˚
7)

4 size ě βg ^ size ě βg ` 1 ñ size ě βg ` 1 PC

5 Alloc ñ size ě n Previously derived

6 Alloc ˚ psize ě βg^size ě βg`1q ñ size ě n ˚ size ě βg ` 1 ˚-Ilr, 4, 5

7 size ě n ˚ size ě βg ` 1 ñ size ě maxsizepx˚ypϕ,ψqq ` 1 (A˚
8), def. of size ě β

8 Alloc ˚ size ě βg ñ size ě maxsizepx˚ypϕ,ψqq ` 1

_
`

Alloc ˚ size “ βg
˘

PC, 2, 3, 6, 7

9 x˚ypϕ,ψq ñ Alloc ˚ size ě βg Previously derived

10 x˚ypϕ,ψq ñ size ě maxsizepx˚ypϕ,ψqq ` 1_
`

Alloc ˚ size “ βg
˘

ñ-Tr, 8, 9

11 x˚ypϕ,ψq ñ  size ě maxsizepx˚ypϕ,ψqq ` 1 PC, see above

12 x˚ypϕ,ψq ñ
`

Alloc ˚ size “ βg
loooomoooon

Garb

˘

PC, 10, 11

Step 2, distributing alloc and size literals. In this step, we aim at showing that

$HCp˚q
Alloc ˚ Garb ñ ϕp1q ˚ ψp1q
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where ϕp1q and ψp1q are two formulae defined as follows:

ϕp1q
def
“

#

size “ maxsizepϕq ^
Ź

tallocpxiq ĎLt ϕ | i P r1, nsu if maxsizepϕq ă α

size ě maxsizepϕq ^
Ź

tallocpxiq ĎLt ϕ | i P r1, nsu otherwise

ψp1q
def
“

#

size “ maxsizepψq ^
Ź

tallocpxiq ĎLt ψ | i P r1, nsu if maxsizepψq ă α

size ě maxsizepψq ^
Ź

tallocpxiq ĎLt ψ | i P r1, nsu otherwise

We use the notations ϕp1q and ψp1q since later in the proof, we shall consider sequences
of formulae ϕp1q, . . . , ϕpkq and ψp1q, . . . , ψpkq with increasing amount of literals. That is
why, using ϕp1q and ψp1q at this early stage is meaningful. Before tackling this derivation,
a few more steps are required. First of all, notice that, if there is a formula allocpxq

occurring both in ϕ and ψ, then, by definition of x˚ypϕ,ψq, x ‰ x occurs in x˚ypϕ,ψq. This
contradicts the fact that x˚ypϕ,ψq is satisfiable. Therefore, we derive that the set of variables
x1, . . . , xn can be split into two disjoint subsets, the ones “allocated” in ϕ, and the others
in ψ. Let nϕ (resp. nψ) denote the number of equivalence classes of variables allocated in
ϕ (resp. ψ). Clearly, n “ nϕ ` nψ. Moreover, since ϕ and ψ are satisfiable core types in
CoreTypespX, αq, where α ě cardpXq, we must have nϕ ď maxsizepϕq and nψ ď maxsizepψq

(see the axiom (IC
6)). By (A), we conclude that n ď maxsizepx˚ypϕ,ψqq. We define the

following formulae

Allocpϕq
def
“ ˚tallocpxiq ^ size “ 1 | allocpxiq ĎLt ϕ, i P r1, nsu

Garbpϕq
def
“

#

size “ maxsizepϕq ´ nϕ if maxsizepϕqăα

size ě maxsizepϕq ´ nϕ otherwise

Notice that, since maxsizepϕq ě nϕ, the formula Garbpϕq is well-defined. The formu-
lae Allocpψq and Garbpψq are defined accordingly. Obviously, Alloc is equal to Allocpϕq ˚
Allocpψq modulo associativity and commutativity of the separating conjunction ˚. Hence, by
taking advantage of the axioms (A˚

7) and (A˚
8), we have

$HCp˚q
Alloc ô Allocpϕq ˚ Allocpψq.

Let us now look at Garbpϕq and Garbpψq. We aim at deriving

$HCp˚q
Garb ñ Garbpϕq ˚ Garbpψq.

Since ϕ is a core type, we know that if maxsizepϕq ă α then, by definition of maxsizepϕq,
 size ě maxsizepϕq ` 1 ĎLt ϕ. A similar analysis can be done for ψ, which leads to the
two following equivalences, by definition of Garbpϕq and Garbpψq:

‚  size ě maxsizepϕq ` 1 ĎLt ϕ if and only if Garbpϕq “ psize “ maxsizepϕq´nϕq,
‚  size ě maxsizepψq ` 1 ĎLt ψ if and only if Garbpψq “ psize “ maxsizepψq´nψq.

By definition of Garb, (B) and (C), we know that Garb “ psize “ maxsizepx˚ypϕ,ψqq
.́ nq

holds if and only if  size ě maxsizepϕq ` 1 ĎLt ϕ and  size ě maxsizepϕq ` 1 ĎLt ψ.
From n ď maxsizepx˚ypϕ,ψqq and by relying on the previous two equivalences, this allows
us to conclude that:

D. Garbpϕq “ psize “ maxsizepϕq´nϕq and Garbpψq “ psize “ maxsizepψq´nψq if and
only if Garb “ psize “ maxsizepx˚ypϕ,ψqq ´ nq.

To show $HCp˚q
Garb ñ pGarbpϕq ˚ Garbpψqq, we split the proof depending on whether

Garbpϕq “ psize “ maxsizepϕq´nϕq and Garbpψq “ psize “ maxsizepψq´nψq hold.
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case: Garbpϕq ‰ psize “ maxsizepϕq´nϕq and Garbpψq ‰ psize “ maxsizepψq´nψq:
We have Garbpϕq “ psizeěmaxsizepϕq´nϕq and Garbpψq “ psizeěmaxsizepψq´nψq.
By definition of Garb and (D), Garb “ psize ě maxsizepx˚ypϕ,ψqq ´ nq. By n “
nϕ`nψ and (A), maxsizepx˚ypϕ,ψqq´n “ pmaxsizepϕq´nϕq`pmaxsizepψq´nψq. By
definition of the core formula size ě β, Garb is already equivalent to Garbpϕq˚Garbpψq,
modulo associativity and commutativity of the separating conjunction ˚. Hence, by
taking advantage of the axioms (A˚

7) and (A˚
8), we have $HCp˚q

Garb ñ Garbpϕq ˚
Garbpψq.

case: Garbpϕq “ psize “ maxsizepϕq´nϕq and Garbpψq ‰ psize “ maxsizepψq´nψq:
We have Garbpψq “ psizeěmaxsizepψq´nψq and, by definition of Garb and (D), along
with n “ nϕ ` nψ and (A), Garb “ psize ě pmaxsizepϕq´nϕq ` pmaxsizepψq´nψqq.
In this case, Garb ñ Garbpϕq˚Garbpψq is an instantiation of the following valid formula
with β1 “ maxsizepϕq´nϕ and β2 “ maxsizepψq ´ nψ:

size ě β1 ` β2 ñ size “ β1 ˚ size ě β2.

The derivability of this formula in HCp˚q is proven by induction on β1 (see Appendix B).
case: Garbpϕq ‰ psize “ maxsizepϕq´nϕq and Garbpψq “ psize “ maxsizepψq´nψq:

Analogously to the previous case, we have Garbpϕq “ psizeěmaxsizepϕq´nϕq and
Garb “ psize ě pmaxsizepϕq´nϕq ` pmaxsizepψq´nψqq. We instantiate the theorem

size ě β1 ` β2 ñ size “ β1 ˚ size ě β2,

shown derivable in the previous case of the proof, with β1 “ maxsizepψq´nψ and
β2 “ maxsizepϕq´nϕ. This corresponds to Garb ñ Garbpψq ˚Garbpϕq. Afterwards, by
commutativity of the separating conjunction (axiom (A˚

7)) and propositional reasoning,
we conclude that $HCp˚q

Garb ñ Garbpϕq ˚ Garbpψq.
case: Garbpϕq “ psize “ maxsizepϕq´nϕq and Garbpψq “ psize “ maxsizepψq´nψq:

By (D), n “ nϕ`nψ and (A), Garb “ psize “ pmaxsizepϕq´nϕq`pmaxsizepψq´nψqq.
In this case, Garb ñ Garbpϕq˚Garbpψq is an instantiation of the following valid formula,
with β1 “ maxsizepϕq´nϕ and β2 “ maxsizepψq ´ nψ:

size “ β1 ` β2 ñ size “ β1 ˚ size “ β2.

Its derivation in HCp˚q can be found in Appendix B.

Thanks to the case analysis above, we conclude that $HCp˚q
Garb ñ Garbpϕq ˚ Garbpψq.

Thus, $HCp˚q
Alloc ˚ Garb ñ pAllocpϕq ˚ Garbpϕqq ˚ pAllocpψq ˚ Garbpψqq. Indeed,

1 Alloc ñ Allocpϕq ˚Allocpψq Previously derived

2 Garb ñ Garbpϕq ˚Garbpψq Previously derived

3 Alloc ˚Garb ñ pAllocpϕq ˚Allocpψqq ˚ pGarbpϕq ˚Garbpψqq ˚-Ilr, 1, 2

4 pAllocpϕq ˚Allocpψqq ˚ pGarbpϕq ˚Garbpψqq ñ

pAllocpϕq ˚Garbpϕqq ˚ pAllocpψq ˚Garbpψqq (A˚
7), (A˚

8)

5 Alloc ˚Garb ñ pAllocpϕq ˚Garbpϕqq ˚ pAllocpψq ˚Garbpψqq ñ-Tr, 3, 4

To conclude this step of the proof, it is sufficient to show $HCp˚q
Allocpϕq ˚ Garbpϕq ñ ϕp1q

and $HCp˚q
Allocpψq ˚ Garbpψq ñ ψp1q. Indeed, by relying on the rule ˚-Ilr, we then obtain

$HCp˚q
Alloc ˚ Garb ñ ϕp1q ˚ ψp1q. Below, we show $HCp˚q

Allocpϕq ˚ Garbpϕq ñ ϕp1q. The
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developments of $HCp˚q
Allocpψq ˚Garbpψq ñ ψp1q are analogous. We recall that the formula

Allocpϕq is defined as

Allocpϕq “ ˚tallocpxiq ^ size “ 1 | allocpxiq ĎLt ϕu.

First of all, let us show that $HCp˚q
Allocpϕq ˚ J ñ

Ź

tallocpxiq ĎLt ϕ | i P r1, nsu. The
proof is divided in three cases:

case: tallocpxiq ^ size “ 1 | allocpxiq ĎLt ϕu “ H: In this case, the formula we want
to derive is syntactically equal to J ˚ J ñ J, which is derivable by propositional
reasoning.

case: cardptallocpxiq ^ size “ 1 | allocpxiq ĎLt ϕuq “ 1: In this case, the formula we
want to derive is syntactically equal to pallocpxq ^ size “ 1q ˚ J ñ allocpxq.
Therefore, it is derivable in HCp˚q by (I˚12) and ˚-Intro.

case: cardptallocpxiq ^ size “ 1 | allocpxiq ĎLt ϕuqě2: In the derivation below, we write
Allocpϕq´i for ˚tallocpxjq ^ size “ 1 | j P r1, nsztiu, allocpxjq ĎLt ϕu. Roughly
speaking, Allocpϕq´i is obtained from Allocpϕq by removing the subformula allocpxiq^

size “ 1. Since cardptallocpxiq ^ size “ 1 | allocpxiq ĎLt ϕuqě2, the formula
Allocpϕq´i is different from J. We have

1 Allocpϕq ˚ J ñ

pallocpxiq ^ size “ 1q ˚ pAllocpϕq´i ˚ Jq (A˚
7), (A˚

8), def. of Allocpϕq

where allocpxiq ĎLt ϕ and i P r1, ns

2 Allocpϕq´i ˚ J ñ J PC

3 allocpxiq ^ size “ 1 ñ allocpxiq PC

4 pallocpxiq ^ size “ 1q ˚ pAllocpϕq´i ˚ Jq ñ

allocpxiq ˚ J ˚-Ilr, 2, 3

5 allocpxiq ˚ J ñ allocpxiq (I˚12)

6 Allocpϕq ˚ J ñ allocpxiq ñ-Tr, 1, 4, 5

7 Allocpϕq ˚ J ñ
Ź

tallocpxiq ĎLt ϕ | i P r1, nsu PC, repeating 6

for all i P r1, ns such that allocpxiq ĎLt ϕ

So, we have $HCp˚q
Allocpϕq ˚ J ñ

Ź

tallocpxiq ĎLt ϕ | i P r1, nsu.
Now, recall that cardpti P r1, ns | allocpxiq ĎLt ϕuq “ nϕ. At the beginning of the
proof, we have shown a derivation of $HCp˚q

Alloc ñ size “ n, where Alloc is defined
as ˚tallocpxiq ^ size “ 1 | i P r1, nsu. Replacing Alloc by Allocpϕq and n by nϕ in the
derivation of Alloc ñ size “ n leads to a derivation in HCp˚q of Allocpϕq ñ size “ nϕ.

To show $HCp˚q
Allocpϕq ˚ Garbpϕq ñ ϕp1q, we split the proof in two cases:

case: maxsizepϕq “ α: By definition of ϕp1q and Garbpϕq, we have:

‚ ϕp1q “ size ě maxsizepϕq ^
Ź

tallocpxiq ĎLt ϕ | i P r1, nsu,

‚ Garbpϕq “ size ě maxsizepϕq ´ nϕ,

Then,

1 Allocpϕq ˚ J ñ
Ź

tallocpxiq ĎLt ϕ | i P r1, nsu Previously derived
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2 Garbpϕq ñ J PC

3 Allocpϕq ˚Garbpϕq ñ Allocpϕq ˚ J ˚-Intro, (A˚
7), 2

4 Allocpϕq ˚Garbpϕq ñ
Ź

tallocpxiq ĎLt ϕ | i P r1, nsu ñ-Tr, 1, 3

5 Allocpϕq ñ size “ nϕ See above

6 size “ nϕ ñ size ě nϕ PC, def. of size “ nϕ

7 Allocpϕq ñ size ě nϕ

8 Garbpϕq ñ size ě maxsizepϕq ´ nϕ PC, def. of Garbpϕq

9 Allocpϕq˚Garbpϕq ñ size ě nϕ ˚ size ě maxsizepϕq´nϕ ˚-Ilr, 7, 8

10 size ě nϕ ˚ size ě maxsizepϕq ´ nϕ ñ size ě maxsizepϕq (A˚
8), (A˚

7), def. of size ě β

11 Allocpϕq ˚Garbpϕq ñ size ě maxsizepϕq ñ-Tr, 9, 10

12 Allocpϕq ˚Garbpϕq ñ ϕp1q PC, 4, 11, def. of ϕp1q

case: maxsizepϕq ‰ α: In this case, maxsizepϕq ă α and so we have:

‚ ϕp1q “ size “ maxsizepϕq ^
Ź

tallocpxiq ĎLt ϕ | i P r1, nsu,

‚ Garbpϕq “ size “ maxsizepϕq ´ nϕ,
We can rely on the previous case of the proof in order to show that

$HCp˚q
Allocpϕq ˚ Garbpϕq ñ size ě max

size
pϕq ^

ľ

tallocpxiq ĎLt ϕ | i P r1, nsu.

By propositional reasoning, we can derive $HCp˚q
Allocpϕq ˚Garbpϕq ñ ϕp1q as soon as

we show that $HCp˚q
Allocpϕq ˚ Garbpϕq ñ  size ě maxsizepϕq ` 1, as we do now:

1 Allocpϕq ñ size “ nϕ Already discussed above

2 size “ nϕ ñ  size ě nϕ ` 1 PC, def. of size “ nϕ

3 Allocpϕq ñ  size ě nϕ ` 1 PC, ñ-Tr, 1, 2

4 Garbpϕq ñ  size ě maxsizepϕq ´ nϕ ` 1 PC, def. of size “ β

5 Allocpϕq ˚Garbpϕq ñ

 size ě nϕ ` 1 ˚  size ě maxsizepϕq ´ nϕ ` 1 ˚-Ilr, 3, 4

6  size ě nϕ ` 1 ˚  size ě maxsizepϕq ´ nϕ ` 1 ñ

 size ě maxsizepϕq ` 1 (A˚
19)

7 Allocpϕq ˚Garbpϕq ñ  size ě maxsizepϕq ` 1 ñ-Tr, 5, 6

This concludes the proof of $HCp˚q
Allocpϕq ˚ Garbpϕq ñ ϕp1q. As already stated, one can

analogously show that $HCp˚q
Allocpψq ˚ Garbpψq ñ ψp1q. Afterwards, by ˚-Ilr and from

$HCp˚q
Alloc ˚ Garb ñ pAllocpϕq ˚ Garbpϕqq ˚ pAllocpψq ˚ Garbpψqq, we conclude that

$HCp˚q
Alloc ˚ Garb ñ ϕp1q ˚ ψp1q.
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Step 3, add the missing literals. From the first and second step of the proof, and by
propositional reasoning, $HCp˚q

x˚ypϕ,ψq ñ ϕp1q ˚ ψp1q. We now rely on x˚ypϕ,ψq to add to

ϕp1q and ψp1q missing literals from ϕ and ψ, respectively. We add the literals progressively,
building a sequence of formulae ϕp1q˚ ψp1q, ϕp2q˚ ψp2q, . . . , ϕpkq˚ ψpkq, where for all i P r1, ks,

ϕpiq and ψpiq are conjunctions of core formulae such that $HCp˚q
x˚ypϕ,ψq ñ ϕpiq ˚ ψpiq, and

for all j P r1, is, ϕpjq ĎLt ϕ
piq and ψpjq ĎLt ψ

piq. Fundamentally, we obtain ϕ “ ϕpkq and

ψ “ ψpkq (modulo associativity and commutativity of the classical conjunction), which allows
us to derive $HCp˚q

x˚ypϕ,ψq ñ ϕ ˚ ψ, ending the proof. Below, we focus on the formula

ϕpiq and ϕ. Since x˚ypϕ,ψq is equal to x˚ypψ,ϕq (by a quick inspection of the definition) and
the separating conjunction is commutative (axiom (A˚

7)), a similar analysis can be done for

ψpiq and ψ. Thus, we assume that $HCp˚q
x˚ypϕ,ψq ñ ϕpiq ˚ ψpiq holds, where in particular

ϕp1q ĎLt ϕ
piq and ψp1q ĎLt ψ

piq, and that there is a literal L ĎLt ϕ that does not appear in ϕpiq.
By relying on the theorems in Lemma 5.2, we show that $HCp˚q

x˚ypϕ,ψq ñ pϕpiq^Lq ˚ψpiq

by a case analysis on L.

case: L “ x „ y, where „P t“,‰u: By definition of x˚ypϕ,ψq, x „ y ĎLt x˚ypϕ,ψq.

