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Abstract. Parallelization is an algebraic operation that lifts problems to sequences in a
natural way. Given a sequence as an instance of the parallelized problem, another sequence
is a solution of this problem if every component is instance-wise a solution of the original
problem. In the Weihrauch lattice parallelization is a closure operator that corresponds to
the bang operator in linear logic. Here we introduce a dual operation that we call stashing
and that also lifts problems to sequences, but such that only some component has to be
an instance-wise solution. In this case the solution is stashed away in the sequence. This
operation, if properly defined, induces an interior operator in the Weihrauch lattice, which
corresponds to the question mark operator known from linear logic. It can also be seen as
a countable version of the sum operation. We also study the action of the monoid induced
by stashing and parallelization on the Weihrauch lattice, and we prove that it leads to at
most five distinct degrees, which (in the maximal case) are always organized in pentagons.
We also introduce another closely related interior operator in the Weihrauch lattice that
replaces solutions of problems by upper Turing cones that are strong enough to compute
solutions. It turns out that on parallelizable degrees this interior operator corresponds to
stashing. This implies that, somewhat surprisingly, all problems which are simultaneously
parallelizable and stashable have computability-theoretic characterizations. Finally, we
apply all these results in order to study the recently introduced discontinuity problem,
which appears as the bottom of a number of natural stashing-parallelization pentagons.
The discontinuity problem is not only the stashing of several variants of the lesser limited
principle of omniscience, but it also parallelizes to the non-computability problem. This
supports the slogan that “non-computability is the parallelization of discontinuity”. We also
study the non-majorization problem as an asymmetric version of the discontinuity problem
and we show that it parallelizes to the hyperimmunity problem. Finally we identify a phase
transition related to the limit avoidance problem that marks a point where pentagons are
taking off from the bottom of the Weihrauch lattice.

1. Introduction

The Weihrauch lattice has been used as a computability theoretic framework to analyze
the uniform computational content of mathematical problems from many different areas of
mathematics, and it can also be seen as a uniform variant of reverse mathematics (a recent
survey on Weihrauch complexity can be found in [BGP21]).

The notion of a mathematical problem has a very general definition in this approach.

Key words and phrases: Weihrauch complexity, computable analysis, computability theory, closure and
interior operators, linear logic.
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Definition 1.1 (Problems). A problem is a multi-valued function f :⊆ X ⇒ Y on repre-
sented spaces X,Y that has a realizer.

We recall that by a realizer F :⊆ NN → NN of f , we mean a function F that satisfies
δY F (p) ∈ fδX(p) for all p ∈ dom(fδX), where δX :⊆ NN → X and δY :⊆ NN → Y are
the representations of X and Y , respectively (i.e., partial surjective maps onto X and Y ,
respectively). A problem is called computable if it has a computable realizer and continuous
if it has a continuous realizer.

By 〈p, q〉 we denote the usual pairing function on NN, defined by 〈p, q〉(2n) = p(n),
〈p, q〉(2n+ 1) = q(n) for all p, q ∈ NN, n ∈ N. Weihrauch reducibility can now be defined as
follows.

Definition 1.2 (Weihrauch reducibility). Let f :⊆ X ⇒ Y and g :⊆W ⇒ Z be problems.
Then f is called Weihrauch reducible to g, in symbols f ≤W g, if there are computable
H,K :⊆ NN → NN such that H〈id, GK〉 is a realizer of f whenever G is a realizer of g.
Analogously, one says that f is strongly Weihrauch reducible to g, in symbols f ≤sW g,
if the expression H〈id, GK〉 can be replaced by HGK. Both versions of the reducibility
have topological counterparts, where one only requires H,K to be continuous and these
reducibilities are denoted by ≤∗W and ≤∗sW, respectively.

The topological version of Weihrauch reducibility has always been studied alongside the
computability-theoretic version, and all four reducibilities induce a lattice structure (see
[BGP21] for references).

Normally, the Weihrauch lattice refers to the lattice induced by ≤W, but here we will
freely use this term also for the lattice structure induced by ≤∗W. If we want to be more
precise, we will call the latter the topological Weihrauch lattice. The equivalence classes of
problems under (strong) Weihrauch reducibility are called (strong) Weihrauch degrees.

In [BG11b, Definition 4.1] the operation of parallelization was introduced. For reasons

that will become clear below, we denote the parallelization f̂ of a problem f additionally
with the non-standard notation Πf in this article.

Definition 1.3 (Parallelization). For every problem f :⊆ X ⇒ Y we define its parallelization
Πf :⊆ XN ⇒ Y N by dom(Πf) := dom(f)N and

Πf(xn) := {(yn) ∈ Y N : (∀n) yn ∈ f(xn)}

for all (xn) ∈ dom(Πf). We also write f̂ := Πf and we call a problem parallelizable (or

strongly parallelizable) if f ≡W f̂ (or f ≡sW f̂) holds.

In [BG11b, Proposition 4.2] it was proved that parallelization is a closure operator in
the Weihrauch lattice. This holds analogously for the topological versions of Weihrauch
reducibility.

Fact 1.4 (Parallelization). f 7→ Πf is a closure operator with respect to the following
versions of Weihrauch reducibility: ≤W,≤sW,≤∗W and ≤∗sW.

We recall the definition of a closure operator and an interior operator for a preordered
set. By a preordered set (P,≤) we mean a set P with a relation ≤ on P that is reflexive and
transitive. The relations ≤W,≤sW,≤∗W and ≤∗sW are preorders on the set P of problems

f :⊆ NN ⇒ NN on Baire space1.

1For studying the order structure it is sufficient to consider problems on Baire space as representatives of
arbitrary problems. This guarantees that P is actually a set.
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Definition 1.5 (Closure and interior operator). Let (P,≤) a preordered set with a function
C : P → P . Then C is called a closure operator for ≤ if the following hold for all x, y ∈ P :

(1) x ≤ C(x) (extensive)
(2) x ≤ y =⇒ C(x) ≤ C(y) (monotone)
(3) CC(x) ≤ C(x) (idempotent)

Analogously, C is called an interior operator for ≤ if the three conditions hold for ≥ in place
of ≤.

Besides f 7→ Πf a number of other closure operator appeared in the study of the
Weihrauch lattice [BGP21]. However, not so many interior operators have been considered
yet. In this article we want to study a dual operation to parallelization that we call stashing
and that can be defined as follows.

Definition 1.6 (Stashing). For every problem f :⊆ X ⇒ Y we define its stashing or

summation Σf :⊆ XN ⇒ Y
N

by dom(Σf) := dom(f)N and

Σf(xn) := {(yn) ∈ Y N
: (∃n) yn ∈ f(xn)}

for all (xn) ∈ dom(Σf). We also write f̂ := Σf and we call a problem stashable (or strongly

stashable) if f ≡W f̂ (or f ≡sW f̂) holds.

Essentially, the definition corresponds to parallelization with an existential quantifier in
the place of the universal one. This means that given an instance (xn) for Σf , a solution is
a sequence (yn) such that yn ∈ f(xn) for at least one n ∈ N. This operation can be seen
as a countable version of the sum operation + (see [BGP21]), which is the reason why we
have called it summation in earlier presentations of this work. However, stashing better
corresponds to the intuition of what Σf does.

A subtle technical point in this definition is that we use the completion Y of the space
Y on the output side. For a represented space (Y, δY ) the completion (Y , δY ) is defined by

Y := Y ∪ {⊥} (with a distinct element ⊥ 6∈ Y ) and δY : NN → Y with

δY (p) :=

{
δY (p− 1) if p− 1 ∈ dom(δY )
⊥ otherwise

,

where p− 1 ∈ NN ∪N∗ is a finite or infinite sequence that is obtained as the concatenation of
p(0)− 1, p(1)− 1, p(2)− 1, ... with the understanding that −1 = ε ∈ N∗ is the empty word.
This operation of completion saw some recent surge of interest after Dzhafarov [Dzh19]
used it to show that the strong version Weihrauch reducibility ≤sW actually yields a lattice
structure (here completion appeared in the definition of a suitable supremum operation).
See [BG20, BG21] for further applications and a more detailed study of completion.

One reason that the completion cannot be omitted in Definition 1.6 is that it allows
us to produce dummy outputs with no meaning (without the completion this might not be
possible as, for instance, some represented spaces (Y, δY ) might not even have computable
points). Another reason is that every partial computable problem with a completion on the
output side can be extended to a total computable problem in a certain sense. In any case
the completion enables us to prove the following result (see Proposition 2.2) in Section 2.

Proposition 1.7 (Stashing). f 7→ Σf is an interior operator with respect to the following
versions of Weihrauch reducibility: ≤W,≤sW,≤∗W and ≤∗sW.
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Figure 1: ACCN pentagon in the Weihrauch lattice.

While parallelization Π can be seen as the counterpart of the bang operator “!’ in linear
logic [BGP21], stashing Σ can be seen as the counterpart of the dual why-not operator “?”.

Since our lattice is now equipped with a closure operator f 7→ Πf and a dual interior
operator f 7→ Σf , it is natural to ask how the monoid generated by {Π,Σ}∗ acts on the
lattice structure? In other words, starting from an arbitrary problem f , what kind of
problems can we generate by repeated applications of Π and Σ (in any order) to f? And
how are these problems related with respect to the lattice structure?

In Section 3 we prove that we can generate at most five distinct problems in this way
(up to equivalence) and that these five problems (in the maximal case) are always organized
in a pentagon (see Proposition 3.2, Corollary 3.3).

The maximal case can actually occur and in Section 5 we study a number of specific
such pentagons, in particular the one shown in the diagram in Figure 1. Here every problem
in the diagram allows a ≤sW–reduction to any problem above it that is connected with a
line and no other ≤∗W–reductions are possible (except for those that follow by transitivity).
We define all the problems that occur in this diagram and some further problems that we
are going to study in this article.

Definition 1.8 (Some problems). We consider the following problems for X ⊆ N:

(1) LPO : NN → {0, 1}, LPO(p) = 1 :⇐⇒ p = 000...,
(2) lim :⊆ NN → NN, 〈p0, p1, p2, ...〉 7→ limn→∞ pn,
(3) limX :⊆ XN → X, (xn)n∈N 7→ limn→∞ xn,
(4) J : NN → NN, p 7→ p′,
(5) EC : NN → 2N, p 7→ range(p− 1),
(6) CX :⊆ NN ⇒ X, p 7→ X \ range(p− 1), dom(CX) = {p ∈ NN : |X \ range(p− 1)| ≥ 1},
(7) ACCX :⊆ NN ⇒ X, p 7→ X \ range(p− 1) with

dom(ACCX) = {p ∈ NN : |range(p− 1)| ≤ 1},
(8) AUCX :⊆ NN ⇒ X, p 7→ X \ range(p− 1) with

dom(AUCX) = {p ∈ NN : |X \ range(p− 1)| = 1 or range(p− 1) = ∅},
(9) DNCX : NN ⇒ XN, p 7→ {q ∈ XN : (∀i ∈ N) ϕp

i (i) 6= q(i)},
(10) PA : NN ⇒ NN, p 7→ {q ∈ NN : p� q},
(11) WKL :⊆ Tr ⇒ 2N, T 7→ [T ] with dom(WKL) = {T : T infinite},
(12) NON : NN ⇒ NN, p 7→ {q ∈ NN : q 6≤T p},
(13) DIS : NN ⇒ NN, p 7→ {q ∈ NN : U(p) 6= q},
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(14) NRNG : NN ⇒ 2N, p 7→ {A ∈ 2N : A 6= range(p− 1)}.

