
Logical Methods in Computer Science
Volume 17, Issue 3, 2021, pp. 8:1–8:27
https://lmcs.episciences.org/

Submitted Jan. 04, 2021
Published Jul. 21, 2021

A DETAILED ACCOUNT OF THE INCONSISTENT LABELLING

PROBLEM OF STUTTER-PRESERVING PARTIAL-ORDER

REDUCTION ∗

THOMAS NEELE a, ANTTI VALMARI b, AND TIM A.C. WILLEMSE c

a Royal Holloway University of London, Egham, UK
e-mail address: thomas.neele@rhul.ac.uk

b University of Jyväskylä, Jyväskylä, Finland
e-mail address: antti.valmari@jyu.fi

c Eindhoven University of Technology, Eindhoven, The Netherlands
e-mail address: t.a.c.willemse@tue.nl

Abstract. One of the most popular state-space reduction techniques for model checking
is partial-order reduction (POR). Of the many different POR implementations, stubborn
sets are a very versatile variant and have thus seen many different applications over the
past 32 years. One of the early stubborn sets works shows how the basic conditions for
reduction can be augmented to preserve stutter-trace equivalence, making stubborn sets
suitable for model checking of linear-time properties. In this paper, we identify a flaw
in the reasoning and show with a counter-example that stutter-trace equivalence is not
necessarily preserved. We propose a stronger reduction condition and provide extensive
new correctness proofs to ensure the issue is resolved. Furthermore, we analyse in which
formalisms the problem may occur. The impact on practical implementations is limited,
since they all compute a correct approximation of the theory.

1. Introduction

In the field of formal methods, model checking is a push-button technique for establishing the
correctness of systems according to certain criteria. A fundamental issue in model checking
is the state-space explosion problem: the size of the state space can grow exponentially
with the number of concurrent components, due to all their possible interleavings. One of
the prime methods of reducing the number of states is partial-order reduction (POR). The
literature contains many different implementations of POR, but they are all centred around
the idea that some interleavings may be considered similar and thus only one interleaving
from each equivalence class needs to be explored. The main variants of POR are ample
sets [Pel93], persistent sets [God96] and stubborn sets [Val91b, VH17]. The basic conditions
set out by each of these variants can be strengthened, such that the resulting conditions are
sufficient for the preservation of stutter-trace equivalence. The extra conditions resolve the

Key words and phrases: partial-order reduction, stutter equivalence, LTL, stubborn sets.
∗ An extended abstract of this paper appeared earlier as [NVW20].

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-17(3:8)2021
© T. Neele, A. Valmari, and T.A.C. Willemse
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

8:2 T. Neele, A. Valmari, and T.A.C. Willemse Vol. 17:3

so-called action-ignoring problem [Val91b]. Since LTL without the next operator (LTL−X)
is invariant under finite stuttering, this allows one to check most LTL properties under POR.

However, the correctness proofs for these methods are intricate and not reproduced
often. For stubborn sets, LTL−X -preserving conditions and an accompanying correctness
result were first presented in [Val91a]; the corresponding proofs appeared in [Val92]. When
attempting to reproduce the proof of [Val92, Theorem 2] (see also Theorem 2.5 in the
current work), we were unable to show that the two alternative paths considered by [Val92,
Construction 1], a core component of the proof, are stutter equivalent. The consequence is
that stutter-trace equivalence is not necessarily preserved, contrary to what the theorem
states! We call this the inconsistent labelling problem.

The essence of the problem is that POR in general, and the proofs in [Val92] in
particular, reason mostly about actions, which label the transitions. In POR theory, the
only relevance of the state labelling is that it determines which actions must be considered
visible. On the other hand, stutter-trace equivalence and the LTL semantics are purely
based on state labels. The correctness proof in [Val92] does not deal properly with this
disparity. Consequently, any application of stubborn sets in LTL−X model checking is
possibly unsound, both for safety and liveness properties. In literature, the correctness of
several theories [LPvdPH16, LW19, Val96] relies on the incorrect theorem.

In earlier work [NVW20], we identified the inconsistent labelling problem and investigated
the theoretical and practical consequences. As detailed in ibid., the problem is witnessed by
a counter-example, which is valid for weak stubborn sets and, with a small modification, in
a non-deterministic setting for strong stubborn sets. A slight strengthening of one of the
stubborn set conditions is sufficient to repair the issue (Theorems 5.2 and 5.3 in the current
work). The fix is local, in the sense that it reduces the reduction potential in those places
where the inconsistent labelling problem might otherwise occur. Petri nets can be susceptible
to the issue, depending on what notion of invisibility and what types of atomic propositions
are used. We used this knowledge about formalisms in which the inconsistent labelling
problem may manifest itself to determine its impact on related work. The investigation
in [NVW20] shows that probably all practical implementations of stubborn sets compute
an approximation which resolves the inconsistent labelling problem. Furthermore, POR
methods based on the standard independence relation, such as ample sets and persistent
sets, are not affected. The current paper improves on [NVW20] with extended explanation
and full proofs. In particular, we introduce each of the existing stubborn set conditions with
reworked proofs to aid the reader’s intuition.

The rest of the paper is structured as follows. In Section 2, we introduce the basic
concepts of transition systems and stutter-trace equivalence. Section 3 introduces the
stubborn set conditions one by one and shows what they preserve through several lemmata.
Our counter-example to the preservation of stutter-trace equivalence is presented in Section 4.
We propose a solution to the inconsistent labelling problem in Section 5, together with an
updated correctness proof. Sections 6 and 7 discuss several settings in which correctness is
not affected. Finally, Section 8 discusses related work and Section 9 presents a conclusion.

2. Preliminaries

2.1. Labelled State Transition Systems and Paths. Since LTL relies on state labels
and POR relies on edge labels, we assume the existence of some fixed set of atomic propositions

Vol. 17:3 THE INCONSISTENT LABELLING PROBLEM 8:3

AP to label the states and a fixed set of edge labels Act , which we will call actions. Actions
are typically denoted with the letter a.

Definition 2.1. A labelled state transition system, short LSTS, is a directed graph TS =
(S,→, ŝ, L), where:

• S is the state space;
• → ⊆ S ×Act × S is the transition relation;
• ŝ ∈ S is the initial state; and
• L : S → 2AP is a function that labels states with atomic propositions.

We write s a−→ s′ whenever (s, a, s′) ∈ →. An action a is enabled in a state s, notation
s a−→, if and only if there is a transition s a−→ s′ for some s′. In a given LSTS TS , enabledTS (s)
is the set of all enabled actions in a state s. We may drop the subscript TS if it is clear
from the context. A state s is a deadlock in TS if and only if enabledTS (s) = ∅.

A path is a (finite or infinite) alternating sequence of states and actions that respects the
transition relation: s0

a1−→ s1
a2−→ s2 We sometimes omit the intermediate and/or final

states if they are clear from the context or not relevant, and write s a1...an−−−−→ s′ or s a1...an−−−−→
for finite paths and s a1a2...−−−−→ for infinite paths. The empty sequence is denoted with ε. Thus,
for all states s and s′, s ε−→ s′ holds if and only if s = s′. A path is deadlocking if and only if
it ends in a deadlock. A path is complete if and only if it is infinite or deadlocking. Paths
that start in the initial state ŝ are called initial paths.

Given a path π = s0
a1−→ s1

a2−→ s2 . . . , the trace of π is the sequence of state labels
observed along π, viz. L(s0)L(s1)L(s2) The no-stutter trace of π, notation no-stut(π),
is the sequence of those L(si) such that i = 0 or L(si) 6= L(si−1).

A set I of invisible actions is chosen such that if (but not necessarily only if) a ∈ I,
then for all states s and s′, s a−→ s′ implies L(s) = L(s′). Note that this definition allows
the set I to be under-approximated. An action that is not invisible is called visible. The
projection of a1 . . . an on the visible actions is the result of the removal of all elements of I
from a1 . . . an. We denote it with visI(a1 . . . an). The notion extends naturally to infinite
sequences a1a2 We furthermore lift the function vis to paths, such that visI(s0

a1−→ s1
a2−→

. . .) = visI(a1a2 . . .). The subscript I is omitted when it is clear from the context.
We say TS is deterministic if and only if s a−→ s1 and s a−→ s2 imply s1 = s2, for all states

s, s1 and s2 and actions a. To indicate that TS is not necessarily deterministic, we say TS
is non-deterministic.

2.2. Petri Nets. Petri nets are a widely-known formalism for modelling concurrent pro-
cesses and have seen frequent use in the application of stubborn set theory [BJLM19, LW19,
VH17, Var05]. We will use Petri nets for presenting examples. In Section 7, we will also
reassess the correctness of some published POR theories that use Petri nets. Other than
that, the theory in the present paper is fairly general, that is, it does not depend on Petri
Nets.

A Petri net (P, T,W, m̂) contains a set of places P and a set of structural transitions T .
These sets are disjoint. In this paper they are finite. Figure 1 shows an example of a Petri
net. Places are drawn as circles and structural transitions as rectangles.

Arcs between places and structural transitions and their weights are specified via a total
function W : (P × T) ∪ (T × P) → N. The values W (p, t) and W (t, p) are called weights.
There is an arc from place p to structural transition t, drawn as an arrow, if and only if
W (p, t) > 0; and similarly in the opposite direction if and only if W (t, p) > 0. If W (p, t) > 1

8:4 T. Neele, A. Valmari, and T.A.C. Willemse Vol. 17:3

p1 p2 p3 p4 p5 p6t1 t2 t3 t5 t6

t4

2

2
32

Figure 1. An example Petri net.

or W (t, p) > 1, then it is written as a number next to the arc. Figure 1 contains 11 arcs of
weight 1, three arcs of weight 2, and one arc of weight 3.

A marking m : P → N is a function that assigns a number of tokens to each place. Let
M denote the set of all markings. A Petri net has an initial marking m̂. The initial marking
of the example satisfies m̂(p3) = 2, m̂(p1) = m̂(p4) = m̂(p6) = 1 and m̂(p2) = m̂(p5) = 0.

Structural transition t is enabled in marking m if and only if m(p) ≥W (p, t) for every
p ∈ P , and disabled otherwise. In our example, t1, t3 and t6 are enabled. Because m̂(p3) = 2
but W (p3, t4) = 3, t4 is disabled. An enabled transition may occur resulting in the marking
m′ such that m′(p) = m(p) − W (p, t) + W (t, p) for every p ∈ P . We denote this with
m t−→ m′, and extend the notation to paths similarly to Section 2.1. If m is the marking
such that m̂ t1−→ m in our example, then m(p1) = 0, m(p2) = 1, and m(p) = m̂(p) for the
remaining places. If m̂ t3−→ m′, then m′(p4) = 0 and m′(p) = m̂(p) for the remaining places.

A marking m is reachable if and only if there are t1, . . . , tn such that m̂ t1...tn−−−→ m. Let
Mreach denote the set of reachable markings, and →′ the restriction of → on Mreach × T ×
Mreach . Assume that a set of atomic propositions AP and a function L′ :Mreach → 2AP

are given. A Petri net together with these induces the LSTS (Mreach ,→′, m̂, L′). In this
context Act = T .