1 x˚ypϕ,ψq ñ ϕpiq ˚ ψpiq Hypothesis

2 x˚ypϕ,ψq ñ x „ y PC, def. of x˚ypϕ,ψq, see above

3 x˚ypϕ,ψq ñ x „ y^ pϕpiq ˚ ψpiqq PC, 1, 2

4 x „ y^ pϕpiq ˚ ψpiqq ñ pϕpiq ^ x „ yq ˚ ψpiq (I˚5.2.1)

5 x˚ypϕ,ψq ñ pϕpiq ^ x „ yq ˚ ψpiq ñ-Tr, 3, 4

case: L “ allocpxq: Since allocpxq ĎLt ϕ, by definition, allocpxq ĎLt x˚ypϕ,ψq. By
definition of x1, . . . , xn, there is j P r1, ns such that xj “ x ĎLt x˚ypϕ,ψq. Since ϕ

is a core type, allocpxjq ĎLt ϕ. By definition of ϕp1q, allocpxjq ĎLt ϕ
p1q. From

ϕp1q ĎLt ϕ
piq, we have allocpxjq ĎLt ϕ

piq. Afterwards,

1 ϕpiq ñ ϕpiq ^ allocpxjq PC, see above

2 x˚ypϕ,ψq ñ ϕpiq ˚ ψpiq Hypothesis

3 ϕpiq ˚ ψpiq ñ pϕpiq ^ allocpxjqq ˚ ψ
piq ˚-Intro, 1

4 x˚ypϕ,ψq ñ xj “ x PC, see above

5 x˚ypϕ,ψq ñ xj “ x^ ppϕpiq ^ allocpxjqq ˚ ψ
piqq PC, 2, 3, 4

6 xj “ x^ ppϕpiq ^ allocpxjqq ˚ ψ
piqq ñ pϕpiq ^ allocpxqq ˚ ψpiq (I˚5.2.2)

7 x˚ypϕ,ψq ñ ppϕpiq ^ allocpxqq ˚ ψpiqq ñ-Tr, 5, 6

Without loss of generality, thanks to the derivation above dealing with allocpxq literals, we

now assume that for all allocpxq ĎLt ϕ and all allocpyq ĎLt ψ, we have allocpxq ĎLt ϕ
piq

and allocpyq ĎLt ψ
piq.

case: L “  allocpxq: We distinguish two main subcases.
‚ First, assume  allocpxq ĎLt ψ. By definition of x˚ypϕ,ψq,  allocpxq ĎLt x˚ypϕ,ψq.
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1 x˚ypϕ,ψq ñ ϕpiq ˚ ψpiq Hypothesis

2 x˚ypϕ,ψq ñ  allocpxq PC, def. of x˚ypϕ,ψq, see above

3 x˚ypϕ,ψq ñ  allocpxq ^ pϕpiq ˚ ψpiqq PC, 1, 2

4  allocpxq ^ pϕpiq ˚ ψpiqq ñ pϕpiq ^ allocpxqq ˚ ψpiq (I˚5.2.4)

5 x˚ypϕ,ψq ñ pϕpiq ^ allocpxqq ˚ ψpiq ñ-Tr, 3, 4

‚ Otherwise, allocpxq ĎLt ψ. By assumption, allocpxq ĎLt ψ
piq.

1 ψpiq ñ ψpiq ^ allocpxq PC, see above

2 x˚ypϕ,ψq ñ ϕpiq ˚ ψpiq Hypothesis

3 ϕpiq ˚ ψpiq ñ pψpiq ^ allocpxqq ˚ ϕpiq (A˚
7), ˚-Intro, 1

4 pψpiq ^ allocpxqq ˚ ϕpiq ñ ψpiq ˚ pϕpiq ^ allocpxqq (I˚5.2.3)

5 ψpiq ˚ pϕpiq ^ allocpxqq ñ pϕpiq ^ allocpxqq ˚ ψpiq (A˚
7)

6 x˚ypϕ,ψq ñ pϕpiq ^ allocpxqq ˚ ψpiq ñ-Tr, 2, 3, 4, 5

case: L “ x ãÑ y: Similar to the case L “ allocpxq. Since ϕ is a satisfiable core type,

we have allocpxq ĎLt ϕ (see axiom (AC
3)). By assumption, allocpxq ĎLt ϕ

piq. By
definition of x˚ypϕ,ψq, we have x ãÑ y ĎLt x˚ypϕ,ψq.

1 ϕpiq ñ ϕpiq ^ allocpxq PC, see above

2 x˚ypϕ,ψq ñ ϕpiq ˚ ψpiq Hypothesis

3 x˚ypϕ,ψq ñ x ãÑ y PC, see above

4 ϕpiq ˚ ψpiq ñ pϕpiq ^ allocpxqq ˚ ψpiq ˚-Intro, 1

5 x˚ypϕ,ψq ñ x ãÑ y^ ppϕpiq ^ allocpxqq ˚ ψpiqq PC, 3, 4

6 x ãÑ y^ ppϕpiq ^ allocpxqq ˚ ψpiqq ñ pϕpiq ^ x ãÑ yq ˚ ψpiq (I˚5.2.6)

7 x˚ypϕ,ψq ñ pϕpiq ^ x ãÑ yq ˚ ψpiq ˚-Intro, 5, 6

Without loss of generality, thanks to the previous cases dealing with  allocpxq literals,
below we assume that for every  allocpxq ĎLt ϕ and every  allocpyq ĎLt ψ, we have

 allocpxq ĎLt ϕ
piq and  allocpyq ĎLt ψ

piq.

case: L “  x ãÑ y: We distinguish two main subcases
‚ First, suppose allocpxq ĎLt ϕ. In this case, by definition of x˚ypϕ,ψq, we have
 x ãÑ y ĎLt x˚ypϕ,ψq. Therefore,

1 x˚ypϕ,ψq ñ  x ãÑ y PC, see above

2 x˚ypϕ,ψq ñ ϕpiq ˚ ψpiq Hypothesis

3 x˚ypϕ,ψq ñ  x ãÑ y^ pϕpiq ˚ ψpiqq PC, 1, 2

4  x ãÑ y^ pϕpiq ˚ ψpiqq ñ pϕpiq ^ x ãÑ yq ˚ ψpiq (I˚5.2.7)
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‚ Otherwise, we have  allocpxq ĎLt ϕ. By assumption,  allocpxq ĎLt ϕ
piq, and

thus

1 ϕpiq ñ  allocpxq PC, see above

2  allocpxq ñ  x ãÑ y (AC
3), PC

3 ϕpiq ñ  x ãÑ y ñ-Tr, 1, 2

4 ϕpiq ñ ϕpiq ^ x ãÑ y PC, 3

5 x˚ypϕ,ψq ñ ϕpiq ˚ ψpiq Hypothesis

6 ϕpiq ˚ ψpiq ñ pϕpiq ^ x ãÑ yq ˚ ψpiq ˚-Intro, 4

7 x˚ypϕ,ψq ñ pϕpiq ^ x ãÑ yq ˚ ψpiq ñ-Tr, 5, 6

case: L “ size ě β: By definition of maxsizep.q, β ď maxsizepϕq. By definition of ϕp1q,

size ě maxsizepϕq ĎLt ϕ
p1q. From ϕp1q ĎLt ϕ

piq, we get size ě maxsizepϕq ĎLt

ϕpiq.

1 ϕpiq ñ size ě maxsizepϕq PC, see above

2 size ě maxsizepϕq ñ size ě β repeated (IC
5), PC, as β ď maxsizepϕq

3 ϕpiq ñ ϕpiq ^ size ě β PC, 1, 2

4 x˚ypϕ,ψq ñ ϕpiq ˚ ψpiq Hypothesis

5 ϕpiq ˚ ψpiq ñ pϕpiq ^ size ě βq ˚ ψpiq ˚-Intro, 3

6 x˚ypϕ,ψq ñ pϕpiq ^ size ě βq ˚ ψpiq ñ-Tr, 4, 5

case: L “  size ě β: In this case, maxsizepϕq ă α. Since ϕ is a satisfiable core type, we

have β ą maxsizepϕq. Moreover, by definition of ϕp1q,  size ě maxsizepϕq ` 1 ĎLt

ϕp1q. From ϕp1q ĎLt ϕ
piq, we have  size ě maxsizepϕq ` 1 ĎLt ϕ

piq.

1 ϕpiq ñ  size ě maxsizepϕq`1 PC, see above

2  size ě maxsizepϕq`1 ñ  size ě β repeated (IC
5), PC, as β ą maxsizepϕq

by PC, the contrapositive of (IC
5) is derivable

3 ϕpiq ñ ϕpiq ^ size ě β PC, 1, 2

4 x˚ypϕ,ψq ñ ϕpiq ˚ ψpiq Hypothesis

5 ϕpiq ˚ ψpiq ñ pϕpiq ^ size ě βq ˚ ψpiq ˚-Intro, 3

6 x˚ypϕ,ψq ñ pϕpiq ^ size ě βq ˚ ψpiq ñ-Tr, 4, 5

Corollary 5.5 (Star elimination). Let X Ďfin VAR and α ě cardpXq. Let ϕ and ψ in
CoreTypespX, αq. There is χ in ConjpCorepX, 2αqq such that $HCp˚q

ϕ ˚ ψ ô χ.

Proof. If both ϕ and ψ are satisfiable, the results holds directly by Lemma 5.4, as x˚ypϕ,ψq
is in ConjpCorepX, α` αqq. Otherwise, let us treat the case where one of the two formulas is
unsatisfiable. For instance, assume that ϕ is unsatisfiable. Then $HC

ϕñ K by completeness
of HC (Lemma 4.1) and, HCp˚q includes HC, $HCp˚q

ϕ ñ K. By the rule ˚-Intro and by
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the axiom (I˚10), we get $HCp˚q
ϕ ˚ ψ ñ K. Thus χ can take the value  px “ xq. The case

where ψ is not satisfiable is analogous, thanks to (A˚
7).

By the distributivity axiom (I˚9), Corollary 5.5 is extended from core types to arbitrary
Boolean combinations of core formulae. HCp˚q is therefore complete for SLp˚, allocq. In
order to derive a valid formula ϕ P SLp˚, allocq, we repeatedly apply the elimination of ˚ in
a bottom-up fashion, starting from the leaves of ϕ (which are Boolean combinations of core
formulae) and obtaining a Boolean combination of core formulae ψ that is equivalent to ϕ.
Then, we rely on the completeness of HC (Theorem 4.3) to prove that ψ is derivable.

Theorem 5.6. A formula ϕ in SLp˚, allocq is valid iff $HCp˚q
ϕ.

Proof. Soundness of the proof system HCp˚q has been already established earlier.
As far as the completeness proof is concerned, we need to show that for every formula ϕ

in SLp˚, allocq, there is a Boolean combination of core formulae ψ such that $HCp˚q
ϕô ψ.

In order to conclude the proof, when ϕ is valid for SLp˚, allocq, by soundness of HCp˚q, we
obtain that ψ is valid too and therefore $HCp˚q

ψ as HC is a subsystem of HCp˚q and HC is
complete by Theorem 4.3. By propositional reasoning, we get that $HCp˚q

ϕ.
To show that every formula ϕ has a provably equivalent Boolean combination of core

formulae, we heavily rely on Corollary 5.5. The proof is by simple induction on the number
of occurrences of ˚ in ϕ that are not involved in the definition of some core formula of the
form size ě β. For the base case, when ϕ has no occurrence of the separating conjunction,
x “ y and x ãÑ y are already core formulae, and emp is logically equivalent to  size ě 1.

Before performing the induction step, let us observe that in HCp˚q, the replacement of
provably equivalent formulae holds true, which is stated as follows:

R0 Let ϕ,ϕ1 and ψ be formulae of SLp˚, allocq such that $HCp˚q
ϕô ϕ1. Then,

$HCp˚q
ψrϕsρ ñ ψrϕ1sρ

Above, ψrϕsρ refers to the formula ψ in which the subformula at the occurrence ρ (in the
standard sense) is replaced by ϕ. (ϕ and ϕ1 are therefore placed at the same occurrence.)

To prove R0, we first note that the following rules can be shown admissible in HCp˚q:

ϕô ϕ1

 ϕô  ϕ1
ϕô ϕ1

ϕ_ ψ ô ϕ1 _ ψ

ϕô ϕ1

ϕ^ ψ ô ϕ1 ^ ψ

Admissibility of such rules is a direct consequence of the presence of axioms and modus
ponens for the propositional calculus. As a consequence of the presence of the rule ˚-Intro
in HCp˚q, the rule below is also admissible:

ϕô ϕ1

ϕ ˚ ψ ô ϕ1 ˚ ψ

Consequently, by structural induction on ψ, one can conclude that $HCp˚q
ϕô ϕ1 implies

$HCp˚q
ψrϕsρ ñ ψrϕ1sρ (the axiom (A˚

7) needs to be used here).
Assume that ϕ is a formula in SLp˚, allocq with n ` 1 occurrences of the separating

conjunction not involved in the definition of some size ě β (n ě 0). Let ψ be a subformula
of ϕ (at the occurrence ρ) of the form ψ1˚ψ2 such that ψ1 and ψ2 are Boolean combinations of
core formulae, in BoolpCorepX, α1qq and BoolpCorepX, α2qq. By pure propositional reasoning,
one can show that there are formulae in disjunctive normal form ψ1

1 _ ¨ ¨ ¨ _ ψn1
1 and

ψ1
2 _ ¨ ¨ ¨ _ ψ

n2
2 such that $HC

ψi ô ψ1
i _ ¨ ¨ ¨ _ ψ

ni
i for i P t1, 2u and moreover, all the ψji ’s
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(A´̊21) psize “ 1^
Ź

xPX allocpxqq f́ J đrX Ďfin VARs

(A´̊22)  allocpxq ñ ppx ãÑ y^ size “ 1q f́ Jq

(A´̊23)  allocpxq ñ ppallocpxq ^ size “ 1^
Ź

yPX x ãÑ yq f́ Jq đrX Ďfin VARs

˚-Adj:
ϕ ˚ ψ ñ χ
ϕñ pψ ´̊ χq

´̊ -Adj:
ϕñ pψ ´̊ χq
ϕ ˚ ψ ñ χ

Figure 7: Additional axioms and rules for handling the separating implication.

are core types in CoreTypespX,maxpcardpXq, α1, α2qq. Again, by using propositional reasoning
but this time using also the axiom (I˚9) for distributivity, we have

$HCp˚q
ψ1 ˚ ψ2 ô

ł

j1Pr1,n1s,j2Pr1,n2s

ψj11 ˚ ψ
j2
2 .

We now rely on Corollary 5.5 and derive that there is a conjunction of core formulae ψj1,j2 in

ConjpCorepX, 2 maxpcardpXq, α1, α2qqq such that $HCp˚q
ψj11 ˚ ψ

j2
2 ô ψj1,j2 . By propositional

reasoning, we get

$HCp˚q
ψ1 ˚ ψ2 ô

ł

j1Pr1,n1s,j2Pr1,n2s

ψj1,j2 .

Consequently (thanks to the property R0), we obtain

$HCp˚q
ϕô ϕr

ł

j1Pr1,n1s,j2Pr1,n2s

ψj1,j2sρ

Note that the right-hand side formula has n occurrences of the separating conjunction that
are not involved in the definition of some core formula of the form size ě β. The induction
hypothesis applies, which concludes the proof.

6. A constructive elimination of ´̊ leading to full completeness

In order to obtain the final proof system HCp˚, ´̊ q, we add the axioms and rules from Figure 7
to the proof system HCp˚q. These new axioms and rules are dedicated to the separating
implication. The axioms involving f́ (kind of dual of ´̊ , introduced in Section 2) express
that it is always possible to extend a given heap with an extra cell, and that the address and
the content of this cell can be fixed arbitrarily (provided it is not already allocated). The
adjunction rules ˚-Adj and ´̊ -Adj are from the Hilbert-style axiomatisation of Boolean
BI [GLW06, Section 2]. One can observe that, in HCp˚, ´̊ q, the axioms (I˚9), (I˚10) and (I˚12)
of HCp˚q are derivable.

Lemma 6.1. The axioms (I˚9), (I˚10) and (I˚12) are derivable in HCp˚, ´̊ q.

The derivations of (I˚9), (I˚10) and (I˚12) that lead to Lemma 6.1 are given in Appendix C.
Fundamentally, HCp˚, ´̊ q enjoys the ´̊ elimination property, as shown below. Actually,

we state the property with the help of f́ as we find the related statements and developments
more intuitive.

Lemma 6.2. Let X Ďfin VAR and α ě cardpXq. Let ϕ and ψ in CoreTypespX, αq. There is a
conjunction χ P ConjpCorepX, αqq such that $HCp˚,´̊ q pϕ f́ ψq ô χ.
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Structure of the proof of Lemma 6.2. In the proof of Lemma 6.2, the formula χ is explicitly
constructed from ϕ and ψ, following a pattern analogous to the construction of x˚yp. , .q
in Figure 6 (see forthcoming Figure 8). The derivation of the equivalence pϕ f́ ψq ô χ
is shown as follows. First, the formulae χ ˚ ϕ ñ ψ and  χ ˚ ϕ ñ  ψ are shown valid
(by using semantical means). As HCp˚q is complete for SLp˚, allocq, it is a subsystem
of HCp˚, ´̊ q, and the formulae ϕ, ψ and χ are Boolean combinations of core formulae,
we get $HCp˚,´̊ q χ ˚ ϕ ñ ψ and $HCp˚,´̊ q  χ ˚ ϕ ñ  ψ. The latter theorem leads to
$HCp˚,´̊ q pϕ f́ ψq ñ χ by using the definition of f́ and the rule ˚-Adj. For the other
direction, in order to show that $HCp˚,´̊ q χ ñ pϕ f́ ψq holds, we take advantage of

the admissibility of the theorem (I´̊6.3.9) (see Lemma 6.3 below) for which an instance
is pϕ f́ Jq ^ pϕ ´̊ ψq ñ pϕ f́ pJ ^ ψqq. From $HCp˚,´̊ q χ ˚ ϕ ñ ψ and by ˚-Adj we
have $HCp˚,´̊ q χñ pϕ ´̊ ψq. Therefore, the main technical development lies in the proof

of $HCp˚,´̊ q χ ñ pϕ f́ Jq, which allows us to take advantage of (I´̊6.3.9), and leads to
$HCp˚,´̊ q χñ pϕ f́ ψq by propositional reasoning.

In order to formalise the proof of Lemma 6.2 sketched above, we start by establishing
several admissible axioms and rules (Lemma 6.3). Afterwards, we define the formula χ and
show the validity of χ ˚ ϕñ ψ and  χ ˚ ϕñ  ψ (Lemma 6.4). Then, come the final bits
of the proof of Lemma 6.2 (see page 35).

