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AND MATHIAS RUGGAARD PEDERSEN a

aReykjavik University, Iceland
e-mail address: {luca,valentinac,annai,mathiasrp}@ru.is

bGran Sasso Science Institute (GSSI), Italy

cEindhoven University of Technology, The Netherlands
e-mail address: s.p.luttik@tue.nl

Abstract. This paper studies the existence of finite equational axiomatisations of the inter-
leaving parallel composition operator modulo the behavioural equivalences in van Glabbeek’s
linear time-branching time spectrum. In the setting of the process algebra BCCSP over a
finite set of actions, we provide finite, ground-complete axiomatisations for various simula-
tion and (decorated) trace semantics. We also show that no congruence over BCCSP that
includes bisimilarity and is included in possible futures equivalence has a finite, ground-
complete axiomatisation; this negative result applies to all the nested trace and nested
simulation semantics.

1. Introduction

Process algebras [BPS01, BBR10] are prototype specification languages allowing for the
description and analysis of concurrent and distributed systems, or simply processes. These
languages offer a variety of operators to specify composite processes from components one
has already built. Notably, in order to model the concurrent interaction between processes,
the majority of process algebras include some form of parallel composition operator, also
known as merge.

Following Milner’s seminal work on CCS [Mil89], the semantics of a process algebra is
often defined according to a two-step approach. In the first step, the operational seman-
tics [Plo81] of a process is modelled via a labelled transition system (LTS) [Kel76], in which
computational steps are abstracted into state-to-state transitions having actions as labels.

Behavioural equivalences have then been introduced, in the second step, as simple and
elegant tools for comparing the behaviour of processes. These are equivalence relations
defined on the states of LTSs allowing one to establish whether two processes have the
same observable behaviour. Different notions of observability correspond to different levels
of abstraction from the information carried by the LTS, which can either be considered
irrelevant in a given application context, or be unavailable to an external observer.
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In [Gla01], van Glabbeek presented the linear time-branching time spectrum, i.e., a
taxonomy of behavioural equivalences based on their distinguishing power. He carried out
his study in the setting of the process algebra BCCSP, which consists of the basic operators
from CCS [Mil89] and CSP [Hoa85], and he proposed ground-complete axiomatisations
for most of the congruences in the spectrum over this language. (An axiomatisation is
ground-complete if it can prove all the valid equations relating terms that do not contain
variables.) The presented ground-complete axiomatisations are finite if so is the set of actions.
For the ready simulation, ready trace and failure trace equivalences, the axiomatisation
in [Gla01] made use of conditional equations; Blom, Fokkink and Nain gave purely equational,
finite axiomatisations in [BFN03]. Then, the works in [AFGI04], on nested semantics, and
in [CF08], on impossible futures semantics, completed the studies of the axiomatisability
of behavioural congruences over BCCSP by providing negative results: neither impossible
futures nor any of the nested semantics have a finite, ground-complete axiomatisation over
BCCSP.

Obtaining a complete axiomatisation of a behavioural congruence is a classic, key
problem in concurrency theory, as an equational axiomatisation characterises the semantics
of a process algebra in a purely syntactic fashion. Hence, this characterisation becomes
independent of the details of the definition of the process semantics of interest, allowing one
to compare semantics that may have been defined in very different styles via a collection of
revealing axioms.

All the results mentioned so far were obtained over the algebra BCCSP, which does not
include any operator for the parallel composition of processes. Considering the crucial role
of such an operator, it is natural to ask which of those results would still hold over a process
algebra including it.

In the literature, we can find a wealth of studies on the axiomatisability of parallel
composition modulo bisimulation semantics [Par81]. Briefly, in the seminal work [HM85],
Hennessy and Milner proposed a ground-complete axiomatisation of the recursion-free
fragment of CCS modulo bisimilarity. That axiomatisation, however, included infinitely many
axioms, which corresponded to instances of the expansion law used to express equationally
the semantics of the merge operator. Then, Bergstra and Klop showed in [BK84] that a
finite ground-complete axiomatisation modulo bisimilarity can be obtained by enriching
CCS with two auxiliary operators, i.e., the left merge and the communication merge |.
Later, Moller proved that the use of auxiliary operators is indeed necessary to obtain a finite
equational axiomatisation of bisimilarity in [Mol89,Mol90a,Mol90b].

To the best of our knowledge, no systematic study of the axiomatisability of the parallel
composition operator modulo the other semantics in the spectrum has been presented so far.

Our contribution. We consider the process algebra BCCSP‖, i.e., BCCSP enriched with
the interleaving parallel composition operator, and we study the existence of finite equational
axiomatisations of the behavioural congruences in the linear time-branching time spectrum
over it. Our results delineate the boundary between finite and non-finite axiomatisability of
the congruences in the spectrum over the language BCCSP‖ (see Figure 1).

We start by providing a finite, ground-complete axiomatisation for ready simulation
semantics [BIM95]. The axiomatisation is obtained by extending the one for BCCSP with
a few axioms expressing equationally the behaviour of interleaving modulo the considered
congruence. The added axioms allow us to eliminate all occurrences of the interleaving
operator from BCCSP‖ processes, thus reducing ground-completeness over BCCSP‖ to
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ground-completeness over BCCSP [Gla01, BFN03]. Since the axioms for the elimination
of parallel composition modulo ready simulation equivalence are, of course, sound with
respect to equivalences that are coarser than ready simulation equivalence, the “reduction to
ground-completeness over BCCSP” works for all behavioural equivalences in the spectrum
below ready simulation equivalence. Nevertheless, for those equivalences, we shall offer
more elegant axioms to equationally eliminate parallel composition from closed terms. We
shall then observe a sort of parallelism between the axiomatisations for the notions of
simulation and the corresponding decorated trace semantics: the axioms used to equationally
express the interplay between the interleaving operator and the other operators of BCCSP
in a decorated trace semantics can be seen as the linear counterpart of those used in the
corresponding notion of simulation semantics. For instance, while the axioms for ready
simulation impose constraints on the form of both arguments of the interleaving operator to
facilitate equational reductions, those for ready trace equivalence impose similar constraints
but only on one argument.

Finally, we complete our journey in the spectrum by showing that nested simulation
and nested trace semantics do not have a finite axiomatisation over BCCSP‖. To this end,
firstly we adapt Moller’s arguments to the effect that bisimilarity is not finitely based over
CCS to obtain the negative result for possible futures equivalence, also known as 2-nested
trace equivalence. Informally, the negative result is obtained by providing an infinite family
of equations that are all sound modulo possible futures equivalence but that cannot all
be derived from any finite, sound axiom system. Then, we exploit the soundness modulo
bisimilarity of the equations in the family to extend the negative result to all the congruences
that are finer than possible futures and coarser than bisimilarity, thus including all nested
trace and nested simulation semantics.

All the results mentioned so far are obtained for a parallel composition operator that
implements interleaving without synchronisation between parallel components. As a natural
extension, we then discuss the effect of extending our results to parallel composition with
CCS-style synchronisation.

Organisation of contents. After reviewing some basic notions on behavioural equivalences
and equational logic in Section 2, we start our journey in the spectrum by providing a
finite, ground-complete axiomatisation for ready simulation equivalence over BCCSP‖ in
Section 3. In Section 4 we discuss how it is possible to refine the axioms for ready simulation
to obtain finite, ground-complete axiomatisations for completed simulation and simulation
equivalences. Then, in Section 5 similar refinements are provided for the (decorated) trace
equivalences, thus completing the presentation of our positive results. We end our journey
in Section 6 with the presentation of the negative results, namely that the nested simulation
and nested trace equivalences do not have a finite axiomatisation over BCCSP‖. In Section 7
we modify the semantics of parallel composition to allow processes running in parallel to
synchronise and we discuss the effect of this extension on the results obtained in Sections 3–6.
Finally, in Section 8 we draw some conclusions and discuss avenues for future work.

What’s new. A preliminary version of this paper appeared as [ACI+20]. We have enriched
our previous contribution as follows:

(1) We provide the full proofs of our results.
(2) We extend the results presented in [ACI+20] from purely interleaving parallel composition

to parallel composition with synchronisation à la CCS. (Section 7).
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a.x
a−→ x

x
a−→ x′

x+ y
a−→ x′

y
a−→ y′

x+ y
a−→ y′

x
a−→ x′

x ‖ y a−→ x′ ‖ y
y

a−→ y′

x ‖ y a−→ x ‖ y′

Table 1. Operational semantics of BCCSP‖.

(3) We present model constructions showing that the specific axioms we provide to axioma-
tise parallel compositions in ready simulation equivalence cannot be derived from the
axiomatisations of completed simulation equivalence and ready trace equivalence. Simi-
larly, we show that the axiomatisations of completed simulation and failure equivalence
cannot be derived from that of completed trace equivalence.