Here LPO is also known as limited principle of omniscience and it is nothing but the
characteristic function of the zero sequence. By lim we just denote the ordinary limit
map with respect to the Baire space topology, where for convenience, the input sequence
is encoded by 〈p0, p1, p2, ...〉〈n, k〉 := pn(k) where 〈n, k〉 := 1

2(n + k)(n + k + 1) + k is
the usual Cantor pairing function for n, k ∈ N. By p′ we denote the Turing jump of
p ∈ NN. We identify n ∈ N with the set n = {0, ..., n − 1}. The problem EC (this
name was introduced in [Wei00, Exercise 8.2]) was originally studied under the name C
[vS89, Myl92, Bra99, Bra05, Myl06, BG11b]. Intuitively, EC translates enumerations into
characteristic functions. The problem CN is known as choice on the natural numbers and
was introduced and studied in [BG11a, BdBP12]. The problems ACCX are also known
under the name LLPOX and have been studied in [Wei92, HK14b, BHK17]. The acronym
ACC stands for all-or-co-unique choice and LLPO := C2 = ACC2 = AUC2 is known as lesser
limited principle of omniscience. We recall that p− 1 was defined above and |A| denotes the
cardinality of the set A. The acronym AUC stands for all-or-unique choice. This problem
was studied mostly for the unit interval X = [0, 1] [Pau11, BGH15, KP16] and not for
spaces X ⊆ N that we are interested in here. The acronym DNC stands for diagonally
non-computable and by ϕp we denote a standard Gödel numbering of the partial computable
functions ϕp

i :⊆ N→ N relative to some oracle p ∈ NN. The acronym PA stands for Peano
arithmetic and by p � q we express the fact that q is of PA–degree relative to p, which
means that q computes a path through every infinite binary tree that is computable relative
to p. The relation � was introduced by Simpson [Sim77]. By Tr we denote the set of binary
trees T ⊆ {0, 1}∗ and [T ] denotes the set of infinite paths of such a tree and WKL stands
for Weak Kőnig’s Lemma. By ≤T we denote Turing reducibility and by U :⊆ NN → NN we
denote some universal computable function. Such a function can be defined, for instance, by

U〈〈i, r〉, p〉 := ϕ
〈r,p〉
i whenever ϕ

〈r,p〉
i is total (and undefined otherwise).2 Here 〈i, r〉 := ir for

i ∈ N and r ∈ NN. The problems NON and DIS are called the non-computability problem
and the discontinuity problem, respectively. The problem NRNG is called range non-equality
problem and is introduced here.

Nobrega and Pauly used Wadge games to characterize certain lower cones in the
Weihrauch lattice [NP19]. In [Bra20] we have characterized the upper cone of the disconti-
nuity problem by Wadge games on problems. The characterization goes as follows [Bra20,
Theorem 17, Corollary 28].

Theorem 1.9 (Wadge games and the discontinuity problem). Let f :⊆ X ⇒ Y be a problem.
Then DIS≤W f ⇐⇒ Player I has a computable winning strategy in the Wadge game f .

An analogous result holds for ≤∗W and (not necessarily computable) winning strate-
gies [Bra20, Theorem 27]. We are going to use Theorem 1.9 in the proof of Proposition 5.2
that establishes the pentagon of ACCN shown in Figure 1.

Several facts are known about the parallelization of the problems summarized in Def-
inition 1.8. These results were proved in [BG11b, Lemma 6.3, Theorem 8.2], [BdBP12,

2The universal function U has been defined differently in [Bra20], but our definition is equivalent, as the
function U defined here also satisfies a utm- and an smn-theorem [Wei00]. In particular, the discontinuity
problem DIS defined with one version of U is strongly Weihrauch equivalent to the one defined with the other
version of U.



20:6 V. Brattka Vol. 17:4

Lemma 8.9] and the result ÂCCX ≡sW DNCX has first been proved by Higuchi and Ki-
hara [HK14b, Proposition 81] and independently in [BHK17, Theorem 5.2]. See also the
survey [BGP21].

Fact 1.10 (Parallelization of problems). L̂PO≡sW ĈN≡sW l̂imX ≡sW lim≡sW J≡sW EC,

L̂LPO≡sW Ĉn≡sW WKL, and ÂCCX ≡sW DNCX for X = N or X ≥ 2 and n ≥ 2.

Until recently the problems ACCN and NON were the two weakest unsolvable (mutually
incomparable) natural problems in the Weihrauch lattice, and, in fact, they are the two
weakest problems discussed in [BHK17]. Hence, it is a somewhat surprising coincidence that
these problems appear together in the diagram in Figure 1. In fact, they are related through
NON≡sW ΠΣ(ACCN). The discontinuity problem DIS was introduced in [Bra20] and it was
proved that (under the axiom of determinacy) DIS is actually the weakest discontinuous
problem with respect to the topological version of Weihrauch reducibility ≤∗W. Part of the
above relation between ACCN and NON is that we are going to prove that DIS parallelizes
to NON (see Theorem 5.4).

Theorem 1.11 (Non-computability is parallelized discontinuity). NON≡sW D̂IS.

This result supports the slogan that “non-computability is parallelized discontinuity”.
In Section 5 with study a number of further pentagons with the discontinuity problem at
the bottom and we show that the discontinuity problem can be obtain by stashing of several
different problems.

Theorem 1.12 (Discontinuity as stashing). DIS≡sW L̂PO≡sW L̂LPO≡sW ÂCCN≡sW ÂUCn

for n ≥ 2.

In Section 5 we prove that this also leads to a number of further interesting char-
acterizations of the discontinuity problem. Most notably we obtain a fully set-theoretic
characterization (i.e., a characterization that does not refer to any computability theoretic
notion) with the following result.

Proposition 1.13 (Range-non-equality problem). DIS≡sW NRNG.

In Section 4 we introduce and study another interior operator in the Weihrauch lattice
that replaces a problem by its upper Turing cone version.

Definition 1.14 (Upper Turing cone version). Let f :⊆ X ⇒ Y be a problem. We define
the upper Turing cone version fD :⊆ X ⇒ D by dom(fD) := dom(f) and

fD(x) := {degT(q) ∈ D : (∃y≤T q) y ∈ f(x)}.

Here D denotes the set of Turing degrees degT(p) = {q ∈ NN : q≡T p}, represented by
δD : NN → D, p 7→ degT(p). If (Y, δY ) is a represented space, then we define

y≤T q :⇐⇒ (∃p ∈ δ−1Y {y}) p≤T q ⇐⇒ (∃ computable F :⊆ NN → Y )F (q) = y.

Hence, y≤T q means that y has a name that can be computed from q and if Y = NN then
this is the usual version of Turing reducibility. This version of Turing reducibility has also
been called representation reducibility [Mil04].

Besides the fact that f 7→ fD is an interior operator in the Weihrauch lattice, our
main result in this direction shows that on parallelizable problems the two interior operator
f 7→ Σf and f 7→ fD coincide (up to equivalence).
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Proposition 1.15 (Closure under upper Turing cones). Σf̂ ≡sW f̂ D for all problems f .

As a corollary of this result we obtain the following surprising consequence (see Corol-
lary 4.6).

Corollary 1.16 (Closure under upper Turing cones). If f is a problem that is parallelizable
and stashable, then it is also closed under upper Turing cones, i.e., f ≡W fD.

This means that all such problems are essentially of computability theoretic nature. This
includes all problems that occur on the right-hand side of stashing-parallelization pentagons.
The remarkable situation here is that parallelization and stashing are in some sense purely
set-theoretic operations (with no mention of any computability theoretic property or notion)
and yet a combination of both generates computability-theoretic problems (starting from
any problem f whatsoever).

In Section 6 we study the non-majorization problem NMAJ as an asymmetric version
of the discontinuity problem and we investigate its pentagon. This is of interest as NMAJ
parallelizes to the hyperimmunity problem HYP. In Section 7 we investigate the retraction
problem RETX that characterizes the complexity of multi-valued retractions R : X ⇒ X
and turns out to be equivalent to AUCX for X ≥ 2. We also study the corresponding
pentagons. Finally, in Section 8 we identify a phase transition related to the limit avoidance
problem NLIMN. This is the weakest problem known to us that does not stash away to the
discontinuity problem.

2. Stashing as Interior Operator

The main purpose of this section is to show that stashing f 7→ Σf is an interior operator for
various versions of the Weihrauch lattice (see Proposition 2.2). For this result it is essential

that the completion Y of Y is used on the output side of Σf :⊆ XN ⇒ Y
N

. As a technical
preparation we need the following lemma. In [BG21, Corollary 2.7] we proved that there is

a computable retraction r : Y → Y , which is a computable map such that r|Y = idY . Here

we will have to use a similar property of the product space Y
N

.

Lemma 2.1 (Retractions for product spaces). For every represented space Y there is a

computable retraction r : Y
N → Y

N
, i.e., a computable r with r|

Y
N = id

Y
N.

Proof. The space Z := Y is represented by a total representation δZ = δY and by [BG21,

Corollary 2.7] there is a computable retraction R : Z → Z. We assume that ZN is represented
by the completion δ

ZN of the usual product representation δZN . We claim that there is a

computable map T : ZN → Z
N

with T |ZN = idZN . We assume that ZN = ZN ∪ {⊥N} and
Z = Z ∪ {⊥}. The names of ⊥N with respect to δ

ZN are exactly those names that contain
only finitely many digits different from 0 (since δZ and hence δZN are total). Now T can be
realized in a computable way by interpreting the non-zero content of a given name p as a

name 〈p0, p1, p2, ...〉 of a point in Z
N

with respect to δ
Z

N . As long as no non-zero content is

available in p, the names pi are filled up by zeros. Altogether this shows that T is computable

and it acts as the identity with the exception that T (⊥N) = (⊥,⊥,⊥, ...). Now r : ZN → ZN

with r := R̂ ◦ T is the desired computable retraction for ZN.
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Now we are prepared to prove that stashing is an interior operator on the (strong)
Weihrauch lattice. Properties (1) and (2) in the following result are only made possible
by the usage of the completion Y , whereas the existence of a retraction according to
Lemma 2.1 guarantees that the completion is not an obstacle for property (3). For a problem
f :⊆ X ⇒ Y the completion is defined by

f : X ⇒ Y , x 7→
{
f(x) if x ∈ dom(f)
⊥ otherwise

This completion was introduced and studied in [BG20, BG21] and we will use it in part (2)
of the following proof.