Lemma 6.3. The following rules and axioms are admissible in HCp˚, ´̊ q:

(I´̊6.3.1) K f́ ϕñ K

(I´̊6.3.2) ϕ f́ K ñ K

(I´̊6.3.3) ϕ ˚ pϕ ´̊ ψq ñ ψ

(I´̊6.3.4)
ϕñ ψ

ϕ f́ χñ ψ f́ χ

(I´̊6.3.5)
ϕñ ψ

χ f́ ϕñ χ f́ ψ

(I´̊6.3.6) ϕ f́ pψ f́ χq ô pϕ ˚ ψq f́ χ

(I´̊6.3.7) pϕ_ ψq f́ χ ô pϕ f́ χq _ pψ f́ χq

(I´̊6.3.8) χ f́ pϕ_ ψq ô pχ f́ ϕq _ pχ f́ ψq

(I´̊6.3.9) pϕ f́ ψq ^ pϕ ´̊ χq ñ pϕ f́ ψ ^ χq

(I´̊6.3.10) x “ y^ pϕ f́ ψq ñ pϕ^ x “ y f́ ψq

(I´̊6.3.11) x ‰ y^ pϕ f́ ψq ñ pϕ^ x ‰ y f́ ψq

(I´̊6.3.12) pϕsize ^
Ź

xPX allocpxqq f́ J,

where, in axiom (I´̊6.3.12), X Ďfin VAR and ϕsize is a satisfiable conjunction of literals of
the form size ě β1 or  size ě β2.

The proof of Lemma 6.3 can be found in Appendix D.
Let ϕ and ψ be two satisfiable core types in ConjpCorepX, αqq. Following the developments

of Section 5, we define a formula x f́ypϕ,ψq in ConjpCorepX, αqq, for which we show that
ϕ f́ ψ ô x f́ypϕ,ψq is provable in HCp˚, ´̊ q. The formula x f́ypϕ,ψq is defined in Figure 8.

Lemma 6.4. Let X Ďfin VAR, α ě cardpXq and ϕ, ψ be satisfiable core types in CoreTypespX, αq.
The formulae x f́ypϕ,ψq ˚ ϕñ ψ and p x f́ypϕ,ψqq ˚ ϕñ  ψ are valid.

Before presenting the proof for Lemma 6.4, let us observe that since we aim at proving
the derivability of ϕ f́ ψ ô x f́ypϕ,ψq in HCp˚, ´̊ q, the validity of p x f́ypϕ,ψqq ˚ ϕñ  ψ
should not surprise the reader. Indeed, by replacing x f́ypϕ,ψq with ϕ f́ ψ we obtain
p pϕ f́ ψqq ˚ ϕ ñ  ψ which, unfolding the definition of f́, is equivalent to the valid
formula pϕ ´̊  ψq ˚ ϕñ  ψ (see (I´̊6.3.3) in Lemma 6.3). On the other hand, the fact that
x f́ypϕ,ψq ˚ ϕñ ψ is valid can be puzzling at first, as the formula pϕ f́ ψq ˚ ϕñ ψ is not
valid (in general). In its essence, Lemma 6.4 shows that pϕ f́ ψq ˚ ϕñ ψ is valid whenever
ϕ and ψ are restricted to core types.
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Ź

 

x „ y ĎLt tϕ | ψu
ˇ

ˇ„P t“,‰u
(

^
Ź

"

allocpxq

ˇ

ˇ

ˇ

ˇ

 allocpxq ĎLt ϕ
allocpxq ĎLt ψ

*

^
Ź

t allocpxq ĎLt ψu ^
Ź

 

 allocpxq
ˇ

ˇ allocpxq ĎLt ϕ
(

^
Ź

t xãÑy ĎLt ψu ^
Ź

"

x ãÑ y

ˇ

ˇ

ˇ

ˇ

 allocpxq ĎLt ϕ
x ãÑ y ĎLt ψ

*

^
Ź

"

x ‰ x

ˇ

ˇ

ˇ

ˇ

allocpxq ^  x ãÑ y ĎLt ϕ
x ãÑ y ĎLt ψ

*

^
Ź

"

size ě β2`1
.́ β1

ˇ

ˇ

ˇ

ˇ

 size ě β1 ĎLt ϕ
size ě β2 ĎLt ψ

*

^
Ź

"

x ‰ x

ˇ

ˇ

ˇ

ˇ

x ãÑ y ĎLt ϕ
 x ãÑ y ĎLt ψ

*

^
Ź

"

 size ě β2
.́ β1

ˇ

ˇ

ˇ

ˇ

size ě β1 ĎLt ϕ
 size ě β2 ĎLt ψ

*

^
Ź

"

x ‰ x

ˇ

ˇ

ˇ

ˇ

allocpxq ĎLt ϕ
 allocpxq ĎLt ψ

*

Figure 8: The formula x f́ypϕ,ψq.

Below, we prove that x f́ypϕ,ψq ˚ ϕ ñ ψ and p x f́ypϕ,ψqq ˚ ϕ ñ  ψ are valid, thus
establishing Lemma 6.4. Notice that the proof is carried out through semantical arguments.
Since ϕ, ψ and x f́ypϕ,ψq are conjunctions of literals built from core formulae, derivability
of these two tautologies in HCp˚, ´̊ q follows from the completeness of HCp˚q (Theorem 5.6).

Validity of x f́ypϕ,ψq ˚ ϕñ ψ. If x f́ypϕ,ψq ˚ ϕ is inconsistent, then x f́ypϕ,ψq ˚ ϕñ ψ is
straightforwardly valid. Below, we assume that x f́ypϕ,ψq ˚ ϕ is satisfiable. In particular,
none of the conditions depicted in Figure 8 that result in x f́ypϕ,ψq having a literal x ‰ x

applies. Let ps, hq |ù x f́ypϕ,ψq ˚ ϕ. Therefore, there are two disjoint heaps h1 and h2 such
that h “ h1`h2, ps, h1q |ù x f́ypϕ,ψq and ps, h2q |ù ϕ. We show that ps, hq satisfies each
literal L in ψ. We perform a simple case analysis on the shape of L. Notice that, below, we
have x, y P X and β2 P r0, αs, as ψ is a core type in CoreTypespX, αq.

case: L “ x „ y, where „P t“,‰u: By definition of x f́ypϕ,ψq, x „ y ĎLt x f́ypϕ,ψq
and so ps, h1q |ù x „ y. We conclude that spxq „ spyq, and thus ps, hq |ù x „ y.

case: L “ allocpxq: If allocpxq ĎLt ϕ, then ps, h2q |ù allocpxq, which implies spxq P
domphq directly from h2Ďh. Thus, ps, hq |ù allocpxq. Otherwise, if allocpxq ­ĎLt ϕ
then, since ϕ is a core type in CoreTypespX, αq, we have  allocpxq ĎLt ϕ. By definition
of x f́ypϕ,ψq, we derive that allocpxq ĎLt x f́ypϕ,ψq. So, ps, h1q |ù allocpxq and
thus, by h1Ďh, spxq P domphq. We conclude that ps, hq |ù allocpxq.

case: L “  allocpxq: In this case, by definition of x f́ypϕ,ψq, we have  allocpxq ĎLt

x f́ypϕ,ψq, which implies ps, h1q |ù  allocpxq. Ad absurdum, suppose ps, h2q |ù

allocpxq. Since ϕ is a core type in CoreTypespX, αq, we conclude that allocpxq ĎLt

ϕ. However, by definition of x f́ypϕ,ψq, this implies x ‰ x ĎLt x f́ypϕ,ψq, which
contradicts the fact that x f́ypϕ,ψq is satisfiable. Thus, ps, h2q |ù  allocpxq, which
implies spxq R domph2q. From h “ h1`h2 and spxq R domph1q we conclude that
spxq R domphq. So, ps, hq |ù  allocpxq.

case: L “ x ãÑ y: If  allocpxq ĎLt ϕ, then x ãÑ y ĎLtx f́ypϕ,ψq holds by definition of
x f́ypϕ,ψq. So, h1pspxqq “ spyq and, from h1Ďh we conclude that ps, hq |ù x ãÑ y.
Otherwise, let us assume that allocpxq ĎLt ϕ. Ad absurdum, suppose  x ãÑ y ĎLt ϕ.
Then, by definition of x f́ypϕ,ψq, we derive x ‰ x ĎLt x f́ypϕ,ψq. However, this
contradicts the satisfiability of x f́ypϕ,ψq. Therefore,  x ãÑ y ­ĎLt ϕ. Since ϕ is a
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core type, this implies x ãÑ y ĎLt ϕ, and therefore h2pspxqq “ spyq. From h2Ďh we
conclude that ps, hq |ù x ãÑ y.

case: L “  x ãÑ y: By definition of x f́ypx, yq, we have  x ãÑ y ĎLt x f́ypx, yq, which
implies that if spxq P domph1q then h1pspxqq ‰ spyq. Ad absurdum, suppose x ãÑ y ĎLt

ϕ. Then, by definition of x f́ypϕ,ψq, we derive x ‰ x ĎLt x f́ypϕ,ψq. However, this
contradicts the satisfiability of x f́ypϕ,ψq. Therefore x ãÑ y ­ĎLt ϕ and, since ϕ is a
core type,  x ãÑ y ĎLt ϕ. So, if spxq P domph2q then h2pspxqq ‰ spyq. By h “ h1` h2

and the fact that h1pspxqq ‰ spyq, we conclude that ps, hq |ù  x ãÑ y.
case: L “ size ě β2: If size ě α ĎLt ϕ, then cardpdomphqq ě cardpdomph2qq ě α,

by h2Ďh. As β2 P r0, αs, this implies ps, hq |ù size ě β2. Otherwise, assume
size ě α ­ĎLt ϕ. In particular, since ϕ is in CoreTypespX, αq, this implies that
maxsizepϕq ă α and

size ě maxsizepϕq ^  size ě maxsizepϕq ` 1 ĎLt ϕ.

We have cardpdomph2qq “ maxsizepϕq. If maxsizepϕq ě β2, then from h2Ďh we
conclude that ps, hq |ù size ě β2. Otherwise, let us assume β2 ą maxsizepϕq. By
definition of x f́ypϕ,ψq, we conclude that size ě β2 ` 1 .́

pmaxsizepϕq ` 1q ĎLt

x f́ypϕ,ψq. Together with β2 ą maxsizepϕq, this implies cardpdomph1qq ě β2 ´

maxsizepϕq. With cardpdomph2qq “ maxsizepϕq and h “ h1`h2, this implies ps, hq |ù
size ě β2.

case: L “  size ě β2: Ad absurdum, suppose that size ě α ĎLt ϕ. Then, by definition
of x f́ypϕ,ψq we have  size ě β2

.́ α ĎLt x f́ypϕ,ψq. However, since β2 P r0, αs, this
means that  size ě 0 ĎLt x f́ypϕ,ψq, which contradicts the satisfiability of x f́ypϕ,ψq.
Therefore, size ě α ­ĎLt ϕ. As ϕ is in CoreTypespX, αq, we derive maxsizepϕq ă α and

size ě maxsizepϕq ^  size ě maxsizepϕq ` 1 ĎLt ϕ.

We conclude that cardpdomph2qq ď maxsizepϕq. From size ě maxsizepϕq ĎLt ϕ and
by definition of x f́ypϕ,ψq, we conclude that

 size ě β2
.́ maxsizepϕq ĎLt x f́ypϕ,ψq.

If β2 ď maxsizepϕq, then  size ě 0 ĎLt x f́ypϕ,ψq, which contradicts the sat-
isfiability of x f́ypϕ,ψq. Therefore, β2 ą maxsizepϕq. So, cardpdomph1qq ă β2 ´

maxsizepϕq. Together with cardpdomph2qq ď maxsizepϕq and h “ h1`h, we conclude
that cardpdomphqq ă β2, and thus ps, hq |ù  size ě β2.

Validity of p x f́ypϕ,ψqq ˚ ϕñ  ψ. Let us assume ps, hq |ù p x f́ypϕ,ψqq˚ϕ. Consequently,
there is a literal L of x f́ypϕ,ψq such that ps, hq |ù p Lq˚ϕ holds. We show that ps, hq |ù  ψ.
Let h1 and h2 be two disjoint heaps such that h “ h1`h2, ps, h1q |ù  L and ps, h2q |ù ϕ.
We perform a case analysis on the shape of L. As in the previous part of the proof, recall
that x, y P X and β1, β2 P r0, αs.

case: L “ x ‰ x: Since ϕ and ψ are satisfiable, by definition of x f́ypϕ,ψq, the fact that
x ‰ x ĎLt x f́ypϕ,ψq implies that one of the following three cases holds:
1: allocpxq ^  x ãÑ y ĎLt ϕ and x ãÑ y ĎLt ψ.

From allocpxq ^  x ãÑ y ĎLt ϕ and h2Ďh, we have spxq P domphq and hpspxqq ‰
spyq. Thus ps, hq ­|ù x ãÑ y, and so, by x ãÑ y ĎLt ψ, ps, hq |ù  ψ.

2: x ãÑ y ĎLt ϕ and  x ãÑ y ĎLt ψ.
From x ãÑ y ĎLt ϕ and h2Ďh, hpspxqq “ spyq. Thus ps, hq |ù x ãÑ y and so, by
 x ãÑ y ĎLt ψ, ps, hq |ù  ψ.
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3: allocpxq ĎLt ϕ and  allocpxq ĎLt ψ.
From allocpxq ĎLt ϕ and h2Ďh, spxq P domphq. Thus ps, hq |ù allocpxq and so, by
 allocpxq ĎLt ψ, ps, hq |ù  ψ.

case: L “ x „ y, where „P t“,‰u: In this case, since ps, h1q |ù  L, then we have
ps, hq |ù  L. Now, it cannot be that L ĎLt ϕ, as it would imply ps, hq |ù L, which
is contradictory. Therefore, by definition of x f́ypϕ,ψq, we must have L ĎLt ψ. This
implies ps, hq |ù  ψ.

case: L “ allocpxq: By definition of x f́ypϕ,ψq,  allocpxq ĎLt ϕ and allocpxq ĎLt ψ.
From ps, h1q |ù  allocpxq we conclude that spxq R domph1q. By  allocpxq ĎLt ϕ,
spxq R domph2q. By h “ h1`h2, spxq R domphq. As allocpxq ĎLt ψ, ps, hq |ù  ψ.

case: L “  allocpxq: As ps, h1q |ù  L, we have spxq P domph1q. According to the
definition of x f́ypϕ,ψq, either allocpxq ĎLt ϕ or  allocpxq ĎLt ψ. The first case
cannot hold, as it implies spxq P domph2q which contradicts the fact that h1 and h2 are
disjoint. In the second case, from spxq P domph1q and h1Ďh, we have ps, hq |ù allocpxq.
So, ps, hq |ù  ψ.

case: L “ x ãÑ y: Then by definition of x f́ypϕ,ψq,  allocpxq ĎLt ϕ and x ãÑ y ĎLt ψ.
From ps, h1q |ù  L, if spxq P domph1q then h1pspxqq ‰ spyq. As  allocpxq ĎLt ϕ,
spxq R domph2q and therefore, by h “ h1`h2, hpspxqq ‰ spyq. From x ãÑ y ĎLt ψ, we
conclude that ps, hq |ù  ψ.

case: L “  x ãÑ y: Then, by definition of x f́ypϕ,ψq,  x ãÑ y ĎLt ψ. From ps, h1q |ù  L
and h1Ďh, we derive hpspxqq “ spyq. From  x ãÑ y ĎLt ψ, we derive ps, hq |ù  ψ.

case: L “ size ě β2 ` 1 .́ β1, where size ě β2 ĎLt ψ and  size ě β1 ĎLt ϕ: Since it
holds that ps, h1q |ù  L and ps, h2q |ù ϕ, we derive (respectively) cardpdomph1qq ď

β2
.́ β1 and cardpdomph2qq ă β1. From h “ h1`h2, we conclude that cardpdomphqq ă

β2. From size ě β2 ĎLt ψ, we derive ps, hq |ù  ψ.
case: L “  size ě β2

.́ β1, where  size ě β2 ĎLt ψ and size ě β1 ĎLt ϕ: Since we
have ps, h1q |ù  L and ps, h2q |ù ϕ, we conclude that cardpdomph1qq ě β2

.́ β1 and
cardpdomph2qq ě β1. So, h “ h1`h2 implies cardpdomphqq ě β2. By  size ě β2 ĎLt

ψ, we derive ps, hq |ù  ψ.

We are now ready to tackle the proof of Lemma 6.2.

Proof of Lemma 6.2. As in the statement of the lemma, let us consider X Ďfin VAR and
α ě cardpXq, and two core types ϕ and ψ in CoreTypespX, αq. We want to show that there is
a conjunction χ P ConjpCorepX, αqq such that $HCp˚,´̊ q pϕ f́ ψq ô χ.

First of all, if ϕ or ψ is unsatisfiable, then $HCp˚,´̊ q ϕ f́ ψ ñ K by using Lemma 4.1

and the admissible axioms (I´̊6.3.4) and (I´̊6.3.5) from Lemma 6.3. Therefore, in this case,
it is enough to take χ equal to  x “ x to complete the proof. Otherwise, let us assume

that ϕ and ψ are satisfiable. We consider χ
def
“ x f́ypϕ,ψq (see Figure 8), and show that

$HCp˚,´̊ q pϕ f́ ψq ô x f́ypϕ,ψq. We derive each implication separately.

(ñ): Given Lemma 6.4, the proof of $HCp˚,´̊ q ϕ f́ ψ ñ x f́ypϕ,ψq is straightforward:

1  x f́ypϕ,ψq ˚ ϕñ  ψ Lemma 6.4, Theorem 5.6

2  x f́ypϕ,ψq ñ pϕ ´̊  ψq ˚-Adj, 1

3  pϕ ´̊  ψq ñ x f́ypϕ,ψq PC, 2

4 pϕ f́ ψq ñ x f́ypϕ,ψq Def. of f́, 3
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(ð): Let us now show that $HCp˚,´̊ q x f́ypϕ,ψq ñ ϕ f́ ψ. First, let us note that, since
x f́ypϕ,ψq˚ϕñ ψ is valid (Lemma 6.4), it is derivable in HCp˚q (Theorem 5.6), and therefore,
by the rule ˚-Adj, $HCp˚,´̊ q x f́ypϕ,ψq ñ ϕ ´̊ ψ. From that, it follows that it is enough to
show that x f́ypϕ,ψq ñ ϕ f́ J is derivable in HCp˚, ´̊ q. Indeed, from x f́ypϕ,ψq ñ ϕ f́ J

and x f́ypϕ,ψq ñ ϕ ´̊ ψ, we get, by (I´̊6.3.9), that x f́ypϕ,ψq ñ ϕ f́ ψ is derivable too.
Thus, let us prove that x f́ypϕ,ψq ñ ϕ f́ J is derivable. If x f́ypϕ,ψq is unsatisfiable,

then from the completeness of HC with respect to Boolean combinations of core formulae
(Theorem 4.3), we conclude that $HC

x f́ypϕ,ψq ñK. Since HCp˚, ´̊ q extends HC, we
have $HCp˚,´̊ q x f́ypϕ,ψq ñK. By propositional reasoning, $HCp˚,´̊ q x f́ypϕ,ψq ñ ϕ f́ J.
Otherwise, let us assume that x f́ypϕ,ψq is satisfiable.