It is customary to abuse notation by forgetting about the distinction between → and
→′, and using the same symbol for both. This is done because it is often not known in
advance whether a marking is reachable, making it impractical to define →′ instead of →.
Similarly instead of L′, it is customary to define a function L from all markings M to 2AP ,
let L′ be its restriction on Mreach , and abuse notation by using the same symbol for both.
These are general practice instead of being restricted to Petri nets.

2.3. Weak and Stutter Equivalence. Stubborn sets save effort by constructing, instead
of the full LSTS TS = (S,→, ŝ, L), a reduced LSTS TS r = (Sr,→r, ŝ, Lr) such that Sr ⊆ S,
→r ⊆ → and Lr is the restriction of L on Sr (more details will be given in Section 3). To
reason about the similarity of an LSTS TS and its reduced LSTS TS r, we introduce the
notions weak equivalence, which operates on actions, and stutter equivalence, which operates
on states. For the purpose of the discussion in Section 7, these concepts respectively depend
on a set of actions and a labelling function.

Definition 2.2. Two paths π and π′ are weakly equivalent with respect to a set of actions
A, notation π ∼A π′, if and only if they are both finite or both infinite, and their respective
projections on Act \A are equal, i.e., visA(π) = visA(π′).

Definition 2.3. Paths π and π′ are stutter equivalent under L, notation π ,L π
′, if and

only if they are both finite or both infinite, and they yield the same no-stutter trace under L.

We typically consider weak equivalence with respect to the set of invisible actions I.
In that case, we simply refer to the equivalence as weak equivalence and we write π ∼ π′,

Vol. 17:3 THE INCONSISTENT LABELLING PROBLEM 8:5

which intuitively means that π and π′ contain the same visible actions. We also omit the
subscript for stutter equivalence when reasoning about the labelling function of the LSTS
under consideration and write π , π′. Note that stutter equivalence is invariant under finite
repetitions of state labels, hence its name. We lift both equivalences to LSTSs, and say that
TS and TS ′ are weak-trace equivalent iff for every complete initial path π in TS , there is
a weakly equivalent complete initial path π′ in TS ′ and vice versa. Likewise, TS and TS ′

are stutter-trace equivalent iff for every complete initial path π in TS , there is a stutter
equivalent complete initial path π′ in TS ′ and vice versa.

In general, weak equivalence and stutter equivalence are incomparable, even for complete
initial paths. However, for some LSTSs, these notions are related in a certain way. We
formalise this in the following definition.

Definition 2.4. An LSTS is labelled consistently iff for all complete initial paths π and π′,
π ∼ π′ implies π , π′.

It follows from the definition that, if an LSTS TS is labelled consistently and weak-trace
equivalent to a subgraph TS ′, then TS and TS ′ are also stutter-trace equivalent.

Stubborn sets as defined in the next section aim to preserve stutter-trace equivalence
between the original and the reduced LSTS. The motivation behind this is that two stutter-
trace equivalent LSTSs satisfy exactly the same formulae [BK08] in LTL−X . The following
theorem, which is frequently cited in the literature [LPvdPH16, LW19, Val96], aims to show
that stubborn sets indeed preserve stutter-trace equivalence. Its original formulation reasons
about the validity of an arbitrary LTL−X formula. Here, we give the alternative formulation
based on stutter-trace equivalence.

Theorem 2.5. [Val92, Theorem 2] For every LSTS TS, the reduced LSTS TS r (defined in
Section 3) is stutter-trace equivalent to TS.

The original proof correctly establishes the four items listed below. For a long time it was
believed that they suffice to ensure that TS r gives the same truth values to LTL−X formulas
as TS gives. While investigating the application of stubborn sets to parity games [NWW20],
Thomas Neele (the main author of the current paper, but not the author of this sentence)
took the effort of checking this self-evident “fact”, and found out that it does not hold. We
call this the inconsistent labelling problem. A counter-example is in Section 4.

(1) Every initial deadlocking path of TS has a weakly equivalent initial deadlocking path in
TS r.

(2) Every initial deadlocking path of TS r has a weakly equivalent initial deadlocking path
in TS .

(3) Every initial infinite path of TS has a weakly equivalent initial infinite path in TS r.
(4) Every initial infinite path of TS r has a weakly equivalent initial infinite path in TS .

Because the four items in this list are sufficient for TS ∼ TS r, the issue could be resolved with
the additional requirement that TS is consistently labelled, which would yield TS , TS r
(since TS r is a subgraph of TS , see Definition 3.1). However, this requirement is rather
strong; we propose a more local solution in Section 5.

8:6 T. Neele, A. Valmari, and T.A.C. Willemse Vol. 17:3

p1 p2 p3 p4 p5 p6t1 t2 t3 t5 t6

t4

2

2
32

Figure 2. An example motivating D1 and D2w.

3. Stubborn Sets

3.1. Basic Ideas. In POR, reduction functions play a central role. A reduction function
r : S → 2Act indicates which actions to explore in each state. When starting at the initial
state ŝ, a reduction function induces a reduced LSTS as follows.

Definition 3.1. Let TS = (S,→, ŝ, L) be an LSTS and r : S → 2Act a reduction function.
Then the reduced LSTS induced by r is defined as TS r = (Sr,→r, ŝ, Lr), where Lr is the
restriction of L on Sr, and Sr and →r are the smallest sets such that the following holds:

• ŝ ∈ Sr; and
• If s ∈ Sr, s a−→ s′ and a ∈ r(s), then s′ ∈ Sr and s a−→r s

′.

Note that we have →r ⊆ →.

In the first paper on stubborn sets [Val88], the set r(s) was constructed so that if enabled
actions exist, then it contains an enabled action that the outside world cannot disable. This
inspired the thought that the set is “stubborn”, that is, determined to do something and
not letting the outside world prevent it. Much more than this is needed to make TS r yield
correct answers to verification questions concerning TS . Furthermore, some more recent
methods do not necessarily put an enabled action in r(s) even if enabled actions do exist.
So the name is imprecise, but has remained in use.

The main question now is how to implement a practical reduction function so that
answers to interesting verification questions can be obtained from the reduced LSTSs.
Because this publication is about fixing an error that had been lurking for decades, we feel
appropriate to present the full proof of the affected theorem anew as clearly as possible, in
more detail than originally, to minimise the possibility that other errors remain. To this
end, we proceed in small steps.

We first discuss the motivating example from Figure 1, reproduced here in Figure 2.
Assume that we know that the places adjacent to t3 are p3 and p4; they contain 2 and 1
tokens, respectively; the transitions adjacent to p3 and p4 are t2 to t5; and the arcs between
them and their weights are as is shown in Figure 2. That is, we know the black part but not
the grey part in the figure. Although our knowledge is incomplete, we can reason as follows
that t3 is enabled and remains enabled until t3 or t5 occurs. It is enabled by the numbers of
tokens in p3 and p4, and by the weights of the arcs from them to t3. An occurrence of t2
does not decrement the numbers of tokens in p3 and p4, so it cannot disable t3. The same
applies to t1 and t6. An occurrence of t4 decrements the number of tokens in p3 (but not in
p4). However, thanks to the arc weight 2, it is guaranteed to leave at least 2 tokens in p3.
So it cannot disable t3 either.

This is an example of the kind of observations that stubborn set methods exploit.
Together with some other observations that will be discussed soon, it will let us choose

Vol. 17:3 THE INCONSISTENT LABELLING PROBLEM 8:7

s s1 . . . sn−1 sn

s′n

/∈ r(s)
a1 an

a ∈ r(s) ⇒

s s1 . . . sn−1 sn

s′ s′1 s′n−1 s′n

a a

a1 an

aa ⇒

s s1 . . . sn−1 sn

s′ s′1
s′′1 s′′2 . . .

s′n−1 s′n
s′′n

a a a a

a1 an

a1 a2 an

⇒

s s1 . . . sn−1 sn

s′ s′1 . . . s′n−1 s′n

a a

a1 an

a

a1 an

a

Figure 3. Visual representation of why D1 holds on the example.

r(s) = {t3, t5, t6}, where s denotes the marking shown in Figure 2. Unfortunately, the
observation is Petri net-specific. We now introduce a more abstract notion that captures
the same idea: t3 is a key action of r(s) = {t3, t5, t6} in the sense of the following definition.

Definition 3.2. An action a is a key action of r(s) in s if and only if for all paths s a1...an−−−−→ s′

such that a1 /∈ r(s), . . . , an /∈ r(s), it holds that s′ a−→.

We typically denote key actions by akey. Note that a key action must be enabled in s:
by setting n = 0, we have s = s′ and s a−→.

Many stubborn set methods assume that the sets r(s) satisfy the following condition.

D2w: If enabled(s) 6= ∅, then r(s) contains a key action in s.

In Figure 2, t5 is not a key action of {t3, t5, t6}, because it is disabled. Also t6 is not,
because the sequence t1t2t4 disables it.

On the other hand, we now show that t3, t5 and t6 have another property that stubborn
set methods exploit: Figure 3 holds for each of them in the role of a and any finite sequence
of elements of {t1, t2, t4} in the role of a1 . . . an. We call t1, t2 and t4 the outside transitions.

Although the outside transitions can disable t6, they cannot enable it again, because
none of them can add tokens to p6. Therefore, if t6 is enabled after the occurrence of some
sequence a1 . . . an of outside transitions, then it was enabled in the original marking s and
in every marking between s and sn. This is illustrated by the first implication in Figure 3,
with t6 in the role of a. The first implication applies to t3 as well, because its right-hand
side applies, because t3 is a key action of {t3, t5, t6} in s.

Neither t3 nor t6 can disable outside transitions, because although they temporarily
consume tokens from p3 or p6, they put the same number of tokens back to them; and the
outside transitions do not need tokens from p4. This yields the second implication in the
figure. Furthermore, Petri nets are commutative in the sense that if m t′t−→ m′ and m tt′−→ m′′,
then m′ = m′′. The last implication in the figure holds because of this.

The implication chain also applies to t5 as a, but for a different reason: t5 is disabled,
and no sequence of outside transitions can enable it, because only t6 can enable it. Therefore,
no member of the chain holds for t5, so the chain holds vacuously.

8:8 T. Neele, A. Valmari, and T.A.C. Willemse Vol. 17:3

s s1 . . . sn−1 sn

s′n

/∈ r(s)
a1 an

a ∈ r(s) ⇒

s s1 . . . sn−1 sn

s′ s′1 . . . s′n−1 s′n

a1 an

a

a1 an

a

Figure 4. Visual representation of condition D1.

Again, we appealed to particular properties of Petri nets. To make the ideas applicable
to a wide variety of formalisms for representing systems, we introduce the following condition,
which is required to hold for all r(s). It is illustrated in Figure 4. We showed above that it
holds for r(s) = {t3, t5, t6} in Figure 2.

D1: For all states s1, . . . , sn, s
′
n and all a ∈ r(s) and a1 /∈ r(s), . . . , an /∈ r(s), if s a1−→ · · · an−→

sn
a−→ s′n, then there are states s′, s′1, . . . , s

′
n−1 such that s a−→ s′ a1−→ s′1

a2−→ · · · an−→ s′n.