2. Background

2.1. The language. The language BCCSP‖ extends BCCSP with parallel composition.
Formally, BCCSP‖ consists of basic operators from CCS [Mil89] and CSP [Hoa85], with the
purely interleaving parallel composition operator ‖, and is given by the following grammar:

t ::= 0 | x | a.t | t+ t | t ‖ t
where a ranges over a set of actions A and x ranges over a countably infinite set of variables
V. In what follows, we assume that the set of actions A is finite and non-empty.

We shall use the meta-variables t, u, . . . to range over BCCSP‖ terms, and write var(t)
for the collection of variables occurring in the term t. We also adopt the standard convention
that prefixing binds strongest and + binds weakest. Moreover, trailing 0’s will often be
omitted from terms. We use a summation

∑
i∈{1,...,k} ti to denote the term t = t1 + · · ·+ tk,

where the empty sum represents 0. We can also assume that the terms ti, for i ∈ {1, . . . , k},
do not have + as head operator, and refer to them as the summands of t. The size of a
term t, denoted by size(t), is the number of operator symbols in it.

A BCCSP‖ term is closed if it does not contain any variables. We shall, sometimes, refer
to closed terms simply as processes. We let P denote the set of BCCSP‖ processes and let
p, q, . . . range over it. We use the Structural Operational Semantics (SOS) framework [Plo81]
to equip processes with an operational semantics. A literal is an expression of the form

t
a−→ t′ for some process terms t, t′ and action a ∈ A. It is closed if both t, t′ are closed terms.

The inference rules for prefixing a. , nondeterministic choice + and interleaving parallel
composition ‖ are reported in Table 1. A substitution σ is a mapping from variables to terms.
It extends to terms, literals and rules in the usual way. A substitution is closed if it maps
every variable to a process.

The inference rules in Table 1 induce the A-labelled transition system [Kel76] (P,A,−→)
whose transition relation −→ ⊆ P ×A× P contains exactly the closed literals that can be

derived using the rules in Table 1. As usual, we write p
a−→ p′ in lieu of (p, a, p′) ∈ −→. For

each p ∈ P and a ∈ A, we write p
a−→ if p

a−→ p′ holds for some p′, and p
a−→6 otherwise. The

initials of p are the actions that label the outgoing transitions of p, that is, I(p) = {a | p a−→}.
For a sequence of actions α = a1 · · · ak (k ≥ 0), and processes p, p′, we write p

α−→ p′ if and

only if there exists a sequence of transitions p = p0
a1−−→ p1

a2−−→ · · · ak−−→ pk = p′. If p
α−→ p′

holds for some process p′, then α is a trace of p, and p′ is a derivative of p. Moreover, we say
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bisimulation (∼B)

2-nested simulation (∼2S)

failure simulation (∼FS) = ready simulation (∼RS)

ready trace (∼RT)

failure trace (∼FT) readies (∼R)

failures (∼F)

completed trace (∼CT)

trace (∼T)

completed simulation (∼CS)

simulation (∼S)

possible futures (∼PF)

Figure 1. The linear time-branching time spectrum [Gla01]. For the equiv-
alence relations in blue we provide a finite, ground-complete axiomatization.
For the ones in red, we provide a negative result. The case of bisimulation is
known from the literature [Mol89,Mol90a,Mol90b].

that α is a completed trace of p if I(p′) = ∅. We let T(p) denote the set of traces of p, and
we use CT(p) ⊆ T(p) for the set of completed traces of p. We write ε for the empty trace; |α|
stands for the length of trace α. It is well known, and easy to show, that T(p) is finite and
CT(p) is non-empty for each BCCSP‖ process p. It follows that we can define the depth of a
process p, denoted by depth(p), as the length of a longest completed trace of p. Formally,
depth(p) = max{|α| | α ∈ CT(p)}. Similarly, the norm of a process p, denoted by norm(p),
is the length of a shortest completed trace of p, i.e. norm(p) = min{|α| | α ∈ CT(p)}.

2.2. Behavioural equivalences. Behavioural equivalences have been introduced to es-
tablish whether the behaviours of two processes are indistinguishable for their observers.
Roughly, they allow us to check whether the observable semantics of two processes is the
same. In the literature we can find several notions of behavioural equivalence based on the
observations that an external observer can make on the process. In his seminal article [Gla01],
van Glabbeek gave a taxonomy of the behavioural equivalences discussed in the literature
on concurrency theory, which is now called the linear time-branching time spectrum (see
Figure 1).

One of the main concerns in the development of a meta-theory of process languages is to
guarantee their compositionality, i.e., that the replacement of a component of a system with
an R -equivalent one, for a chosen behavioural equivalence R , does not affect the behaviour
of that system. In algebraic terms, this is known as the congruence property of R with
respect to all language operators, which consists in verifying whether

f(t1, . . . , tn)R f(t′1, . . . , t
′
n) for every n-ary operator f whenever tiR t′i for all i = 1, . . . , n.

Since BCCSP‖ operators are defined by inference rules in the de Simone format [dS85],
by [Gla93a, Theorem 4] we have that all the equivalences in the spectrum in Figure 1 are
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(e1) t ≈ t (e2)
t ≈ u
u ≈ t (e3)

t ≈ u u ≈ v
t ≈ v (e4)

t ≈ u
σ(t) ≈ σ(u)

(e5)
t ≈ u

a.t ≈ a.u (e6)
t ≈ u t′ ≈ u′
t+ t′ ≈ u+ u′

(e8)
t ≈ u t′ ≈ u′
t ‖ t′ ≈ u ‖ u′

.

Table 2. The rules of equational logic

(A0) x+ 0 ≈ x (P0) x ‖ 0 ≈ x
(A1) x+ y ≈ y + x (P1) x ‖ y ≈ y ‖ x
(A2) (x+ y) + z ≈ x+ (y + z)
(A3) x+ x ≈ x

Table 3. Basic axioms for BCCSP‖. We define E0 = {A0,A1,A2,A3} and
E1 = E0 ∪ {P0,P1}.

(EL1) ax ‖ by ≈ a(x ‖ by) + b(ax ‖ y)

(EL2)
∑

i∈I aixi ‖
∑

j∈J bjyj ≈
∑

i∈I ai(xi ‖
∑

j∈J bjyj) +
∑

j∈J bj(
∑

i∈I aixi ‖ yj)
with ai 6= ak whenever i 6= k and bj 6= bh whenever j 6= h, ∀ i, k ∈ I, ∀ j, h ∈ J

(EL3)
∑

i∈I aixi ‖
∑

j∈J bjyj ≈
∑

i∈I ai(xi ‖
∑

j∈J bjyj) +
∑

j∈J bj(
∑

i∈I aixi ‖ yj)

Table 4. The different instantiations of the expansion law.

congruences with respect to them. Our aim in this paper is to investigate the existence of a
finite equational axiomatisation of BCCSP‖ modulo all those congruences.

2.3. Equational Logic. An axiom system E is a collection of equations t ≈ u over BCCSP‖.
An equation t ≈ u is derivable from an axiom system E , notation E ` t ≈ u, if there is an
equational proof for it from E , namely if t ≈ u can be inferred from the axioms in E using
the rules of equational logic, which express reflexivity, symmetry, transitivity, substitution
and closure under BCCSP‖ contexts and are reported in Table 2. In equational proofs, we

shall write p
(A)
≈ q to highlight that the axiom denoted by A is used in that step of the proof.

We are interested in equations that are valid modulo some congruence relation R over
closed terms. The equation t ≈ u is said to be sound modulo R if σ(t) R σ(u) for all
closed substitutions σ. For simplicity, if t ≈ u is sound modulo R , then we write t R u. An
axiom system is sound modulo R if, and only if, all of its equations are sound modulo R .
Conversely, we say that E is ground-complete modulo R if p R q implies E ` p ≈ q for all
closed terms p, q. We say that R has a finite ground-complete axiomatisation, if there is a
finite axiom system E that is sound and ground-complete modulo R .

In Table 3 we present some basic axioms for BCCSP‖ that are sound with respect to
all the behavioural equivalences in Figure 1. Henceforth, we will let E0 = {A0,A1,A2,A3},
and we will denote by E1 the axiom system consisting of all the axioms in Table 3, namely
E1 = E0 ∪ {P0,P1}.
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To be able to eliminate the interleaving parallel composition operator from closed terms
we will make use of two refinements EL1 and EL2 of EL3, which is the classic expansion
law [HM85] (see Table 4). We remark that the actions occurring in the three axioms in
Table 4 are not action variables. Hence, when we write that an axiom system E includes one
of these axioms, we mean that it includes all possible instances of that axiom with respect
to the actions in A. In particular, EL3 is a schema that generates infinitely many axioms,
regardless of the cardinality of the set of actions. This is due to the fact that we can have
arbitrary summations in the two arguments of the parallel composition in the left hand side
of EL3. On the other hand, when the set of actions is assumed to be finite, we are guaranteed
that there are only finitely many instances of EL1 and EL2. Indeed, EL1 is a particular
instance of EL2, i.e., the one in which both summations are over singletons. The reason for
considering both is that, as we will see, EL1 is enough to obtain the elimination result when
combined with axioms allowing us to reduce any process of the form (

∑
i∈I aipi)‖(

∑
j∈J bjqj)

to
∑

i∈I,j∈J(aipi ‖ bjqj). Axiom EL2 is needed when this reduction is not sound modulo the
considered semantics.