Proposition 2.2 (Stashing). The stashing operation f 7→ Σf is an interior operator for
≤sW, ≤W, ≤∗W and ≤∗sW. That is, for all problems f, g:

(1) Σf ≤sW f ,
(2) f ≤sW g =⇒ Σf ≤sW Σg,
(3) Σf ≤sW ΣΣf .

Analogous statements hold for ≤W, ≤∗W and ≤∗sW.

Proof. If we prove (1) and (3) for ≤sW, then this implies the corresponding statements for
≤∗sW, ≤W and ≤∗W. Only in the case of (2) we explicitly need to consider the different types
of reducibilities.
(1) We consider the computable projection K : XN → X, (xn) 7→ x0 and the computable

function H : Y → Y
N
, y 7→ (y,⊥,⊥, ...). Here H is computable, since the embedding

ι : Y → Y is computable according to [BG20, Corollary 3.10] and the element ⊥ ∈ Y is
computable too. These two functions K,H witness the reduction Σf ≤sW f , i.e., HfK(xn) ∈
Σf(xn) for all (xn) ∈ dom(Σf). We note that the usage of the completion Y guarantees the
existence of computable default outputs ⊥ ∈ Y .
(2) We consider problems f :⊆ X ⇒ Y and g :⊆ W ⇒ Z. If f ≤sW g, then there are
computable K :⊆ X ⇒ W and H :⊆ Z ⇒ Y such that ∅ 6= HgK(x) ⊆ f(x) for all
x ∈ dom(f) [BGP21, Proposition 3.2]. Then the completion H : Z ⇒ Y is computable by

[BG20, Proposition 4.9] and so are the parallelizations Ĥ : Z
N
⇒ Y

N
and K̂ :⊆ XN ⇒WN.

We obtain

∅ 6= Ĥ ◦ Σg ◦ K̂((xn)n)

= Ĥ{(zn)n ∈ Z
N

: (∃n) zn ∈ gK(xn)}

= {(yn) ∈ Y N
: (∃n) yn ∈ HgK((xn)n)} ⊆ Σf((xn)n)

for all (xn)n ∈ dom(Σf). We note that the totality of the completion H guarantees that

also those components of (zn)n ∈ Σg ◦ K̂((xn)n) ⊆ ZN
are processed, which are not in the

domain of H. Altogether, this proves Σf ≤sW Σg.
Let now f ≤W g hold with computable K :⊆ X ⇒ NN×W and H :⊆ NN×Z ⇒ Y according
to [BP18, Lemma 2.5], i.e., ∅ 6= H ◦ (idNN×g)◦K(x) ⊆ f(x) for all x ∈ dom(f). Then, again,

the completion H : NN × Z ⇒ Y is computable. By [BG20, Proposition 3.8, Corollary 3.10]

there is a computable ι : NN×Z → NN × Z with ι(p, z) = (p, z) for all (p, z) ∈ NN×Z. Then

(̂H ◦ ι) : (NN×Z)N ⇒ Y
N

can also be considered as a problem of type H ′ : (NN)N×ZN
⇒ Y

N
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and K̂ can be seen as a problem of type K̂ :⊆ XN ⇒ (NN)N ×WN. As above we obtain

∅ 6= H ′ ◦ (id(NN)N × Σg) ◦ K̂((xn)n) ⊆ Σf((xn)n),

for all (xn)n ∈ dom(Σf), i.e., Σf ≤W Σg. The statements for ≤∗sW and ≤∗W can be proved

analogously with continuous K,H. We note that by [BG20, Proposition 4.9] H is continuous,
if H is so.

(3) We consider ΣΣf :⊆ (XN)N ⇒ Y
NN

. By Lemma 2.1 there is a computable retraction

r : Y
N → Y

N
. For every represented space X the map

sX : (XN)N → XN, ((xn,k)k)n 7→ (xn,k)〈n,k〉

that interleaves a double sequence in a single sequence, is a computable isomorphism, i.e.,
it is bijective and computable and its inverse is computable too. We now consider the

computable functions K := s−1X and H := sY ◦ r̂ : Y
NN
→ Y

N
. Then we obtain

∅ 6= H ◦ ΣΣf ◦K((xn,k)〈n,k〉)

= sY ◦ r̂{(zn)n ∈ Y
NN

: (∃n) zn ∈ Σf((xn,k)k)}

= sY {((yn,k)k)n ∈ (Y
N

)N : (∃n)(∃k) yn,k ∈ f(xn,k)}

= {(yn,k)〈n,k〉 ∈ Y
N

: (∃〈n, k〉) yn,k ∈ f(xn,k)}
= Σf((xn,k)〈n,k〉).

This proves Σf ≤sW ΣΣf .

We can conclude from property (2) in Proposition 2.2 that stashing is, in particular,
invariant under (strong) Weihrauch reducibility and can hence be seen as an operation on
(strong) Weihrauch degrees.

Corollary 2.3. Stashing can be extended to an operation on (strong) Weihrauch degrees.

3. The Stashing-Parallelization Monoid

We adopt the convention that we denote the parallelization of a problem f by f̂ and the
stashing by f̂ when we deal with single applications of these operators. However, for iterated

applications it is useful to use the notation Πf and Σf instead.
The closure and interior operators Π and Σ generate a monoid {Π,Σ}∗ under composition

and we want to study the action of this monoid on the Weihrauch lattice. To this end, it is
worth spelling out the problems ΣΠf and ΠΣf explicitly:

(1) ΣΠf :⊆ XN×N ⇒ Y NN
, (xn,k) 7→ {(yn,k) : (∃n)(∀k) yn,k ∈ f(xn,k)},

(2) ΠΣf :⊆ XN×N ⇒ Y
N×N

, (xn,k) 7→ {(yn,k) : (∀n)(∃k) yn,k ∈ f(xn,k)}.
We can see that stashing corresponds to a usage of an existential quantifier whereas

parallelization corresponds to a usage of a universal quantifier in a certain sense. Hence ΣΠ
and ΠΣ correspond to applications of these quantifiers in different order.

There is a subtle technical point here: we have to deal with the spaces Y
N

and Y N, which

are not computably isomorphic. We recall that Y
N

= (Y ∪{⊥})N, whereas Y N = Y N∪{⊥N}.
Hence, formally there is no subset relation between these two sets. In order to make the
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latter a subset of the former, we can choose ⊥N := (⊥,⊥, ...), as implicitly done in the proof
of Lemma 2.1. In this sense the double sequence notation (yn,k) in the description of ΣΠf
should be understood.

Besides the retraction r from Lemma 2.1 we also need the maps s, t that exist according
to the following lemma. Intuitively speaking, s maps every sequence that contains a ⊥ to
⊥N and t maps ⊥N to some sequence that contains a ⊥ (which one it is, might depend on
the given name of ⊥N).

Lemma 3.1 (Completion of product spaces). For every represented space Y there are

computable s : Y
N → Y N and t : Y N ⇒ Y

N
such that s|Y N = t|Y N = idY N.

Proof. A suitable computable map s : Y
N → Y N with s|Y N = id|Y N is realized by a

computable F : NN → NN with the property that F 〈p0, p1, p2, ...〉 − 1 = 〈q0, q1, q2, ...〉 with
qi = pi− 1 for all pi with pi− 1 ∈ NN. This can be achieved by copying the non-zero content
of pi subtracted by 1 into the qi, where the resulting sequence 〈q0, q1, q2, ...〉 is filled up by
zeros, whenever necessary (i.e., whenever no non-zero content is available for some pi then
the entire output is filled up only with zeros as long as no non-zero content appears). That is,
if one of the pi is a name of ⊥ ∈ Y (either because it has only finitely many digits different

from zero or because pi − 1 6∈ dom(δY )), then F 〈p0, p1, ...〉 is a name of ⊥N ∈ Y N. In this
way, F realizes the identity on Y N.

For the second part of the statement, we note that Y
N

has a precomplete and total
representation by [BG20, Proposition 3.8] and hence we can extend the parallelization of

the computable embedding Y ↪→ Y to a computable problem t : Y N ⇒ Y
N

with t|Y N = idY N

by [BG21, Proposition 2.6].

Our core observation on the action of the monoid {Π,Σ}∗ on the (strong) Weihrauch
lattice is captured by the following result.

Proposition 3.2 (Action of the stashing-parallelization monoid). For every problem f we
obtain:

(1) ΠΣf ≤sW ΣΠf ,
(2) ΠΣΠf ≡sW ΣΠf ,
(3) ΣΠΣf ≡sW ΠΣf .

Proof. (1) Given an instance (xn,k) of ΠΣf , we just swap n– with k–positions in (xn,k), then

we apply ΣΠf to the result, then we use the parallelization of the problem t : Y N ⇒ Y
N

from Lemma 3.1 in order to convert the output of ΣΠf from (Y N)N into a double sequence

in (Y
N

)N and then we swap the n– and k–positions again to obtain a result in ΠΣf(xn,k),
which is correct because

(∃k)(∀n) yn,k ∈ f(xn,k) =⇒ (∀n)(∃k) yn,k ∈ f(xn,k).

(2) Since Π is a closure operator we have ΣΠf ≤sW ΠΣΠf and ΠΠf ≤sW Πf , and by (1) and
monotonicity of Σ we obtain ΠΣΠf ≤sW ΣΠΠf ≤sW ΣΠf .
(3) Since Σ is an interior operator we have ΣΠΣf ≤sW ΠΣf and Σf ≤ ΣΣf , and by (1) and
monotonicity of Π we obtain ΠΣf ≤sW ΠΣΣf ≤sW ΣΠΣf .

That is the action of the stashing-parallelization monoid {Π,Σ}∗ on a problem f in
the (strong) Weihrauch lattice leads to at most five distinct degrees {f,Πf,Σf,ΣΠf,ΠΣf},
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Figure 2: Parallelization-stashing pentagon in the Weihrauch lattice.

which are arranged in a pentagon, see the diagram in Figure 2. Every line in the diagram
indicates a ≤sW–reduction in the upwards direction.

Of course, if a problem f is parallelizable and stashable (such as any problem of the form
f = ΣΠg is), then the pentagon reduces to a single degree. Other smaller sizes than five can
be realized too and, as we will see, also the maximal size of five can be realized. In any case,
the stashing-parallelization pentagon can be seen as the trace of f under {Σ,Π}∗ that reveals
some information about the underlying problem f . It follows from Proposition 3.2 and the
fact that Π and Σ are closure and interior operators, respectively, that for a problem f with
a full pentagon of size five, f is incomparable with the opposite problems ΣΠf and ΠΣf .