3.2. Deadlock Detection and Its Implementation. The conditions D2w and D1 are
important, because they suffice for proving that all reachable deadlocks of the full LSTS
are present also in the reduced LSTS. Furthermore, the deadlocks can be reached in the
reduced LSTS by re-ordering the actions in the paths in the full LSTS that lead to them. In
the theory below, recall that →r indicates which transitions occur in the reduced LSTS.

Theorem 3.3. Assume that each r(s) obeys D1 and D2w. If s0 ∈ Sr, sn is a deadlock in
TS, and s0

a1−→ s1
a2−→ . . . an−→ sn, then there is a permutation b1 . . . bn of a1 . . . an such that

s0
b1...bn−−−−→r sn.

Proof. We prove the claim by induction on n. If n = 0 then sn = s0 and a1 . . . an = ε, so
the claim holds trivially with b1 . . . bn = ε.

From now on, let n > 0. We have s0
a1−→ and thus enabled(s0) 6= ∅. By D2w, r(s0)

contains a key action akey. If none of a1, . . . , an is in r(s0), then by definition sn
akey−−→.

However, that cannot be the case, because we assumed that sn is a deadlock. Therefore,
there is 1 ≤ i ≤ n such that ai ∈ r(s0). We choose the smallest such i, yielding aj /∈ r(s0)
for 1 ≤ j < i. By this choice, D1 applies with ai in the role of a. So there are states s′0, s

′
1,

. . . , s′i−1 such that s′i−1 = si and s0
ai−→ s′0

a1−→ s′1
a2−→ · · · ai−1−−−→ s′i−1. Because ai ∈ r(s0) we

have s′0 ∈ Sr and (s0, ai, s
′
0) ∈ →r, that is, s0

ai−→r s
′
0. We remember that si

ai+1...an−−−−−→ sn, so
s′0

a1...ai−1ai+1...an−−−−−−−−−−−→ sn. This path is one shorter than s0
a1...an−−−−→ sn. Therefore, the induction

assumption yields a permutation b2 . . . bn of a1 . . . ai−1ai+1 . . . an such that s′0
b2...bn−−−−→r sn.

As a consequence, s0
aib2...bn−−−−−→r sn.

The preservation of deadlocks needs also the following facts, which are easy to check
from the definitions.

• If s0
a1...an−−−−→r sn, then s0

a1...an−−−−→ sn.
• s ∈ Sr is a deadlock in TS r if and only if it is a deadlock in TS .

To implement this deadlock detection method, an algorithm is needed that, given state s,
computes a set r(s) that satisfies D1 and D2w. We already illustrated with Figure 2
that this may depend on the details of the formalism used to represent the system under

Vol. 17:3 THE INCONSISTENT LABELLING PROBLEM 8:9

verification. Because it is sometimes very difficult to check whether D1 and D2w hold, the
algorithms rely on formalism-specific heuristics that may give a false negative but cannot give
a false positive. The set of all actions satisfies D1 and D2w. While it yields no reduction,
it can be used as a fall-back when attempts to find a better set fail.

The algorithm design problem also involves a trade-off between the time it takes to
compute the set, and the quality of the set: smaller sets tend to result in smaller reduced
LSTSs (although this issue is not straightforward [VH17]). In the case of 1-safe Petri nets,
testing whether a singleton set {t} is a valid r(s) for the purpose of preserving all deadlocks
is PSPACE-hard [VH11]. This means that there is not much hope of a fast algorithm that
always yields the best possible r(s).

Instead, algorithms range from quick and simple that exploit only the most obvious
reduction possibilities, to very complicated that spend unreasonable amounts of time and
memory in trying to find a set with few enabled actions. For instance, after finding out that
t5 may disable t3 in Figure 2, {t3} must be rejected as a candidate r(s). A simple algorithm
might revert to the set of all actions, while a more complicated algorithm might try {t3, t5},
detect that t6 might enable t5, try {t3, t5, t6}, and find out that it works.

Fortunately, the kind of analysis that led us from {t3} to {t3, t5, t6} is not at all too
expensive, if we are okay with some imperfection. It can be performed in linear time
by formulating it as the problem of finding certain kinds of maximal strongly connected
components in a directed graph whose edges t; t′ represent the notion “if t ∈ r(s), then
also t′ ∈ r(s)” (e.g., [VH17]). The result is optimal in a sense that is meaningful albeit not
perfect [VH11]. (In the light of PSPACE-hardness, we should not expect perfection.)

One of the things that it cannot optimise is which enabled action to choose as a key
action, if many are available. In our example, it would have been possible to choose t1 or
t6 instead of t3. Because t6 may be disabled by t4, which is disabled until t2 occurs, which
is disabled until t1 occurs, the choice of t6 introduces the edges t6 ; t4 ; t2 ; t1. The
resulting r(s) would be {t1}, because t1 is enabled and does not compete for tokens with
any other transition. That is, the algorithm is clever enough to drop t6 in favour of t1, but
not clever enough to drop t3 in favour of t1.

The linear time algorithm discussed above makes all enabled actions in r(s) its key
actions. Some other stubborn set methods than the deadlock detection method exploit
this (e.g., [Val17]), so it is a good idea to make it show in the conditions. Therefore, an
alternative to D2w has been defined that says that all enabled actions in r(s) must be key
actions. To avoid choosing r(s) = ∅ when there are enabled actions, yet another condition
D0 is introduced.

D0: If enabled(s) 6= ∅, then r(s) ∩ enabled(s) 6= ∅.
D2: Every enabled action in r(s) is its key action in s.

Clearly D0 and D2 together imply D2w, and D2w implies D0. Methods that build
on D2 are called strong stubborn set methods, while those only assuming D2w are weak.

Please remember that the set Act of all actions is partitioned to the set I ⊆ Act of
invisible actions and the set Act \ I of visible actions. We recall how D1 was used in the
proof of Theorem 3.3. The full LSTS contains the path s0

a1...ai−−−−→ si where s0 ∈ Sr, ai ∈ r(s)
and aj /∈ r(s) for 1 ≤ j < i. D1 implies the existence of s′0 and the path s0

ai−→ s′0
a1...ai−1−−−−−→ si

such that s0
ai−→r s

′
0. This pattern repeats in many proofs in the stubborn set theory. The

following condition guarantees that when using the pattern, the projection of the action
sequence on the visible actions does not change.

8:10 T. Neele, A. Valmari, and T.A.C. Willemse Vol. 17:3

V: If r(s) contains an enabled visible action, then it contains all visible actions.

Lemma 3.4. Assume that D1 yields ρ = s
aia1...ai−1−−−−−−→ s′ from π = s

a1...ai−1ai−−−−−−→ s′. If V
holds, then vis(π) = vis(ρ).

Proof. If ai is invisible, then vis(aia1 . . . ai−1) = vis(a1 . . . ai−1) = vis(a1 . . . ai−1ai). From now
on assume that ai is visible. Because D1 only applies to s

a1...ai−1ai−−−−−−→ s′ when ai ∈ r(s), r(s)
contains an enabled visible action. By V, r(s) contains all visible actions. Because none of a1,
. . . , ai−1 is in r(s), they must be invisible. So vis(aia1 . . . ai−1) = ai = vis(a1 . . . ai−1ai).

The application of Lemma 3.4 to the proof of Theorem 3.3 yields the following.

Theorem 3.5. Assume that each r(s) obeys D1, D2w and V. If s ∈ Sr and sn is a
deadlock in TS, then for all paths π = s a1...an−−−−→ sn, there is a path ρ = s b1...bn−−−−→r sn such
that vis(π) = vis(ρ).

This theorem almost gives item (1) of the list in Section 2.3. What is missing is
that the path s b1...bn−−−−→r sn is deadlocking. It is, because →r ⊆ →, so enabledTSr(sn) ⊆
enabledTS (sn) = ∅. Item (2) is next to trivial. If s b1...bn−−−−→r sn is deadlocking, then s b1...bn−−−−→ sn,
and sn is a deadlock by D2w.

We now have sufficient background on stubborn sets to illustrate the inconsistent
labelling problem, but insufficient background to illustrate it in a street-credible context.
Therefore, we continue and develop the LTL−X -preserving stubborn set method in full, and
postpone the illustration of the inconsistent labelling problem to Section 4.

3.3. Infinite Paths. In the remainder of this paper, we will assume that the reduced
LSTS is finite. This assumption is needed to make the next lemma hold in the presence of
non-deterministic actions. It will be used in proving that each infinite path in TS maps to
an infinite path in TS r with certain properties.

Lemma 3.6. Assume that r(s0) obeys D1, D2w and V, and the reduced LSTS is finite.
Let π = s0

a1−→ s1
a2−→ . . . be any path where none of the ai is in r(s0). Then there is a path

ρ = s0
akey−−→r s

′
0
a1−→ s′1

a2−→ . . . for some action akey. If, furthermore, akey is visible, then all
the ai are invisible.

Proof. We use König’s Lemma type of reasoning [Kön27]. Let akey ∈ r(s0) be some key
action for r(s0). Its existence follows from D2w. By the key action property there are s′0,0,

s′1,1, . . . such that si
akey−−→ s′i,i. If akey is visible, then V and an /∈ r(s0) for n ≥ 1 imply

that a1, a2, . . . are invisible. By D1, for each i and each 0 ≤ j < i there are s′i,j such that

s0
akey−−→r s

′
i,0

a1−→ s′i,1
a2−→ . . . ai−→ s′i,i. See Figure 5. We prove by induction that for every k,

there is s′k such that s0
akey−−→r s

′
0 (for k = 0) or s′k−1

ak−→ s′k (for k > 0), and s′k = s′i,k for
infinitely many values of i.

Because there are only finitely many states, there is a state s′0 that is the same as s′i,0
for infinitely many values of i. This constitutes the base case.

To prove the induction step, we observe that all or all but one of the infinitely many
i with s′i,k = s′k satisfy i > k, and thus have an s′i,k+1 such that s′k

ak+1−−−→ s′i,k+1. Infinitely

many of these s′i,k+1 are the same state, again because there are only finitely many states.

This state qualifies as s′k+1.

Vol. 17:3 THE INCONSISTENT LABELLING PROBLEM 8:11

s0 s1 s2 s3 . . .

s′0,0

s′1,0 s′1,1

s′2,0 s′2,1 s′2,2

s′3,0 s′3,1 s′3,2 s′3,3

. .
.

. .
.

. .
.

. .
.
. .
. . . .

a1 a2 a3 a4

akey

Figure 5. Illustration of the proof of Lemma 3.6. Vertical transitions are
labelled with akey; dashed transitions have been obtained by applying D1.

Lemma 3.7. Assume that each r(s) obeys D1, D2w and V, and the reduced LSTS is finite.
If s0 ∈ Sr and π = s0

a1a2...−−−−→, then there is a path ρ = s0
b1b2...−−−−→r such that vis(π) is a prefix

of vis(ρ) or vis(ρ) is a prefix of vis(π).

Proof. We use induction to prove, for each i > 0, the existence of bi and si such that
si−1

bi−→r si, and for each i ≥ 0, the existence of a path si
ai,1ai,2...−−−−−→ and either

(1) vis(s0
b1...bi−−−→ si

ai,1ai,2...−−−−−→) = vis(π), or
(2) ai,1, ai,2, . . . are invisible and vis(π) is a prefix of vis(s0

b1...bi−−−→ si).