3. Ready simulation

In this section, we begin our journey in the spectrum by studying the equational theory of
ready simulation equivalence, whose formal definition is recalled below together with those
of completed simulation and simulation equivalence.

Definition 3.1 (Simulation equivalences).

• A simulation is a binary relation R ⊆ P ×P such that, whenever pR q and p
a−→ p′, then

there is some q′ such that q
a−→ q′ and p′R q′. We write p vS q if there is a simulation R

such that pR q. We say that p is simulation equivalent to q, notation p ∼S q, if p vS q
and q vS p.
• A completed simulation is a simulation R such that, whenever pR q and I(p) = ∅, then
I(q) = ∅. We write p vCS q if there is a completed simulation R such that pR q. We say
that p is completed simulation equivalent to q, notation p ∼CS q, if p vCS q and q vCS p.
• A ready simulation is a simulation R such that, whenever pR q then I(p) = I(q). We

write p vRS q if there is a ready simulation R such that pR q. We say that p is ready
simulation equivalent to q, notation p ∼RS q, if p vRS q and q vRS p.

In [Gla93b] the notion of failure simulation was also introduced as a simulation R
such that, whenever pR q and I(p) ∩X = ∅, for some X ⊆ A, then I(q) ∩X = ∅. Then,
in [Gla93a] it was proved that the notion of failure simulation coincides with that of ready
simulation.

Our aim is to provide a finite, ground-complete axiomatisation of BCCSP‖ modulo
ready simulation equivalence. To this end, we recall that in [Gla01] it was proved that the
axiom system consisting of E0 together with axiom RS in Table 5 is a ground-complete
axiomatisation of BCCSP, i.e., the language that is obtained from BCCSP‖ if ‖ is omitted,
modulo ∼RS. Hence, to obtain a finite, ground-complete axiomatisation of BCCSP‖ modulo
∼RS it suffices to enrich the axiom system E1 ∪ {RS} with finitely many axioms allowing
one to eliminate all occurrences of ‖ from closed BCCSP‖ terms. In fact, by letting ERS
denote the axiom system E1 ∪ {RS} suitably enriched with such elimination axioms, the
elimination result consists in proving that for every closed BCCSP‖ term p there is a closed
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(RS) a(bx+ by + z) ≈ a(bx+ by + z) + a(bx+ z)

(RSP1) (ax+ ay + u) ‖ (bz + bw + v) ≈ (ax+ u) ‖ (bz + bw + v) + (ay + u) ‖ (bz + bw + v)+

+(ax+ ay + u) ‖ (bz + v) + (ax+ ay + u) ‖ (bw + v)

(RSP2)
(∑

i∈I aixi
)
‖ (by + bz + w) ≈

(∑
i∈I aixi

)
‖ (by + w) +

(∑
i∈I aixi

)
‖ (bz + w)+∑

i∈I ai (xi ‖ (by + bz + w))

where aj 6= ak whenever j 6= k for j, k ∈ I

ERS = E1 ∪ {RS, RSP1, RSP2, EL2}

Table 5. Additional axioms for ready simulation equivalence.

BCCSP term q (i.e., without any occurrence of ‖ in it) such that ERS ` p ≈ q. Then, the
completeness of the proposed axiom system over BCCSP‖ is a direct consequence of that
over BCCSP proved in [Gla01].

Clearly, EL3 would allow us to obtain the desired elimination, but, as previously
mentioned, it is a schema that finitely presents an infinite collection of equations, and thus
an axiom system including it is infinite. Instead, we include EL2, which is a variant of EL3
that generates only finitely many axioms (see Table 4), and the schemata RSP1 and RSP2
that characterise the distributivity of ‖ over + modulo ∼RS (see Table 5).

First of all, we notice that the axiom system ERS = E1∪{RS,RSP1,RSP2,EL2} is sound
modulo ready simulation equivalence.

Theorem 3.2 (ERS soundness). The axiom system ERS is sound for BCCSP‖ modulo ready
simulation equivalence, namely whenever ERS ` p ≈ q then p ∼RS q.

Let us focus now on ground-completeness. Intuitively, RSP1 and RSP2 have been
constructed in such a way that the set of initial actions of the two arguments of ‖ is preserved,
while the initial term is reduced to a sum of terms of smaller size. Briefly, according to the
main features of ready simulation semantics, axiom RSP1 allows us to distribute ‖ over +
when both arguments of ‖ have nondeterministic choices among summands having the same
initial action. Conversely, axiom RSP2 deals with the case in which only one argument of ‖
has summands with the same initial action. In order to preserve the branching structure of
the process, which is fundamental to guarantee the soundness of the axioms modulo ∼RS,
both RSP1 and RSP2 take into account the behaviour of both arguments of ‖: the terms in
the right-hand side of both axioms are such that whenever the initial nondeterministic choice
of one argument of ‖ is resolved, the entire behaviour of the other argument is preserved.
In fact, we stress that a simplified version of, e.g., RSP1 in which only one argument of
‖ distributes over + would not be sound modulo ∼RS. Consider, for instance, the process
p = (a + aa + b) ‖ c. It is immediate to verify that p 6∼RS (a + b) ‖ c + (aa + b) ‖ c (since
p 6vRS (a+ b) ‖ c+ (aa+ b) ‖ c).

The idea is that by (repeatedly) applying axioms RSP1 and RSP2, from left to right, we
are able to reduce a process of the form (

∑
i∈I pi)‖(

∑
j∈J pj) to one of the form

∑
k∈K pk such

that whenever pk has ‖ as head operator then pk =
∑

h∈H ahph ‖
∑

l∈L blpl, with ah 6= ah′
for h 6= h′, and bl 6= bl′ for l 6= l′, for some closed BCCSP‖ terms ph, pl. The elimination of ‖
from these terms can then proceed by means of the finitary refinement EL2 of the expansion
law presented in Table 4. In particular, we notice that RSP2 is needed because RSP1 alone
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does not allow us to reduce all processes of the form (
∑

i∈I pi) ‖ (
∑

j∈J pj) into a sum of
processes to which EL2 can be applied. This is mainly due to the fact that, in order to be
sound modulo ∼RS, RSP1 imposes constraints on the form of both arguments of a process
(
∑

i∈I pi) ‖ (
∑

j∈J pj).
We can then proceed to prove the elimination result, starting from a useful remark on

the form of closed BCCSP terms.

Remark 3.3 (General form of BCCSP processes). Given any closed BCCSP term p, we
can assume, without loss of generality, that p =

∑
i∈I aipi for some finite index set I, actions

ai ∈ A, and closed BCCSP terms pi, for i ∈ I. In fact, in case p is not already in this shape,
then by applying axioms A0 and A1 in Table 3 we can remove superfluous occurrences of 0
summands. In particular, we remark that this transformation does not increase the number
of operator symbols occurring in p.

Lemma 3.4. For all closed BCCSP terms p and q there exists a closed BCCSP term r
such that ERS ` p ‖ q ≈ r.

Proof. The proof is by induction on size(p) + size(q). Since p, q are closed BCCSP terms,
we can assume that p =

∑
i∈I aipi and q =

∑
j∈J bjqj (see Remark 3.3). We proceed by a

case analysis according to the cardinalities of the sets I and J .

(1) Case |I| = 0 or |J | = 0. In that case we can apply axioms P0 and P1 in Table 3 to
obtain that either p ‖ q ≈ p or p ‖ q ≈ q.

(2) Case |I| = |J | = 1. Let I = {i0} and J = {j0}. In this case we have that

p ‖ q
(EL2)
≈ ai0(pi0 ‖ bj0qj0) + bj0(ai0pi0 ‖ qj0),

so by induction hypothesis there exist closed BCCSP terms ri0 and rj0 such that

pi0 ‖ bj0qj0 ≈ ri0 and ai0pi0 ‖ qj0 ≈ rj0 .
We can conclude that p ‖ q ≈ ai0ri0 + bj0rj0 , where ai0ri0 + bj0rj0 is a closed BCCSP
term.

(3) Case |I| = 1 and |J | > 1. We consider two sub-cases:
• There exist j0, j1 ∈ J such that j0 6= j1 and bj0 = bj1.