Corollary 3.3 (Full pentagons). For every problem f we obtain:

(1) f ≤sW ΣΠf ⇐⇒ Πf ≡sW ΣΠf ,
(2) ΣΠf ≤sW f ⇐⇒ Σf ≡sW ΣΠf ,
(3) f ≤sW ΠΣf ⇐⇒ Πf ≡sW ΠΣf ,
(4) ΠΣf ≤sW f ⇐⇒ Σf ≡sW ΠΣf .

Analogous statements hold for the reductions ≤W,≤∗sW,≤∗W.

There are many interesting questions regarding the interaction of parallelization and
stashing. For instance, we will see later in Corollary 7.11 that the map f 7→ (Σf,Πf) is
not injective on Weihrauch degrees, i.e., problems are not characterized by their respective
pentagons. However, these pentagons still reveal some interesting information in many cases,
as we will see.

4. The Upper Turing Cone Operator

The main purpose of this section is to prove that the upper Turing cone operator f 7→ fD

is an interior operator on the (strong) Weihrauch lattice that coincides with the interior
operator f 7→ Σf , restricted to (strongly) parallelizable problems.

In the following it is useful to have a simplified version of ΣΠf , where we replace double
sequences on the input side by ordinary sequences. For this purpose we consider the injection
IX : X ↪→ XN, x 7→ (x, x, x, ...) for every represented space X.

Lemma 4.1. ΣΠf ≡sW(ΣΠf) ◦ IXN for every problem f :⊆ X ⇒ Y .
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Proof. Since IXN is computable, it is clear that (ΣΠf) ◦ IXN ≤sW ΣΠf holds. On the

other hand, given an instance ((xn,k)k)n ∈ XN2
of ΣΠf , we can compute the interleaved

sequence (xn,k)〈n,k〉 ∈ XN and then apply IXN followed by ΣΠf . This yields a sequence

((ym,〈n,k〉)〈n,k〉)m ∈ Y NN
that satisfies the property (∃m)(∀〈n, k〉) ym,〈n,k〉 ∈ f(xn,k). Using

the parallelization of the problem t : Y N ⇒ Y
N

from Lemma 3.1 we can convert this into a

sequence in Y
N2

and then extract a diagonal sequence ((yn,〈n,k〉)〈n,k〉)n ∈ Y
N2

from it. This

sequence can be converted back to Y NN
by the parallelization of the function s : Y

N → Y N

from Lemma 3.1 and we claim that the result is a solution of ΣΠf(((xn,k)k)n). This is
because

(∃m)(∀〈n, k〉) ym,〈n,k〉 ∈ f(xn,k) =⇒ (∃n)(∀k) yn,〈n,k〉 ∈ f(xn,k).

The exact relation between the upper Turing cone operator and stashing is captured in
the following result, again with the help of the injection IX .

Proposition 4.2 (Upper Turing cone operator). fD ≡sW Σf ◦ IX holds for every problem
f :⊆ X ⇒ Y . In particular, fD ≤sW Σf .

Proof. We consider the represented spaces (X, δX) and (Y, δY ). We claim that every realizer
F :⊆ NN → NN of Σf ◦ IX is also a realizer of fD, which proves fD ≤sW Σf ◦ IX . To this
end, let F be such a realizer and x := δX(p) ∈ dom(fD) = dom(f). Let (yn) := δ

Y
NF (p) ∈

Σf(x, x, ...). Let 〈q0, q1, ...〉 := F (p) and let G :⊆ NN → NN be a computable realizer of the
partial inverse ι−1 :⊆ Y → Y of the embedding ι : Y → Y , which is computable according to
[BG20, Corollary 3.10]. Then there is some n ∈ N with yn = δYG(qn) = δY (qn) ∈ fδX(p) =
f(x) and yn≤TG(qn)≤T F (p). This proves the claim.
For the reverse reduction Σf ◦IX ≤sW fD we first note that δY is a precomplete representation
by [BG20, Proposition 3.8]. Hence there is a total computable r : N→ N such that for all
q ∈ NN, n ∈ N the function ϕq

r(n) is always total and if ϕq
n is total and ϕq

n ∈ dom(δY ), then

δY (ϕq
r(n)) = δY (ϕq

n). Intuitively, the programme with code r(n) works as the programme

n, but it adds 1 to all output results and fills up the output with dummy symbols 0 in
appropriate positions as long as no other better information becomes available. Now we
consider the computable function H : NN → NN with H(q) := 〈ϕq

r(0), ϕ
q
r(1), ...〉. We claim

that HF is a realizer of Σf ◦ IX for every realizer F of fD. To this end, let F be such a
realizer and x := δX(p) ∈ dom(Σf ◦ IX) = dom(f). Then there exists some y≤T F (p) with

y ∈ f(x). Hence, there is some n ∈ N such that y = δY (ϕ
F (p)
n ) = δY (ϕ

F (p)
r(n) ). This implies

that δ
Y

NHF (p) ∈ Σf ◦ IX(x), which completes the proof.

We note that the main idea of the proof, namely to compute on all Gödel numbers in
parallel, can only be realized because stashing uses a completion Y of the space Y on the
output side.

By a combination of Propositions 4.2 and 3.2 with Lemma 4.1 we obtain the following
corollary.

Corollary 4.3 (Upper Turing cone operator). (Πf)D ≡sW ΣΠf and (ΠΣf)D ≡sW ΠΣf for
every problem f .

This means that both problems on the right-hand side of the diagram in Figure 2 can
be seen as upper Turing cone versions and hence as computability-theoretic problems. We
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emphasize that Turing cones appear here out of a purely topological context without any
computability theory being involved. This is because Corollary 4.3 is also correct when the
computability-theoretic Weihrauch reducibility is replaced by its topological counterpart.

We mention in passing that the upper Turing cone operator is an interior operator on
the Weihrauch lattice.

Proposition 4.4 (Upper Turing cone operator as interior operator). The operation f 7→ fD

is an interior operator on the (strong) Weihrauch lattice. That is, for all problems f, g we
have:

(1) fD ≤sW f ,
(2) f ≤sW g =⇒ fD ≤sW gD,
(3) fD ≤sW fDD.

Analogous statements hold for ≤W, ≤∗W and ≤∗sW.

Proof. We consider problems f :⊆ X ⇒ Y and g :⊆W ⇒ Z.
(1) This follows from fD ≤sW Σf ≤sW f , which holds by Propositions 4.2 and 2.2.
(2) Let f ≤W g hold via computable H,K :⊆ NN → NN, i.e., H〈id, GK〉 is a realizer of f
whenever G is a realizer of g. We claim that fD ≤W gD holds via id,K. Let p be a name
of some input x ∈ dom(f). Then K(p) is a name of a point w ∈ dom(g) and any name q
of a point in g(w) yields a name H〈p, q〉 of a point in f(x), since there is a realizer G of g
with GK(p) = q. Let now G be a realizer of gD. Then there is a name q of a point in g(w)
such that q≤TGK(p). Hence H〈p, q〉≤T〈p,GK(p)〉. This shows that 〈id, GK〉 is a realizer
of fD whenever G is a realizer of gD and hence fD ≤W gD. The statement for ≤sW can be
proved analogously. In the topological cases we have to work with continuous H,K. Then
H is computable relative to some r ∈ NN and we obtain as above H〈p, q〉≤T〈r, p,GK(p)〉.
Hence fD ≤∗W gD holds via continuous H ′,K, where H ′〈p, q〉 := 〈r, p, q〉.
(3) We have even fDD = fD by transitivity of Turing reducibility.

By Proposition 3.2 stashing extends to an interior operator on parallelizable Weihrauch
degrees and by Corollary 4.3 the upper Turing cone operator coincides on those degrees
with stashing.

Corollary 4.5. f 7→ Σf and f 7→ fD are identical interior operators restricted to (strongly)
parallelizable (strong) Weihrauch degrees.

We note that f 7→ Σf and f 7→ fD are not identical on arbitrary Weihrauch degrees.
The problem fD is always computable when f has only computable solutions. For instance,
LPOD is computable, while this is not the case for Σ(LPO) (see Proposition 5.10).

We can also formulate this result such that problems which are simultaneously stashable
and parallelizable are automatically closed under applying the upper Turing cone operator.

Corollary 4.6. For every problem f the following conditions are equivalent to each other:

(1) Σf ≡sW f and Πf ≡sW f ,
(2) fD ≡sW f and Πf ≡sW f .

An analogous property holds with ≡W instead of ≡sW.

It follows from Corollary 4.3 that problems g that are simultaneously parallelizable and
stashable can only occur in certain regions of the Weihrauch lattice. For one, every problem
with the set of Turing degrees as target set is densely realized by [BHK17, Corollary 4.9],
which means that a realizer of such a problem can produce outputs that start with arbitrary
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prefixes. This in turn implies by [BP18, Proposition 6.3] that any problem with discrete
output below it has to be computable. We formulate this as a corollary.

Corollary 4.7 (Parallelizable and stashable problems). Let f :⊆ X ⇒ N be a problem and
let g be a problem that is parallelizable and stashable. If f ≤W g holds, then f is computable.

One of the weakest problems with discrete output that is discontinuous is ACCN, the all-
or-co-unique choice problem on N. This problem was studied in [BHK17] and an equivalent
problem was investigated earlier under the name LLPOX [Wei92, HK14a] (and under the
name LLPO∞ [Myl06, Definition 16] in the case of ACCN). Intuitively speaking, ACCN is the
problem that given a list of natural numbers which is either empty or contains exactly one
number, one has to produce a number which is not in the list. For f = ACCN we can also
phrase Corollary 4.7 as follows.

Corollary 4.8 (The cone of all-or-co-unique choice). If ACCN≤W g holds for some problem
g, then g cannot be simultaneously parallelizable and stashable.

Hence, in a certain sense, problems that are parallelizable and stashable at the same time
are rare, even rarer than this result suggests. Namely, ACCN is not the weakest discontinuous
problem with discrete output. Mylatz has proved that there are also discontinuous problems
of type f :⊆ NN ⇒ N with f <W ACCN [Myl06, Satz 14].

5. The Discontinuity Problem in Pentagons

In this section we investigate the discontinuity problem DIS by studying a number of stashing-
parallelization pentagons in which it appears as the bottom problem. Along the line we will
formulate some problems that are equivalent to DIS. In the following we use the notation
f̂ = Σf for the stashing of specific problems f . We start with defining a number of problems

related to ACCN.

Definition 5.1 (Problems related to all-or-co-unique choice). We consider the following
problems:

(1) A : NN ⇒ N, 〈〈i, n〉, p〉 7→ {k ∈ N : ϕp
i (n) 6= k},

(2) B : NN ⇒ NN
, 〈i, p〉 7→ {q ∈ NN

: (∃n) ϕp
i (n) 6= q(n) ∈ N},

(3) C : NN ⇒ NN, 〈i, p〉 7→ {q ∈ NN : (∃n) ϕp
i (n) 6= q(n)}.

As a first result we prove that the discontinuity problem is the stashing of ACCN.