Structure of the remaining part of the proof. Before presenting the technical arguments for
the derivation of $HCp˚,´̊ q x f́ypϕ,ψq ñ ϕ f́ J when x f́ypϕ,ψq is satisfiable, let us explain
what are the main ingredients. The proof establishing that $HCp˚,´̊ q x f́ypϕ,ψq ñ ϕ f́ J is
by induction on the number j of variables x P X for which allocpxq ĎLt ϕ holds. As ϕ, ψ
and x f́ypϕ,ψq are currently assumed to be satisfiable, they have exactly the same equalities
and inequalities and this is used in the proof. The base case j “ 0 can be handled using
several derivations taking advantage of Lemma 6.3. For the induction step j ą 0, some
more substantial work is needed and this is briefly described below. We distinguish the
case maxsizepϕq ă α from the case maxsizepϕq “ α. Both cases, we introduce the formula
Atompxiq where allocpxiq ĎLt ϕ.

Atompxiq
def
“

#

xi ãÑ y^ size “ 1 if xi ãÑ y ĎLt ϕ, for some y P X

allocpxiq ^ size “ 1^
Ź

yPX xi ãÑ y otherwise

In the case maxsizepϕq ă α, we introduce a formula ϕ1 as a very slight variant of ϕ such
that ϕ1 enjoys the following essential properties.

(A) ϕ1 is a satisfiable core type in CoreTypespX, αq.
(B) pAtompxiq ˚ ϕ

1q ñ ϕ is valid.
(C) px f́ypϕ,ψq ˚ Atompxiqq ñ x f́ypϕ1, ψq is valid.

In order to conclude $HCp˚,´̊ q x f́ypϕ,ψq ñ pϕ f́Jq, we take advantage of the completeness

of HCp˚q to derive the tautologies in (B) and (C). Moreover, as by construction of ϕ1, we
have  allocpxiq ĎLt ϕ

1 and, for every y P X,  allocpyq ĎLt ϕ implies  allocpyq ĎLt ϕ
1, we

shall be able to apply the induction hypothesis on ϕ1 to get $HCp˚,´̊ q x f́ypϕ
1, ψq ñ pϕ1 f́Jq,

which will be essential in the final derivation for x f́ypϕ,ψq ñ pϕ f́ Jq.
In the remaining case maxsizepϕq “ α, we are still looking for some formula ϕ1 such that

ϕ1 ˚ Atompxiq ñ ϕ is valid but we cannot hope for ϕ1 to be a core type in CoreTypespX, αq.
Instead, we introduce two core types ϕ1α and ϕ1α´1, and define ϕ1 as ϕ1α _ ϕ1α´1. The
only difference between ϕ1α and ϕ1α´1 rests on the fact that size ě α ĎLt ϕ

1
α whereas

 size ě α ĎLt ϕ
1
α´1 (both formulae contain size ě α´ 1). Similarly to the previous case,

the properties below shall be shown.

(D) ϕ1α and ϕ1α´1 are satisfiable core types in CoreTypespX, αq
(E) pAtompxiq ˚ pϕ

1
α _ ϕ

1
α´1qq ñ ϕ is valid.

(F) px f́ypϕ,ψq ˚ Atompxiqq ñ x f́ypϕ1α, ψq _ x f́ypϕ
1
α´1, ψq is valid.

The derivation of $HCp˚,´̊ q x f́ypϕ,ψq ñ pϕ f́ Jq follows then a principle similar to one for
the case maxsizepϕq ă α.
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Now, let us present the technical developments. Directly from the definition of x f́ypϕ,ψq,
the following simple facts hold.

1. ϕ, ψ and x f́ypϕ,ψq have exactly the same equalities and inequalities.
2.  size ě 0 is not part of x f́ypϕ,ψq, and therefore, following the definition of x f́ypϕ,ψq,

there are no size ě β1 ĎLt ϕ and  size ě β2 ĎLt ψ with β1 ě β2.
3. x ‰ x does not belong to x f́ypϕ,ψq. In particular, by definition of x f́ypϕ,ψq, none of

the following conditions apply:
– there is x P X such that allocpxq ĎLt ϕ and  allocpxq ĎLt ψ,
– there are x, y P X such that x ãÑ y P ϕ and  x ãÑ y ĎLt ψ,
– there are x, y P X such that allocpxq ^  x ãÑ y ĎLt ϕ and x ãÑ y ĎLt ψ.

From (1), we know that x f́ypϕ,ψq and ϕ satisfy the same (in)equalities. Similarly to
the proof of Lemma 5.4, let x1, . . . xn be a maximal enumeration of representatives of the
equivalence classes (one per equivalence class) such that allocpxiq occurs in ϕ. As it is
maximal, for every allocpxq in Ltpϕq there is i P r1, ns such that xi is syntactically equal
to x. Moreover, by definition of x f́ypϕ,ψq, for every i P r1, ns,  allocpxiq ĎLt x f́ypϕ,ψq.
The proof of $HCp˚,´̊ q x f́ypϕ,ψq ñ ϕ f́ J is by induction on the number j of variables
x P X for which allocpxq ĎLt ϕ holds.

base case: j “ 0: In the base case, no formula allocpxq occurs positively in ϕ. Since ϕ
is a core type, this implies that for every x P X,  allocpxq ĎLt ϕ. Moreover, since
ϕ is satisfiable, for every x, y P X,  x ãÑ y ĎLt ϕ (see the axiom (AC

3)). Therefore,
the core type ϕ is syntactically equivalent (up to associativity and commutativity of
conjunction) to the formula ϕsize ^ ϕ alloc ^ ϕ­ãÑ ^ ϕ(in)eq, where

‚ ϕsize
def
“

Ź
`

tsize ě β ĎLt ϕu Y t size ě β ĎLt ϕu
˘

,

‚ ϕ alloc
def
“

Ź

xPX allocpxq,

‚ ϕ­ãÑ
def
“

Ź

x,yPX x ãÑ y,

‚ ϕ(in)eq
def
“

Ź

tx „ y ĎLt ϕ |„P t“,‰uu.

Since ϕ is satisfiable, so is ϕsize. We show that$HCp˚,´̊ q pϕsize^ϕ alloc^ϕ­ãÑq f́J:

1 ϕsize ^ ϕ alloc f́ J (I´̊6.3.12)

2  allocpxq ñ  x ãÑ y (AC
3), PC

3 ϕ alloc ñ ϕ­ãÑ PC, repeated 2

4 ϕsize ^ ϕ alloc ñ ϕsize ^ ϕ alloc ^ ϕ­ãÑ PC, 3

5 pϕsize ^ ϕ alloc f́ Jq ñ pϕsize ^ ϕ alloc ^ ϕ­ãÑ f́ Jq (I´̊6.3.4), 4

6 ϕsize ^ ϕ alloc ^ ϕ­ãÑ f́ J Modus Ponens, 1, 5

Now, let us treat the formula ϕ(in)eq. From the definition of x f́ypϕ,ψq, we have
ϕ(in)eq ĎLt x f́ypϕ,ψq, and so by propositional reasoning, $HCp˚,´̊ q x f́ypϕ,ψq ñ
ϕ(in)eq. This allows us to conclude that

$HCp˚,´̊ q x f́ypϕ,ψq ñ
`

pϕsize ^ ϕ alloc ^ ϕ­ãÑ ^ ϕ(in)eqq f́ J
˘

, (:)

by induction on the number of literals x „ y appearing in ϕ(in)eq, and by relying on

the two theorems (I´̊6.3.10) and (I´̊6.3.11). In the base case, ϕ(in)eq “ J, and so
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7 ϕsize ^ ϕ alloc ^ ϕ­ãÑ ñ ϕsize ^ ϕ alloc ^ ϕ ­ãÑ ^ ϕ(in)eq PC

8 pϕsize ^ ϕ alloc ^ ϕ­ãÑ f́ Jq ñ pϕsize ^ ϕ alloc ^ ϕ­ãÑ ^ ϕ(in)eq f́ Jq (I´̊6.3.4), 7

9 ϕsize ^ ϕ alloc ^ ϕ­ãÑ ^ ϕ(in)eq f́ J Modus Ponens, 6, 8

10 x f́ypϕ,ψq ñ pϕsize ^ ϕ alloc ^ ϕ ­ãÑ ^ ϕ(in)eq f́ Jq PC, 9

In the induction step, let ϕ(in)eq “ ϕ1(in)eq ^ x „ y, where x „ y ­ĎLt ϕ
1
(in)eq. We

have,

1 x f́ypϕ,ψq ñ pϕsize ^ ϕ alloc ^ ϕ­ãÑ ^ ϕ
1
(in)eq

f́ Jq Induction Hypothesis

2 x f́ypϕ,ψq ñ x „ y PC, as ϕ(in)eq ĎLt x f́ypϕ,ψq

3 x „ y^ pϕsize ^ ϕ alloc ^ ϕ ­ãÑ ^ ϕ
1
(in)eq

f́ Jq ñ

pϕsize ^ ϕ alloc ^ ϕ­ãÑ ^ ϕ
1
(in)eq ^ x „ y f́ Jq (I´̊6.3.10)/(I´̊6.3.11)

4 x f́ypϕ,ψq ñ pϕsize ^ ϕ alloc ^ ϕ­ãÑ ^ ϕ
1
(in)eq ^ x „ y f́ Jq PC, 1, 2, 3

5 x f́ypϕ,ψq ñ pϕsize ^ ϕ alloc ^ ϕ­ãÑ ^ ϕ(in)eq f́ Jq Def. of ϕ1(in)eq, 4

Since ϕsize ^ ϕ alloc ^ ϕ­ãÑ ^ ϕ(in)eq is equivalent to ϕ, from (:) and by (I´̊6.3.4), we
conclude that $HCp˚,´̊ q x f́ypϕ,ψq ñ ϕ f́ J.

induction step: j ě 1: In this case, let i P r1, ns such that allocpxiq ĎLt ϕ and thus, by
definition of x f́ypϕ,ψq,  allocpxiq ĎLt x f́ypϕ,ψq. As announced earlier, we define
the formula:

Atompxiq
def
“

#

xi ãÑ y^ size “ 1 if xi ãÑ y ĎLt ϕ, for some y P X

allocpxiq ^ size “ 1^
Ź

yPX xi ãÑ y otherwise

Notice that, if there is y P X such that xi ãÑ y ĎLt ϕ, then the axiom schema (A´̊
22)

can be instantiated to  allocpxiq ñ pAtompxiq f́ Jq. Otherwise (for all y P X,
xi ãÑ y ­ĎLt ϕ) this formula is an instantiation of the axiom schema (A´̊

23). This allows
us to show the following theorem:

x f́ypϕ,ψq ñ
`

Atompxiq f́ px f́ypϕ,ψq ˚ Atompxiqq
˘

(;)

1  allocpxiq ñ pAtompxiq f́ Jq (A´̊
22)/(A´̊

23)

2 x f́ypϕ,ψq ñ  allocpxiq Def. of x f́ypϕ,ψq, PC

3 x f́ypϕ,ψq ñ pAtompxiq f́ Jq ñ-Tr, 1, 2

4 x f́ypϕ,ψq ˚Atompxiq ñ x f́ypϕ,ψq ˚Atompxiq PC

5 x f́ypϕ,ψq ñ pAtompxiq ´̊ x f́ypϕ,ψq ˚Atompxiqq ˚-Adj, 4

6 x f́ypϕ,ψq ñ pAtompxiq f́ x f́ypϕ,ψq ˚Atompxiqq (I´̊6.3.9), 3, 5, PC

From the hypothesis cardpXq ď α, together with allocpxiq ĎLt ϕ and the fact that ϕ
is satisfiable, we have maxsizepϕq ě 1 (see (IC

6), instantiated with X “ txiu). In order
to show that $HC˚,´̊ x f́ypϕ,ψq ñ pϕ f́ Jq, we split the proof depending on whether
maxsizepϕq ă α holds.
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case: maxsizepϕq ă α: Since ϕ is a satisfiable core type in CoreTypespX, αq, by defini-
tion of maxsizep.q, we have size ě maxsizepϕq^ size ě maxsizepϕq`1 ĎLt ϕ.
Below, we consider the formula ϕ1 obtained from ϕ by:
‚ replacing size ě maxsizepϕq ĎLt ϕ with  size ě maxsizepϕq,
‚ for every x P X such that x “ xi ĎLt ϕ, replacing every literal allocpxq ĎLt ϕ

with  allocpxq, and every literal x ãÑ y ĎLt ϕ with  x ãÑ y, where y P X.
Explicitly,

ϕ1
def
“

ľ

tx „ y ĎLt ϕ |„P t“,‰uu ^
ľ

tallocpxq ĎLt ϕ | x ‰ xi ĎLt ϕu^
ľ

t allocpxq ĎLt ϕu ^
ľ

t allocpxq | x “ xi ĎLt ϕu ^
ľ

tx ãÑ y ĎLt ϕ | x ‰ xi ĎLt ϕu^
ľ

t x ãÑ y ĎLt ϕu ^
ľ

t x ãÑ y | x “ xi ^ x ãÑ y ĎLt ϕu ^  size ě maxsizepϕq^
ľ

tsize ě β ĎLt ϕ | β ă maxsizepϕqu ^
ľ

t size ě β ĎLt ϕu.

The formula ϕ1 enjoys the following properties (to be shown below):

A. ϕ1 is a satisfiable core type in CoreTypespX, αq.

B. pAtompxiq ˚ ϕ
1q ñ ϕ is valid.

C. px f́ypϕ,ψq ˚ Atompxiqq ñ x f́ypϕ1, ψq is valid.

Fundamentally, ϕ1 enjoys the induction hypothesis, which reveals to be useful
later on.
Proof of (A). Since ϕ1 is obtained from ϕ simply by changing the polarity of
some of the literals in Ltpϕq, clearly ϕ1 is in CoreTypespX, αq. To show that ϕ1

is satisfiable, we rely on the fact that ϕ is satisfiable. Let ps, hq be a memory
state satisfying ϕ. Since allocpxiq ĎLt ϕ, we conclude that spxiq P domphq. Let
us consider the disjoint heaps h1 and h2 such that h “ h1 ` h2 and domph1q “

tspxiqu. We show that ps, h2q |ù ϕ1 by considering every L P Ltpϕ1q and showing
that ps, h2q |ù L.
case: L “ x „ y, where „P t“,‰u: By definition of ϕ1, ps, hq |ù L and there-

fore spxq „ spyq. Thus, ps, h2q |ù L.
case: L “  allocpxq: If x “ xi ĎLt ϕ then spxq P domph1q, and therefore, by

h17h2, spxq R domph2q. So, ps, h2q |ù  allocpxq. Otherwise (x ‰ xi ĎLt

ϕ), by definition of ϕ1, we have  allocpxq ĎLt ϕ. So spxq R domphq and,
from h2Ďh, we conclude that ps, h2q |ù  allocpxq.

case: L “  x ãÑ y: Similar to the previous case. Briefly, if x “ xi ĎLt ϕ then,
by definition of Atompxiq, ps, h2q ­|ù allocpxq, which implies ps, h2q |ù

 x ãÑ y. Otherwise, by definition of ϕ1,  x ãÑ y ĎLt ϕ and thus
ps, hq |ù  x ãÑ y. From h2Ďh, we conclude that ps, h2q |ù  x ãÑ y.

case: L “ allocpxq: By definition of ϕ1, allocpxq ^ x ‰ xi ĎLt ϕ. Therefore
spxq P domphq and, by definition of Atompxiq, spxq R domph1q. Since
h “ h1`h2, we conclude that ps, h2q |ù allocpxq.

case: L “ x ãÑ y: Similar to the previous case. By definition of ϕ1, we have
x ãÑ y ^ x ‰ xi ĎLt ϕ. Thus, hpspxqq “ spyq. By definition of Atompxiq,
spxq P domph2q and thus h2pspxqq “ spyq. So, ps, h2q |ù x ãÑ y.

case: L “ size ě β: By definition of ϕ1, β ă maxsizepϕq. Since ps, hq |ù ϕ, we
have cardpdomphqq ě maxsizepϕq. By definition of Atompxiq and from h “
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h1`h2, we have cardpdomph2qq “ cardpdomphqq´1 ě maxsizepϕq´1 ě β.
So, ps, h2q |ù size ě β.

case: L “  size ě β: By definition of ϕ1,  size ě β ĎLt ϕ or β “ maxsizepϕq.
In the former case, since ϕ is satisfiable, we know that β ą maxsizepϕq.
Hence, in both cases we have β ě maxsizepϕq. As ps, hq |ù ϕ and
 size ě maxsizepϕq ` 1 ĎLt ϕ, we have cardpdomphqq ď maxsizepϕq.
Since cardpdomph1qq “ 1, by h “ h1`h2 we derive cardpdomph2qq ă

maxsizepϕq ď β. Therefore, ps, h2q |ù  size ě β.
Proof of (B). Let ps, hq |ù Atompxiq ˚ ϕ

1. So, there are h1 and h2 such that
h “ h1`h2, ps, h1q |ù Atompxiq and ps, h2q |ù ϕ1. By definition of Atompxiq,
domph1q “ tspxiqu. In order to prove (B), we show that ps, hq |ù L, for every
literal L P Ltpϕq.
case: L “ x „ y, where „P t“,‰u: By definition of ϕ1, ps, h2q |ù L and there-

fore spxq „ spyq. Hence, ps, hq |ù L.
case: L “  allocpxq: By definition of Atompxiq, allocpxiq ĎLt ϕ and there-

fore spxq R domph1q. By definition of ϕ1, for every y P X, allocpyq ĎLt ϕ
1

implies allocpyq ĎLt ϕ. Therefore, spxq R domph2q. We conclude that
spxq R domphq, and so ps, hq |ù  allocpxq.

case: L “  x ãÑ y: Similar to the previous case. Briefly, by definition of
Atompxiq, ps, h1q |ù  x ãÑ y. By definition of ϕ1, ps, h2q |ù  x ãÑ y. So,
ps, hq |ù  x ãÑ y.

case: L “ allocpxq: If x “ xi ĎLt ϕ, then spxq “ spxiq (first case of the proof),
and by definition of Atompxiq, spxq P domph1q. As h1Ďh, we conclude that
ps, hq |ù allocpxq. Otherwise, if x ‰ xi ĎLt ϕ, then by definition of ϕ1

we have allocpxq ĎLt ϕ
1. This implies that spxq P domph2q and so, from

h2Ďh, we conclude that ps, hq |ù allocpxq.
case: L “ x ãÑ y: Similar to the previous case. Briefly, if x “ xi ĎLt ϕ then,

by definition of Atompxiq, ps, h1q |ù x ãÑ y and so ps, hq |ù x ãÑ y.
Else (x ‰ xi ĎLt ϕ), x ãÑ y ĎLt ϕ

1 and therefore ps, h2q |ù x ãÑ y. So,
ps, hq |ù x ãÑ y.

case: L “ size ě β: If β ă maxsizepϕq, then directly by definition of ϕ1, we
have ps, h2q |ù size ě β. From h2Ďh, we conclude that ps, hq |ù size ě β.
Otherwise, β “ maxsizepϕq. Recall that maxsizepϕq ě 1 and so, by
definition of ϕ1, size ě maxsizepϕq ´ 1 ĎLt ϕ

1. Thus, cardpdomph2qq ě

maxsizepϕq´ 1. By definition of Atompxiq we have cardpdomph1qq “ 1. As
h “ h1`h2, we conclude that ps, hq |ù size ě maxsizepϕq.

case: L “  size ě β: As ϕ is satisfiable, β ą maxsizepϕq. By definition of
the formula ϕ1,  size ě maxsizepϕq ĎLt ϕ

1 and thus cardpdomph2qq ă

maxsizepϕq. From cardpdomph1qq “ 1 we can derive cardpdomphqq ď
maxsizepϕq ă β, which allows us to conclude that ps, hq |ù  size ě β.