In this case we have that

p ‖ q
(A2)
≈ p ‖

bj0qj0 + bj1qj1 +
∑

j∈J\{j0,j1}

bjqj


(RSP2)
≈ ai0

pi0 ‖ (bj0qj0 + bj1qj1 +
∑

j∈J\{j0,j1}

bjqj)


+ p ‖ (bj0qj0 +

∑
j∈J\{j0,j1}

bjqj) + p ‖ (bj1qj1 +
∑

j∈J\{j0,j1}

bjqj).

By the induction hypothesis there exist closed BCCSP terms r1, r2, and r3 such that

pi0 ‖ (bj0qj0 + bj1qj1 +
∑

j∈J\{j0,j1}

bjqj) ≈ r1

p ‖ (bj0qj0 +
∑

j∈J\{j0,j1}

bjqj) ≈ r2
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p ‖ (bj1qj1 +
∑

j∈J\{j0,j1}

bjqj) ≈ r3.

We have therefore obtained that p ‖ q ≈ ai0r1 + r2 + r3 for the closed BCCSP term
a0r1 + r2 + r3.
• For all j0, j1 ∈ J such that j0 6= j1 we have bj0 6= bj1.

In this case we have that

p ‖ q
(EL2)
≈ ai0(pi0 ‖

∑
j∈J

bjqj) +
∑
j∈J

bj(p ‖ qj),

and the induction hypothesis then gives, for each j ∈ J , a closed BCCSP term rj such
that

p ‖ qj ≈ rj
as well as a closed BCCSP term r′ such that

pi0 ‖
∑
j∈J

bjqj ≈ r′.

Therefore, p ‖ q is equivalent to the closed BCCSP term ai0r
′ +
∑

j∈J bjrj .

(4) Case |I| > 1 and |J | = 1. This case can be handled symmetrically to the case where
|I| = 1 and |J | > 1 by applying axiom P1 in Table 3.

(5) Case |I| > 1 and |J | > 1. We consider four sub-cases:
• There exist i0 and i1 such that i0 6= i1 and ai0 = ai1, and there exist j0 and
j1 such that j0 6= j1 and bj0 = bj1.
In this case we have that

p ‖ q ≈ (ai0pi0 + ai1pi1 +
∑

i∈I\{i0,i1}

aipi) ‖ (bj0qj0 + bj1qj1 +
∑

j∈J\{j0,j1}

bjqj)

(RSP1)
≈ (ai0pi0 +

∑
i∈I\{i0,i1}

aipi) ‖ (bj0qj0 + bj1qj1 +
∑

j∈J\{j0,j1}

bjqj)

+ (ai1pi1 +
∑

i∈I\{i0,i1}

aip1) ‖ (bj0qj0 + bj1qj1 +
∑

j∈J\{j0,j1}

bjqj)

+ (ai0pi0 + ai1pi1 +
∑

i∈I\{i0,i1}

aipi) ‖ (bj0qj0 +
∑

j∈J\{j0,j1}

bjqj)

+ (ai0pi0 + ai1pi1 +
∑

i∈I\{i0,i1}

aipi) ‖ (bj1qj1 +
∑

j∈J\{j0,j1}

bjqj).

By the induction hypothesis there are closed BCCSP terms r1, r2, r3, and r4 such
that

r1 ≈ (ai0pi0 +
∑

i∈I\{i0,i1}

aipi) ‖ (bj0qj0 + bj1qj1 +
∑

j∈J\{j0,j1}

bjqj)

r2 ≈ (ai1pi1 +
∑

i∈I\{i0,i1}

aip1) ‖ (bj0qj0 + bj1qj1 +
∑

j∈J\{j0,j1}

bjqj)

r3 ≈ (ai0pi0 + ai1pi1 +
∑

i∈I\{i0,i1}

aipi) ‖ (bj0qj0 +
∑

j∈J\{j0,j1}

bjqj)
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r4 ≈ (ai0pi0 + ai1pi1 +
∑

i∈I\{i0,i1}

aipi) ‖ (bj1qj1 +
∑

j∈J\{j0,j1}

bjqj).

Hence p ‖ q is equivalent to the closed BCCSP term r1 + r2 + r3 + r4.
• There exist i0 and i1 such that i0 6= i1 and ai0 = ai1, and for all j0 and j1

such that j0 6= j1 we have bj0 6= bj1.
In this case we have that

p ‖ q ≈ (ai0pi0 + ai1pi1 +
∑

i∈I\{i0,i1}

aipi) ‖ (
∑
j∈J

bjqj)

(P1)
≈ (
∑
j∈J

bjqj) ‖ (ai0pi0 + ai1pi1 +
∑

i∈I\{i0,i1}

aipi)

(RSP2)
≈

∑
j∈J

bj(qj ‖ (ai0pi0 + ai1pi1 +
∑

i∈I\{i0,i1}

aipi))

+ (
∑
j∈J

bjqj) ‖ (ai0pi0 +
∑

i∈I\{i0,i1}

aipi) + (
∑
j∈J

bjqj) ‖ (ai1pi1 +
∑

i∈I\{i0,i1}

aipi),

so the induction hypothesis gives, for each j ∈ J , a closed BCCSP term rj such that

rj ≈ qj ‖ (ai0pi0 + ai1pi1 +
∑

i∈I\{i0,i1}

aipi),

as well as closed BCCSP terms r′ and r′′ such that

r′ ≈ (
∑
j∈J

bjqj) ‖ (ai0pi0 +
∑

i∈I\{i0,i1}

aipi)

r′′ ≈ (
∑
j∈J

bjqj) ‖ (ai1pi1 +
∑

i∈I\{i0,i1}

aipi).

Thus p ‖ q is equivalent to the closed BCCSP term
∑

j∈J bjrj + r′ + r′′.
• For all i0 and i1 such that i0 6= i1 we have ai0 6= ai1, and there exist j0

and j1 such that j0 6= j1 and bj0 = bj1.
This case follows by applying a symmetrical argument to that used in the previous
item and it is therefore omitted.
• For all i0 and i1 such that i0 6= i1 we have ai0 6= ai1, and for all j0 and j1

such that j0 6= j1 we have bj0 6= bj1.
In this case we have that

p ‖ q ≈
∑
i∈I

aipi ‖
∑
j∈J

bjqj

and all the conditions for an application of axiom EL2 in Table4 are satisfied. Hence

p ‖ q
(EL2)
≈

∑
i∈I

ai(pi ‖
∑
j∈J

bjqj) +
∑
j∈J

bj(
∑
i∈I

aipi ‖ qj),

and by the induction hypothesis there exist, for each i ∈ I, a closed BCCSP term ri
such that

ri ≈ pi ‖
∑
j∈J

bjqj ,
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and for each j ∈ J , a closed BCCSP term r′j such that

r′j ≈
∑
i∈I

aipi ‖ qj .

Therefore p ‖ q is equivalent to the closed BCCSP term
∑

i∈I airi +
∑

j∈J bjr
′
j .

Proposition 3.5 (ERS elimination). For every closed BCCSP‖ term p there exists a BCCSP
term q such that ERS ` p ≈ q.

Proof. Straightforward by induction on the structure of p, using Lemma 3.4 in the case that
p is of the form p1 ‖ p2 for some processes p1 and p2.

The ground-completeness of ERS then follows from the ground-completeness of E0 ∪{RS}
over BCCSP [Gla01].

Theorem 3.6 (ERS completeness). The axiom system ERS is a ground-complete axioma-
tisation of BCCSP‖ modulo ready simulation equivalence, i.e., whenever p ∼RS q then
ERS ` p ≈ q.

We remark that since axioms RSP1, RSP2, and EL2 are sound modulo ready simulation
equivalence, they are automatically sound modulo all the equivalences in the spectrum
that are coarser than ∼RS, namely the completed simulation, simulation, and (decorated)
trace equivalences. Hence, we can easily obtain finite, ground-complete axiomatisations
of BCCSP‖ modulo each of those equivalences by adding RSP1, RSP2 and EL2 to the
respective ground-complete axiomatisations of BCCSP that have been proposed in the
literature [Gla01,BFN03]. However, for each of those equivalences we can provide stronger
axioms that give a more elegant characterisation of the distributivity properties of ‖ over +.

In particular, the axiom schema RSP2 yields |A| ·2|A| equational axioms and EL2 yields 22|A|

equational axioms. By exploiting the various forms of distributivity of parallel composition
over choice, we can obtain more concise ground-complete axiomatisations of BCCSP‖ modulo
the coarser equivalences. We devote the next two sections to the presentation of these results.

4. Completed simulation and simulation

In this section we refine the axiom system ERS to obtain finite, ground-complete axioma-
tisations of BCCSP‖ modulo completed simulation and simulation equivalences. To this
end, we replace RSP1 and RSP2 with new axioms, tailored for the considered semantics,
that allow us to obtain the elimination of ‖ from closed BCCSP‖ terms, while using less
restrictive forms of distributivity of ‖ over +.