Proposition 5.2 (All-or-co-unique choice). We obtain ÂCCN≡sW Â≡sWB≡sW C ≡sW DIS

and ACCN≡sWA.

Proof. It is straightforward to see that ACCN≡sWA, which implies ÂCCN≡sW Â by Propo-

sition 2.2.
We prove Â≡sWB. We note that Â is of type Â : (NN)N ⇒ NN

. In order to show
Â≤sWB, we consider instances

p = (〈〈i0, n0〉, p0〉, 〈〈i1, n1〉, p1〉, 〈〈i2, n2〉, p2〉, ...) ∈ (NN)N

of Â. There is a j ∈ N such that ϕ
〈p〉
j (k) = ϕpk

ik
(nk) for all k ∈ N and all p of the

above form. Hence, a solution to B〈j, 〈p〉〉 is a solution to Â(p). Thus Â≤sWB. For the

inverse reduction we consider the computable function K : NN → (NN)N with K〈i, p〉 :=
(〈〈i, 0〉, p〉, 〈〈i, 1〉, p〉, 〈〈i, 2〉, p〉, ...). This function reduces B to Â, i.e., we obtain Â≡sWB.
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It is easy to see that B≤sW C holds, since the parallelization ι̂ : NN → NN
of the embed-

ding ι : N→ N is computable, where ι is computable according to [BG20, Corollary 3.10].
We now prove C ≡sW DIS. The reduction C ≤sW DIS follows with help of the computable

function K : NN → NN with K〈i, 〈r, p〉〉 := 〈〈i, r〉, p〉. The computable inverse of K yields

DIS≤sW C. We note that these reductions are obvious when the corresponding ϕ
〈r,p〉
i is total,

but otherwise any q ∈ NN is allowed as a solution in both cases.
Finally, we prove DIS≤sWB. By Theorem 1.9 it suffices to show that player I has a

computable winning strategy in the Wadge game B. Therefore we consider a Gödel number
i ∈ N such that ϕp

i (n) = k if and only if 〈n, k〉+ 1 is the first number of the form 〈n,m〉+ 1
listed in p. If there is no number of this form, then ϕp

i (n) is undefined. In other words, the
program i upon input n and oracle p searches for the first number of the form 〈n, k〉 + 1
listed in p and outputs k if such a number is found. Now player I in the Wadge game B
starts playing 〈i, p0〉 with p0 = 000.... This corresponds to the nowhere defined function ϕp0

i

and hence player II must play a name of some q0 ∈ NN
with some n ∈ N such that q0(n) ∈ N;

otherwise player II looses. However, when the first candidate n0 ∈ N with q0(n0) ∈ N
appears, then player I modifies the p0 in its play to a p1 by appending 〈n0, q0(n0)〉 in the
current position to it. Hence ϕp1

i (n0) = q0(n0). This forces player II to modify its play to
a name of some q1 with another n1 ∈ N with q1(n1) ∈ N and n0 6= n1; otherwise player
II looses. Now player I modifies p1 by appending 〈n1, q1(n1)〉 to it. This strategy can be
continued inductively and describes a computable winning strategy for player I.

We can conclude from Proposition 5.2 that the discontinuity problem is stashable.

Corollary 5.3. DIS is strongly stashable.

The next result supports the slogan that “non-computability is the parallelization of
(effective) discontinuity”.

Theorem 5.4 (Discontinuity and non-computability). D̂IS≡sW NON.

Proof. By Proposition 5.2 it suffices to show Ĉ ≡sW NON. For this purpose it is helpful to
reformulate NON as follows:

NON : NN ⇒ NN, p 7→ {q ∈ NN : (∀i)(∃n) ϕp
i (n) 6= q(n)}.

We note that this formulation of NON is equivalent to the usual one, as for non-total
functions ϕp

i there exists always an n ∈ N \ dom(ϕp
i ) that satisfies ϕp

i (n) 6= q(n), since q
is total. With NON written in this form it is clear that C ≤sW NON. Moreover, NON is
strongly parallelizable, since given p := 〈p0, p1, ...〉 it is clear that q 6≤T p implies q 6≤T pi for

every i ∈ N. Hence, Ĉ ≤sW NON.

For the inverse reduction NON≤sW Ĉ, we assume that we have given some p ∈ NN.

Then we can evaluate Ĉ on the instance (pi)i∈N with pi := 〈i, p〉 in order to get some

output (qi)i∈N ∈ Ĉ(pi)i∈N with the property that (∀i)(∃n) ϕp
i (n) 6= qi(n). We claim that

q := 〈q0, q1, q2, ...〉 6≤T p. If we assume the contrary, then there is some total computable
r : N → N such that ϕp

r(i)(n) = qi(n) for all i, n ∈ N. Hence, by the relativized version

of Kleene’s fixed point theorem [Soa16, Theorem 2.2.1] there is some i ∈ N with ϕp
i (n) =

ϕp
r(i)(n) = qi(n) for all n ∈ N, which contradicts the assumption that qi ∈ C〈i, p〉. Altogether,

this proves D̂IS≡sW Ĉ ≡sW NON.
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Figure 3: ACCn pentagon in the Weihrauch lattice for n ≥ 2.

We note that DNCDN <W DNCN follows since ACCN≤W DNCN, but ACCN 6≤W DNCDN by
Corollary 4.8. Together with Fact 1.10, we have established the pentagon of ACCN given
in Figure 1. Perhaps the pentagon in Figure 1 is the most natural pentagon in which the
discontinuity problem DIS appears, but it is by far not the only one. It was observed by
Jockusch [Joc89, Theorem 6] and Weihrauch [Wei92, Theorem 4.3] that the problems DNCn

and ACCn, respectively, form strictly decreasing chains, i.e., we have the following fact (see
also [HK14b, Corollary 82], [BHK17, Corollary 3.8]).

Fact 5.5 (Jockusch 1989, Weihrauch 1992). For all n ≥ 2 we have:

(1) DNCN<sW DNCn+1<sW DNCn,
(2) ACCN<sW ACCn+1<sW ACCn.

On the other hand, it turns out that the stashing of the problem ACCn is strongly
equivalent to DIS for all n ≥ 2. In order to express this result, it is useful to consider a
universal function of type Un :⊆ NN → {0, ..., n− 1}N. Such a function can be defined by
truncating U accordingly:

Un〈〈i, r〉, p〉 := min(n− 1, ϕ
〈r,p〉
i ) = min(n− 1,U〈〈i, r〉, p〉)

whenever ϕ
〈r,p〉
i is total (where the minimum is understood pointwise). Using this definition

we can also modify the problem DIS accordingly and in this way we obtain

DISn : NN ⇒ {0, ..., n− 1}N, p 7→ {q ∈ {0, ..., n− 1}N : Un(p) 6= q}
for all n ≥ 2. In these terms we obtain the following result.

Proposition 5.6 (All-or-co-unique choice). ÂCCn≡sW DISn≡sW DIS for all n ≥ 2.

Proof. By Fact 5.5 it suffices to consider the case n = 2. The remaining cases follow by
Proposition 5.2 since stashing is an interior operator by Proposition 2.2. The reduction
DIS≡sW ÂCCN≤sW ÂCC2 also follows. The reduction ÂCC2≤sW DIS2 can be proved almost

literally following the lines of the proof of Proposition 5.2 with some obvious modifications.
For instance, one needs to replace all terms ϕp

i (n) in the definitions of A,B and C by

min(1, ϕp
i (n)); one has to replace the output types of A,B and C by {0, 1}, {0, 1}N and

{0, 1}N, respectively; and one has to work with the embedding ι : {0, 1} → {0, 1}. It remains
to prove the reduction DIS2≤sW DIS. For this direction we use the computable embedding
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Figure 4: LLPO pentagon in the Weihrauch lattice.

ι : NN → 2N, p 7→ 0p(0)10p(1)10p(2)1.... There is a total computable s : N → N such that
ι(ϕt

s(i)) = min(1, ϕt
i) for all i ∈ N and t ∈ NN such that ϕt

i is total and min(1, ϕt
i) contains

infinitely many ones. Now, given an instance 〈〈i, r〉, p〉 of DIS2 we compute the instance
〈〈s(i), r〉, p〉 of DIS. If q ∈ NN satisfies q 6= U〈〈s(i), r〉, p〉, then ι(q) 6= U2〈〈i, r〉, p〉 follows.

This is clear if ϕ
〈r,p〉
i is total and min(1, ϕ

〈r,p〉
i ) contains infinitely many ones. But otherwise

every q ∈ NN satisfies the conclusion. Altogether, this completes the proof.

The upper Turing cone version of DNCn for n ≥ 2 is just the problem PA of finding a PA
degree relative to the input. By a result of Jockusch and Friedberg [Joc89, Theorem 5] the
Turing degrees of q � p are exactly the degrees that compute a diagonally non-computable
function f : N→ {0, ..., n−1} relative to p for every n ≥ 2 (see also [BHK17, Proposition 6.1]).
Hence we obtain [BHK17, Corollary 6.4] the following fact.

Fact 5.7. PA≡sW DNCDn for every n ≥ 2.

We note that PA<W DNCn follows since ACCn≤W DNCn, but ACCn 6≤W PA by Corol-
lary 4.7. Altogether, we have thus established the pentagon of ACCn for n ≥ 2 given
in Figure 3. An important special case of this diagram is the case for n = 2. Since
LLPO≡sW ACC2, Fact 1.10 yields the stashing-parallelization pentagon of LLPO given in
Figure 4.

We have a number of basic discrete problems ordered in the following way [BHK17,
Fact 3.4], [BG11a, Theorem 3.10], [BGM12, Section 13].

Fact 5.8. ACCN≤W LLPO≤W LPO≤W lim2≤W CN.

Now the question appears how far up in this chain of discrete problems we can go such
that we still obtain the discontinuity problem DIS as stashing of the corresponding discrete
problem? We will see in Proposition 8.3 that a phase transition in this respect happens
between LPO and lim2.

We now study the pentagon of LPO. We use the notation Wp
i := dom(ϕp

i ) and by

χA : N→ {0, 1} we denote the characteristic function of A ⊆ N with A = χ−1A {1}. We first
define some problems related to LPO.

Definition 5.9 (Problems related to LPO). We consider:

(1) L : NN → {0, 1}, 〈〈i, n〉, p〉 7→ 1− χWp
i
(n) =

{
0 if n ∈ dom(ϕp

i )
1 otherwise

,
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(2) D : NN ⇒ {0, 1}N, 〈i, p〉 7→ {q ∈ {0, 1}N : (∃n) χWp
i
(n) 6= q(n) ∈ {0, 1}},

(3) E : NN ⇒ {0, 1}N, 〈i, p〉 7→ {q ∈ {0, 1}N : (∃n) χWp
i
(n) 6= q(n)}.

Now we can prove the following result.