Proof of (C). Figure 9 recalls the definition of x f́ypϕ1, ψq. First of all, notice
that it cannot be that there is x P X such that x ‰ x ĎLt x f́ypϕ

1, ψq. Indeed,
ad absurdum, suppose the opposite. By definition of x f́ypϕ1, ψq, this implies
that (1) allocpxq ^  x ãÑ y ĎLt ϕ

1 and x ãÑ y ĎLt ψ, (2) x ãÑ y ĎLt ϕ
1 and

 x ãÑ y ĎLt ψ, or (3) allocpxq ĎLt ϕ
1 and  allocpxq ĎLt ψ. By definition

of ϕ1, this implies that (1) allocpxq ^  x ãÑ y ĎLt ϕ, (2) x ãÑ y ĎLt ϕ or
(3) allocpxq ĎLt ϕ. However, by definition of x f́ypϕ,ψq, this implies that
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Ź

 

x „ y ĎLt tϕ
1 | ψu

ˇ

ˇ„P t“,‰u
(

^
Ź

"

allocpxq

ˇ

ˇ

ˇ

ˇ

 allocpxq ĎLt ϕ
1

allocpxq ĎLt ψ

*

^
Ź

t allocpxq ĎLt ψu ^
Ź

 

 allocpxq
ˇ

ˇ allocpxq ĎLt ϕ
1
(

^
Ź

t xãÑy ĎLt ψu ^
Ź

"

x ãÑ y

ˇ

ˇ

ˇ

ˇ

 allocpxq ĎLt ϕ
1

x ãÑ y ĎLt ψ

*

^
Ź

"

x ‰ x

ˇ

ˇ

ˇ

ˇ

allocpxq ^  x ãÑ y ĎLt ϕ
1

x ãÑ y ĎLt ψ

*

^
Ź

"

size ě β2`1
.́ β1

ˇ

ˇ

ˇ

ˇ

 size ě β1 ĎLt ϕ
1

size ě β2 ĎLt ψ

*

^
Ź

"

x ‰ x

ˇ

ˇ

ˇ

ˇ

x ãÑ y ĎLt ϕ
1

 x ãÑ y ĎLt ψ

*

^
Ź

"

 size ě β2
.́ β1

ˇ

ˇ

ˇ

ˇ

size ě β1 ĎLt ϕ
1

 size ě β2 ĎLt ψ

*

^
Ź

"

x ‰ x

ˇ

ˇ

ˇ

ˇ

allocpxq ĎLt ϕ
1

 allocpxq ĎLt ψ

*

Figure 9: The formula x f́ypϕ1, ψq.

x ‰ x ĎLt x f́ypϕ,ψq, in contradiction with the satisfiability of x f́ypϕ,ψq.
Therefore, below we assume that for all x P X, x ‰ x ­ĎLt x f́ypϕ

1, ψq.
Let ps, hq |ù x f́ypϕ,ψq ˚ Atompxiq. There are h1 and h2 such that h “
h1`h2, ps, h1q |ù x f́ypϕ,ψq and ps, h2q |ù Atompxiq. By definition of Atompxiq,
domph2q “ tspxiqu. To prove (C), we show that ps, hq |ù L, for every literal
L P Ltpx f́ypϕ1, ψqq.
case: L “ x „ y, where „P t“,‰u: By definition of x f́ypϕ1, ψq, L ĎLt tϕ

1 |

ψu and so, by definition of ϕ1, L ĎLt tϕ |ψu. By definition of x f́ypϕ,ψq,
L ĎLt x f́ypϕ,ψq. From ps, h1q |ù x f́ypϕ,ψq we derive spxq „ spyq. So,
ps, hq |ù L.

case: L “  allocpxq: From the definition of x f́ypϕ1, ψq, either we have
 allocpxq ĎLt ψ or we have allocpxq ĎLt ϕ

1. In the first case, by
definition of x f́ypϕ,ψq,  allocpxq ĎLt x f́ypϕ,ψq, and therefore spxq R
domph1q. Moreover, since x f́ypϕ,ψq is satisfiable, allocpxq ­ĎLt ϕ
(otherwise we would have x ‰ x ĎLt x f́ypϕ,ψq). Therefore, by definition
of Atompxiq, we conclude that spxq R domph2q. From h “ h1`h2, we
derive spxq R domphq, and thus ps, hq |ù  allocpxq.
In the second case, (allocpxq ĎLt ϕ

1), by definition of ϕ1 we have
allocpxq ĎLt ϕ and x ‰ xi ĎLt ϕ. By definition of Atompxiq, spxq R
domph2q. By definition of x f́ypϕ,ψq,  allocpxq ĎLt x f́ypϕ,ψq, and
therefore spxq R domph1q. Again, by h “ h1`h2, we have ps, hq |ù
 allocpxq.

case: L “  x ãÑ y: Following the definition of x f́ypϕ1, ψq,  x ãÑ y ĎLt ψ
and therefore  x ãÑ y ĎLt x f́ypϕ,ψq. Therefore, ps, h1q |ù  x ãÑ y.
Since x f́ypϕ,ψq is satisfiable,  x ãÑ y ĎLt ϕ. By definition of Atompxiq,
we derive ps, h2q |ù  x ãÑ y. From h “ h1`h2, ps, hq |ù  x ãÑ y.

case: L “ allocpxq: By definition of x f́ypϕ1, ψq, we have  allocpxq ĎLt ϕ
1

and allocpxq ĎLt ψ. First, let us suppose allocpxq ĎLt ϕ. By definition
of ϕ1, x “ xi ĎLt ϕ and so, by definition of Atompxiq, spxq P domph2q.
From h2Ďh, ps, hq |ù allocpxq. Otherwise ( allocpxq ĎLt ϕ), by
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definition of x f́ypϕ,ψq, allocpxq ĎLt x f́ypϕ,ψq. So, spxq P domph1q,
and by h1Ďh, ps, hq |ù allocpxq.

case: L “ x ãÑ y: By definition of x f́ypϕ1, ψq, we have  allocpxq ĎLt ϕ
1

and x ãÑ y ĎLt ψ. First, suppose allocpxq ĎLt ϕ. By definition of
ϕ1, x “ xi ĎLt ϕ. By definition of Atompxiq, spxq P domph2q. Ad
absurdum, suppose hpspxqq ‰ spyq. By definition of Atompxiq, we have
that allocpxq ^  x ãÑ y ĎLt ϕ. However, from x ãÑ y ĎLt ψ, this
implies x ‰ x ĎLt x f́ypϕ,ψq, which contradicts the satisfiability of
x f́ypϕ,ψq. Therefore, hpspxqq “ spyq and, from h2Ďh, we conclude
that ps, hq |ù x ãÑ y. Otherwise ( allocpxq ĎLt ϕ), by definition of
x f́ypϕ,ψq, x ãÑ y ĎLt x f́ypϕ,ψq. So, h1pspxqq “ spyq, and by h1Ďh,
we derive ps, hq |ù x ãÑ y.

case: L “ size ě β2`1 .́ β1, where  size ě β1 ĎLt ϕ
1

and size ě β2 ĎLt ψ:
By definition of ϕ1,  size ě β1 ĎLt ϕ, and so β1 ą maxsizepϕq, since ϕ
is satisfiable. By definition of x f́ypϕ,ψq and as  size ě maxsizepϕq `
1 ĎLt ϕ, we have size ě β2 ` 1 .́

pmaxsizepϕq ` 1q ĎLt x f́ypϕ,ψq,
which in turn implies cardpdomph1qq ě β2

.́ maxsizepϕq. By defini-
tion of Atompxiq, cardpdomph2qq ě 1. By h “ h1`h2, cardpdomphqq ě
pβ2

.́ maxsizepϕqq ` 1 ě pβ2 ` 1q .́ maxsizepϕq. As β1 ą maxsizepϕq,
ps, hq |ù size ě β2`1 .́ β1.

case: L “  size ě β2
.́ β1, where size ě β1 ĎLt ϕ

1

and  size ě β2 ĎLt ψ:
By definition of ϕ1, β1 ă maxsizepϕq. By definition of x f́ypϕ,ψq, we
have  size ě β2

.́ maxsizepϕq ĎLt x f́ypϕ,ψq. Notice that, since
x f́ypϕ,ψq is satisfiable, β2 ą maxsizepϕq. Thus, cardpdomph1qq ă

β2 ´maxsizepϕq. By definition of Atompxiq, cardpdomph2qq ď 1. From
h “ h1`h2, we conclude that cardpdomphqq ă pβ2 ´ maxsizepϕqq ` 1.
As β1 ă maxsizepϕq, we have β2 ´maxsizepϕq ` 1 ď β2

.́ β1. Therefore,
ps, hq |ù  size ě β2

.́ β1.
Continuing the proof of Lemma 6.2, we prove $HCp˚,´̊ q x f́ypϕ,ψq ñ pϕ f́ Jq.
Notice that, by the completeness of HCp˚q (Theorem 5.6), we conclude that the
tautologies in (B) and (C) are derivable in HCp˚, ´̊ q. Moreover, notice that
 allocpxiq ĎLt ϕ

1 and, for every y P X,  allocpyq ĎLt ϕ implies  allocpyq ĎLt

ϕ1. This allows us to rely on the induction hypothesis, and conclude that
$HCp˚,´̊ q x f́ypϕ

1, ψq ñ pϕ1 f́ Jq. The derivation of x f́ypϕ,ψq ñ pϕ f́ Jq is
given below:

1 x f́ypϕ1, ψq ñ pϕ1 f́ Jq Induction hypothesis

2 Atompxiq ˚ ϕ
1 ñ ϕ (B), Theorem 5.6

3 x f́ypϕ,ψq ˚Atompxiq ñ x f́ypϕ1, ψq (C), Theorem 5.6

4 px f́ypϕ,ψq ˚Atompxiqq ñ pϕ1 f́ Jq ñ-Tr, 1, 3

5 x f́ypϕ,ψq ñ pAtompxiq f́ x f́ypϕ,ψq ˚Atompxiqq (;)

6 pAtompxiq f́ x f́ypϕ,ψq ˚Atompxiqq ñ
`

Atompxiq f́ pϕ
1
f́ Jq

˘

(I´̊6.3.5), 4

7
`

Atompxiq f́ pϕ
1
f́ Jq

˘

ñ pAtompxiq ˚ ϕ
1
f́ Jq (I´̊6.3.6)
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8 pAtompxiq ˚ ϕ
1
f́ Jq ñ pϕ f́ Jq (I´̊6.3.4), 2

9 x f́ypϕ,ψq ñ pϕ f́ Jq ñ-Tr, 5, 6, 7, 8

case: maxsizepϕq “ α: In this case, we have size ě α ĎLt ϕ, where we recall that
α “ maxsizepϕq ě 1. Following the developments of the previous case, we
would like to define a formula ϕ1 for which the formula ϕ1 ˚ Atompxiq ñ ϕ is
valid. However, since ϕ is in CoreTypespX, αq, we cannot hope for ϕ1 to be a
core type in CoreTypespX, αq. Indeed, because of size ě α ĎLt ϕ, in order to
achieve the valid formula above we must differentiate between the case where ϕ
is satisfied by a memory state ps, hq such that cardpdomphqq ą α, to the case
where cardpdomphqq “ α. Therefore, below we introduce two core types ϕ1α and
ϕ1α´1, and define ϕ1 as ϕ1α _ ϕ

1
α´1. Since the separating conjunction distributes

over disjunctions, after defining these two core types, we can easily adapt the
arguments of the previous case to prove that x f́ypϕ,ψq ñ pϕ f́ Jq.
The formula ϕ1α is obtained from ϕ by replacing, for every x P X such that
x “ xi ĎLt ϕ, every literal allocpxq ĎLt ϕ with  allocpxq, and every x ãÑ

y ĎLt ϕ with  x ãÑ y, where y P X. Notice that ϕ1α is defined similarly to ϕ1 (in
the previous case of the proof), with the exception that we do not modify the
polarity of size literals. Explicitly, ϕ1α is defined as follows.

ϕ1α
def
“

ľ

tx „ y ĎLt ϕ |„P t“,‰uu ^
ľ

tallocpxq ĎLt ϕ | x ‰ xi ĎLt ϕu ^
ľ

t allocpxq ĎLt ϕu^
ľ

t allocpxq | x “ xi ĎLt ϕu ^
ľ

tx ãÑ y ĎLt ϕ | x ‰ xi ĎLt ϕu ^
ľ

t x ãÑ y ĎLt ϕu^
ľ

t x ãÑ y | x “ xi ^ x ãÑ y ĎLt ϕu ^
ľ

tsize ě β | β P r0, α´ 1su ^ size ě α.

The formula ϕ1α´1 is obtained from ϕ1α by replacing size ě α (highlighted
in the definition of ϕ1α above), by  size ě α. The following properties are
satisfied:

D. ϕ1α and ϕ1α´1 are satisfiable core types in CoreTypespX, αq,

E. pAtompxiq ˚ pϕ
1
α _ ϕ

1
α´1qq ñ ϕ is valid.

F. px f́ypϕ,ψq ˚ Atompxiqq ñ x f́ypϕ1α, ψq _ x f́ypϕ
1
α´1, ψq is valid.

Proof of (D). The proof is very similar to the one of the property (A). Here, we
pinpoint the main differences. First of all, since both ϕ1α and ϕ1α´1 are obtained
from ϕ by changing the polarity of some of the literals in Ltpϕq, they are both
in CoreTypespX, αq. To show that ϕ1α and ϕ1α´1 are satisfiable, we rely on the
fact that ϕ is satisfiable. Let ps, hq be a memory state satisfying ϕ. Since
size ě α ĎLt ϕ, cardpdomphqq ě α. Without loss of generality, we can assume
cardpdomphqq ą α. Indeed, if cardpdomphqq “ α it is sufficient to add a memory
cell p`, `q to h, such that ` does not correspond to a program variable x P X.
It is straightforward to check that the resulting memory state still satisfies ϕ.
We introduce a second heap h1. Let L “ domphq X tspxq | x P Xu be the set
of locations in domphq that corresponds to variables in X. Since cardpXq ď α,
cardpLq ď α. Let h1Ďh such that L Ď domph1q and cardpdomph1qq “ α. Again,
it is straightforward to see that ps, h1q satisfies ϕ. Intuitively, we rely on ps, hq
to show that ϕ1α is satisfiable, and on ps, h1q to show that ϕ1α´1 is satisfiable. As
allocpxiq ĎLt ϕ, we have spxq P domphq and spxq P domph1q. We consider heaps
h1 and h2 such that h “ h1`h2 and domph1q “ tspxiqu. Similarly, we consider
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heaps h11 and h12 such that h1 “ h11`h
1
2 and domph11q “ tspxiqu. We show that

ps, h2q |ù ϕ1α and ps, h12q |ù ϕ1α´1. Let us first discuss the former result. Let
L P Ltpϕ1αq. If L is not of the form size ě β or  size ě β, then ps, h2q |ù L
follows exactly as in the proof of (A). Otherwise,
case: L “ size ě β: By definition of h2, cardpdomph2qq “ cardpdomphqq ´

1 ě α. Since β ď α (as ϕ1α is in CoreTypespX, αq), we conclude that
ps, h2q |ù size ě β.

case: L “  size ě β: By definition of ϕ1α, no literals of the form  size ě β
belongs to Ltpϕ1αq. Therefore, this case does not occur.

This concludes the proof of ps, h2q |ù ϕ1α. For the proof of ps, h12q |ù ϕ1α´1, let us
consider L P Ltpϕ1α´1q. Again, if L is not of the form size ě β or  size ě α,
then ps, h12q |ù L follows exactly as in the proof of (A) (replacing h by h1 and h2

by h12). Otherwise,
case: L “ size ě β: By definition of ϕ1α´1, we have β ă α. By definition of

h12, cardpdomph12qq “ cardpdomph1qq ´ 1 “ α ´ 1. Therefore, ps, h12q |ù
size ě β.

case: L “  size ě β: By definition of ϕ1α´1, β “ α. Since cardpdomph12qq “
α´ 1, we conclude that ps, h12q |ù  size ě β.

Proof of (E). The proof is very similar to the one of the property (B). We show
that pAtompxiq ˚ ϕ

1
αq ñ ϕ and pAtompxiq ˚ ϕ

1
α´1q ñ ϕ. Then, (E) follows as

the separating conjunction distributes over disjunction. First, let us consider
pAtompxiq ˚ ϕ

1
αq ñ ϕ, and a memory state ps, hq satisfying Atompxiq ˚ ϕ

1
α. There

are h1 and h2 such that h “ h1`h2, ps, h1q |ù Atompxiq and ps, h2q |ù ϕ1α. Let
L P Ltpϕq. Notice that ϕ does not contain negated size ě β literals. If L is
not size ě β, for some β P r0, αs, then ps, hq |ù L follows exactly as it is shown
in the proof of (B). Otherwise, suppose L “ size ě β, where β P r0, αs. By
definition of ϕ1α, size ě α ĎLt ϕ

1
α. Hence, cardpdomph2qq ě α and, from h2Ďh,

we derive ps, hq |ù size ě β. So, ps, hq |ù ϕ.
Let us now consider pAtompxiq ˚ϕ

1
α´1q ñ ϕ and a memory state ps, hq satisfying

Atompxiq ˚ ϕ
1
α´1. There are h1 and h2 such that h “ h1`h2, ps, h1q |ù Atompxiq

and ps, h2q |ù ϕ1α´1. Let L P Ltpϕq. Again, ϕ does not contain negated size ě β
literals, and if L is not size ě β, for some β P r0, αs, then ps, hq |ù L follows
exactly as is shown in the proof of (B). Otherwise, suppose L “ size ě β,
where β P r0, αs. By definition of ϕ1α´1, size ě α .́ 1 ĎLt ϕ

1
α´1. Therefore,

cardpdomph2qq ě α ´ 1. By definition of Atompxiq, cardpdomph1qq “ 1. From
h “ h1`h2, we conclude that cardpdomphqq ě α and thus ps, hq |ù size ě β.
Therefore, ps, hq |ù ϕ.