Let us focus first on completed simulation equivalence. We can use axioms CSP1 and
CSP2 in Table 6 to characterise restricted forms of distributivity of ‖ over + modulo ∼CS.
Intuitively, CSP1 is the completed simulation counterpart of RSP1, and CSP2 is that of RSP2.
Notice that both CSP1 and CSP2 are such that, when distributing ‖ over +, we never obtain
0 as an argument of ‖, thus guaranteeing their soundness modulo ∼CS. Moreover, we stress
that CSP1 and CSP2 are not sound modulo ready simulation equivalence. This is due to the
fact that both axioms allow for distributing ‖ over + regardless of the initial actions of the
summands. It is then immediate to check that, for instance, a‖(b+c) 6∼RS a‖b+a‖c+a‖(b+c),
whereas a ‖ (b+ c) ∼CS a ‖ b+ a ‖ c+ a ‖ (b+ c). Interestingly, due to the relaxed constraints
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(CS) a(bx+ y + z) ≈ a(bx+ y + z) + a(bx+ z)

(CSP1) (ax+ by + u) ‖ (cz + dw + v) ≈ (ax+ u) ‖ (cz + dw + v) + (by + u) ‖ (cz + dw + v)+

+(ax+ by + u) ‖ (cz + v) + (ax+ by + u) ‖ (dw + v)

(CSP2) ax ‖ (by + cz + w) ≈ a(x ‖ (by + cz + w)) + ax ‖ (by + w) + ax ‖ (cz + w)

ECS = E1 ∪ {CS, CSP1, CSP2, EL1}

(S) a(x+ y) ≈ a(x+ y) + ax

(SP1) (x+ y) ‖ (z + w) ≈ x ‖ (z + w) + y ‖ (z + w) + (x+ y) ‖ z + (x+ y) ‖ w
(SP2) ax ‖ (y + z) ≈ a(x ‖ (y + z)) + ax ‖ y + ax ‖ z

ES = E1 ∪ {S, SP1, SP2, EL1}

Table 6. Additional axioms for (completed) simulation equivalence.

on distributivity, by (repeatedly) applying CSP1 and CSP2, from left to right, we are able
to reduce a BCCSP‖ process of the form (

∑
i∈I pi) ‖ (

∑
j∈J pj) to a BCCSP‖ process of

the form
∑

k∈K pk such that whenever pk has ‖ as head operator then pk = akqk ‖ bkq′k for
some qk, q

′
k. We can then use the refinement EL1 of the expansion law to proceed with the

elimination of ‖ from these terms.
Consider the axiom system ECS = E1 ∪ {CS,CSP1,CSP2,EL1}. We can formalise the

elimination result for ∼CS as a direct consequence of the following result.

Lemma 4.1. For all closed BCCSP terms p and q there exists a closed BCCSP term r
such that ECS ` p ‖ q ≈ r.

Proof. The proof is by induction on size(p)+size(q). First note that, since p and q are closed
BCCSP terms, we may assume that p =

∑
i∈I aipi and q =

∑
j∈J bjqj (see Remark 3.3).

We proceed by a case analysis according to the cardinalities of the sets I and J .

(1) Case |I| = 0 or |J | = 0. First note that if |J | = 0, i.e., J = ∅, then q = 0, so p ‖ q ≈ p
by P0, and p is the required closed BCCSP term. Similarly, if |I| = 0, i.e., I = ∅, then
p = 0, so p ‖ q ≈ q ‖ p ≈ q by P1 and P0 in Table 3, and q is the required closed BCCSP
term.

(2) Case |I| = |J | = 1. Let I = {i0} and J = {j0}, then

p ‖ q
(EL1)
≈ ai0(pi0 ‖ q) + bj0(p ‖ qj0).

Since size(pi0) < size(p) and size(qj0) < size(q), by the induction hypothesis there exist
closed BCCSP terms ri0 and rj0 such that pi0 ‖ q ≈ ri0 and p ‖ qj0 ≈ rj0 . It follows that
p ‖ q ≈ ai0ri0 + bj0rj0 and clearly ai0ri0 + bj0rj0 is a closed BCCSP term.

(3) Case |I| = 1 and |J | > 1. We can then assume that I = {i0} and there exist j0, j1 ∈ J
such that j0 6= j1, then

p ‖ q
(CSP2)
≈ ai0(pi ‖ q) + p ‖

(∑
j∈J\{j0} bjqj

)
+ p ‖

(∑
j∈J\{j1} bjqj

)
.

Since size(pi0) < size(p), size(
∑

j∈J\{j0} bjqj) < size(q) and size(
∑

j∈J\{j1} bjqj) <

size(q), by the induction hypothesis there exist closed BCCSP terms ri0 , rj0 and rj1
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such that

pi0 ‖ q ≈ ri0 p ‖

 ∑
j∈J\{j0}

bjqj

 ≈ rj0 and p ‖

 ∑
j∈J\{j1}

bjqj

 ≈ rj1 .
So we have p ‖ q ≈ ai0ri0 + rj0 + rj1 and ai0ri0 + rj0 + rj1 is a closed BCCSP term.

(4) Case |I| > 1 and |J | = 1. The proof is similar as in the previous case, with an additional
application of axiom P1 in Table 3.

(5) Case |I|, |J | > 1. In this case there exist i0, i1 ∈ I with i0 6= i1 and j0, j1 ∈ J with
j0 6= j1. Then

p ‖ q
(CSP1)
≈

 ∑
i∈I\{i0}

aipi

 ‖ q +

 ∑
i∈I\{i1}

aipi

 ‖ q
+ p ‖

 ∑
j∈J\{j0}

bjqj

+ p ‖

 ∑
j∈J\{j1}

bjqi

 .

Note that size

 ∑
i∈I\{i0}

aipi

 < size(p) and size

 ∑
i∈I\{i1}

aipi

 < size(p), as well as

size

 ∑
j∈J\{j0}

bjqj

 < size(q) and size

 ∑
j∈J\{j1}

bjqi

 < size(q), so by the induction

hypothesis there exist ri0 , ri1 , rj0 and rj1 such that ∑
i∈I\{i0}

aipi

 ‖ q ≈ ri0 ,
 ∑
i∈I\{i1}

aipi

 ‖ q ≈ ri1
p ‖

 ∑
j∈J\{j0}

bjqj

 ≈ rj0 p ‖

 ∑
j∈J\{j1}

bjqi

 ≈ rj1 .
It follows that p ‖ q ≈ ri0 + ri1 + rj0 + rj1 and ri0 + ri1 + rj0 + rj1 is a closed BCCSP
term.

Proposition 4.2 (ECS elimination). For every closed BCCSP‖ term p there exists a BCCSP
term q such that ECS ` p ≈ q.

Proof. Straightforward by induction on the structure of p, using Lemma 4.1 in the case that
p is of the form p1 ‖ p2 for some p1 and p2.

A similar reasoning could be applied to obtain the elimination result for simulation
equivalence. Although this result could be directly derived by the soundness of CSP1
and CSP2 modulo simulation equivalence, stronger distributivity properties for parallel
composition over summation hold modulo ∼S. Instead of CSP1 and CSP2, we include SP1
and SP2 in Table 6, letting ES = E1 ∪ {S,SP1,SP2,EL1}. By showing that the axioms CS,
CSP1 and CSP2 are derivable from ES, we can obtain the elimination result for simulation
equivalence as an immediate corollary of that for completed simulation.
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Lemma 4.3. The axioms of the system ECS are derivable from the axiom system ES, namely:

(1) ES ` CS,
(2) ES ` CSP1, and
(3) ES ` CSP2.

Proof. We start with the derivation of CS. We have the following equational derivation:

a(bx+ y + z)
(A1),(A2)
≈ a(bx+ z + y)

(S)
≈ a(bx+ z + y) + a(bx+ z)

(A1),(A2)
≈ a(bx+ y + z) + a(bx+ z).

In the case of CSP1, we have the following equational derivation:

(ax+ by + u) ‖ (cz + dw + v)

(A1),(A3)
≈ (ax+ u+ by + u) ‖ (cz + v + dw + v)

(SP1)
≈ (ax+ u) ‖ (cz + v + dw + v) + (by + u) ‖ (cz + v + dw + v)

+ (ax+ u+ by + u) ‖ (cz + v) + (ax+ u+ by + u) ‖ (dw + v)

(A1),(A3)
≈ (ax+ u) ‖ (cz + dw + v) + (by + u) ‖ (cz + dw + v)

+ (ax+ by + u) ‖ (cz + v) + (ax+ by + u) ‖ (dw + v).