The base case i = 0 of the induction is obtained by choosing s0
a0,1a0,2...−−−−−−→= π. Thanks

to b1 . . . b0 = ε, (1) holds.
Regarding the induction step, if at least one of ai,1, ai,2, . . . is in r(si), then D1 can be

applied to the first such ai,j , yielding si
ai,j−−→r si+1

ai,1...ai,j−1ai,j+1...−−−−−−−−−−−−→. This specifies si+1, and
we choose bi+1 = ai,j and ai+1,1ai+1,2 . . . = ai,1 . . . ai,j−1ai,j+1 We call this “moving ai,j
to the front”. If (1) holds, then we apply Lemma 3.4 and the induction hypothesis to deduce

vis(s0
b1...bi+1−−−−−→ si+1

ai+1,1ai+1,2...−−−−−−−−→)

= vis(s0
b1...bi−−−→ si

ai,j−−→ si+1
ai,1...ai,j−1ai,j+1...−−−−−−−−−−−−→)

(L3.4)
= vis(s0

b1...bi−−−→ si
ai,1ai,2...−−−−−→)

(IH)
= vis(π)

Therefore, i + 1 satisfies (1). Otherwise (2) holds, implying {bi+1, ai+1,1, ai+1,2, . . .} =
{ai,1, ai,2, . . .} ⊆ I and vis(s0

b1...bi+1−−−−−→ si+1) = vis(s0
b1...bi−−−→ si), of which vis(π) is a prefix.

Thus i+ 1 satisfies (2).
In the opposite case none of ai,1, ai,2, . . . is in r(si). By D2w, r(si) contains at least one

key action. To present later a further result, we choose an invisible key action if available,
and otherwise a visible one. Lemma 3.6 yields si+1 such that si

akey−−→r si+1
ai,1ai,2...−−−−−→. We

choose bi+1 = akey and ai+1,1ai+1,2 . . . = ai,1ai,2 We call this “introducing a key action”.
If akey ∈ I, then the equations

vis(s0
b1...bi+1−−−−−→ si+1

ai+1,1ai+1,2...−−−−−−−−→) = vis(s0
b1...bi−−−→ si

ai,1ai,2...−−−−−→)

vis(s0
b1...bi+1−−−−−→ si+1) = vis(s0

b1...bi−−−→ si)

both hold, so (1) or (2) remains valid in the step from i to i+ 1. Otherwise, akey is visible.
Lemma 3.6 says that ai,1, ai,2, . . . are invisible. Then both (1) and (2) imply that vis(π)
is a prefix of vis(s0

b1...bi−−−→ si), which is a (proper) prefix of vis(s0
b1...bi+1−−−−−→ si+1). Thus also

i+ 1 satisfies (2).

8:12 T. Neele, A. Valmari, and T.A.C. Willemse Vol. 17:3

If (1) holds for every i ≥ 0, then vis(ρ) is a prefix of vis(π). Otherwise there is i such
that (2) holds. For that and every bigger i, vis(π) is a prefix of vis(s0

b1...bi−−−→ si). Therefore,
vis(π) is a prefix of vis(ρ).

The above result is a step towards item (3) of the list in Section 2.3, but not sufficient
as such. Instead, vis(π) = vis(ρ) is needed. We next add a condition, viz. condition I,
guaranteeing that vis(ρ) is a prefix of vis(π). Then we add another condition (viz. L) for the
opposite direction.

I: If an invisible action is enabled, then r(s) contains an invisible key action.

Lemma 3.8. If I is added to the assumptions of Lemma 3.7, then vis(ρ) is a prefix of vis(π).

Proof. Consider the proof of Lemma 3.7. By Lemma 3.6, when none of ai,1, ai,2, . . . is in
r(si), then either akey or ai,1 is invisible. Obviously ai,1 is enabled in r(si). So I guarantees
that there is an invisible key action. This makes (1) remain true throughout the proof of
Lemma 3.7, from which the claim follows.

Both V and I are easy to take into account in ;-based algorithms for computing strong
stubborn sets. It is much harder to ensure that vis(π) is a prefix of vis(ρ). The following
condition is more or less the best known. It is usually implemented by constructing the
reduced LSTS in depth-first order so that cycles can be recognised, and using a set that
contains all visible actions as r(s) in one or the other end of the edge that closes the cycle.

L: For every visible action a, every cycle in the reduced LSTS contains a state s such that
a ∈ r(s).

Lemma 3.9. If L is added to the assumptions of Lemma 3.7, then vis(π) is a prefix of
vis(ρ).

Proof. To derive a contradiction, assume that vis(π) is not a prefix of vis(ρ). By Lemma 3.7,
vis(ρ) is a proper prefix of vis(π). Therefore, vis(ρ) is finite, that is, there is i such that vis(ρ)
= vis(s0

b1...bi−−−→ si). These contradict (2) in the proof of the lemma, so (1) holds. By it and
the proper prefix property, there is v such that ai,v is visible. We use the smallest such v.

Observe that if D1 is applied at si to move action ai,j to the front, where j > v, or
D2w is applied, then ai+1,k = ai,k for 1 ≤ k ≤ v. If the same also happens at si+1 then
ai+2,k = ai,k for 1 ≤ k ≤ v, and so on, either forever or until D1 is applied such that j ≤ v,
whichever comes first. We show next that the latter comes first.

Because Sr is finite, we may let n = i + |Sr|. By the pigeonhole principle, si, . . . , sn
cannot all be distinct. So the path si

bi+1...bn−−−−−→ sn contains a cycle. L implies that there
is i ≤ ` < n such that ai,v ∈ r(s`). This guarantees that there is the smallest h such that
i ≤ h < i+ |Sr| and {ai,1, . . . , ai,v}∩ r(sh) 6= ∅. Observe that at any step i ≤ i′ < h, whether
D1 is applied to move ai′,j forward, where j > v, or D2w is applied to introduce a key
action, we have ai′+1,v = ai′,v. By D1, bh+1 is one of ah,1, . . . , ah,v. So either bh+1 = ai,v or
ai,v = ah+1,v−1.

Repeating the argument at most v times proves that there is i ≤ h < i+ v|Sr| such that
bh+1 = ai,v. Because ai,v is visible, this contradicts vis(ρ) = vis(s0

b1...bi−−−→ si).

We have proven the following.

Theorem 3.10. Assume that each r(s) obeys D1, D2w, V, I and L. For all s ∈ Sr and
π = s a1a2...−−−−→, there is a path ρ = s b1b2...−−−−→r such that vis(π) = vis(ρ).

Vol. 17:3 THE INCONSISTENT LABELLING PROBLEM 8:13

p1 p2 p3

p4

p5 p6
p7

a w

b
d

v c

s1 s2

s3 s6

s4 s5

a

v

d

b c b c

w

a

a

v

b c

w

Figure 6. Example of a Petri net and its corresponding LSTS, which is
reduced under D1, D2w, V, I and L.

This theorem gives item (3) of the list in Section 2.3. Item (4) follows immediately from
→r ⊆ →. We have proven items (1) to (4) of the list in Section 2.3. Before we continue with
an example of the conditions at work, we restate them for convenience.

D0 : If enabled(s) 6= ∅, then r(s) ∩ enabled(s) 6= ∅.
D1 : For all states s1, . . . , sn, s

′
n and all a ∈ r(s) and a1 /∈ r(s), . . . , an /∈ r(s), if s a1−→

· · · an−→ sn
a−→ s′n, then there are states s′, s′1, . . . , s

′
n−1 such that s a−→ s′ a1−→ s′1

a2−→
· · · an−→ s′n.

D2 : Every enabled action in r(s) is its key action in s.
D2w: If enabled(s) 6= ∅, then r(s) contains a key action in s.
V : If r(s) contains an enabled visible action, then it contains all visible actions.
I : If an invisible action is enabled, then r(s) contains an invisible key action.
L : For every visible action a, every cycle in the reduced LSTS contains a state s such

that a ∈ r(s).

Recall that weak stubborn sets assume that conditions D1, D2w, V, I and L hold for
all r(s), while strong stubborn sets assume D0, D1, D2, V, I and L for all r(s).

3.4. An Example. Consider the Petri net and its LSTS in Figure 6. We choose AP = {q},
and L(m) = {q} if and only if m(p4) > 0 (otherwise L(m) = ∅), and illustrate this choice
with grey colour on p4 and on those states where q holds. The dashed states and transitions
are present in the original LSTS, but not in the reduced version. Other LSTSs later in this
paper are visualised in a similar way.

Actions v and w must be declared visible, because they may change the truth value of q
(v from false to true and w in the opposite direction). In the LSTS such events manifest
themselves as transitions whose one end state is white and the opposite end state is grey,
labelled with v or w. Please notice that not every occurrence of a visible action must change
the truth value. For instance, if there were initially two tokens in p5, then both m̂ avvw−−−→
and m̂ avwv−−−→ would be possible, the first one inducing the label sequence ∅∅{q}{q}{q}, and
the second ∅∅{q}∅{q}.

Actions a, b, c and d may be invisible. In this case, we choose the set of invisible actions
to be maximal, i.e., I = {a, b, c, d}. In the initial state s1, we have r(s1) = {a}. Remark
that a is a key action in s1, since for all prefixes π of v(bc)ω, we have s1

πa−→. That is, {a}

8:14 T. Neele, A. Valmari, and T.A.C. Willemse Vol. 17:3

ŝ

a
a1 a2

akey

a1 a2
a3

a3
a3

a1 a2

a

akeyakey

Figure 7. Counter-example showing that stubborn sets do not preserve
stutter-trace equivalence. Grey states are labelled with {q}. The dashed
transitions and states are not present in the reduced LSTS.

satisfies D2w in s1. It also satisfies D1, because it is easy to check that for those π and s
for which s1

πa−→ s holds, also s1
aπ−→ s holds.

In states s3 and s4 we must have b ∈ r(s3), respectively c ∈ r(s4), by condition I.
Condition L can be satisfied in the cycle consisting of s3 and s4 by either setting w ∈ r(s3)
or w ∈ r(s4); here we have opted for the latter. Actually, w ∈ r(s4) is also enforced by D1,
since we have s4

wdc−−→ s6 and s4
wd−−→ s5, but not s4

cwd−−→ s6 or s4
dw−−→ s5. Consequently, {c}

and {c, d} are not stubborn sets in s4.

4. Counter-Example

Consider the LSTS in Figure 7, which we will refer to as TSC . There is only one atomic
proposition q, which holds in the grey states and is false in the other states. The initial
state ŝ is marked with an incoming arrow. First, note that this LSTS is deterministic. The
actions a1, a2 and a3 are visible and a and akey are invisible.

In the initial state, we choose r(ŝ) = {a, akey}, which is a weak stubborn set by the
following reasoning. Conditions D2w and I are satisfied, since akey is an invisible key action
in ŝ. The path ŝ a1a2−−−→ commutes with both a and akey (and ŝ a1−→ furthermore commutes
with akey), satisfying D1. Conditions V and L are trivially true. In all other states s, we
choose r(s) = Act .