Proof of (F). Recall that x f́ypϕ,ψq is satisfiable. In particular, from its def-
inition together with size ě α ĎLt ϕ, this implies that size ě α ĎLt ψ, as
otherwise we would have  size ě 0 ĎLt x f́ypϕ,ψq. So, as ψ is a satisfiable
core type in CoreTypespX, αq, for all β P r0, αs, size ě β ĎLt ψ. Alternatively, ψ
does not contain  size ě β literals. We look at the definitions of x f́ypϕ1α, ψq
and x f́ypϕ1α´1, ψq.
a. Since for all β P r0, αs, size ě β ĎLt ϕ

1
α and size ě β ĎLt ψ, we derive

that x f́ypϕ1α, ψq does not contain size ě β nor  size ě β literals (for



Vol. 17:3 AXIOMATISATION FOR QUANTIFIER-FREE SEPARATION LOGIC 17:45

all β P r0, αs). This holds directly by definition of x f́ypϕ1α, ψq, which can be
retrieved by substituting ϕ1 by ϕ1α in Figure 9.

b. Analogously, we know that  size ě α ĎLt ϕ
1
α´1 whereas for every β P

r0, α´ 1s, size ě β ĎLt ϕ
1
α´1, and therefore among all the literals size ě β

or  size ě β (β P r0, αs), x f́ypϕ1α´1, ψq only contains size ě 1 (occurring
positively).

By definition and with the sole exception of the polarity of the formula size ě α
(occurring positively in ϕ1α and negatively in ϕ1α´1), the two core types ϕ1α´1

and ϕ1α are equal. Directly by definition of x f́ypϕ1α, ψq and x f́ypϕ1α´1, ψq, to-
gether with (a) and (b), this implies that x f́ypϕ1α´1, ψq is syntactically equal
to x f́ypϕ1α, ψq ^ size ě 1 (up to commutativity and associativity of conjunc-
tion). This means that the formula x f́ypϕ1α´1, ψq ñ x f́ypϕ1α, ψq is valid,
and suggests us that, in order to show (F), we can simply establish that
px f́ypϕ,ψq˚Atompxiqq ñ x f́ypϕ1α, ψq is valid. As we already stated, ϕ1α is defined
as ϕ1 (in the previous step of the proof), with the exception that we do not modify
the polarity of size ě β literals. Because of this, we can rely on the proof of (C).
Briefly, we consider a memory state ps, hq satisfying x f́ypϕ,ψq ˚Atompxiq. There
are h1 and h2 such that h “ h1`h2, ps, h1q |ù x f́ypϕ,ψq and ps, h2q |ù Atompxiq.
Let L P Ltpx f́ypϕ1α´1, ψqq. By (a), L is neither of the form size ě β nor of the
form  size ě β. Therefore, ps, hq |ù L follows exactly as shown in the proof
of (C).
We are now ready to prove that x f́ypϕ,ψq ñ pϕ f́ Jq. By Theorem 5.6,
the tautologies in (D) and (F) are derivable in HCp˚, ´̊ q. Moreover, since
 allocpxiq ĎLt tϕ

1
α ; ϕ1α´1u and, for every y P X,  allocpyq ĎLt ϕ implies

 allocpyq ĎLt tϕ
1
α ; ϕ1α´1u, we rely on the induction hypothesis to derive

$HCp˚,´̊ q x f́ypϕ
1
α, ψq ñ pϕ1α f́ Jq, $HCp˚,´̊ q x f́ypϕ

1
α´1, ψq ñ pϕ1α´1 f́ Jq.

We derive x f́ypϕ,ψq ñ pϕ f́Jq (see Figure 10) concluding the proof of Lemma 6.2

Lemma 6.2 in which ϕ and ψ are core types can be extended to arbitrary Boolean
combinations of core formulae, as we show that the distributivity of f́ over disjunctions is
provable in HCp˚, ´̊ q. As a consequence of this development, we achieve the main result of
the paper.

Theorem 6.5. HCp˚, ´̊ q is sound and complete for SLp˚, ´̊ q.

Proof. Soundness of the proof system HCp˚, ´̊ q has been already established earlier, see
Lemma 3.1. As far as the completeness proof is concerned, its structure is very similar to the
proof of Theorem 5.6 except that we have to be able to handle the separating implication. In
order to be self-contained, we reproduce some of its arguments albeit adapted to HCp˚, ´̊ q.

We need to show that for every formula ϕ in SLp˚, ´̊ q, there is a Boolean combination
of core formulae ψ such that $HCp˚,´̊ q ϕ ô ψ. In order to conclude the proof, when ϕ is
valid for SLp˚, ´̊ q, by soundness of HCp˚, ´̊ q, we obtain that ψ is valid too and therefore
$HCp˚,´̊ q ψ as HC is a subsystem of HCp˚, ´̊ q and HC is complete by Theorem 4.3. By
propositional reasoning, we get that $HCp˚,´̊ q ϕ.

In order to show that every formula ϕ has a provably equivalent Boolean combination
of core formulae, we heavily rely on Corollary 5.5 and on Lemma 6.2. The proof is by simple
induction on the number of occurrences of ˚ or ´̊ in ϕ that are not involved in the definition
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1 x f́ypϕ1α, ψq ñ pϕ1α f́ Jq Induction hypothesis

2 x f́ypϕ1α´1, ψq ñ pϕ1α´1 f́ Jq Induction hypothesis

3 Atompxiq ˚ pϕ
1
α _ ϕ

1
α´1q ñ ϕ (E), Theorem 5.6

4 x f́ypϕ,ψq ˚Atompxiq ñ x f́ypϕ1α, ψq _ x f́ypϕ
1
α´1, ψq (F), Theorem 5.6

5 x f́ypϕ1α, ψq _ x f́ypϕ
1
α´1, ψq ñ pϕ1α f́ Jq _ pϕ1α´1 f́ Jq PC, 1, 2

6 pϕ1α f́ Jq _ pϕ1α´1 f́ Jq ñ pϕ1α _ ϕ
1
α´1 f́ Jq (I´̊6.3.7)

7 x f́ypϕ,ψq ˚Atompxiq ñ pϕ1α _ ϕ
1
α´1 f́ Jq ñ-Tr, 4, 5, 6

8 x f́ypϕ,ψq ñ pAtompxiq f́ x f́ypϕ,ψq ˚Atompxiqq (;)

9 pAtompxiq f́ x f́ypϕ,ψq ˚Atompxiqq ñ

pAtompxiq f́ pϕ
1
α _ ϕ

1
α´1 f́ Jqq (I´̊6.3.5), 7

10
`

Atompxiq f́ pϕ
1
α _ ϕ

1
α´1 f́ Jq

˘

ñ

pAtompxiq ˚ pϕ
1
α _ ϕ

1
α´1q f́ Jq (I´̊6.3.6)

11 pAtompxiq ˚ pϕ
1
α _ ϕ

1
α´1q f́ Jq ñ pϕ f́ Jq (I´̊6.3.4), 3

12 x f́ypϕ,ψq ñ pϕ f́ Jq ñ-Tr, 8, 9, 10, 11

Figure 10: Proof of Lemma 6.2: the final derivation.

of some core formula of the form size ě β or allocpxq. For the base case, when ϕ has
no occurrence of the separating connectives, x “ y and x ãÑ y are already core formulae,
whereas emp is logically equivalent to  size ě 1.

Before performing the induction step, let us observe that in HCp˚, ´̊ q, the replacement
of provably equivalent formulae holds true, which is stated as follows:

R1 Let ϕ,ϕ1 and ψ be formulae of SLp˚, ´̊ q such that $HCp˚,´̊ q ϕô ϕ1. Then,

$HCp˚,´̊ q ψrϕsρ ñ ψrϕ1sρ

In order to prove R1, we are almost done as we have already shown R0 in the proof of
Theorem 5.6 and the same properties hold for SLp˚, ´̊ q though the language is richer.

As a direct consequence of the admissibility of the rules (I´̊6.3.4) and (I´̊6.3.5) from
Lemma 6.3, the rules below are also admissible:

ϕô ϕ1

ϕ ´̊ ψ ô ϕ1 ´̊ ψ

ϕô ϕ1

ψ ´̊ ϕô ψ ´̊ ϕ1

We need the two rules as ´̊ is not commutative. Consequently, by structural induction
on ψ, one can conclude that $HCp˚,´̊ q ϕô ϕ1 implies $HCp˚,´̊ q ψrϕsρ ñ ψrϕ1sρ.

Now, assume ϕ is a formula in SLp˚, ´̊ q. Without loss of generality, we can assume that
the separating connectives in ϕ are restricted to ˚ and f́ for the occurrences that are not
related to abbreviations for core formulae. Indeed, ψ1 f́ ψ is a shortcut for  pψ1 ´̊  ψq and
therefore one can replace every occurrence of ψ1 ´̊ ψ by  pψ1 f́ ψq assuming that ψ1 and
ψ are already of the appropriate shape. Such a replacement is possible thanks to R1.

Assume that ϕ is a formula in SLp˚, f́q with n` 1 occurrences of ˚ or f́ not involved
in the definition of core formulae.
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Let ψ be a subformula of ϕ (at the occurrence ρ) of the form ψ1 f́ψ2 such that ψ1 and ψ2

are in BoolpCorepX, α1qq and BoolpCorepX, α2qq, respectively. By propositional reasoning, one
can show that there are formulae in disjunctive normal form ψ1

1_¨ ¨ ¨_ψ
n1
1 and ψ1

2_¨ ¨ ¨_ψ
n2
2

such that $HC
ψi ô ψ1

i _ ¨ ¨ ¨ _ ψ
ni
i for i P t1, 2u, and moreover every ψji ’s is a core type in

CoreTypespX,maxpcardpXq, α1, α2qq. Again, by using propositional reasoning but this time
establishing also distributivity of _ over f́, we have

$HCp˚,´̊ q ψ1 f́ ψ2 ô
ł

j1Pr1,n1s,j2Pr1,n2s

ψj11 f́ ψj22 .

We rely on Lemma 6.2, and conclude that there is a conjunction of core formulae ψj1,j2 in

ConjpCorepX,maxpcardpXq, α1, α2qqq such that $HCp˚,´̊ q ψ
j1
1 f́ψj22 ô ψj1,j2 . By propositional

reasoning, we get

$HCp˚,´̊ q ψ1 f́ ψ2 ô
ł

j1Pr1,n1s,j2Pr1,n2s

ψj1,j2 .

Consequently (thanks to the property R1), we obtain

$HCp˚,´̊ q ϕô ϕr
ł

j1Pr1,n1s,j2Pr1,n2s

ψj1,j2sρ

Note that the right-hand side formula has n occurrences of the separating connnectives that
are not involved in the definition of some core formula. The induction hypothesis applies,
which concludes the proof.

The case when ψ is a subformula of ϕ (at the occurrence ρ) of the form ψ1 ˚ψ2 is treated
as in the proof of Theorem 5.6 and therefore is omitted herein.

7. Related work

In this section, we briefly compare our Hilbert-style proof system HCp˚, ´̊ q with existing
proof systems for SLp˚, ´̊ q, fragments or extensions and we recall a few landmark works
proposing proof systems for abstract separation logics or for logics that are variants of
Boolean BI. Those latter proof systems are not necessarily Hilbert-style and may contain
labels or other similar machineries. So, this section completes the presentation of the context
from Section 1 while pinpointing the main original features of our calculus. Finally, we also
evoke several works that use the idea of axiomatising a fragment of a logic and to provide
in the proof system means to transform any formula into an equivalent formula from that
fragment. This is clearly similar to the approach we have followed, but we aim at picking
examples from outside the realm of spatial and resource logics. In order to keep the length of
this section reasonable, we limit ourselves to the main bibliographical entries but additional
relevant works can be found in the cited materials.

Proof systems for quantifier-free separation logic. Surprisingly, as far as we know,
sound and complete proof systems for SLp˚, ´̊ q are very rare and the only system we are
aware of is a tableaux-based calculus from [GM10] with labelled formulae (each formula is
enriched with a label to be interpreted by some heap) and with resource graphs to encode
symbolically constraints between heap expressions (i.e. labels). Of course, translations from
separation logics into logics or theories have been designed, see e.g. [CGH05, RISK16], but
the finding of proof systems for SLp˚, ´̊ q with all Boolean connectives and the separating
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connectives ˚ and ´̊ has been quite challenging. Unlike [GM10], HCp˚, ´̊ q uses only SLp˚, ´̊ q
formulae and therefore can be viewed as a quite orthodox Hilbert-style calculus with no extra
syntactic objects. In particular, HCp˚, ´̊ q has no syntactic machinery to refer to heaps or to
other semantical objects related to SLp˚, ´̊ q. In [GM10], the resource graphs attached to the
tableaux are designed to reason about heap constraints, and to provide control for designing
strategies that lead to termination. Interestingly, the calculus in [GM10] is intended to
be helpful to synthesize countermodels (which is a standard feature for labelled deduction
systems [Gab96]) or to be extended to the first-order case, which is partly done in [GM10]
but we know that completeness is theoretically impossible. Besides, a sound labelled sequent
calculus for the first-order extension of SLp˚, ´̊ q is presented in [HGT15] but completeness
for the sublogic SLp˚, ´̊ q is not established. The calculus in [HGT15] has also labels, which
differs from our puristic approach. A complete sequent-style calculus for the symbolic heap
fragment has been designed quite early in [BCO04] but does not deal with full SLp˚, ´̊ q (in
particular it is not closed under Boolean connectives and does not contain the separating
implication). A complexity-wise optimal decision procedure for the symbolic heap fragment
is designed in [CHO`11] based on a characterisation in terms of homomorphisms.

Frameworks for abstract separation logics. Bunched logics, such as the bunched logic
BI introduced in [OP99], are known to be closely related to separation logics that can
be viewed as concretisation of (Boolean) BI with models made of memory states, see
e.g. [Pym02, Rey02, GM05, PSO18]. Actually, bunched logics come with different flavours,
Boolean BI being considered as the genuine abstract version of SLp˚, ´̊ q. Though Boolean
BI has been shown undecidable in [LG13, BK14], a Hilbert-style axiomatisation can be
found in [GLW06]. Our proof system HCp˚, ´̊ q inherits all the axiom schemas and inference
rules for Boolean BI from [GLW06], which is expected as SLp˚, ´̊ q can be viewed as Boolean
BI on concrete heaps but with the notable difference of having built-in atomic formulae
x “ y and x ãÑ y. Bunched logics, such as Boolean BI, can be defined in several ways,
for instance assuming classical or intuitionistic connectives, and in [Bro12], a unified proof
theory based on display calculi [Bel82] is designed for a variety of four bunched logics,
including Boolean BI (see also the nested sequent calculus for Boolean BI in [PSP13]). In
display calculi, structural connectives enrich the sequent-style structures, providing a family
of structural connectives accompanying the standard comma from sequent-style calculi. The
main results in [Bro12] include cut-elimination, soundness and completeness. So, compared
to our calculus HCp˚, ´̊ q, the calculi in [Bro12] are designed for logics with more abstract
semantical structures and owns a proof-theoretical machinery that does not include labels
but instead complex structured sequents.

The quest for designing frameworks dedicated to classes of abstract separation logics
have been pursued in several directions. For instance, models for Boolean BI are typically
relational commutative monoids but properties can be added leading to a separation theory.
In [BV14], a hybrid version of Boolean BI is introduced, called HyBBI, in which nominals
(in the sense of hybrid modal logics, see e.g. [ABM01]) are added in order to be able to
express rich standard properties in separation theory, such as cancellativity. Not only an
Hilbert-style proof system is provided for HyBBI [BV14] but also a parametric completeness
result is shown. More precisely, any extension of the proof system for HyBBI with a set
of specific axioms is actually complete with respect to the class of models that satisfy the
axioms, which is analogous to Sahlqvist’s Theorem for modal logics [Sah75, BdRV01]. This
provides a very general means to axiomatise variants of Boolean BI but at the cost of having
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the extra machinery for nominals. Moreover, as HyBBI and its extensions are abstract
separation logics with no atomic formulae of the form x “ y or x ãÑ y, the tools developed
in [BV14] are of no help to design an Hilbert-style proof system for SLp˚, ´̊ q (except that
its part dealing with Boolean BI is precisely borrowed from [GLW06] too).

Besides, in [HCGT18] labelled sequent calculi are designed for several abstract separation
logics by considering different sets of properties. The sequents contain labelled formulae (a
formula prefixed by a label to be interpreted as an abstract heap) as well as relational atoms
to express relationships between abstract heaps. Though the framework in [HCGT18] is
modular and very general to handle abstract separation logics, it is not tailored to separation
logics with concrete semantics, see [HCGT18, Section 7] for possible future directions. In
contrast, as explained already, the paper [HGT15] deals with first-order separation logic
with concrete semantics and presents a sound labelled sequent calculus for it. Of course,
the calculus cannot be complete but more importantly in the context of the current paper,
completeness is not established for the quantifier-free fragment. In [HGT15], the sequents
contain labelled formulae and relational atoms, similarly to [HCGT18] (see also [Hóu15]).
Hence, this does not meet our requirements to have a pure axiomatisation in which only
logical formulae from quantifier-free separation logic are allowed.

Modularity of the approaches from [Bro12, BV14, HCGT18] is further developed in
the recent work [DP18, Doc19] by proposing a framework for labelled tableaux systems
parametrised by the choice of separation theories (in the very sense of [BV14]). It is
remarkable that the developments in [DP18, Doc19] are very general as it can handle
separation theories that can be expressed in the rich class of so-called coherent first-order
formulae, included in the first-order fragment Π2. The first-order axioms are directly
translated into inference rules. The calculi use labelled formulae (every formula is decorated
by a sign and by a label) as well as constraints enforcing properties between worlds/resources.
Unlike [GM10], the reasoning about labels is not outsourced but handled directly by the
calculus. As several works mentioned above, the framework in [DP18, Doc19] does not
provide for free a proof system for SLp˚, ´̊ q (which might have been a close cousin of the
one in [GM10]). More importantly, similarly to the works [GM10, BV14, HCGT18], the
labelled tableaux systems handle syntactic objects referring to semantical concepts related
to the abstract separation logics that go beyond the only presence of formulae. In a way,
modularity of the approach prevents from having a puristic calculus for SLp˚, ´̊ q, apart from
the fact that SLp˚, ´̊ q is not part of the logics handled in [DP18].

Axiomatising knowledge logics with reduction axioms. In order to conclude this
section, let us recall that the derivations in HCp˚, ´̊ q are able to simulate the bottom-up
elimination of separating connectives, leading to Boolean combinations of core formulae for
which the system HCp˚, ´̊ q is also complete. As the core formulae are (simple) formulae
in SLp˚, ´̊ q, the axiomatisation provided by HCp˚, ´̊ q uses only SLp˚, ´̊ q formulae and
is complete for the full logic SLp˚, ´̊ q (and not only for Boolean combinations of core
formulae). Note that as a by-product of our completeness proof for SLp˚, ´̊ q, we get
expressive completeness of SLp˚, ´̊ q with respect to Boolean combinations of core formulae,
with a proof different from the developments in [Loz04a, BDL09, EIP19].