Finally, for CSP2 we have the following equational derivation:

ax ‖ (by + cz + w)

(A1),(A3)
≈ ax ‖ (by + w + cz + w)

(SP2)
≈ a(x ‖ (by + w + cz + w)) + ax ‖ (by + w) + ax ‖ (cz + w)

(A1),(A3)
≈ a(x ‖ (by + cz + w)) + ax ‖ (by + w) + ax ‖ (cz + w).

Proposition 4.4 (ES elimination). For every closed BCCSP‖ term p there exists a closed
BCCSP term q such that ES ` p ≈ q.

Remark 4.5. As we showed in Lemma 4.3, the axiom system ES proves all the equations in
ECS. A natural question at this point is whether all the equations in ERS can be derived from
ECS. Indeed, that result would allow one to infer Proposition 4.2 (the elimination result for
completed simulation equivalence) from Proposition 3.5 (the elimination result for ready
simulation equivalence). The answer is negative, as it is not possible to derive EL2 from ECS
. To prove this claim, we have used Mace4 [McC10] to generate a model for ECS in which
EL2 does not hold (if there are at least two actions). The code can be found in Appendix A.
Below, we only present the model and show that it does not satisfy EL2. The verification
that the model indeed satisfies the axioms of ECS is lengthy and tedious. We used the mCRL2
toolset [GM14,BGK+19] to double check the correctness of the model produced by Mace4.

Let A = {a, b}, and consider the model with carrier set {0, 1, 2, 3, 4} and the operations
defined in Table 7. Briefly, each table reports, in cell i, j, the result of an application of
the operator in the top left corner to the i-th element from the leftmost column and the
j-th element from the top row. Clearly, as the prefixing operators a and b are unary, they
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a: 0 1 2 3 4
2 2 3 4 4

b: 0 1 2 3 4
3 2 3 4 4

‖: 0 1 2 3 4
0 0 1 2 3 4
1 1 0 2 1 2
2 2 2 3 4 4
3 3 1 4 4 4
4 4 2 4 4 4

+: 0 1 2 3 4
0 0 1 2 3 4
1 1 1 2 3 4
2 2 2 2 4 4
3 3 3 4 3 4
4 4 4 4 4 4

Table 7. A model for ECS and ECT.

are applied only to the elements in the top row. So, for instance, a(0) = 2, b(0) = 3, and
‖(2, 3) = 4. Notice that the tables for parallel composition and nondeterministic choice are
symmetric, as the two operators are commutative. This model does not satisfy

(ax+ by)‖ (az+ bw) ≈ a(x‖ (az+ bw)) + b(y ‖ (az+ bw)) +a((ax+ by)‖ z) + b((ax+ by)‖w)

for, e.g., the valuation x = 0, y = 0, z = 1, and w = 1. In fact, the left-hand side term is
mapped to 4, while the right-hand term is mapped to 3.

In light of the results above, and those in [Gla01] showing that E0∪{CS} and E0∪{S} are
sound and ground-complete axiomatisations of BCCSP modulo ∼CS and ∼S, respectively, we
can infer that ECS and ES are ground-complete axiomatisations of BCCSP‖ modulo completed
simulation equivalence and simulation equivalence, respectively.

Theorem 4.6 (Soundness and completeness of ECS and ES). Let X ∈ {CS, S}. The axiom
system EX is a sound, ground-complete axiomatisation of BCCSP‖ modulo ∼X, i.e., p ∼X q
if and only if EX ` p ≈ q.

At the end of Section 3 we noticed that the size of ERS is exponential in A. Now, as a
final remark, we observe that the size of ECS is polynomial in |A|, and the size of ES is linear
in |A|. In detail, ECS contains |A|2 equations that are instances of CS, |A|4 equations that
are instances of CSP1, and |A|3 equations arising from (CSP2). On the other hand, in ES,
the axiom schemata S and SP2 yield |A| equations each, whereas SP1 is just one equation.

5. Linear semantics: from ready traces to traces

We continue our journey in the spectrum by moving to the linear-time semantics. In this
section we consider trace semantics and all of its decorated versions, and we provide a finite,
ground-complete axiomatisation for each of them (see Table 8).

From a technical point of view, we can split the results of this section into two parts:

(1) those for ready trace, failure trace, ready, and failures equivalence, and
(2) those for completed trace, and trace equivalence.

In both parts we prove the elimination result only for the finest semantics, namely ready
trace (Proposition 5.3) and completed trace (Proposition 5.11) respectively. We then obtain
the remaining elimination results by showing that all the axioms in EX are provable from EY,
where X is finer than Y in the considered part.
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(RT) a
(∑|A|

i=1(bixi + biyi) + z
)
≈ a

(∑|A|
i=1 bixi + z

)
+ a

(∑|A|
i=1 biyi + z

)
(FP) (ax+ ay + w) ‖ z ≈ (ax+ w) ‖ z + (ay + w) ‖ z
ERT = E1 ∪ {RT,FP,EL2}

(FT) ax+ ay ≈ ax+ ay + a(x+ y)

EFT = E1 ∪ {FT,RS,FP,EL2}

(R) a(bx+ z) + a(by + w) ≈ a(bx+ by + z) + a(by + w)

ER = E1 ∪ {R, FP, EL2}

(F) ax+ a(y + z) ≈ ax+ a(x+ y) + a(y + z)

EF = E1 ∪ {F, R, FP, EL2}

Table 8. Additional axioms for ready (trace) and failure (trace) equivalences.

5.1. From ready traces to failures. First we deal with the decorated trace semantics
based on the comparison of the failure and ready sets of processes.

Definition 5.1 (Readiness and failures equivalences). • A failure pair of a process p is

a pair (α,X), with α ∈ A∗ and X ⊆ A, such that p
α−→ q for some process q with

I(q) ∩X = ∅. We denote by F(p) the set of failure pairs of p. Two processes p and q are
failures equivalent, denoted p ∼F q, if F(p) = F(q).

• A ready pair of a process p is a pair (α,X), with α ∈ A∗ and X ⊆ A, such that p
α−→ q

for some process q with I(q) = X. We let R(p) denote the set of ready pairs of p. Two
processes p and q are ready equivalent, written p ∼R q, if R(p) = R(q).
• A failure trace of a process p is a sequence X0a1X1 . . . anXn, with Xi ⊆ A and ai ∈ A,

such that there are p1, . . . , pn ∈ P with p = p0
a1−−→ p1

a2−−→ . . .
an−−→ pn and I(pi) ∩Xi = ∅

for all 0 ≤ i ≤ n. We write FT(p) for the set of failure traces of p. Two processes p and q
are failure trace equivalent, denoted p ∼FT q, if FT(p) = FT(q).
• A ready trace of a process p is a sequence X0a1X1 . . . anXn, for Xi ⊆ A and ai ∈ A, such

that there are p1, . . . pn ∈ P with p = p0
a1−−→ p1

a2−−→ . . .
an−−→ pn and I(pi) = Xi for all

0 ≤ i ≤ n. We write RT(p) for the set of ready traces of p. Two processes p and q are
ready trace equivalent, denoted p ∼RT q, if RT(p) = RT(q).

We consider first the finest equivalence among those in Definition 5.1, namely ready
trace equivalence. This can be considered as the linear counterpart of ready simulation: we
focus on the current execution of the process and we require that each step is mimicked by
reaching processes having the same sets of initial actions. Interestingly, we can find a similar
correlation between the axioms characterising the distributivity of ‖ over + modulo the two
semantics. Consider axiom FP in Table 8. We can see this axiom as the linear counterpart
of RSP1: since in the linear semantics we are interested only in the current execution of a
process, we can characterise the distributivity of ‖ over + by treating the two arguments
of ‖ independently from one another. To obtain the elimination result for ∼RT we do not
need to introduce the linear counterpart of axiom RSP2. In fact, FP imposes constraints on
the form of only one argument of ‖. Hence, it is possible to use it to reduce any process of
the form (

∑
i∈I pi) ‖ (

∑
j∈J pj) into a sum of processes to which EL2 can be applied. We



15:18 L. Aceto, V. Castiglioni, A. Ingólfsdóttir, B. Luttik, and M. R. Pedersen Vol. 18:1

can in fact prove that the axioms in the system ERT = E1 ∪ {RT,FP,EL2} are sufficient to
eliminate all occurrences of ‖ from closed BCCSP‖ terms.

Lemma 5.2. For all closed BCCSP terms p, q there exists a closed BCCSP term r such
that ERT ` p ‖ q ≈ r.

Proof. The proof proceeds by induction on the total number of operator symbols occurring
in p and q together, not counting parentheses. First of all we notice that, since p and
q are closed BCCSP terms, we can assume that p =

∑
i∈I aipi and q =

∑
j∈J bjqj (see

Remark 3.3).
We proceed by a case analysis according to the cardinalities of the sets I and J .