As a result, we obtain a reduced LSTS TSCr that does not contain the dashed states
and transitions. The original LSTS contains the trace ∅{q}∅∅{q}ω, obtained by following
the path with actions a1a2aa

ω
3 . However, the reduced LSTS does not contain a stutter

equivalent trace. This is also witnessed by the LTL−X formula �(q ⇒ �(q ∨�¬q)), which
holds for TSCr , but not for TSC .

A very similar example can be used to show that strong stubborn sets suffer from the
same problem. Consider again the LSTS in Figure 7, but assume that a = akey, making the
LSTS no longer deterministic. Now, r(ŝ) = {a} is a strong stubborn set: D0 is satisfied
because r(s) ∩ enabled(s) = {a} and D2 and I are satisfied because a is an invisible key
action. Condition D1 holds as well, since there is path ŝ aa1a2−−−→ s′ (resp ŝ aa1−−→ s′) for every
path of the shape ŝ a1a2a−−−→ s′ (resp. ŝ a1a−−→ s′). Conditions V and L are trivially true as
before. Again, the trace ∅{q}∅∅{q}ω is not preserved in the reduced LSTS. In Section 5.3,
we will see why the inconsistent labelling problem does not occur for deterministic systems
under strong stubborn sets.

Vol. 17:3 THE INCONSISTENT LABELLING PROBLEM 8:15

s

s′

a
a1 a2

a1 a2

a

s

s′

a
a1 a2

a1 a2

a

s

s′

a
a1 a2

a1 a2

a

s

s′

a
a1 a2

a1 a2

a

s

s′

a
a1 a2

a1 a2

a

s

s′

a
a1 a2

a1 a2

a

s

s′

a
a1 a2

a1 a2

a

s

s′

a
a1 a2

a1 a2

a

s

s′

a
a1 a2

a1 a2

a

a1 and a2 invisible

a invisible

inconsistent labelling

Figure 8. Nine possible scenarios when a ∈ r(s) and a1 /∈ r(s), a2 /∈ r(s),
according to conditions D1 and V. The dotted and dashed lines indicate
when a or a1, a2 are invisible, respectively.

The core of the problem lies in the fact that condition D1, even when combined with V,
does not enforce that the two paths it considers are stutter equivalent. Consider the paths
s a−→ and s a1a2a−−−→ and assume that a ∈ r(s) and a1 /∈ r(s), a2 /∈ r(s). Condition V ensures
that at least one of the following two holds: (i) a is invisible, or (ii) a1 and a2 are invisible.
Half of the possible scenarios are depicted in Figure 8; the other half are symmetric. Again,
the grey states (and only those states) are labelled with {q}.

The two cases delimited with a solid line are problematic. In both LSTSs, the paths
s a1a2a−−−→ s′ and s aa1a2−−−→ s′ are weakly equivalent, since a is invisible. However, they are not
stutter equivalent, and therefore these LSTSs are not labelled consistently. The topmost of
these two LSTSs forms the core of the counter-example TSC , with the rest of TSC serving
to satisfy condition D2/D2w.

5. Strengthening Condition D1

To fix the issue with inconsistent labelling, we propose to strengthen condition D1 as
follows1.

1Based on a comment by one of the journal’s reviewers, we noticed that condition D1’ can be weakened
further, by changing the last sentence to: “Furthermore, if none of a1, . . . , an is visible, then si

a−→ s′i for
every 1 ≤ i < n.” This weakening additionally allows a reduction in the bottom-middle LSTS of Figure 8,
although this is hard to exploit in practice (see Section 5.2). However, given the nature of this study, we
chose to not make any last-minute changes to avoid making new mistakes. This choice was further motivated
by the following remark by another reviewer (for which we are grateful): “I really carefully checked all the
results and proofs and can accept the arguments and conclusions.”

8:16 T. Neele, A. Valmari, and T.A.C. Willemse Vol. 17:3

D1’: For all states s1, . . . , sn, s
′
n and all a ∈ r(s) and a1 /∈ r(s), . . . , an /∈ r(s), if s a1−→ s1

a2−→
· · · an−→ sn

a−→ s′n, then there are states s′, s′1, . . . , s
′
n−1 such that s a−→ s′ a1−→ s′1

a2−→
· · · an−→ s′n. Furthermore, if a is invisible, then si

a−→ s′i for every 1 ≤ i < n.

On top of what is stated in D1, the new condition D1’ requires the presence of
intermediate vertical transitions si

a−→ s′i whenever a is invisible. In this case, V implies that
a is invisible and, consequently, the presence of transitions si

a−→ s′i implies L(si) = L(s′i).
Thus, condition D1’ provides a form of local consistent labelling. Hence, the problematic
cases of Figure 8 are resolved; a correctness proof is given below.

Condition D1’ is very similar to condition C1 [GKPP99], which is common in the
context of ample sets. However, C1 requires that action a is globally independent of each of
the actions a1, . . . , an, while D1’ merely requires a kind of local independence. Persistent
sets [God96] also rely on a condition similar to D1’, and require local independence. Thus,
under ample sets and persistent sets, the vertical transitions si

a−→ s′i are always present, and
hence they do not suffer from the inconsistent labelling problem.

5.1. Correctness. To show that D1’ indeed resolves the inconsistent labelling problem, we
amend the lemmata and proofs of Section 3. The core of the revised argument lies in a new
version of Lemma 3.4 that relates the state labels of the two paths considered by D1’.

Lemma 5.1. Assume that D1’ yields ρ = s0
a−→ s′0

a1−→ s′1
a2−→ · · · an−→ s′n from π = s0

a1−→
s1

a2−→ · · · an−→ sn
a−→ s′n. If V holds, then π , ρ.

Proof. If a is invisible, then D1’ enforces that si
a−→ s′i for every 1 ≤ i < n. Thus, we have

L(si) = L(s′i) for 1 ≤ i ≤ n and π , ρ follows. From now on assume that a is visible.
Because D1’ only applies if a ∈ r(s), r(s) contains an enabled visible action. By V, r(s)
contains all visible actions. Because none of a1, . . . , an is in r(s), they must be invisible
and we have L(s0) = L(s1) = . . . = (Ln) and L(s′0) = L(s′1) = . . . = L(s′n). So the traces of
π and ρ are L(s0)

n+1L(s′n) and L(s0)L(s′n)n+1, respectively. We conclude that π , ρ.

We use the same reasoning to derive the existence of a transition sk
akey−−→ s′k for every

k > 0 in the proof of Lemma 3.6, which yields the stronger result that, if akey is invisible,
no-stut(π) = no-stut(ρ). The other lemmata are changed by replacing every occurrence of
vis by no-stut. Furthermore, in the proof of Lemma 3.9, we reason about a visible action ai,v
that actually changes the state labelling. This results in the following two theorems that
replace Theorems 3.5 and 3.10 respectively.

Theorem 5.2. Assume that each r(s) obeys D1’, D2w and V. If s ∈ Sr, sn is a deadlock
in TS, then for all paths π = s a1...an−−−−→ sn, there is a path ρ = s b1...bn−−−−→r sn such that
no-stut(π) = no-stut(ρ).

Theorem 5.3. Assume that each r(s) obeys D1’, D2w, V, I and L. For all s ∈ Sr and
π = s a1a2...−−−−→, there is a path ρ = s b1b2...−−−−→r such that no-stut(π) = no-stut(ρ).

With →r ⊆ →, it follows immediately that the replacement of condition D1 by D1’
is sufficient to ensure the reduced transition system TS r is stutter-trace equivalent to the
original transition system TS . Thus, the problem with Theorem 2.5 is resolved.

Vol. 17:3 THE INCONSISTENT LABELLING PROBLEM 8:17

5.2. Implementation. As discussed in Section 3.2, most, if not all, implementations of
stubborn sets approximate D1 based on a binary relation ; on actions. This relation may
even (partly) depend on the current state s, in which case we write ;s, and it should be
such that condition D1 is satisfied whenever a ∈ r(s) and a;s a

′ together imply a′ ∈ r(s).
A set satisfying D0, D1, D2, V and I or D1, D2w, V and I can be found by searching for
a suitable strongly connected component in the graph (Act ,;s). Condition L is dealt with
by other techniques.

Practical implementations construct ;s by analysing how any two actions a and a′

interact. If a is enabled, the simplest (but not necessarily the best possible) strategy is to
make a;s a

′ if and only if a and a′ access at least one place (in the case of Petri nets) or
variable (in the more general case) in common. This can be relaxed, for instance, by not
considering commutative accesses, such as writing to and reading from a FIFO buffer. As a
result, ;s can only detect reduction opportunities in (sub)graphs of the shape

s s1 . . . sn−1 sn

s′ s′1 . . . s′n−1 s′n

a1 an

a
a1 an

a a a

where a ∈ r(s) and a1 /∈ r(s), . . . , an /∈ r(s). The presence of the vertical a transitions in
s1, . . . , sn−1 implies that D1’ is also satisfied by such implementations.

5.3. Deterministic LSTSs. As already noted in Section 4, strong stubborn sets for deter-
ministic systems do not suffer from the inconsistent labelling problem. The following lemma,
which also appeared as [Val17, Lemma 4.2], shows why.

Lemma 5.4. For deterministic LSTSs, conditions D1 and D2 together imply D1’.

Proof. Let TS be a deterministic LSTS, π = s0
a1−→ s1

a2−→ · · · an−→ sn
a−→ s′n a path in TS and

r a reduction function that satisfies D1 and D2. Furthermore, assume that a ∈ r(s0) and
a1 /∈ r(s0), . . . , an /∈ r(s0). By applying D1, we obtain the path π′ = s0

a−→ s′0
a1−→ · · · an−→ s′n,

which satisfies the first part of condition D1’. With D2, we have si
a−→ sii for every 1 ≤ i ≤ n.

Then, we can also apply D1 to every path s0
a1−→ · · · ai−→ si

a−→ sii to obtain, for all 1 ≤ i ≤ n,
paths πi = s0

a−→ si0
a1−→ si1

a2−→ · · · ai−→ sii. Since TS is deterministic, every path πi must
coincide with a prefix of π′. We conclude that sii = s′i and so the requirement that si

a−→ s′i
for every 1 ≤ i ≤ n is also satisfied.

6. Safe Logics

In this section, we will identify two logics, viz. reachability and CTL−X , which are not
affected by the inconsistent labelling problem. This is either due to their limited expressivity
or the additional POR conditions that are required on top of the conditions we have
introduced so far.

8:18 T. Neele, A. Valmari, and T.A.C. Willemse Vol. 17:3

6.1. Reachability properties. Although the counter-example of Section 4 shows that
stutter-trace equivalence is in general not preserved by stubborn sets, some fragments of
LTL−X are preserved. One such class of properties is reachability properties, which are of
the shape �f or 3f , where f is a formula not containing temporal operators.

Theorem 6.1. Let TS be an LSTS, r a reduction function that satisfies either D0, D1,
D2, V and L or D1, D2w, V and L and TS r the reduced LSTS. For all possible labellings
l ⊆ AP, TS contains an initial path to a state s such that L(s) = l iff TS r contains an
initial path to a state s′ such that L(s′) = l.