This general principle described above is familiar for axiomatising dynamic epistemic
logics in which dynamic connectives might be eliminated with the help of so-called reduction
axioms, see e.g. standard examples in [vDvdHK08, vB11, WC13, FVQ19]. In a nutshell,
every formula containing a dynamic operator is provably reduced to a formula without
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such an operator. Completeness is then established thanks to the completeness of the
underlying ‘basic’ language, A similar approach for the linear µ-calculus is recently presented
in [Dou17] for which a form of constructive completeness is advocated, see also [Lüc18].
Hilbert-style axiomatisations following similar high-level principles for the modal separation
logics MSL(˚,♦) and MSL(˚,x‰y) introduced in [DF19], have been designed in [DFM19].

8. Conclusion

We presented a method to axiomatise internally quantifier-free separation logic SLp˚, ´̊ q
based on the axiomatisation of Boolean combinations of core formulae (and even more
precisely, based on the restricted fragment of core types). We designed the first proof system
for SLp˚, ´̊ q that is completely internal and highlights the essential ingredients of the heaplet
semantics. The fact that the calculus is internal simply means that the axioms and inference
rules involve schemas instantiated by formulae in SLp˚, ´̊ q (no use of nominals, labels or
other syntactic objects that are not SLp˚, ´̊ q formulae). Obviously, the Hilbert-style proof
system presented in the paper is of theoretical interest, at least to grasp what are the
essential features of SLp˚, ´̊ q. Still, it remains to be seen whether applications are possible
for designing decision procedures, for instance to feed provers with appropriate axiom
instances to accelerate the proof search. Furthermore, we have not investigated whether the
proof system HCp˚, ´̊ q (see Figure 1) can be simplified without loosing completeness. This
might be rewarding for using the calculus for other logics or for other applications. Most
probably the most obvious part to study in that respect would be HCp˚q.

To provide further evidence that our method is robust, it is desirable to apply it to ax-
iomatise other separation logics, for instance by adding the list segment predicate ls [BCO04]
(or more generally user-defined inductive predicates) or by adding first-order quantification.
A key step in our approach is first to show that the logic admits a characterisation in
terms of core formulae and such formulae need to be designed adequately. Of course, it
is required that the set of valid formulae is recursively enumerable, which discards any
attempt with SLp˚, ´̊ , lsq or with the first-order version of SLp˚, ´̊ q [DLM18a, BDL12].
The second part of the paper [DLM20] introduces an extension of SLp˚, lsq and presents
an axiomatisation with our method. More separation logics could be axiomatised that
way, other good candidates are the version of separation logic with one individual variable
studied in [DGLWM17] as well as the quantifier-free separation logic with general universes
from [EIP19].
Acknowledgements. We would like to thank the anonymous reviewers for their numerous
remarks and suggestions that help us to improve the quality of the document.
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As in the rest of the paper, in the derivations below we use the following precedence between
the various connectives of SLp˚, ´̊ q: t u ą t^,_, ˚u ą tñ, ´̊ , f́u ą tôu.

Appendix A. Proof of Lemma 5.2

Proof of (I˚5.2.1).

1 ϕñ pϕ^ x „ yq _ pϕ^ x „ yq PC

2 ϕ ˚ ψ ñ ppϕ^ x „ yq _ pϕ^ x „ yqq ˚ ψ ˚-Intro, 1

3 ppϕ^ x„yq_pϕ^ x„yqq ˚ ψ ñ ppϕ^x„yq ˚ ψq_ppϕ^ x„yq ˚ ψq (I˚9)

4 ϕ^ x „ yñ  x „ y PC

5 ψ ñ J PC

6 pϕ^ x„yq ˚ ψ ñ p x „ yq ˚ J ˚-Ilr, 4, 5

7 p x „ yq ˚ J ñ  x „ y (A˚
14)

8 pϕ^ x„yq ˚ ψ ñ  x „ y ñ-Tr, 6, 7

9 ppϕ^ x„yq ˚ ψq _ ppϕ^ x„yq ˚ ψq ñ ppϕ^ x„yq ˚ ψq _  x „ y 8, PC

10 ϕ ˚ ψ ñ ppϕ^ x„yq ˚ ψq _  x „ y ñ-Tr, 2, 3, 9

11 x „ y^ pϕ ˚ ψq ñ pϕ^ x „ yq ˚ ψ 10, PC

Proof of (I˚5.2.2).

1 allocpxq ^ x “ yñ allocpyq (AC
2)

2 x “ y^ ppϕ^ allocpxqq ˚ ψq ñ ppϕ^ allocpxq ^ x “ yq ˚ ψq (I˚5.2.1)

3 pϕ^ allocpxq ^ x “ yq ˚ ψ ñ pϕ^ allocpyqq ˚ ψ PC, ˚-Intro, 1

4 x “ y^ ppϕ^ allocpxqq ˚ ψq ñ pϕ^ allocpyqq ˚ ψ ñ-Tr, 2, 3

Proof of (I˚5.2.3).

1 ψ ñ pψ ^ allocpxqq _ pψ ^ allocpxqq PC

2 pϕ^ allocpxqq ˚ ψ ñ

pϕ^ allocpxqq ˚ ppψ ^ allocpxqq _ pψ ^ allocpxqqq (A˚
7), ˚-Intro, 1

3 pϕ^ allocpxqq ˚ ppψ ^ allocpxqq _ pψ ^ allocpxqqq ñ

ppϕ^ allocpxqq ˚ pψ ^ allocpxqqq _ ppϕ^ allocpxqq ˚ pψ ^ allocpxqqq (A˚
7), (I˚9), 2

4 χ^ allocpxq ñ allocpxq pχ P tϕ,ψuq, PC

5 pϕ^ allocpxqq ˚ pψ ^ allocpxqq ñ allocpxq ˚ allocpxq ˚-Ilr, 4

6 allocpxq ˚ allocpxq ñK (A˚
13)

7 pϕ^ allocpxqq ˚ pψ ^ allocpxqq ñK ñ-Tr, 5, 6

8 pϕ^ allocpxqq ˚ ψ ñ K _ppϕ^ allocpxqq ˚ pψ ^ allocpxqqq PC, 2, 3, 7
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9 pϕ^ allocpxqq ˚ ψ ñ pϕ^ allocpxqq ˚ pψ ^ allocpxqq PC, 8

10 ϕ^ allocpxq ñ ϕ PC

11 pϕ^ allocpxqq ˚ pψ ^ allocpxqq ñ ϕ ˚ pψ ^ allocpxqq ˚-Intro, 10

12 pϕ^ allocpxqq ˚ ψ ñ ϕ ˚ pψ ^ allocpxqq ñ-Tr, 9, 11

Proof of (I˚5.2.4).

1 ϕñ pϕ^ allocpxqq _ pϕ^ allocpxqq PC

2 ϕ ˚ ψ ñ
`

pϕ^ allocpxqq _ pϕ^ allocpxqq
˘

˚ ψ ˚-Intro, 1

3
`

pϕ^ allocpxqq _ pϕ^ allocpxqq
˘

˚ ψ ñ

ppϕ^ allocpxqq ˚ ψq _ ppϕ^ allocpxqq ˚ ψq (I˚9)

4 ϕ^ allocpxq ñ allocpxq PC

5 ψ ñ J PC

6 pϕ^ allocpxqq ˚ ψ ñ pallocpxq ˚ Jq ˚-Ilr, 4, 5

7 allocpxq ˚ J ñ allocpxq (I˚12)

8 ϕ ˚ ψ ñ allocpxq _ ppϕ^ allocpxqq ˚ ψq PC, 2, 3, 6, 7

9  allocpxq ^ pϕ ˚ ϕq ñ pϕ^ allocpxqq ˚ ψ PC, 8

Proof of (I˚5.2.5).

1 ϕñ pϕ^ allocpxqq _ pϕ^ allocpxqq PC

2 ϕ ˚ p allocpxq ^ ψq ñ

ppϕ^allocpxqq ˚ pψ^ allocpxqqq _ ppϕ^ allocpxqq ˚ pψ^ allocpxqqq ˚-Intro, 1, (I˚9)

3 χ^ allocpxq ñ  allocpxq pχ P tϕ,ψuq, PC

4 pϕ^ allocpxqq ˚ pψ ^ allocpxqq ñ  allocpxq ˚  allocpxq PC, ˚-Ilr, 3

5  allocpxq ˚  allocpxq ñ  allocpxq (A˚
15)

6 ϕ ˚ p allocpxq ^ ψq ñ ppϕ^ allocpxqq ˚ pψ ^ allocpxqqq _  allocpxq PC, 2, 4, 5

7 allocpxq ^ pϕ ˚ p allocpxq ^ ψqq ñ pϕ^ allocpxqq ˚ pψ ^ allocpxqq PC, 6

Proof of (I˚5.2.6).

1 ϕ^ allocpxq ñ pϕ^ allocpxq ^ x ãÑ yq _ pϕ^ allocpxq ^  x ãÑ yq PC

2 pϕ^ allocpxqq ˚ ψ ñ
`

pϕ^ allocpxq ^ x ãÑ yq _ pϕ^ allocpxq ^  x ãÑ yq
˘

˚ ψ ˚-Intro, 1

3 pϕ^ allocpxqq ˚ ψ ñ

ppϕ^ allocpxq ^ x ãÑ yq ˚ ψq _ ppϕ^ allocpxq ^  x ãÑ yq ˚ ψq (I˚9), ñ-Tr, 2

4 ϕ^ allocpxq ^  x ãÑ yñ allocpxq ^ x ãÑ y PC
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5 ψ ñ J PC

6 pϕ^ allocpxq ^  x ãÑ yq ˚ ψ ñ pallocpxq ^ x ãÑ yq ˚ J ˚-Ilr

7 pallocpxq ^ x ãÑ yq ˚ J ñ  x ãÑ y (A˚
16)

8 pϕ^ allocpxqq ˚ ψ ñ ppϕ^ allocpxq ^ x ãÑ yq ˚ ψq _  x ãÑ y PC, 3, 6, 7

9 x ãÑ y^ ppallocpxq ^ ϕq ˚ ψq ñ pϕ^ allocpxq ^ x ãÑ yq ˚ ψ PC, 8

10 ϕ^ allocpxq ^ x ãÑ yñ ϕ^ x ãÑ y PC

11 pϕ^ allocpxq ^ x ãÑ yq ˚ ψ ñ pϕ^ x ãÑ yq ˚ ψ ˚-Intro, 10

12 x ãÑ y^ ppallocpxq ^ ϕq ˚ ψq ñ pϕ^ x ãÑ yq ˚ ψ ñ-Tr, 9, 11

Proof of (I˚5.2.7). Similar to the proof of (I˚5.2.4), by replacing allocpxq with x ãÑ y.

1 ϕñ pϕ^ x ãÑ yq _ pϕ^ x ãÑ yq PC

2 ϕ ˚ ψ ñ ppϕ^ x ãÑ yq ˚ ψq _ ppϕ^ x ãÑ yq ˚ ψq ˚-Intro, 1, (I˚9)

3 ϕ^ x ãÑ yñ x ãÑ y PC

4 ψ ñ J PC

5 pϕ^ x ãÑ yq ˚ ψ ñ px ãÑ y ˚ Jq ˚-Ilr, 3, 4

6 x ãÑ y ˚ J ñ x ãÑ y (A˚
14)

7 ϕ ˚ ψ ñ x ãÑ y_ ppϕ^ x ãÑ yq ˚ ψq PC, 2, 5, 6

8  x ãÑ y^ pϕ ˚ ψq ñ pϕ^ x ãÑ yq ˚ ψ PC, 7

Appendix B. Derivation of the size formulae required for Lemma 5.4

In this appendix, we show the derivations in HCp˚q of size ě β1`β2 ñ size “ β1˚size ě β2

and size “ β1`β2 ñ size “ β1 ˚size “ β2, which are required for the proof of Lemma 5.4.
The derivation of size ě β1`β2 ñ size “ β1 ˚size ě β2 is proven by induction on β1.

The derivation for the base case β1 “ 0 is:

1 size ě β2 ñ emp ˚ size ě β2 (A˚
11)

2 empñ size ě 0^ size ě 1 PC, def. of size ě 1

3 emp ˚ size ě β2 ñ size “ 0 ˚ size ě β2 ˚-Intro, 2, def. of size “ 0

4 size ě β2 ñ size “ 0 ˚ size ě β2 ñ-Tr, 1, 3

For the induction step, let us suppose the formula to be derivable for a certain β1, and let
us prove that it is also derivable for β1 ` 1.

1 size ě β1 ` 1` β2 ñ size ě 1 ˚ size ě β1 ` β2 def. of size ě β, (A˚
7), (A˚

8)

2 size ě 1 ñ size “ 1 ˚ J (A˚
18), def. of size ě 1

3 size ě 1 ˚ size ě β1 ` β2 ñ

psize “ 1 ˚ Jq ˚ size ě β1 ` β2 ˚-Intro, 2
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4 psize “ 1 ˚ Jq ˚ size ě β1 ` β2 ñ

size “ 1 ˚ size ě β1 ` β2 PC, (A˚
7), (A˚

8), (A˚
14)

5 size ě β1 ` β2 ñ size “ β1 ˚ size ě β2 Induction Hypothesis

6 size “ 1 ˚ size ě β1 ` β2 ñ

psize “ 1 ˚ size “ β1q ˚ size ě β2 (A˚
7), ˚-Intro, (A˚

8)

7 size “ rβ ñ size ě rβ PC, def. of size “ rβ

8 size “ rβ ñ  size ě rβ ` 1 PC, def. of size “ rβ

9 size “ 1 ˚ size “ β1 ñ size ě 1 ˚ size ě β1 ˚-Ilr, 7

10 size “ 1 ˚ size “ β1 ñ  size ě 2 ˚  size ě β1 ` 1 ˚-Ilr, 8

11 size ě 1 ˚ size ě β1 ñ size ě β1 ` 1 def. of size ě β, (A˚
7), (A˚

8)

12  size ě 2 ˚  size ě β1 ` 1 ñ  size ě β1 ` 2 (A˚
19)

13 size “ 1 ˚ size “ β1 ñ size “ β1 ` 1 PC, 9–12, def. of size “ β1

14 psize “ 1 ˚ size “ β1q ˚ size ě β2 ñ

size “ β1 ` 1 ˚ size ě β2 ˚-Intro, 13

15 size ě β1 ` 1` β2 ñ size “ β1 ` 1 ˚ size ě β2 ñ-Tr, 1, 3, 4, 6, 14

The derivation of the formula size “ β1 ` β2 ñ size “ β1 ˚ size “ β2 is provided below.

1 size “ β1 ` β2 ñ size ě β1 ` β2 PC, def. of size “ β

2 size ě β1 ` β2 ñ size “ β1 ˚ size ě β2 Previously derived

3 size ě β2 ñ psize ě β2 ^ size ě β2 ` 1q _ size “ β2 PC, def. of size “ β2

4 size “ β1 ˚ size ě β2 ñ

size “ β1 ˚ ppsize ě β2 ^ size ě β2 ` 1q _ size “ β2q (A˚
7), ˚-Intro, 3

5 size “ β1 ˚ ppsize ě β2 ^ size ě β2 ` 1q _ size “ β2q ñ

psize “ β1 ˚ psize ě β2^size ě β2 ` 1qq_psize “ β1 ˚ size “ β2q (A˚
7), (I˚9)

6 size ě rβ ^ χñ size ě rβ PC

7 size “ β1 ˚ psize ě β2^size ě β2 ` 1q ñ

size ě β1 ˚ size ě β2 ` 1 PC, ˚-Ilr, 6

8 size ě β1 ˚ size ě β2 ` 1 ñ size ě β1 ` β2 ` 1 (A˚
7), (A˚

8)

9 size “ β1 ˚ psize ě β2^size ě β2 ` 1q ñ size ě β1 ` β2 ` 1 ñ-Tr, 7, 8

10 size “ β1 ˚ ppsize ě β2 ^ size ě β2 ` 1q _ size “ β2q ñ

size ě β1 ` β2 ` 1_psize “ β1 ˚ size “ β2q PC, 5, 9

11 size “ β1 ` β2 ñ size ě β1 ` β2 ` 1_psize “ β1 ˚ size “ β2q ñ-Tr, 1, 2, 4, 10

12 size “ β1 ` β2 ñ  size ě β1 ` β2 ` 1 PC, def. of size “ β

13 size “ β1 ` β2 ñ size “ β1 ˚ size “ β2 PC, 11, 12
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Appendix C. Proof of Lemma 6.1

Proof of (I˚9).

1 pϕ ˚ χq ñ pϕ ˚ χq _ pψ ˚ χq PC

2 pψ ˚ χq ñ pϕ ˚ χq _ pψ ˚ χq PC

3 ϕñ pχ ´̊ pϕ ˚ χq _ pψ ˚ χqq ˚-Adj, 1

4 ψ ñ pχ ´̊ pϕ ˚ χq _ pψ ˚ χqq ˚-Adj, 2

5 ϕ_ ψ ñ pχ ´̊ pϕ ˚ χq _ pψ ˚ χqq PC, 3, 4

6 pϕ_ ψq ˚ χñ pϕ ˚ χq _ pψ ˚ χq ´̊ -Adj, 5

Proof of (I˚10). The axiom (I˚10) is provable by ˚-Adj. Indeed, proving pK ˚ϕq ñK reduces
to proving Kñ pϕ´̊ Kq. The latter is a tautology by propositional reasoning.

Proof of (I˚12).

1 K ˚J ñK (I˚10)

2 px ãÑ x´̊ Kq ñ px ãÑ x´̊ Kq PC

3 px ãÑ x´̊ Kq ˚ x ãÑ xñK ´̊ -Adj, 2

4 x ãÑ x ˚ px ãÑ x´̊ Kq ñ px ãÑ x´̊ Kq ˚ x ãÑ x (A˚
7)

5 x ãÑ x ˚ px ãÑ x´̊ Kq ñK ñ-Tr, 4, 3

6 px ãÑ x ˚ px ãÑ x´̊ Kqq ˚ J ñK ˚J ˚-Intro, 5

7 ppx ãÑ x´̊ Kq ˚ Jq ˚ px ãÑ xq ñ px ãÑ x ˚ px ãÑ x´̊ Kqq ˚ J (A˚
7), (A˚

8)

8 ppx ãÑ x´̊ Kq ˚ Jq ˚ px ãÑ xq ñK ñ-Tr, 7, 6, 1

9 px ãÑ x´̊ Kq ˚ J ñ px ãÑ x´̊ Kq ˚-Adj, 8

10 allocpxq ˚ J ñ allocpxq Def. allocpxq, 9

Appendix D. Proof of Lemma 6.3

Proof of (I´̊6.3.1).