(1) Case |I| = 0 or |J | = 0. In case that |J | = 0, i.e., J = ∅, then q = 0, so ERT ` p ‖ q ≈ p
by P0, and p is the required closed BCCSP term. Similarly, if |I| = 0, i.e., I = ∅, then
p = 0, so ERT ` p ‖ q ≈ q ‖ p ≈ q by P0 and P1 in Table 3, and q is the required closed
BCCSP term.

(2) Case |I| = |J | = 1. Let I = {i0} and J = {j0}, then

p ‖ q
(EL2)
≈ ai0(pi0 ‖ q) + bj0(p ‖ qj0).

Since both pi0 and qj0 have fewer symbols than p and q, respectively, by the inductive
hypothesis there exist closed BCCSP terms ri0 and rj0 such that ERT ` pi0 ‖ q ≈ ri0 and
ERT ` p ‖ qj0 ≈ rj0 . It follows that ERT ` p ‖ q ≈ ai0ri0 + bj0rj0 , where ai0ri0 + bj0rj0 is a
closed BCCSP term.

(3) Case |I| = 1 and |J | > 1. We can then assume that I = {i0} and there exist j0, j1 ∈ J
such that j0 6= j1. We can now distinguish two cases, according to whether bj0 = bj1 for
some j0, j1 ∈ J with j0 6= j1, or not.
• There are some j0, j1 ∈ J such that j0 6= j1 and bj0 = bj1.

In this case we have that

p ‖ q
(P1)
≈

∑
j∈J

bjqj

 ‖ p (FP)
≈

 ∑
j∈J\{j0}

bjqj

 ‖ p+

 ∑
j∈J\{j1}

bjqj

 ‖ p.
Since both

∑
j∈J\{j0} bjqj and

∑
j∈J\{j1} bjqj have fewer operator symbols than q, by

the inductive hypothesis there exist closed BCCSP terms rj0 and rj1 such that

ERT `

 ∑
j∈J\{j0}

bjqj

 ‖ p ≈ rj0 and ERT `

 ∑
j∈J\{j1}

bjqj

 ‖ p ≈ rj1 .
Therefore, we get that ERT ` p ‖ q ≈ rj0 + rj1 , where rj0 + rj1 is a closed BCCSP term.
• For all j0, j1 ∈ J such that j0 6= j1 it holds that bj0 6= bj1. In this case we

have that

p ‖ q
(EL2)
≈ ai0(pi0 ‖ q) +

∑
j∈J

bj(p ‖ qj),

where pi0 has fewer operator symbols than p and each qj has fewer operator symbols
than q. Hence, by the inductive hypothesis, we obtain that there is a closed BCCSP
term ri0 such that

ERT ` pi0 ‖ q ≈ ri0 ,
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and for each j ∈ J there is a closed BCCSP term rj such that

ERT ` p ‖ qj ≈ rj .
We can thus conclude that ERT ` p ‖ q ≈ ai0ri0 +

∑
j∈J bjrj , where the right hand side

of the equation is a closed BCCSP term.
(4) Case |I| > 1 and |J | = 1. The proof is similar as in the previous case, with an additional

initial application of axiom P1 in Table 3.
(5) Case |I|, |J | > 1. In this case there exist i0, i1 ∈ I with i0 6= i1 and j0, j1 ∈ J with

j0 6= j1. The proof follows the same reasoning used in the case |I| = 1 and |J | > 1; we
distinguish three cases:
• There are i0, i1 ∈ I such that i0 6= i1 and ai0 = ai1.

In this case we have that

p ‖ q
(FP)
≈

 ∑
i∈I\{i0}

aipi

 ‖ q +

 ∑
i∈I\{i1}

aipi

 ‖ q.
As both

∑
i∈I\{i0} aipi and

∑
i∈I\{i1} aipi have fewer operator symbols than p, by the

inductive hypothesis we get that there are closed BCSSP terms ri0 and ri1 such that

ERT `

 ∑
i∈I\{i0}

aipi

 ‖ q ≈ ri0 and ERT `

 ∑
i∈I\{i1}

aipi

 ‖ q ≈ ri1 .
Consequently, we get that ERT ` p ‖ q ≈ ri0 + ri1 , where ri0 + ri1 is a closed BCCSP
term.
• There are some j0, j1 ∈ J such that j0 6= j1 and bj0 = bj1.

This case can be obtained from the previous one, by an additional initial application
of axiom P1 in Table 3.
• For all i0, i1 ∈ I such that i0 6= i1 we have that ai0 6= ai1 and for all
j0, j1 ∈ J such that j0 6= j1 we have that bj0 6= bj1.
In this case we have that

p ‖ q
(EL2)
≈

∑
i∈I

ai(pi ‖ q) +
∑
j∈J

bj(p ‖ qj).

Since for each i ∈ I, the term pi has fewer operator symbols than p, by the inductive
hypothesis we get that there is a closed BCCSP term ri such that

ERT ` pi ‖ q ≈ ri.
Similarly, for each j ∈ J , the term qj has fewer operator symbols than q, so that by
the inductive hypothesis we get that there is a closed BCCSP term rj such that

ERT ` p ‖ qj ≈ rj .
Therefore, we can conclude that ERT ` p ‖ q ≈

∑
i∈I airi +

∑
j∈J bjrj , where the right

hand side of the equation is a closed BCCSP term.

Proposition 5.3 (ERT elimination). For every closed BCCSP‖ term p there is a closed
BCCSP term q such that ERT ` p ≈ q.

Proof. The proof follows by an easy induction on the structure of p, using Lemma 5.2 in the
case that p is of the form p1 ‖ p2 for some p1 and p2.
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a: 0 1 2
0 2 2

b: 0 1 2
0 0 0

‖: 0 1 2
0 0 1 2
1 1 0 1
2 2 1 2

+: 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

Table 9. A model for ERT and ECT.

Remark 5.4. Similarly to the case of completed simulation (cf. Remark 4.5), the reason
why we propose to prove directly the elimination result for ready trace equivalence is that
axiom RSP2 cannot be derived from those in ERT, even though all its closed instantiations
can be derived. Table 9 presents a model, found using Mace4, of ERT from which RSP2 is
not derivable: e.g., it does not satisfy

ax ‖ (ay + az + w) = a(x ‖ (ay + az + w)) + ax ‖ (ay + w) + ax ‖ (az + w))

for x = 0, y = 0, z = 0 and w = 1.
We refer the interested reader to Appendix B for the Mace4 code.

Interestingly, axiom FP also characterises the distributivity of ‖ over + modulo ∼FT,∼R

and ∼F. Consider the axiom systems EFT = E1 ∪ {FT,RS,FP,EL2}, ER = E1 ∪ {R,FP,EL2}
and EF = E1 ∪ {F,R,FP,EL2}. The following derivability relations among them and ERT are
then easy to check.

Lemma 5.5. (1) The axioms in the system ERT are derivable from EFT, namely EFT ` RT.
(2) The axioms in the system ERT are derivable from ER, namely ER ` RT.
(3) The axioms in the system EFT are derivable from EF, namely,

(a) EF ` FT, and
(b) EF ` RS.

Moreover, also the axioms in the system ER are derivable from EF.

Proof. (1) To simplify notation, we introduce some abbreviations: let |A| = n, and for each
i ∈ {1, . . . , n} let Ii = {1, . . . , n} \ {i}.

First of all, we notice that if we can prove that

EFT ` a

(
n∑
i=1

bixi + z

)
+ a

(
n∑
i=1

biyi + z

)
≈ a

(
n∑
i=1

bixi + z

)
+ a

(
n∑
i=1

biyi + z

)
+

+ a

(
n∑
i=1

(
bixi + biyi

)
+ z

)
(5.1)

EFT ` a

(
n∑
i=1

(
bixi + biyi

)
+ z

)
≈ a

(
n∑
i=1

(
bixi + biyi

)
+ z

)
+ a

(
n∑
i=1

bixi + z

)
, (5.2)

then EFT ` RT, easily follows as

a

(
n∑
i=1

(
bixi + biyi

)
+ z

)
(5.2)
≈ a

(
n∑
i=1

(
bixi + biyi

)
+ z

)
+ a

(
n∑
i=1

bixi + z

)
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(A1),(A3),(5.2)
≈ a

(
n∑
i=1

(
bixi + biyi

)
+ z

)
+ a

(
n∑
i=1

bixi + z

)
+ a

(
n∑
i=1

biyi + z

)
(A1),(5.1)
≈ a

(
n∑
i=1

bixi + z

)
+ a

(
n∑
i=1

biyi + z

)
.

We now proceed to prove the Equations (5.1) and (5.2) separately.
(a) Equation (5.1) directly follows by

a

(
n∑
i=1

bixi + z

)
+ a

(
n∑
i=1

biyi + z

)
(FT)
≈ a

(
n∑
i=1

bixi + z

)
+ a

(
n∑
i=1

biyi + z

)
+ a

(( n∑
i=1

bixi + z
)

+
( n∑
i=1

biyi + z
))

(A1),(A2)
≈ a

(
n∑
i=1

bixi + z

)
+ a

(
n∑
i=1

biyi + z

)
+ a

(
n∑
i=1

(
bixi + biyi

)
+ z

)
.