Proposition 5.10 (Stashing of LPO). LPO≡sW L and L̂PO≡sW L̂≡sWD≡sW E≡sW DIS.

Proof. We proceed as in the proof of Proposition 5.2. It is easy to see that LPO≡sW L,
which implies L̂PO≡sW L̂. The same reductions that prove Â≡sWB in Proposition 5.2
also show L̂≡sWD. The reduction D≤sW E follows using the computable embedding

ι : {0, 1} → {0, 1}. By Proposition 5.2 and Fact 5.8 and since stashing is an interior operator
by Proposition 2.2, we obtain DIS≡sW ÂCCN≤sW L̂PO.

It only remains to show E≤sW DIS. By the proof of Proposition 5.6 it suffices to show
E≤sW C, where

C : NN ⇒ {0, 1}N, 〈i, p〉 7→ {q ∈ {0, 1}N : (∃n) min(1, ϕp
i (n)) 6= q(n)}

is the modification of the function from Proposition 5.2 that was used in the proof of
Proposition 5.6 in order to show DIS≡sW DIS2≡sW C. For the reduction E≤sW C we
proceed as follows. Given an instance 〈i, p〉 of E, we try to find out for each n ∈ N, which of
the two consecutive values 2n, 2n+ 1 appears in Wp

i first, if any. More precisely, there is a
computable function r : N→ N such that

ϕp
r(i)(n) =

 0 if 2n ∈Wp
i is found first

1 if 2n+ 1 ∈Wp
i is found first

↑ if {2n, 2n+ 1} ∩Wp
i = ∅

holds for all i, n ∈ N and p ∈ NN. We use the computable function K : NN → NN with
K〈i, p〉 = 〈r(i), p〉 to translate instances of E into instances of C and the computable function
H : {0, 1}N → {0, 1}N with H(q)(2n) := 1 − q(n) and H(q)(2n + 1) := q(n) in order to
translate solutions of C into solutions of E. That this reduction is correct can be seen as
follows. Given an instance 〈i, p〉 of E and q ∈ C〈r(i), p〉 = CK〈i, p〉, there is some n ∈ N
with min(1, ϕp

r(i)(n)) 6= q(n). We are now in exactly one of the following three cases:

(1) ϕp
r(i)(n) = 0 =⇒ (q(n) = 1 and 2n ∈Wp

i ) =⇒ H(q)(2n) = 0 6= χWp
i
(2n),

(2) ϕp
r(i)(n) = 1 =⇒ (q(n) = 0 and 2n+ 1 ∈Wp

i )

=⇒ H(q)(2n+ 1) = 0 6= χWp
i
(2n+ 1),

(3) ϕp
r(i)(n) = ↑ =⇒ (q(n) ∈ {0, 1} and {2n, 2n+ 1} ∩Wp

i = ∅)
=⇒ (H(q)(2n) = 1 6= χWp

i
(2n) or H(q)(2n+ 1) = 1 6= χWp

i
(2n+ 1)).

In any case we obtain H(q) ∈ E〈i, p〉. Altogether we obtain E≤sW C ≡sW DIS.

By Fact 1.10 we have L̂PO≡sW lim≡sW J. It is clear that JD is strongly Weihrauch
equivalent to

JD : D ⇒ D, a 7→ {b ∈ D : a′≤T b}.
We note that JD <W lim follows since LPO≤W lim, but LPO 6≤W JD by Corollary 4.7. Alto-
gether, we have established the pentagon of LPO given in Figure 5.

Proposition 5.10 also leads to another characterization of the discontinuity problem
in terms of ranges. This characterization is unique among all the characterizations that
we have provided because it is purely set-theoretic (i.e., no Gödel numberings or other
computability-theoretic concepts are used) and because it only involves standard data types
(i.e., no completions are mentioned).
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Figure 5: LPO pentagon in the Weihrauch lattice.

Definition 5.11 (Range non-equality problem). We call

NRNG : NN ⇒ 2N, p 7→ {A ∈ 2N : A 6= range(p− 1)}
the range non-equality problem.

We now obtain the following characterization.

Corollary 5.12 (Range non-equality problem). DIS≡sW NRNG.

Proof. By Proposition 5.10 it suffices to show NRNG≡sW E. For one, there is a j ∈ N such
that Wp

j = range(p− 1), which establishes the reduction NRNG≤sW E. On the other hand,

there is a computable f : NN → NN such that range(f〈i, p〉 − 1) = Wp
i for all p ∈ NN and

i ∈ N, which shows E≤sW NRNG.

The reader might have noticed that a lot of problems that occur in the lower parts of our
pentagons can actually be seen as complementary problems of other well-known problems.
We briefly make this more precise.

Definition 5.13 (Complementary problem). For every problem f :⊆ X ⇒ Y we define the
complementary problem f c :⊆ X ⇒ Y by graph(f c) := graph(f)c = (X × Y ) \ graph(f).

That is dom(f c) = {x ∈ X : f(x) 6= Y } and f(x) := Y \f(x) for all x ∈ dom(f c). Using
this concept we see that DIS = Uc, NRNG = ECc, and NON = (≥T)c, where ≥T: NN ⇒
NN, p 7→ {q ∈ NN : q≤T p}.

Even though complementation yields a neat way of expressing these problems, f 7→ f c is
not an operation on the Weihrauch lattice. For instance Jc is obviously computable, whereas
ECc≡sW DIS is not, although J≡sW EC by Fact 1.10.

6. Majorization and Hyperimmunity

In this section we study the stashing-parallelization pentagons of the non-majorization
problem NMAJ that can be seen as an asymmetric version of the discontinuity problem. The
non-majorization problem NMAJ is introduced in the following definition and it is related to
the well-known hyperimmunity problem.

Definition 6.1 (Problems related to hyperimmunity). We consider the following problems:

(1) NGEQ : NN ⇒ N, 〈〈i, n〉, p〉 7→ {k ∈ N : ϕp
i (n) 6≥ k},
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(2) NMAJ : NN ⇒ NN, 〈i, p〉 7→ {q ∈ NN : (∃n) ϕp
i (n) 6≥ q(n)},

(3) HYP : NN ⇒ NN, p 7→ {q ∈ NN : (∀r≤T p)(∃n) r(n) < q(n)},
(4) MEET : NN ⇒ NN, p 7→ {q ∈ NN : (∀r≤T p)(∃n) r(n) = q(n)},
(5) 1-WGEN : NN ⇒ NN, p 7→ {q ∈ NN : q is weakly 1–generic relative to p}.

The non-majorization problem NMAJ has been defined here ad hoc, whereas the Weih-
rauch complexity of the hyperimmunity problem HYP and the weak 1–genericity problem
1-WGEN have already been studied in [BHK17, BHK18]. The principle MEET was introduced
in a reverse mathematics context in [HRSZ17]. We note that the existential quantifier “∃n”
in HYP and MEET could equivalently be replaced by “∃∞n”. We recall that a point
p ∈ NN is called weakly 1–generic relative to q ∈ NN if p ∈ U for every dense open
set U ⊆ NN that is c.e. open relative to q. A set U ⊆ NN is c.e. open relative to q if
U = U q

i := {p ∈ NN : 0 ∈ dom(ϕq
i )} for some i ∈ N. By a theorem of Kurtz the hyperimmune

degrees coincide with the weakly 1–generic degrees and this also holds uniformly in the
following sense [BHK17, Corollary 9.5].

Fact 6.2 (Uniform theorem of Kurtz). HYP≡W 1-WGEN.

On the first sight, the non-majorization problem NMAJ looks similar to the discontinuity
problem DIS in the form of C, as defined in Definition 5.1. In fact, NMAJ can be seen as an
asymmetric version of C, since the inequality 6= is simply replaced by 6≥ (we note that 6≥
is not the same as < here, as ϕp

i might be partial and ϕp
i (n) 6≥ q(n) is supposed to mean

that either ϕp
i (n) does not exist or ϕp

i (n) exists and ϕp
i (n) < q(n).) Despite the similarity

between NMAJ and DIS, it turns out that NMAJ is neither equivalent to DIS nor stashable.
Among all the problems that we have studied here, it is perhaps the one that comes closest
to DIS without being equivalent to it. The following result clarifies the relation of these
problems to each other.

Proposition 6.3 (The non-majorization problem). We obtain N̂MAJ≡W N̂GEQ≡W DIS,

N̂MAJ≡sW HYP, DIS<W NMAJ<W HYP, and NON<W HYPD. In particular, NMAJ is not
stashable.

Proof. With C from Definition 5.1 we obtain DIS≡sW C ≤sW NMAJ≤sW NGEQ≤W LPO.
The latter reduction holds since LPO can be used to determine whether ϕp

i (n) is defined
and if it is defined then one can use the original input to find a larger value; otherwise 0 is a
suitable output. This implies DIS≡W N̂GEQ≡W N̂MAJ by Proposition 5.10 since stashing is

an interior operator by Proposition 2.2. Moreover, we have

HYP(p) = {q ∈ NN : (∀r≤T p)(∃n) r(n) < q(n)} = {q ∈ NN : (∀i)(∃n) ϕp
i (n) 6≥ q(n)}.

Here clearly “⊇” holds regarding the second equality since the ϕp
i include all the total r≤T p

and the other inclusion “⊆” holds as for ϕp
i that are not total the condition ϕp

i (n) 6≥ q(n)

is satisfied by definition for all n 6∈ dom(ϕp
i ). We claim that N̂MAJ≡sW HYP. For one,

it is clear that NMAJ≤sW HYP holds. Moreover, HYP is strongly parallelizable, as there

is some computable r : N → N with ϕ
〈p0,p1,p2,...〉
r〈i,k〉 (n) = ϕpk

i (n) for all i, n, k ∈ N and

p0, p1, ... ∈ NN. Together, this implies N̂MAJ≤sW HYP. On the other hand, there is a
computable s : N→ N such that ϕp

s(i)(n) = ϕp
i 〈i, n〉 for all i, n ∈ N and p ∈ NN. Hence, the

function K : NN → NN with K(p) := 〈〈s(0), p〉, 〈s(1), p〉, 〈s(2), p〉, ...〉 is computable and with
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Figure 6: Non-marjorization pentagon in the Weihrauch lattice.

q = 〈q0, q1, q2, ...〉 ∈ N̂MAJ ◦K(p) we obtain

(∀i)(∃n) ϕp
i 〈i, n〉 = ϕp

s(i)(n) 6≥ qi(n) = q〈i, n〉,

so in particular q ∈ HYP(p). This proves HYP≤sW N̂MAJ.
Suppose DIS≡W NMAJ, then NON≡W HYP would follow by Theorem 5.4, since paral-

lelization is a closure operator. However, it is well-known that there are hyperimmune-free
non-computable degrees [MM68, Section 2], i.e., there is non-computable q which is not of
hyperimmune degree. The problem NON has a realizer that, on computable inputs, produces
such non-computable q, which is not of hyperimmune degree. Since hyperimmune degrees
are upwards closed by [MM68, Theorem 1.1], we obtain that NON<W HYPD ≤W HYP. This
implies DIS<W NMAJ. Finally, we clearly have NMAJ<W HYP as NMAJ has computable
solutions on all instances, while HYP does not.