Proof. The “if” case is trivial, since TS r is a subgraph of TS . For the “only if” case, we
reason as follows. Let TS = (S,→, ŝ, L) be an LSTS and π = s0

a1−→ · · · an−→ sn an initial
path, i.e., s0 = ŝ. We mimic this path by repeatedly taking some enabled action a that is
in the stubborn set, according to the following schema. Below, we assume the path to be
mimicked contains at least one visible action. Otherwise, its first state would have the same
labelling as sn.

(1) If there is an i such that ai ∈ r(s0), we consider the smallest such i, i.e., a1 /∈
r(s0), . . . , ai−1 /∈ r(s0). Then, we can shift ai forward by D1, move towards sn along
s0

ai−→ s′0 and continue by mimicking s′0
a1−→ · · · ai−1−−−→ si

ai+1−−−→ · · · an−→ sn.
(2) If all of a1 /∈ r(s0), . . . , an /∈ r(s0), then, by D0 and D2 or by D2w, there is a key action

akey in s0. By the definition of key actions and D1, akey leads to a state s′0 from which
we can continue mimicking the path s′0

a1−→ s′1
a2−→ · · · an−→ s′n. Note that L(sn) = L(s′n),

since akey is invisible by condition V.

The second case cannot be repeated infinitely often, due to condition L. Hence, after a finite
number of steps, we reach a state s′n with L(s′n) = L(sn).

We remark that more efficient mechanisms for reachability checking under POR have
been proposed, such as condition S [VH17], which can replace L, or conditions based on
up-sets [Sch00]. Another observation is that model checking of LTL−X properties can be
reduced to reachability checking by computing the cross-product of a Büchi automaton and
an LSTS [BK08], in the process resolving the inconsistent labelling problem. Peled [Pel96]
shows how this approach can be combined with POR, but please note the correctness issues
detailed in [Sie19].

6.2. Deterministic LSTSs and CTL−X Model Checking. In this section, we consider
the inconsistent labelling problem in the setting of CTL−X model checking. When applying
stubborn sets in that context, stronger conditions are required to preserve the branching
structure that CTL−X reasons about. Namely, the original LSTS must be deterministic and
one more condition needs to be added [GKPP99]:

C4: Either r(s) = Act or r(s) ∩ enabled(s) = {a} for some a ∈ Act .

We slightly changed its original formulation to match the setting of stubborn sets. A weaker
condition, called Ä8, which does not require determinism of the whole LSTS is proposed
in [Val97]. With C4, strong and weak stubborn sets collapse, as shown by the following
lemma.

Lemma 6.2. Conditions D2w and C4 together imply D0 and D2.

Vol. 17:3 THE INCONSISTENT LABELLING PROBLEM 8:19

p1
p2

p3p4
p5

p6

t1 t2

t

t3

tkey

2

101100

m̂
010100

{qp}
001110

101010 010010

{ql}
001020

101001 010001

{qp}
001011

001000

{q}

t
t1 t2

t1 t2

t

tkey

t1 t2

tkeytkey

t3

Figure 9. Example of a Petri net whose LSTS suffers from the inconsistent
labelling problem.

Proof. Let TS be an LSTS, s a state and r a reduction function that satisfies D2w and C4.
Condition D0 is trivially implied by C4. Using C4, we distinguish two cases: either r(s)
contains precisely one enabled action a, or r(s) = Act . In the former case, this single action
a must be a key action, according to D2w. Hence, D2, which requires that all enabled
actions in r(s) are key actions, is satisfied. Otherwise, if r(s) = Act , we consider an arbitrary
action a that satisfies D2’s precondition that s a−→. Given a path s a1...an−−−−→, the condition
that a1 /∈ r(s), . . . , an /∈ r(s) only holds if n = 0. We conclude that D2’s condition s a1...ana−−−−−→
is satisfied by the assumption s a−→.

It follows from Lemmata 5.4 and 6.2 and Theorems 5.2 and 5.3 that CTL−X model
checking of deterministic systems with stubborn sets does not suffer from the inconsistent
labelling problem. The same holds for condition Ä8, as already shown in [Val97].

7. Petri Nets

In this section, we discuss the impact of the inconsistent labelling problem on Petri nets.
Contrary to Section 2.2, here we assume the LSTS of a Petri net has the set of all markings
M as its set of states. This does not affect the correctness of POR, as long as the set
of reachable states Mreach is finite. As before, we assume that the LSTS contains some
labelling function L :M→ 2AP . More details on how a labelling function arises from a Petri
net are given below. Like in the Petri net examples we saw earlier, markings and structural
transitions take over the role of states and actions respectively. Note that the LSTS of a
Petri net is deterministic. We want to stress that all the theory in this section is specific for
the semantics defined in Section 2.2.

Example 7.1. Consider the Petri net with initial marking m̂ on left of Figure 9. Here,
all arcs are weighted 1, except for the arc from p5 to t3, which is weighted 2. Its LSTS is
infinite, but the substructure reachable from m̂ is depicted on the right. The number of
tokens in each of the places p1, . . . , p6 is inscribed in the nodes, the state labels (if any) are
written beside the nodes.

The LSTS practically coincides with the counter-example of Section 4. Only the self-
loops are missing and the state labelling, with atomic propositions q, qp and ql, differs
slightly; the latter will be explained later. For now, note that t and tkey are invisible and

8:20 T. Neele, A. Valmari, and T.A.C. Willemse Vol. 17:3

that the trace ∅{qp}∅∅{q}, which occurs when firing transitions t1t2tt3 from m̂, can be lost
when reducing with weak stubborn sets.

In the remainder of this section, we fix a Petri net (P, T,W, m̂) and its LSTS (M,→
, m̂, L). Below, we consider three different types of atomic propositions. Firstly, polynomial
propositions [BJLM19] are of the shape f(p1, . . . , pn) ./ k where f is a polynomial over
p1, . . . , pn, ./∈ {<,≤, >,≥,=, 6=} and k ∈ Z. Such a proposition holds in a marking m
iff f(m(p1), . . . ,m(pn)) ./ k. A linear proposition [LW19] is similar, but the function f
over places must be linear and f(0, . . . , 0) = 0, i.e., linear propositions are of the shape
k1p1+· · ·+knpn ./ k, where k1, . . . , kn, k ∈ Z. Finally, we have arbitrary propositions [Var05],
whose shape is not restricted and which can hold in any given set of markings.

Several other types of atomic propositions can be encoded as polynomial propositions.
For example, fireable(t) [BJLM19, LW19], which holds in a marking m iff t is enabled in

m, can be encoded as
∏
p∈P

∏W (p,t)−1
i=0 (p− i) ≥ 1. The proposition deadlock , which holds

in markings where no structural transition is enabled, does not require special treatment
in the context of POR, since it is already preserved by D1 and D2w. The sets containing
all linear and polynomial propositions are henceforward called AP l and APp, respectively.
The corresponding labelling functions are defined as Ll(m) = L(m) ∩ AP l and Lp(m) =
L(m) ∩ APp for all markings m. Below, the two stutter equivalences ,Ll

and ,Lp
that

follow from the new labelling functions are abbreviated ,l and ,p, respectively. Note that

AP ⊇ APp ⊇ AP l and , ⊆ ,p ⊆ ,l.
For the purpose of introducing several variants of invisibility, we reformulate and

generalise the definition of invisibility from Section 2. Given an atomic proposition q ∈ AP , a
relation R ⊆M×M is q-invisible if and only if (m,m′) ∈ R implies q ∈ L(m)⇔ q ∈ L(m′).
We consider a structural transition t q-invisible iff its corresponding relation {(m,m′) |
m t−→ m′} is q-invisible. Invisibility is also lifted to sets of atomic propositions: given a set
AP ′ ⊆ AP , relation R is AP ′-invisible iff it is q-invisible for all q ∈ AP ′. If R is AP -invisible,
we plainly say that R is invisible. AP ′-invisibility and invisibility carry over to structural
transitions. We sometimes refer to invisibility as ordinary invisibility for emphasis. Note
that the set of invisible structural transitions I is no longer an under-approximation, but
contains exactly those structural transitions t for which m t−→ m′ implies L(m) = L(m′) (cf.
Section 2).

We are now ready to introduce three orthogonal variations on invisibility.

Definition 7.2. Let R ⊆M×M be a relation on markings. Then,

• R is reach q-invisible [VH17] iff R∩ (Mreach ×Mreach) is q-invisible; and
• R is value q-invisible iff

– q = (f(p1, . . . , pn) ./ k) is polynomial and for all pairs of markings (m,m′) ∈ R, we
have that f(m(p1), . . . ,m(pn)) = f(m′(p1), . . . ,m

′(pn)); or
– q is not polynomial and R is q-invisible.

Intuitively, under reach q-invisibility, all pairs of reachable markings (m,m′) ∈ R
have to agree on the labelling of q. For value invisibility, the value of the polynomial f
must never change between two markings (m,m′) ∈ R. Reach and value invisibility are
lifted to structural transitions and sets of atomic propositions as before, i.e., by taking
R = {(m,m′) | m t−→ m′} when considering invisibility of t.

Definition 7.3. A structural transition t is strongly q-invisible iff the set {(m,m′) | ∀p ∈
P : m′(p) = m(p) +W (t, p)−W (p, t)} is q-invisible.

Vol. 17:3 THE INCONSISTENT LABELLING PROBLEM 8:21

Is Iv

IIrs Irv

Ir

Irsv

Isv

Figure 10. Lattice of sets of invisible actions. Arrows represent a subset
relation.

Strong invisibility does not take the presence of a transition m t−→ m′ into account, and
purely reasons about the effects of t. Value invisibility and strong invisibility are new in
the current work, although strong invisibility was inspired by the notion of invisibility that
is proposed by Varpaaniemi in [Var05]. Our definition of strong invisibility weakens the
conditions of Varpaaniemi.

We indicate the sets of all value, reach and strongly invisible structural transitions with
Iv, Ir and Is respectively. Since Iv ⊆ I, Is ⊆ I and I ⊆ Ir, the set of all their possible
combinations forms the lattice shown in Figure 10. In the remainder, the weak equivalence
relations that follow from each of the eight invisibility notions are abbreviated, e.g., ∼Irsv
becomes ∼rsv.

Example 7.4. Consider again the Petri net and LSTS from Example 7.1. We can define ql
and qp as linear and polynomial propositions, respectively:

• ql := p3 + p4 + p6 = 0 is a linear proposition, which holds when neither p3, p4 nor p6
contains a token. Structural transition t is ql-invisible, because m t−→ m′ implies that
m(p3) = m′(p3) ≥ 1, and thus neither m nor m is labelled with ql. On the other hand, t
is not value ql-invisible (by the transition 101100 t−→ 101010) or strongly reach ql-invisible
(by 010100 and 010010). However, tkey is strongly value ql-invisible: it moves a token from
p4 to p6 and hence never changes the value of p3 + p4 + p6.
• qp := (1 − p3)(1 − p5) = 1 is a polynomial proposition, which holds in all reachable

markings m where m(p3) = m(p5) = 0 or m(p3) = m(p5) = 2. Structural transition t is
reach value qp-invisible, but not qp-invisible (by 002120 t−→ 002030) or strongly reach qp
invisible. Strong value qp-invisibility of tkey follows immediately from the fact that the
adjacent places of tkey, viz. p4 and p6, do not occur in the definition of qp.