1 K ˚J ñK (I˚10)

2 Kñ  ϕ PC

3 K ˚J ñ  ϕ ñ-Tr, 1, 2

4 J ñ pK ´̊ ϕq (A˚
7), ˚-Adj

5 J ñ  pK f́ ϕq Def. f́, PC

6 pK f́ ϕq ñK 5, PC

Proof of (I´̊6.3.2).

1 J ˚ ϕñ J PC

2 J ñ pϕ ´̊ Jq ˚-Adj

3  pϕ ´̊ Jq ñK PC, 2

4 pϕ f́ Kq ñK Def. f́, PC
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Note that implicitly, we have assumed that we can replace  J by K in the scope of f́ or ´̊ ,
which is possible as the replacement of equivalents holds in the calculus HCp˚, ´̊ q (see e.g.
the proof of Theorem 6.5).

Proof of (I´̊6.3.3).

1 pϕ ´̊ ψq ñ pϕ ´̊ ψq PC

2 pϕ ´̊ ψq ˚ ϕñ ψ ´̊ -Adj, 1

3 ϕ ˚ pϕ ´̊ ψq ñ pϕ ´̊ ψq ˚ ϕ (A˚
7)

4 ϕ ˚ pϕ ´̊ ψq ñ ψ ñ-Tr, 3, 2

Proof of (I´̊6.3.4).

1 ϕñ ψ Hypothesis

2 ψ ˚ pψ ´̊  χq ñ  χ (I´̊6.3.3)

3 pψ ´̊  χq ˚ ϕñ ϕ ˚ pψ ´̊  χq (A˚
7)

4 ϕ ˚ pψ ´̊  χq ñ ψ ˚ pψ ´̊  χq ˚-Intro, 1

5 ϕ ˚ pψ ´̊  χq ñ  χ ñ-Tr, 2, 4

6 pψ ´̊  χq ˚ ϕñ  χ ñ-Tr, 3, 5

7 ψ ´̊  χñ ϕ ´̊  χ ˚-Adj, 6

8  pϕ ´̊  χq ñ  pψ ´̊  χq PC, 7

9 pϕ f́ χq ñ pψ f́ χq Def. f́, 8

Proof of (I´̊6.3.5).

1 ϕñ ψ Hypothesis

2  ψ ñ  ϕ PC, 1

3 χ ˚ pχ ´̊  ψq ñ  ψ (I´̊6.3.3)

4 χ ˚ pχ ´̊  ψq ñ  ϕ ñ-Tr, 3, 2

5 pχ ´̊  ψq ˚ χñ χ ˚ pχ ´̊  ψq (A˚
7)

6 pχ ´̊  ψq ˚ χñ  ϕ ñ-Tr, 4, 5

7 pχ ´̊  ψq ñ pχ ´̊  ϕq ˚-Adj, 6

8  pχ ´̊  ϕq ñ  pχ ´̊  ψq PC, 7

9 pχ f́ ϕq ñ pχ f́ ψq Def. f́

Proof of (I´̊6.3.6). By definition of the septraction operator f́, (I´̊6.3.6) is equivalent to
ϕ ´̊ pψ ´̊  χqq ô pϕ ˚ ψq ´̊  χ. This equivalence is provable in HCp˚, ´̊ q, thanks to the
adjunction rules, as we now show.
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1 pϕ ˚ ψq ˚ pϕ ˚ ψ ´̊  χq ñ  χ (I´̊6.3.3)

2 ψ ˚ pϕ ˚ pϕ ˚ ψ ´̊  χqq ñ  χ (A˚
7), (A˚

8), 1

3 ϕ ˚ pϕ ˚ ψ ´̊  χq ñ pψ ´̊  χq ˚-Adj, 2

4 pϕ ˚ ψ ´̊  χq ñ pϕ ´̊ pψ ´̊  χqq ˚-Adj, 3, (A˚
7)

5 ϕ ˚ pϕ ´̊ pψ ´̊  χqq ñ pψ ´̊  χq (I´̊6.3.3)

6 ψ ˚ ϕ ˚ pϕ ´̊ pψ ´̊  χqq ñ  χ ´̊ -Adj, 5, (A˚
7), (A˚

8)

7 pϕ ˚ ψq ˚ pϕ ´̊ pψ ´̊  χqq ñ  χ (A˚
7), (A˚

8), 6

8 pϕ ´̊ pψ ´̊  χqq ñ pϕ ˚ ψ ´̊  χq ˚-Adj, 7

9 ϕ ´̊ pψ ´̊  χq ô pϕ ˚ ψq ´̊  χ PC, 4, 8

Proof of (I´̊6.3.7). We derive each implication separately.

1 pϕ ´̊  χq ^ pψ ´̊  χq ñ pψ ´̊  χq PC

2 ψ ˚ ppϕ ´̊  χq ^ pψ ´̊  χqq ñ ψ ˚ pψ ´̊  χq ˚-Ilr, 1

3 pϕ ´̊  χq ^ pψ ´̊  χq ñ pϕ ´̊  χq PC

4 ϕ ˚ ppϕ ´̊  χq ^ pψ ´̊  χqq ñ ϕ ˚ pϕ ´̊  χq ˚-Ilr, 3

5 ϕ ˚ pϕ ´̊  χq ñ  χ (I´̊6.3.3)

6 ψ ˚ pψ ´̊  χq ñ  χ (I´̊6.3.3)

7 ψ ˚ ppϕ ´̊  χq ^ pψ ´̊  χqq ñ  χ ñ-Tr, 2, 6

8 ϕ ˚ ppϕ ´̊  χq ^ pψ ´̊  χqq ñ  χ ñ-Tr, 4, 5

9 pϕ_ ψq ˚ ppϕ ´̊  χq ^ pψ ´̊  χqq ñ

pϕ ˚ pϕ ´̊  χ^ ψ ´̊  χqq _ pψ ˚ pϕ ´̊  χ^ ψ ´̊  χqq (I˚9)

10 pϕ_ ψq ˚ ppϕ ´̊  χq ^ pψ ´̊  χqq ñ  χ PC, 7, 8, 9

11 ppϕ ´̊  χq ^ pψ ´̊  χqq ˚ pϕ_ ψq ñ pϕ_ ψq ˚ ppϕ ´̊  χq ^ pψ ´̊  χqq (A˚
7)

12 ppϕ ´̊  χq ^ pψ ´̊  χqq ˚ pϕ_ ψq ñ  χ ñ-Tr, 12, 10

13 pϕ ´̊  χq ^ pψ ´̊  χq ñ pϕ_ ψ ´̊  χq ˚-Adj, 12

14  pϕ_ ψ ´̊  χq ñ  pϕ ´̊  χq _  pψ ´̊  χq PC, 13

15 pϕ_ ψ f́ χq ñ pϕ f́ χq _ pψ f́ χq Def. f́, 14

The derivation of the other implication can be found below.

1 ϕñ ϕ_ ψ PC

2 ψ ñ ϕ_ ψ PC

3 pϕ f́ χq ñ pϕ_ ψ f́ χq (I´̊6.3.4), 1

4 pψ f́ χq ñ pϕ_ ψ f́ χq (I´̊6.3.4), 2

5 pψ f́ χq _ pϕ f́ χq ñ pϕ_ ψ f́ χq PC, 3, 4
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Proof of (I´̊6.3.8). We handle each implication separately, and we follow a pattern similar to
the one used in the proof of (I´̊6.3.7).

1 χ ˚ pχ ´̊  ϕq ñ  ϕ (I´̊6.3.3)

2 pχ ´̊  ϕq ^ pχ ´̊  ψq ñ χ ´̊  ϕ PC

3 χ ˚ ppχ ´̊  ϕq ^ pχ ´̊  ψqq ñ χ ˚ pχ ´̊  ϕq ˚-Ilr,2

4 χ ˚ ppχ ´̊  ϕq ^ pχ ´̊  ψqq ñ  ϕ ñ-Tr, 3, 1

5 χ ˚ pχ ´̊  ψq ñ  ψ (I´̊6.3.3)

6 pχ ´̊  ϕq ^ pχ ´̊  ψq ñ pχ ´̊  ψq PC

7 χ ˚ ppχ ´̊  ϕq ^ pχ ´̊  ψqq ñ χ ˚ pχ ´̊  ψq ˚-Ilr,6

8 χ ˚ ppχ ´̊  ϕq ^ pχ ´̊  ψqq ñ  ψ ñ-Tr, 7, 5

9 χ ˚ ppχ ´̊  ϕq ^ pχ ´̊  ψqq ñ  pϕ_ ψq PC, 4, 8

10 ppχ ´̊  ϕq ^ pχ ´̊  ψqq ˚ χñ  pϕ_ ψq (A˚
7) + ñ-Tr, 9

11 pχ ´̊  ϕq ^ pχ ´̊  ψq ñ pχ ´̊  pϕ_ ψqq ˚-Adj, 10

12  pχ ´̊  pϕ_ ψqq ñ  pχ ´̊  ϕq _  pχ ´̊  ψq PC, 11

13 pχ f́ pϕ_ ψqq ñ pχ f́ ϕq _ pχ f́ ψq Def. f́, 12

The derivation of the other implication can be found below.

1 ϕñ ϕ_ ψ PC

2 ψ ñ ϕ_ ψ PC

3 pχ f́ ϕq ñ pχ f́ ϕ_ ψq (I´̊6.3.5), 1

4 pχ f́ ψq ñ pχ f́ ϕ_ ψq (I´̊6.3.5), 2

5 pχ f́ ϕq _ pχ f́ ψq ñ pχ f́ ϕ_ ψq PC, 3, 4

Proof of (I´̊6.3.9).

1 ϕ ˚ pϕ ´̊ χq ñ χ (I´̊6.3.3)

2 ϕ ˚ pϕ ´̊  pψ ^ χqq ñ  pψ ^ χq (I´̊6.3.3)

3 pϕ ˚ pϕ ´̊ χqq ^ pϕ ˚ pϕ ´̊  pψ ^ χqqq ñ  ψ PC, 1, 2

4 ϕ ˚ ppϕ ´̊ χq ^ pϕ ´̊  pψ ^ χqqq ñ

pϕ ˚ pϕ ´̊ χqq ^ pϕ ˚ pϕ ´̊  pψ ^ χqqq ˚-Ilr, PC

5 ϕ ˚ ppϕ ´̊ χq ^ pϕ ´̊  pψ ^ χqqq ñ  ψ ñ-Tr, 4

6 pϕ ´̊ χq ^ pϕ ´̊  pψ ^ χqq ñ pϕ ´̊  ψq (A˚
7), ˚-Adj, 5

7 pϕ ´̊ χq ^  pϕ ´̊  ψq ñ  pϕ ´̊  pψ ^ χqq PC

8 pϕ ´̊ χq ^ pϕ f́ ψq ñ pϕ f́ ψ ^ χq Def. f́, 7
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Proof of (I´̊6.3.10) and (I´̊6.3.11). Below, we provide the derivation for the admissible axiom
schema (I´̊6.3.10) (the derivation for (I´̊6.3.11) is very similar and is thus omitted).

1 ϕñ pϕ^ x “ yq _ pϕ^ x ‰ yq PC

2 pϕ f́ ψq ñ ppϕ^ x “ yq _ pϕ^ x ‰ yq f́ ψq (I´̊6.3.4), 1

3 pϕ f́ ψq ñ pϕ^ x “ y f́ ψq _ pϕ^ x ‰ y f́ ψq (I´̊6.3.7), ñ-Tr, 2

4 x “ y ˚ x ‰ yñ x “ y (A˚
14), ˚-Ilr

5 x ‰ y ˚ x “ yñ x ‰ y (A˚
14), ˚-Ilr

6 x “ y ˚ x ‰ yñ x “ y^ x ‰ y (A˚
7), ñ-Tr, PC, 4, 5

7 x “ y ˚ x ‰ yñ  J PC, 6

8  J ñ  ψ PC

9 x “ y ˚ x ‰ yñ  ψ PC, 7, 8

10 x “ yñ px ‰ y ´̊  ψq ˚-Adj, 9

11  px ‰ y ´̊  ψq ñ x ‰ y PC, 10

12 px ‰ y f́ ψq ñ x ‰ y Def. f́, 11

13 ϕ^ x ‰ yñ x ‰ y PC

14 pϕ^ x ‰ y f́ ψq ñ px ‰ y f́ ψq (I´̊6.3.4), 13

15 pϕ^ x ‰ y f́ ψq ñ x ‰ y ñ-Tr, 12, 14

16 x “ y^ pϕ f́ ψq ñ pϕ^ x “ y f́ ψq _ x ‰ y PC, 3, 15

17 x “ y^ pϕ f́ ψq ñ pϕ^ x “ y f́ ψq PC, 16

Proof of (I´̊6.3.12). Notice that, since ϕsize is satisfiable, for every β1, β2 P N such that
size ě β1 ^  size ě β2 ĎLt ϕsize, we must have β1 ă β2. Moreover, thanks to (IC

5)
and (I´̊6.3.4), without loss of generality, we can restrict ourselves to ϕsize of the form:

(1) ϕsize “ size ě β for some β ě 0,
(2) ϕsize “  psize ě βq for some β ą 0,
(3) ϕsize “ size ě β1 ^ psize ě β2q for some β2 ą β1.

Indeed, given an arbitrary ϕsize, every positive literal size ě β such that β ă maxsizepϕsizeq

can be derived starting from size ě maxsizepϕsizeq, by repeated applications of (IC
5).

Similarly, let β be the smallest natural number such that  size ě β ĎLt ϕsize, if any. Every
literal  size ě β1 ĎLt ϕsize with β1 ě β can be derived from  size ě β, by repeated
applications of the axiom (IC

5) (taken in contrapositive form i.e.  size ě β ñ  size ě β`1,
which is derivable in HC by propositional reasoning).

We write UpXq to denote the conjunction
Ź

xPX allocpxq (‘U’ stands for ‘unallocated’).
Below, given β P N, we aim at deriving the formula psize “ β^UpXqq f́J since this implies
that (I´̊6.3.12) is derivable in its instances (1)–(3), as shown below.

case (1): Let ϕsize “ size ě β.

1 size “ β ^ UpXq f́ J Hypothesis
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2 size “ β ^ UpXq ñ size ě β ^ UpXq PC, def. of size “ β

3 psize “ β ^ UpXq f́ Jq ñ psize ě β ^ UpXq f́ Jq (I´̊6.3.4), 2

4 size ě β ^ UpXq f́ J Modus Ponens, 1, 3

case (2): Let ϕsize “  size ě β. Since ϕsize is satisfiable, we have β ě 1.

1 size “ β´1^ UpXq f́ J Hypothesis

2 size “ β´1^ UpXq ñ  size ě β ^ UpXq PC, def. of size “ β´1

3 psize “ β´1^ UpXq f́ Jq ñ p size ě β ^ UpXq f́ Jq (I´̊6.3.4), 2

4  size ě β ^ UpXq f́ J Modus Ponens, 1, 3

case (3): Let ϕsize “ size ě β1 ^ size ě β2. Since ϕsize is satisfiable, β2 ą β1.

1 size “ β2´1^ UpXq f́ J Hypothesis

2 size “ β2´1 ñ size ě β1 repeated (IC
5), as β2 ą β1

3 size “ β2´1 ñ  size ě β2 PC, def. of size “ β´1

4 size “ β2´1^ UpXq ñ size ě β1 ^ size ě β2 ^ UpXq PC, 2, 3

5
`

size “ β2´1^ UpXq f́ J
˘

ñ

psize ě β1 ^ size ě β2 ^ UpXq f́ Jq (I´̊6.3.4), 4

6 size ě β1 ^ size ě β2 ^ UpXq f́ J Modus Ponens, 1, 5

To conclude the proof, let us show that psize “ β ^ UpXqq f́ J is derivable in HCp˚, ´̊ q.
The proof is by induction on β, with two base cases, for β “ 0 and β “ 1.

base case: β “ 0: In this case, size “ 0 is equal to size ě 0^ size ě 1. We have,

1 pemp´̊ Kq ñ emp ˚ pemp´̊ Kq (A˚
11)

2 emp ˚ pemp´̊ Kq ñK (I´̊6.3.3)

3 pemp´̊ Kq ñK ñ-Tr, 1, 2

4 emp f́ J PC, 3, def. of f́

5 allocpxq ñ size ě 1 (IC
6)

6 empñ  allocpxq PC, 5, as size ě 1 “  emp

7 empñ UpXq PC, 6 used for all x P X

8 empñ size ě 0^ psize ě 1q PC, def. of size ě β

9 empñ size ě 0^ psize ě 1q ^ UpXq PC, 7, 8

10 pemp f́ Jq ñ psize ě 0^ psize ě 1q ^ UpXq f́ Jq (I´̊6.3.4), 9

11 size ě 0^ psize ě 1q ^ UpXq f́ J Modus Ponens, 4, 10

base case: β “ 1: This case corresponds exactly to the axiom (A´̊
21).
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induction step: β ě 2: First of all, we notice that the following formula is valid:

psize “ 1^ UpXqq ˚ psize “ β´1^ UpXqq ñ size “ β ^ UpXq. (:)

Indeed, let ps, hq be a memory state satisfying the antecedent of the implication above.
So, there are disjoint heaps h1 and h2 such that h “ h1`h2, cardpdomph1qq “ 1,
cardpdomph2qq “ β ´ 1, and for every x P X, spxq R domph1q and spxq R domph2q. By
h “ h1`h2, cardpdomphqq “ cardpdomph1qq` cardpdomph2qq “ β, and for every x P X,
spxq R domphq. Thus, ps, hq |ù size “ β ^ UpXq.

As (:) can be seen as a formula in SLp˚, allocq, by Theorem 5.6 it is derivable
in HCp˚q and thus in HCp˚, ´̊ q. Now, let us derive psize “ β ^ UpXqq f́ J. Let
us consider as induction hypothesis the derivability of psize “ β´1 ^ UpXqq f́ J.
Therefore,

1 size “ β´1^ UpXq f́ J Induction Hypothesis

2 psize “ 1^ UpXqq ˚ psize “ β´1^ UpXqq ñ size “ β ^ UpXq (:), see above

3 size “ 1^ UpXq f́ J (A´̊
21)

4 J ñ psize “ β´1^ UpXq f́ Jq PC, 1

5 psize “ 1^ UpXq f́ Jq ñ
`

size “ 1^ UpXq f́ psize “ β´1^ UpXq f́ Jq
˘

(I´̊6.3.5), 4

6
`

size “ 1^ UpXq f́ psize “ β´1^ UpXq f́ Jq
˘

ñ
`

psize “ 1^ UpXqq ˚ psize “ β´1^ UpXqq f́ J
˘

(I´̊6.3.6)

7
`

psize “ 1^ UpXqq ˚ psize “ β´1^ UpXqq f́ J
˘

ñ

psize “ β ^ UpXq f́ Jq (I´̊6.3.4), 2

8 psize “ 1^ UpXq f́ Jq ñ psize “ β ^ UpXq f́ Jq ñ-Tr, 5, 6, 7

9 size “ β ^ UpXq f́ J Modus Ponens, 3, 8
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