We emphasize that we have only proved N̂MAJ≡W DIS with an ordinary Weihrauch
equivalence, unlike in all previous cases, where we have established a strong Weihrauch
equivalence. Hence we are left with the following open question.

Question 6.4. Does N̂MAJ≡sW DIS hold?

We note that HYPD is exactly the problem of finding a hyperimmune degree relative to
the input, i.e., it can equivalently be described as

HYPD : D ⇒ D, a 7→ {b ∈ D : b is of hyperimmune degree relative to a},

since hyperimmune degrees are upwards closed by [MM68, Theorem 1.1]. This establishes
the pentagon in Figure 6, except that we did not yet prove HYPD <W HYP. In the case
of the earlier pentagons discussed here, we have used Corollary 4.7 for the corresponding
separation. In the case of the hyperimmunity problem a more tailor-made argument is
required, since NMAJ has no natural number output and is densely realized itself. We
combine ideas from the proof of [BP18, Proposition 6.3] and the proof of Proposition 5.2.

Proposition 6.5. HYPD <W HYP (even restricted to computable instances).

Proof. Here we consider HYPD to be defined as

HYPD : NN ⇒ NN, p 7→ {s ∈ NN : (∃q≤T s)(∀r≤T p)(∃n) r(n) < q(n)}.
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It suffices to prove NMAJ 6≤W HYPD. Let us assume the contrary, i.e., let H,K :⊆ NN → NN

be computable functions such that H〈id, GK〉 is a realizer of NMAJ whenever G is a realizer
of HYPD. Then there is a computable monotone function h : N∗ → N∗ that approximates H
in the sense that H(q) = supwvq h(w) for all q ∈ dom(H). As in the proof of Proposition 5.2

we consider a fixed Gödel number i ∈ N such that ϕp
i (n) = k if and only if 〈n, k〉 + 1 is

the first number of the form 〈n,m〉+ 1 listed in p. Now we use h and the finite extension
method to construct an input ip = 〈i, p〉 ∈ NN of NMAJ on which the above reduction fails.
We start with p0 := 000..., which yields the nowhere defined function ϕp0

i . For this p0 there
is a lexicographically first w0 ∈ {2, 3, 4, ...}∗ such that |h〈ip0||w0|, d0w0〉| > 0 for both values

d0 ∈ {0, 1}. This is because there is some s ∈ {2, 3, 4, ...}N with d0s ∈ HYPDK〈i, p0〉 for
both values d0 ∈ {0, 1}. We choose

a0 := max{h〈ip0||w0|, d0w0〉(0) : d0 ∈ {0, 1}} and b0 := 〈0, a0〉+ 1

and we continue with p1 := 0|w0|b0000..., which yields a function that satisfies ϕp1
i (0) = a0

and is undefined otherwise. Again there is a lexicographically first w1 ∈ {2, 3, 4, ...}∗ such
that |h〈ip1||w0|+|w1|+1, d0w0d1w1〉| > 1 for all values d0, d1 ∈ {0, 1} and now we choose

a1 := max{h〈ip1||w0|+|w1|+1, d0w0d1w1〉(1) : d0, d1 ∈ {0, 1}} and b1 := 〈1, a1〉+ 1.

The next input is p2 := 0|w0|b00
|w1|b1000..., which represents a function ϕp2

i that satisfies
ϕp2
i (j) = aj for j ∈ {0, 1} and that is undefined otherwise. We continue the construction

inductively and obtain computable sequences (pn)n∈N in NN and (wn)n∈N in N∗ in this way.
The sequence (pn)n∈N converges to a computable p ∈ NN. This is because the construction
above only depends on the computable function h and yields longer and longer portions of p.
For every d ∈ {0, 1}N we denote by sd the sequence sd := d0w0d1w1d2w2... with dj := d(j).
The construction ensures that H〈ip, sd〉(n) ≤ ϕp

i (n) for every n ∈ N and d ∈ {0, 1}N and

hence H〈〈i, p〉, sd〉 6∈ NMAJ〈i, p〉 for every d ∈ {0, 1}N. On the other hand, there is some
d ∈ {0, 1}N of hyperimmune degree, which implies sd ∈ HYPDK〈i, p〉, since d≤T sd. This
yields a contradiction to the assumption and hence HYPD <W HYP.

Hence, there is no uniform computable method to find a hyperimmune q ∈ NN from an
arbitrary member of a hyperimmune degree. This also yields a second proof of NMAJ 6≤W DIS.
Finally, we mention that the separation in Proposition 6.5 also yields a separation of the
corresponding problems (i.e., the sets given by the respective solutions on computable
instances) in the Medvedev lattice (see [BGP21, Theorem 9.1]).

We now want to show that MEET is equivalent to HYP. The corresponding proof of
[HRSZ17, Theorem 38] can be transferred into our setting. On the first sight it might be a
bit surprising that replacing 6= by 6≥ makes a difference, while replacing < by = does not.
However, this comparison does not take the aspect of totality into account. For completeness
we include the proof, which is interesting by itself.

Proposition 6.6. HYP≡W MEET.

Proof. For p ∈ NN we have

MEET(p) = {q ∈ NN : (∀i)(ϕp
i total =⇒ (∃n) ϕp

i (n) = q(n))}.

We note that in the case of HYP we obtain a corresponding formulation with 6≥ instead of =.
In this case totality does not need to be mentioned as the negative condition is automatically
satisfied by partial ϕp

i . It is obvious that HYP≤sW MEET, as we just have to use q 7→ q + 1
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to translate the solution on the same input p. For the opposite direction we note that by the
smn-theorem there is a computable s : N→ N such that ϕp

s(i)(n) = Φp
i 〈i, n〉 for all i, n ∈ N.

Here Φp
i (n) denotes the time complexity, i.e., the number of computation steps required

to compute ϕp
i (n) (if it exists and undefined otherwise). Then given an input p ∈ NN and

q ∈ HYP(p) we can compute r ∈ NN with

r〈i, n〉 :=

{
ϕp
i 〈i, n〉 if Φp

i 〈i, n〉 < q(n)
0 otherwise

for all i, n ∈ N. If i ∈ N is such that ϕp
i is total, then Φp

i and hence ϕp
s(i) are total too and hence

there is some n ∈ N with Φp
i 〈i, n〉 = ϕp

s(i)(n) < q(n). This implies that r〈i, n〉 = ϕp
i 〈i, n〉, i.e.,

r ∈ MEET(p). Since r can be computed, given p, q, we obtain MEET≤W HYP.

We note that the backwards reduction is not a strong Weihrauch reduction.

7. Retractions, All-or-Unique Choice and Gödel Numbers

In the previous sections we have discussed the stashing of a number of problems of type
f :⊆ X ⇒ N with natural number output. In this particular situation we can also describe

stashing in an alternative way. This is because the space NN
is related to the space N⊆N of

partial functions f :⊆ N→ N that we can represent by δN⊆N〈i, p〉 := ϕp
i for all i ∈ N, p ∈ NN.

The exact relation between these two spaces is captured in the following lemma. The function
ι essentially identifies ↑ (i.e., undefined) with ⊥.

Lemma 7.1 (Space of partial functions). The function ι : N⊆N → NN
with

ι(p)(n) :=

{
p(n) if n ∈ dom(p)
⊥ otherwise

is computable and there is a computable function σ : NN → N⊆N such that σ ◦ ι(p) is an
extension of p for all p ∈ N⊆N.

The proof is straightforward. We just note that a prefix of a name of ⊥ can start like a
name of a natural number n ∈ N and continue with dummy symbols 0, which means that it

is actually a name of ⊥. Hence, we do not get that the spaces NN
and N⊆N are computably

isomorphic. However, Lemma 7.1 roughly speaking states that they are “isomorphic up to
extensions”. Hence, for every property that is invariant under extensions, it does not matter

whether we work with NN
or N⊆N. This does, in particular, apply to stashing. Hence, for

problems of type f :⊆ X ⇒ N we can also describe stashing by the following definition.

Definition 7.2. For every problem f :⊆ X ⇒ N we define ϕf :⊆ XN ⇒ NN by

ϕf(xn)n∈N := {〈i, p〉 ∈ NN : (∃n ∈ dom(ϕp
i )) ϕ

p
i (n) ∈ f(xn)}

for all (xn)n∈N ∈ dom(f)N.

Hence, as an immediate corollary of Lemma 7.1 we obtain the following corollary.

Corollary 7.3 (Stashing for discrete outputs). Σf ≡sW
ϕf for all problems f :⊆ X ⇒ N.
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This again sheds light on the fact that stashing of parallelizable problems gives us
computability-theoretic problems.

We note that the usage of the Gödel numbering and partial functions ϕp
i in the previous

sections was mostly related to the input side of problems. Hence, implicitly, we have worked
with the input space N⊆N. Now, we want to get some better understanding of the effect of

the space NN
on the output side. Corollary 7.3 can be seen as a way of replacing NN

on the
output side by NN.

For some problems, as those discussed in Propositions 5.2 and 5.10 it appeared that

directly replacing NN
by NN on the output side was also possible without changing the

degree. However, the problem NGEQ from Definition 6.1 is an example that shows that this

is not always possible. If we just replace NN
by NN in Σ(NGEQ), then we obtain NMAJ,

which is not equivalent to Σ(NGEQ) by Proposition 6.3.
Hence, it is useful to have upper bounds on the price that such a direct replacement of

NN
by NN costs. This is exactly captured by the following retraction problem RETX that we

define together with the closely related extension problem EXTX .

Definition 7.4 (Retraction and extension problems). For every represented space X and
Y ⊆ N we define the following problems:

(1) RETX : X ⇒ X,x 7→ {y ∈ X : x ∈ X =⇒ x = y},
(2) EXTY :⊆ NN ⇒ Y N, 〈i, p〉 7→ {q ∈ Y N : q is a total extension of ϕp

i },
where dom(EXTY ) := {〈i, p〉 : range(ϕp

i ) ⊆ Y }.

The parallelization R̂ETX captures the complexity of translating X
N

into XN. By
Lemma 7.1 we obtain the following.

Corollary 7.5. R̂ETX ≡sW EXTX for all X ⊆ N.

The problem RETX : X ⇒ X is a multi-valued retraction, i.e., a problem that satisfies
RETX |X = idX . And it is the simplest such retraction in terms of strong Weihrauch
reducibility. Hence, we obtain the following result.

Proposition 7.6 (Multi-retraceability). Let X be a represented space. Then there exists a
computable multi-valued retraction R : X ⇒ X if and only if RETX is computable.

Proof. It is clear that RETX is a multi-valued retraction, which yields the “if”–direction
of the proof. On the other hand, if there is a computable multi-valued retraction R, then
RETX ≤sWR and hence RETX is computable too.