This yields the state labelling which is shown in Example 7.1.

Given a weak equivalence relation R∼ and a stutter equivalence relation R,, we write
R∼ � R, to indicate that R∼ and R, yield consistent labelling (Definition 2.4). We spend
the rest of this section investigating under which notions of invisibility and propositions
from the literature, the LSTS of a Petri net is labelled consistently. More formally, we check
for each weak equivalence relation R∼ and each stutter equivalence relation R, whether
R∼ � R,. This tells us when existing stubborn set theory can be applied without problems.
The two lattices containing all weak and stuttering equivalence relations are depicted in
Figure 11; each dotted arrow represents a consistent labelling result. Before we continue, we
first introduce an auxiliary lemma.

8:22 T. Neele, A. Valmari, and T.A.C. Willemse Vol. 17:3

∼s ∼v

∼∼rs ∼rv

∼r

∼rsv

∼sv ,

,p

,l

Theorem 7.9

Theorem 7.8

Theorem 7.6

Figure 11. Two lattices containing variations of weak equivalence and
stutter equivalence, respectively. Solid arrows indicate a subset relation
inside the lattice; dotted arrows follow from the indicated theorems and show
when the LSTS of a Petri net is labelled consistently.

Lemma 7.5. Let I be a set of invisible structural transitions and L some labelling function.
If for all t ∈ I and paths π = m0

t1−→ m1
t2−→ . . . and π′ = m0

t−→ m′0
t1−→ m′1

t2−→ . . . , it holds
that π ,L π

′, then ∼I � ,L.

Proof. We assume that the following holds for all paths and t ∈ I:

m0
t1−→ m1

t2−→ · · · ,L m0
t−→ m′0

t1−→ m′1
t2−→ . . . (†)

To prove ∼I � ,L, we need to consider two initial paths π and π′ such that π ∼I π′ and
prove that π ,L π

′ (see Definition 2.4). The proof proceeds by induction on the combined
number of invisible structural transitions (taken from I) in π and π′. In the base case, π
and π′ contain only visible structural transitions, and π ∼I π′ implies π = π′ since Petri
nets are deterministic. Hence, π ,L π

′.
For the induction step, we take as hypothesis that, for all initial paths π and π′ that

together contain at most k invisible structural transitions, π ∼I π′ implies π ,L π
′. Let π

and π′ be two arbitrary initial paths such that π ∼I π′ and the total number of invisible
structural transitions contained in π and π′ is k. We consider the case where an invisible
structural transition is introduced in π′, the other case is symmetric. Let π′ = σ1σ2 for some
σ1 and σ2. Let t ∈ I be some invisible structural transition and π′′ = σ1tσ

′
2 such that σ2 and

σ′2 contain the same sequence of structural transitions. Clearly, we have π′ ∼I π′′. Here, we
can apply our original assumption (†), to conclude that σ2 , tσ′2, i.e., the extra stuttering
step t thus does not affect the labelling of the remainder of π′′. Hence, we have π′ ,L π

′′

and, with the induction hypothesis, π ,L π
′′. Note that π and π′′ together contain k + 1

invisible structural transitions.
In case π and π′ together contain an infinite number of invisible structural transitions,

π ∼I π′ implies π ,L π
′ follows from the fact that the same holds for all finite prefixes of π

and π′ that are related by ∼I .

The following theorems each focus on a class of atomic propositions and show which
notion of invisibility is required for the LSTS of a Petri net to be labelled consistently.
In the proofs, we use a function dt, defined as dt(p) = W (t, p) −W (p, t) for all places p,
which indicates how structural transition t changes the state. Furthermore, we also consider
functions of type P → N as vectors of type N|P |. This allows us to compute the pairwise
addition of a marking m with dt (m+dt) and to indicate that t does not change the marking
(dt = 0).

Theorem 7.6. Under reach value invisibility, the LSTS underlying a Petri net is labelled
consistently for linear propositions, i.e., ∼rv � ,l.

Vol. 17:3 THE INCONSISTENT LABELLING PROBLEM 8:23

Proof. Let t ∈ Irv be a reach value invisible structural transition such that there exist
reachable markings m and m′ with m t−→ m′. If such a t does not exist, then ∼rv is the
reflexive relation and ∼rv � ,l is trivially satisfied. Otherwise, let q := f(p1, . . . , pn) ./ k
be a linear proposition. Since t is reach value invisible and f is linear, we have f(m) =
f(m′) = f(m + dt) = f(m) + f(dt) and thus f(dt) = 0. It follows that, given two paths
π = m0

t1−→ m1
t2−→ . . . and π′ = m0

t−→ m′0
t1−→ m′1

t2−→ . . . , the addition of t does not influence
f , since f(mi) = f(mi) + f(dt) = f(mi + dt) = f(m′i) for all i. As a consequence, t also
does not influence q. With Lemma 7.5, we deduce that ∼rv � ,l.

Whereas in the linear case one can easily conclude that π and π′ are stutter equivalent
under f , in the polynomial case, we need to show that f is constant under all value invisible
structural transitions t, even in markings where t is not enabled. This follows from the
following proposition.

Proposition 7.7. Let f : Nn → Z be a polynomial function, a, b ∈ Nn two constant vectors
and c = a− b the difference between a and b. Assume that for all x ∈ Nn such that x ≥ b,
where ≥ denotes pointwise comparison, it holds that f(x) = f(x+ c). Then, f is constant in
the vector c, i.e., f(x) = f(x+ c) for all x ∈ Nn.

Proof. Let f , a, b and c be as above and let 1 ∈ Nn be the vector containing only ones.
Given some arbitrary x ∈ Nn, consider the function gx(t) = f(x+ t ·1 + c)− f(x+ t ·1). For
sufficiently large t, it holds that x+ t · 1 ≥ b, and it follows that gx(t) = 0 for all sufficiently
large t. This can only be the case if gx is the zero polynomial, i.e., gx(t) = 0 for all t. As a
special case, we conclude that gx(0) = f(x+ c)− f(x) = 0.

The intuition behind this is that f(x+ c)− f(x) behaves like the directional derivative
of f with respect to c. If the derivative is equal to zero in infinitely many x, f must be
constant in the direction of c. We will apply this result in the following theorem.

Theorem 7.8. Under value invisibility, the LSTS underlying a Petri net is labelled consis-
tently for polynomial propositions, i.e., ∼v � ,p.

Proof. Let t ∈ Iv be a value invisible structural transition, m and m′ two markings with
m t−→ m′, and q := f(p1, . . . , pn) ./ k a polynomial proposition. Note that infinitely many such
(not necessarily reachable) markings exist in M, so we can apply Proposition 7.7 to obtain
f(m) = f(m+dt) for all markings m. It follows that, given two paths π = m0

t1−→ m1
t2−→ . . .

and π′ = m0
t−→ m′0

t1−→ m′1
t2−→ . . . , the addition of t does not alter the value of f , since

f(mi) = f(mi + dt) = f(m′i) for all i. As a consequence, t also does not change the labelling
of q. Application of Lemma 7.5 yields ∼v � ,p.

Varpaaniemi shows that the LSTS of a Petri net is labelled consistently for arbitrary
propositions under his notion of invisibility [Var05, Lemma 9]. Our notion of strong visibility,
and especially strong reach invisibility, is weaker than Varpaaniemi’s invisibility, so we
generalise the result to ∼rs � ,.

Theorem 7.9. Under strong reach visibility, the LSTS underlying a Petri net is labelled
consistently for arbitrary propositions, i.e., ∼rs � ,.

Proof. Let t ∈ Irs be a strongly reach invisible structural transition and π = m0
t1−→ m1

t2−→ . . .
and π′ = m0

t−→ m′0
t1−→ m′1

t2−→ . . . two paths. Since, m′i = mi + dt for all i, it holds
that either (i) dt = 0 and mi = m′i for all i; or (ii) each pair (mi,m

′
i) is contained in

{(m,m′) | ∀p ∈ P : m′(p) = m(p) +W (t, p)−W (p, t)}, which is the set that underlies strong

8:24 T. Neele, A. Valmari, and T.A.C. Willemse Vol. 17:3

reach invisibility of t. In both cases, L(mi) = L(m′i) for all i. It follows from Lemma 7.5
that ∼rs � ,.

To show that the results of the above theorems cannot be strengthened, we provide two
negative results.

Theorem 7.10. Under ordinary invisibility, the LSTS underlying a Petri net is not neces-
sarily labelled consistently for arbitrary propositions, i.e., ∼ 6� ,.

Proof. Consider the Petri net from Example 7.1 with the arbitrary proposition ql. Disregard
qp for the moment. Structural transition t is ql-invisible, hence the paths corresponding to
t1t2tt3 and tt1t2t3 are weakly equivalent under ordinary invisibility. However, they are not
stutter equivalent.

Theorem 7.11. Under reach value invisibility, the LSTS underlying a Petri net is not
necessarily labelled consistently for polynomial propositions, i.e., ∼rv 6� ,p.

Proof. Consider the Petri net from Example 7.1 with the polynomial proposition qp :=
(1− p3)(1− p5) = 1 from Example 7.4. Disregard ql in this reasoning. Structural transition
t is reach value qp-invisible, hence the paths corresponding to t1t2tt3 and tt1t2t3 are weakly
equivalent under reach value invisibility. However, they are not stutter equivalent for
polynomial propositions.

It follows from Theorems 7.10 and 7.11 and transitivity of ⊆ that Theorems 7.6, 7.8
and 7.9 cannot be strengthened further. In terms of Figure 11, this means that the dotted
arrows cannot be moved downward in the lattice of weak equivalences and cannot be moved
upward in the lattice of stutter equivalences. The implications of these findings on related
work will be discussed in the next section.

8. Related Work

There are many works in the literature that apply stubborn sets. We will consider several
works that aim to preserve LTL−X and discuss whether they are correct when it comes to
the inconsistent labelling problem. Furthermore, we also identify several unrelated issues.

Liebke and Wolf [LW19] present an approach for efficient CTL model checking on Petri
nets. For some formulas, they can reduce CTL model checking to LTL model checking,
which allows greater reductions under POR. They rely on the incorrect LTL preservation
theorem, and since they apply the techniques on Petri nets with ordinary invisibility, their
theory is incorrect (Theorem 7.10). Similarly, the overview of stubborn set theory presented
by Valmari and Hansen in [VH17] applies reach invisibility and does not necessarily preserve
LTL−X . Varpaaniemi [Var05] also applies stubborn sets to Petri nets, but relies on a visibility
notion that is stronger than strong invisibility. The correctness of these results is thus not
affected (Theorem 7.9).

A generic implementation of weak stubborn sets for the LTSmin model checker is
proposed by Laarman et al. [LPvdPH16]. They use abstract concepts such as guards and
transition groups to implement POR in a way that is agnostic of the input language. The
theory they present includes condition D1, which is too weak and thus incorrect, but the
accompanying implementation follows the framework of Section 5.2, and thus it is correct by
Theorems 5.2 and 5.3. The implementations proposed in [VH17, Wol18] are similar, albeit
specific for Petri nets.

Vol. 17:3 THE INCONSISTENT LABELLING PROBLEM 8:25

{q}τ
a

a

(a)

b

a

a

b

(b)

Figure 12. Counter-examples for theories in two related works.