Spaces that allow for computable multi-valued retractions were called multi-retraceable in
[BG20]. This condition was further studied by Hoyrup in [Hoy21] and related to fixed-point
properties. Here we rather have to deal with spaces that are not multi-retraceable. In these
cases we can consider the complexity of RETX as a measure of how far the space X is away
from multi-retraceability or, in other words, how difficult it is to determine total extensions.
We gain some upper bounds directly from [BG21, Proposition 2.10].

Fact 7.7. RETX ≤sW lim for all totally represented X and RETN≤sW CN.

For finite X ⊆ N we can classify RETX somewhat more precisely. It is quite easy to see
that the retraction problem RETn is just equivalent to all-or-unique choice AUCn and hence
located in between LLPO = AUC2 and Cn, as well as LPO.
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Proposition 7.8 (Retraction problem). LLPO≤sW RETn≡sW AUCn≤sW Cn, and
RETn≤sW RETN≡W LPO for all n ≥ 2.

Proof. We start with proving RETn≤sW AUCn. Given a name p of x ∈ N we generate a
name q of the set {0, 1, ..., n− 1}, as long as only dummy information appears in p. If some
prefix of p starts to look like a name of some k < n, then we modify the output q to a name
of the set {k}. Since k ∈ RETn(x), this yields the desired reduction.

Now we consider the inverse reduction AUCn≤sW RETn. Given a name p of a set
A ⊆ {0, 1, ..., n − 1} with A = {0, 1, ..., n − 1} or A = {k} for some k < n, we generate a
name of ⊥ as long as the name looks like a name of {0, 1, ..., n− 1}. In the moment where
the represented set is clearly smaller, we wait until the information suffices to identify the
singleton {k}, and then we modify the output to an output of k ∈ {0, 1, ..., n− 1}. If we

apply RETn to the generated point in {0, 1, ..., n− 1} it yields a point in A. This establishes
the desired reduction.

The reductions LLPO = AUC2≤sW AUCn≤sW Cn are clear for all n ≥ 2. The reduction
RETn≤sW RETN is easy to see, as well as RETN≤W LPO. For the latter reduction, we
consider a name p of an input x ∈ N. We use LPO in order to decide whether p 6= 0̂. If
p = 0̂, then we can produce any output k ∈ N; otherwise we search for the first non-zero
component k + 1 in p and produce the corresponding k as output. This yields the reduction
RETN≤W LPO. Finally, the reduction LPO≤W RETN can be seen as follows. Given an input
p ∈ NN, we seek the first non-zero component. If this component appears in position n, then
we generate the output x = n ∈ N. If there is no non-zero component, then we generate the
output x = ⊥ ∈ N. Now given some k ∈ RETN(x) and p, we search a non-zero component
in p up to position k. If such a non-zero component appears, then LPO(p) = 0; otherwise
LPO(p) = 1. This describes the reduction LPO≤W RETN.

Using this result, we obtain the pentagon of RETn in the Weihrauch lattice. By Fact 1.10

we have L̂LPO≡sW Ĉn≡sW WKL, which implies R̂ETn≡sW WKL. On the other hand, by
Proposition 5.10 we have L̂LPO≡sW L̂PO≡sW DIS and this yields RETn≡W DIS.

Corollary 7.9 (Pentagon of retractions). R̂ETn≡W R̂ETN≡W DIS, R̂ETn≡sW WKL, and

R̂ETN≡W lim for all n ≥ 2.

This means that in the Weihrauch lattice the pentagon of RETn for n ≥ 2 looks like the
pentagon of LLPO in Figure 4, while the pentagon of RETN looks like the pentagon of LPO
in Figure 5 (except that one cannot use strong Weihrauch reducibility). The first mentioned
fact is also interesting, as the problems RETn form a strictly increasing chain, as we prove
next by a simple cardinality argument.

Proposition 7.10. AUCn<W AUCn+1<W AUCN for all n ≥ 2.

Proof. It suffices to prove AUCn+1 6≤W AUCn for all n ≥ 2. Let us assume for a contradiction
that AUCn+1≤W AUCn for some n ≥ 2 via computable H,K. Now consider the name
p = 000... of the empty set ∅ = range(p − 1). Then ak := H〈p, k〉 ∈ {0, ..., n} for k < n
satisfy |{a0, ..., an−1}| ≤ n. For each k < n there is some prefix of p of length lk that suffices
to produce the output ak. For the prefix l := max{l0, ..., ln} we have

|H〈p|lNN × {0, ..., n}〉| = |{a0, ..., an−1}| ≤ n,
despite the fact that p|lNN contains names of all singleton sets A ⊆ {0, 1, ..., n}. Since there
are n+ 1 such sets, this is a contradiction!
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That means that with the problems RETn≡sW AUCn we have a strictly increasing
sequence of problems in between LLPO and LPO that all parallelize and stash to the same
problems, respectively. This is a strong refutation of injectivity of the following operation.

Corollary 7.11. The map f 7→ (f̂, f̂) is not injective on Weihrauch degrees.

This means that pentagons do not characterize the Weihrauch degrees that generate
them, even though they reveal some useful information about them.

8. Limit Avoidance and a Phase Transition

The pentagons determined so far are all related to the discontinuity problem. This could
lead to the false conclusion that DIS is the bottom vertex of typical pentagons. However,
this is rather based on the fact that our study of pentagons was motivated by an analysis
of the discontinuity problem. In this closing section we study the weakest problem known
to us whose stashing is not DIS. This is the limit avoidance problem NLIMN, defined below.
We define it together with the related non-lowness problem NLOW.

Definition 8.1 (Problems related to limits). We consider the following problems for X ⊆ N:

(1) NLIMX :⊆ XN ⇒ X, p 7→ {k ∈ X : limn→∞ p(n) 6= k} with
dom(NLIMX) = {p : (p(n))n∈N converges},

(2) NLOW : D ⇒ D, a 7→ {b ∈ D : b′ 6≤ a′}.
The following fact is easy to see:

Fact 8.2. ACCN≤sW NLIMN≤sW NLIM2≡sW lim2≤sW limN≡sW CN.

If we can prove that DIS<W N̂LIMN holds, then this implies that the stashings of all

problems above NLIMN also lie above DIS. We prove the following stronger result.

Proposition 8.3. N̂LIMN 6≤W WKL.

Proof. We recall that we are working with

N̂LIMN :⊆ NN ⇒ NN
, 〈p0, p1, p2, ...〉 7→ {q ∈ NN

: (∃n) lim
i→∞

pi(n) 6= q(n) ∈ N}.

Let us assume for a contradiction that N̂LIMN≤W WKL holds. As WKL is a cylinder

(i.e., satisfies id × WKL≡sW WKL), it follows that N̂LIMN≤sW WKL. Since stashing is

an interior operator, this yields N̂LIMN≤sW WKLD ≡sW PA by Fact 5.7. But this means

that every fixed r ∈ 2N of PA–degree has the property that it computes some fixed q
with q ∈ N̂LIMN〈p0, p1, p2, ...〉 for all computable 〈p0, p1, p2, ...〉 ∈ dom(N̂LIMN). This is

because the reduction N̂LIMN≤sW PA is a strong one and hence q only depends on r.

There are low r ∈ 2N of PA–degree, i.e., such that r′≤T ∅′. This is because the set of
diagonally non-computable binary functions is co-c.e. closed, every such function is of
PA-degree (see [Soa16, Theorem 10.3.3]) and by the low basis theorem there is a low
function among those (see [Soa16, Theorem 3.7.2]). Hence there is some fixed low q with
q ∈ N̂LIMN〈p0, p1, p2, ...〉 for all computable 〈p0, p1, p2, ...〉 ∈ dom(N̂LIMN). By Corollary 7.9

this implies that there is some t ∈ R̂ETN(q), which is limit computable, as R̂ETN≤sW lim and
limit computable problems yield some limit computable outputs on low inputs. This means
that for a fixed limit computable t : N→ N we have that limi→∞ pi 6= t for all computable
〈p0, p1, p2, ...〉 ∈ dom(N̂LIMN), which is impossible, as limi→∞ pi is limit computable.
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We mention that Fact 8.2 implies that DNCN≤sW N̂LIMN≤sW lim. We leave it to a
future study to determine the exact pentagons of the problems listed in Fact 8.2 other than
ACCN. Here we just mention one upper bound on ΠΣ(NLIMN).

Since DIS<W NON<W WKL it is clear that Proposition 8.3 implies N̂LIMN 6≤W DIS and

also ΠΣ(NLIMN) 6≤W NON. It is not difficult to show that the non-lowness problem is an
upper bound for ΠΣ(NLIMN).

Proposition 8.4. ΠΣ(NLIMN)≤sW NLOW.

Proof. For simplicity we work with the equivalent definition

NLOW : NN ⇒ NN, p 7→ {q ∈ NN : q′ 6≤T p
′}.

We first note that NLOW is parallelizable: this follows since q′ 6≤T〈p0, p1, p2, ...〉′ implies
q′ 6≤T p

′
i for all i ∈ N. Hence, it suffices to show N̂LIMN≤sW NLOW in order to obtain

ΠΣ(NLIMN)≤sW NLOW. Now given p := 〈p0, p1, p2, ...〉 such that r = limi→∞ pi exists
in NN, we have r≤T p

′. Now let q ∈ NN be such that q′ 6≤T p
′. Then using the time

complexity function Φq
i we can define by s〈i, n〉 := Φq

i (n) a partial function s :⊆ N → N
that is computable from q. This function has the property that every total extension
t : N → N of it computes q′. This is because we can simulate the computation of ϕq

i (n)
for given i, n for t〈i, n〉 time steps. And either the computation halts within this time
bound, which implies q′〈i, n〉 = 1 or it does not halt, which implies that t〈i, n〉 is not a
correct time bound, hence Φq

i (n) is undefined and hence q′〈i, n〉 = 0. By Lemma 7.1 we

can consider s as a function of type s : N→ N. Since every total extension t : N→ N of it
computes q′, we obtain t 6≤T p

′, which implies r 6= t for every such extension t. Hence there
is some n ∈ N with r(n) 6= s(n) ∈ N, i.e., s ∈ N̂LIMN(p). This establishes the reduction

ΠΣ(NLIMN)≤sW NLOW.

9. Conclusions

We have introduced the stashing operation as a dual of parallelization and we have proved
that it is an interior operator. The action of parallelization and stashing on Weihrauch
degrees naturally leads to the study of stashing-parallelization pentagons, which can be
used to describe a number of natural Weihrauch degrees. In many cases of the studied
pentagons the discontinuity problem featured as the bottom problem of the respective
pentagon. However, we were also able to identify a phase transition point, where this no
longer happens to be the case. The duality inherent in pentagons needs to be studied further
in order to simplify the calculation of pentagons, which tends to be difficult in more advanced
examples.
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