Several works [GRHRW15, HLL+14] perform action-based model checking and thus
strive to preserve weak trace equivalence or inclusion. As such, they do not suffer from the
problems discussed here, which applies only to state labels. Other recent work [DL16] relies
on ample sets, and is thus not affected, or only considers safety properties [Laa18].

Although Beneš et al. [BBČ+09, BBB+11] rely on ample sets, and not on stubborn
sets, they also discuss weak trace equivalence and stutter-trace equivalence. In fact, they
present an equivalence relation for traces that is a combination of weak and stutter equiva-
lence. The paper includes a theorem that weak equivalence implies their new state/event
equivalence [BBB+11, Theorem 6.5]. However, the counter-example in Figure 12a shows
that this consistent labelling theorem does not hold. Here, the action τ is invisible, and
the two paths in this transition system are thus weakly equivalent. However, they are
not stutter equivalent, which is a special case of state/event equivalence. Although the
main POR correctness result [BBB+11, Corollary 6.6] builds on the incorrect consistent
labelling theorem, its correctness does not appear to be affected. An alternative proof can
be constructed based on the reasoning presented in Section 5.1.

Bønneland et al. [BJLM19] apply stubborn-set based POR to two-player Petri nets,
and their reachability semantics expressed as a reachability game. Since their approach
only concerns reachability, it is not affected by the inconsistent labelling problem (see
Section 6). Unfortunately, their POR theory is nevertheless unsound, contrary to what is
claimed in [BJLM19, Theorem 17]. In reachability games, player 1 tries to reach one of
the goal states, while player 2 tries to avoid them. Bønneland et al. propose a condition
R that guarantees that all goal states in the full game are also reachable in the reduced
game. However, the reverse is not guaranteed: paths that do not contain a goal state are not
necessarily preserved, essentially endowing player 1 with more power. Consider the (solitaire)
reachability game depicted in Figure 12b, in which all edges belong to player 2 and the only
goal state is indicated with grey. Player 2 wins the non-reduced game by avoiding the goal
state via the edges labelled with a and then b. However, {b} is a stubborn set—according
to the conditions of [BJLM19]—in the initial state, and the dashed transitions are thus
eliminated in the reduced game. Hence, player 2 is forced to move the token to the goal
state and player 1 wins in the reduced game. In the mean time, the authors of [BJLM19]
confirmed and resolved the issue in [BJL+21].

The current work is not the first to point out mistakes in POR theory. In [Sie19], Siegel
presents a flaw in an algorithm that combines POR with ample sets and on-the-fly model
checking [Pel96]. In that setting, POR is applied on the product of an LSTS and a Büchi
automaton. We briefly sketch the issue here. Let q be a state of the LSTS and s a state of the
Büchi automaton. While investigating a transition (q, s) a−→ (q′, s′), condition C3, which—like
condition L—aims to solve the action ignoring problem, incorrectly sets r(q, s′) = enabled(q)

8:26 T. Neele, A. Valmari, and T.A.C. Willemse Vol. 17:3

instead of r(q, s) = enabled(q). The issue is repaired by setting r(q, s) = enabled(q), but
only for a certain subclass of Büchi automata.

The setting considered by Laarman and Wijs [LW14] is similar: they discuss how to
apply stubborn sets during parallel nested depth-first search in the product of an LSTS
and a Büchi automaton. Both the correctness argument and the implementation are based
on [LPvdPH16], thus – by the discussion above – incorrect in theory, but correct in practice.

9. Conclusion

We discussed the inconsistent labelling problem for preservation of stutter-trace equivalence
with stubborn sets. The issue is relatively easy to repair by strengthening condition D1.
For Petri nets, altering the definition of invisibility can also resolve inconsistent labelling
depending on the type of atomic propositions. The impact on applications presented in
related works seems to be limited: the problem is typically mitigated in the implementation,
since it is very hard to compute D1 exactly. This is also a possible explanation for why the
inconsistent labelling problem has not been noticed for so many years.

Since this is not the first error found in POR theory [Sie19], a more rigorous approach
to proving its correctness, e.g. using proof assistants, would provide more confidence.

Acknowledgements

The authors would like to thank the anonymous reviewers, including those who reviewed
the conference version, for their helpful comments. Special thanks go out to the two journal
reviewers. The first reviewer provided many useful suggestions for improvement and noticed
that condition D1’ can be weakened (see the footnote in Section 5). The second reviewer
took the significant effort to check all proofs, giving us more confidence in the publication.

References

[BBB+11] N. Beneš, L. Brim, B. Buhnova, I. Ern, J. Sochor, and P. Vařeková. Partial order reduction for
state/event LTL with application to component-interaction automata. Science of Computer
Programming, 76(10):877–890, 2011.

[BBČ+09] Nikola Beneš, Lubos Brim, Ivana Černá, Jiri Sochor, Pavlina Vařeková, and Barbora Zimmerova.
Partial Order Reduction for State/Event LTL. In IFM 2009, volume 5423 of LNCS, pages
307–321, 2009.

[BJL+21] Frederik Meyer Bønneland, Peter Gjøl Jensen, Kim Guldstrand Larsen, Marco Muñiz, and
Jǐŕı Srba. Stubborn Set Reduction for Two-Player Reachability Games. Logical Methods in
Computer Science, 17(1):21:1–21:26, 2021.

[BJLM19] Frederik Meyer Bønneland, Peter Gjøl Jensen, Kim Guldstrand Larsen, and Marco Muñiz.
Partial Order Reduction for Reachability Games. In CONCUR 2019, volume 140, pages
23:1–23:15, 2019.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
[DL16] Ivaylo Dobrikov and Michael Leuschel. Optimising the ProB model checker for B using partial

order reduction. Formal Aspects of Computing, 28(2):295–323, 2016.
[GKPP99] Rob Gerth, Ruurd Kuiper, Doron Peled, and Wojciech Penczek. A Partial Order Approach to

Branching Time Logic Model Checking. Information and Computation, 150(2):132–152, 1999.
[God96] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems, volume

1032 of LNCS. Springer, 1996.
[GRHRW15] Thomas Gibson-Robinson, Henri Hansen, A. W. Roscoe, and Xu Wang. Practical Partial Order

Reduction for CSP. In NFM 2015, volume 9058 of LNCS, pages 188–203, 2015.

Vol. 17:3 THE INCONSISTENT LABELLING PROBLEM 8:27

[HLL+14] Henri Hansen, Shang-wei Lin, Yang Liu, Truong Khanh Nguyen, and Jun Sun. Diamonds Are
a Girl’s Best Friend: Partial Order Reduction for Timed Automata with Abstractions. In CAV
2014, volume 8559 of LNCS, pages 391–406, 2014.

[Kön27] Dénes König. Über eine Schlussweise aus dem Endlichen ins Unendliche. Acta Sci. Math.
(Szeged), 3(2-3):121–130, 1927.

[Laa18] Alfons Laarman. Stubborn Transaction Reduction. In NFM 2018, volume 10811 of LNCS, pages
280–298, 2018.

[LPvdPH16] Alfons Laarman, Elwin Pater, Jaco van de Pol, and Henri Hansen. Guard-based partial-order
reduction. International Journal on Software Tools for Technology Transfer, 18(4):427–448,
2016.

[LW14] Alfons Laarman and Anton Wijs. Partial-Order Reduction for Multi-core LTL Model Checking.
In HVC 2014, volume 8855 of LNCS, pages 267–283, 2014.

[LW19] Torsten Liebke and Karsten Wolf. Taking Some Burden Off an Explicit CTL Model Checker.
In Petri Nets 2019, volume 11522 of LNCS, pages 321–341, 2019.

[NVW20] Thomas Neele, Antti Valmari, and Tim A. C. Willemse. The Inconsistent Labelling Problem of
Stutter-Preserving Partial-Order Reduction. In FoSSaCS 2020, volume 12077 of LNCS, pages
482–501, 2020.

[NWW20] Thomas Neele, Tim A. C. Willemse, and Wieger Wesselink. Partial-Order Reduction for Parity
Games with an Application on Parameterised Boolean Equation Systems. In TACAS 2020,
volume 12079 of LNCS, pages 307–324, 2020.

[Pel93] Doron Peled. All from One, One for All: on Model Checking Using Representatives. In CAV
1993, volume 697 of LNCS, pages 409–423, 1993.

[Pel96] Doron Peled. Combining partial order reductions with on-the-fly model-checking. Formal
Methods in System Design, 8(1):39–64, 1996.

[Sch00] Karsten Schmidt. Stubborn sets for model checking the EF/AG fragment of CTL. Fundamenta
Informaticae, 43(1-4):331–341, 2000.

[Sie19] Stephen F. Siegel. What’s Wrong with On-the-Fly Partial Order Reduction. In CAV 2019,
volume 11562 of LNCS, pages 478–495, 2019.

[Val88] Antti Valmari. Error detection by reduced reachability graph generation. In APN 1988, pages
95–112, 1988.

[Val91a] Antti Valmari. A Stubborn Attack on State Explosion. In CAV 1990, volume 531 of LNCS,
pages 156–165, 1991.

[Val91b] Antti Valmari. Stubborn sets for reduced state space generation. In Advances in Petri Nets,
volume 483, pages 491–515, 1991.

[Val92] Antti Valmari. A Stubborn Attack on State Explosion. Formal Methods in System Design,
1(4):297–322, 1992.

[Val96] Antti Valmari. The state explosion problem. In ACPN 1996, volume 1491 of LNCS, pages
429–528, 1996.

[Val97] Antti Valmari. Stubborn Set Methods for Process Algebras. In POMIV 1996, volume 29 of
DIMACS, pages 213–231, 1997.

[Val17] Antti Valmari. Stop It, and Be Stubborn! ACM Transactions on Embedded Computing Systems,
16(2):46:1–46:26, 2017.

[Var05] Kimmo Varpaaniemi. On Stubborn Sets in the Verification of Linear Time Temporal Properties.
Formal Methods in System Design, 26(1):45–67, 2005.

[VH11] Antti Valmari and Henri Hansen. Can stubborn sets be optimal? Fundamenta Informaticae,
113(3-4):377–397, 2011.

[VH17] Antti Valmari and Henri Hansen. Stubborn Set Intuition Explained. In ToPNoC XII, volume
10470 of LNCS, pages 140–165, 2017.

[Wol18] Karsten Wolf. Petri Net Model Checking with LoLA 2. In Petri Nets 2018, volume 10877 of
LNCS, pages 351–362, 2018.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. Labelled State Transition Systems and Paths
	2.2. Petri Nets
	2.3. Weak and Stutter Equivalence

	3. Stubborn Sets
	3.1. Basic Ideas
	3.2. Deadlock Detection and Its Implementation
	3.3. Infinite Paths
	3.4. An Example

	4. Counter-Example
	5. Strengthening Condition D1
	5.1. Correctness
	5.2. Implementation
	5.3. Deterministic LSTSs

	6. Safe Logics
	6.1. Reachability properties
	6.2. Deterministic LSTSs and CTL-X Model Checking

	7. Petri Nets
	8. Related Work
	9. Conclusion
	Acknowledgements
	References