(b) Before proceeding to the proof of Equation (5.2), we notice that

a(bx+ by + z)
(RS)
≈ a(bx+ by + z) + a(bx+ z)

(A1),(RS)
≈ a(bx+ by + z) + a(bx+ z) + a(by + z)

(FT),(A3)
≈ a(bx+ z) + a(by + z),

so that

EFT ` a(bx+ by + z) ≈ a(bx+ z) + a(by + z). (5.3)

Using Equation (5.3), we can establish Equation (5.2) holds for all n ≥ 1 with
induction on n.
If n = 1, then

a

(
n∑
i=1

(bixi + biyi) + z

)
(5.3)
≈ a(b1x1 + z) + a(b1y1 + z)

(A1),(A2),(A3)
≈ a(b1x1 + z) + a(b1y1 + z) + a(b1x1 + z)

(5.3)
≈ a

(
n∑
i=1

(bixi + biyi) + z

)
+ a

(
n∑
i=1

bixi + z

)
Let n ≥ 1, and suppose that Equation (5.2) holds (IH). Then

a

(
n+1∑
i=1

(
bixi + biyi

)
+ z

)
(A1),(A2),(5.3)

≈ a

(
n∑
i=1

(
bixi + biyi

)
+ bn+1xn+1 + z

)
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+a

(
n∑
i=1

(
bixi + biyi

)
+ bn+1yn+1 + z

)
(IH)
≈ a

(
n∑
i=1

(
bixi + biyi

)
+ bn+1xn+1 + z

)
+ a

(
n∑
i=1

bixi + bn+1xn+1 + z

)

+ a

(
n∑
i=1

(
bixi + biyi

)
+ bn+1yn+1 + z

)
(A1),(A2),(5.3)

≈ a

(
n+1∑
i=1

(
bixi + biyi

)
+ z

)
+ a

(
n+1∑
i=1

bixi + z

)

We conclude that Equation (5.1) holds for all n ≥ 1, and hence, in particular, for
n = |A|.

(2) To prove that ER ` RT, we first establish that for every n ≥ 1 we have:

ER ` a

(
n∑
i=1

bixi + z

)
+ a

(
n∑
i=1

biyi + w

)

≈ a

(
n∑
i=1

(bixi + biyi) + z

)
+ a

(
n∑
i=1

biyi + w

)
. (5.4)

We proceed by induction on n ≥ 1.
If n = 1, then

a

(
n∑
i=1

bixi + z

)
+ a

(
n∑
i=1

biyi + w

)
(R)
≈ a

(
n∑
i=1

(bixi + biyi) + z

)
+ a

(
n∑
i=1

biyi + w

)

Let n ≥ 1, and suppose that Equation (5.4) holds (IH). Then

a

(
n+1∑
i=1

bixi + z

)
+ a

(
n+1∑
i=1

biyi + w

)
(A1),(A2)
≈ a

(
bn+1xn+1 +

n∑
i=1

bixi + z

)
+ a

(
bn+1yn+1 +

n∑
i=1

biyi + w

)
(R)
≈ a

(
bn+1xn+1 + bn+1yn+1 +

n∑
i=1

bixi + z

)
+ a

(
bn+1yn+1 +

n∑
i=1

biyi + w

)
(A1),(A2)
≈ a

(
n∑
i=1

bixi + bn+1xn+1 + bn+1yn+1 + z

)
+ a

(
n∑
i=1

biyi + bn+1yn+1 + w

)
(IH)
≈ a

(
n∑
i=1

(bixi + biyi) + bn+1xn+1 + bn+1yn+1 + z

)
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+a

(
n∑
i=1

biyi + bn+1yn+1 + w

)
(A1),(A2)
≈ a

(
n+1∑
i=1

(bixi + biyi) + z

)
+ a

(
n+1∑
i=1

biyi + w

)

We conclude that Equation (5.4) holds for all n ≥ 1.
We can now derive axiom (RT) as follows:

a

 |A|∑
i=1

(bixi + biyi) + z


(A3)
≈ a

 |A|∑
i=1

(bixi + biyi) + z

+

 |A|∑
i=1

(bixi + biyi) + z


(A1),(A2)
≈ a

 |A|∑
i=1

(bixi + biyi) + z

+

 |A|∑
i=1

bixi +

 |A|∑
i=1

biyi + z


(A1),(A2),(5.4)

≈ a

 |A|∑
i=1

biyi + z

+

 |A|∑
i=1

bixi +

 |A|∑
i=1

biyi + z


(A1),(A2)
≈ a

 |A|∑
i=1

(bixi + biyi) + z

+ a

 |A|∑
i=1

biyi + z


(5.4)
≈ a

 |A|∑
i=1

bixi + z

+ a

 |A|∑
i=1

biyi + z

 .

(3) The second claim, namely that the axioms in ER are derivable from EF, follows directly
from ER ⊆ EF.

To prove the first claim, we start by showing that the axiom FT in Table 8 is derivable
from the axiom system EF.

ax+ ay
(A0)
≈ ax+ a(y + 0)

(F)
≈ ax+ a(x+ y) + a(y + 0)

(A0),(A1)
≈ ax+ ay + a(x+ y).

We now proceed to prove that the axiom RS in Table 8 is derivable from the axiom
system EF.

a(bx+ by + z) + a(bx+ z)
(A1),(A2)
≈ a(bx+ z) + a(by + (bx+ z))

(R)
≈ a(bx+ by + z) + a(by + (bx+ z))

(A2),(A3)
≈ a(bx+ by + z).
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(CT) a(bx+ z) + a(cy + w) ≈ a(bx+ cy + z + w)

(CTP) (ax+ by + w) ‖ z ≈ (ax+ w) ‖ z + (by + w) ‖ z
ECT = E1 ∪ {CT, CTP, EL1}

(T) ax+ ay ≈ a(x+ y)

(TP) (x+ y) ‖ z ≈ x ‖ z + y ‖ z
ET = E1 ∪ {T, TP, EL1}

Table 10. Additional axioms for completed trace and trace equivalences.

The next proposition is then a corollary of Proposition 5.3 and Lemma 5.5.

Proposition 5.6 (EFT, ER, EF elimination). Let X ∈ {FT, R, F}. For every BCCSP‖ term p
there is a closed BCCSP term q such that EX ` p ≈ q.

In [BFN03] it was proved that, under the assumption that A is finite, the axiom system
E0 ∪ {RT} is a ground-complete axiomatisation of BCCSP modulo ∼RT. Moreover, it was
also proved that E0 ∪ {FT,RS} is a ground-complete axiomatisation of BCCSP modulo ∼FT.
The ground-completeness of E0 ∪ {R}, modulo ∼R, and that of E0 ∪ {F,R}, modulo ∼F, over
BCCSP were proved in [Gla01]. Consequently, the soundness and ground-completeness of
the proposed axioms systems can then be derived from the elimination results above and
the completeness results given in [Gla01,BFN03].

Theorem 5.7 (Soundness and completeness of ERT, EFT, ER and EF). Let X ∈ {RT, FT, R, F}.
The axiom system EX is a sound, ground-complete axiomatisation of BCCSP‖ modulo ∼X,
i.e., p ∼X q if and only if EX ` p ≈ q.

5.2. Completed traces and traces. It remains to consider completed trace equivalence
and trace equivalence.

Definition 5.8 (Trace and completed trace equivalences). Two processes p and q are trace
equivalent, denoted p ∼T q, if T(p) = T(q). If, in addition, it holds that CT(p) = CT(q), then p
and q are completed trace equivalent, denoted p ∼CT q.

Remark 5.9. Since we are considering only BCCSP‖ processes with finite traces, then to
prove completed trace equivalence it is enough to check whether two processes have the
same sets of completed traces. In fact, in our setting, CT(p) = CT(q) implies T(p) = T(q) for
all processes p, q.

Consider the axiom systems ECT = E1 ∪ {CT,CTP,EL1} and ET = E1 ∪ {T,TP,EL1},
presented in Table 10. In the same way that axiom FP is the linear counterpart of RSP1
and RSP2, we have that CTP is the linear counterpart of CSP1 and CSP2, and TP is that
of SP1 and SP2. It is then easy to check that we can use the axioms in ECT to obtain the
elimination result for ∼CT.

Lemma 5.10. For every closed BCCSP terms p, q there is a closed BCCSP term r such
that ECT ` p ‖ q ≈ r.



Vol. 18:1 ON THE AXIOMATISABILITY OF PARALLEL COMPOSITION 15:25

Proof. The proof proceeds by induction on the total number of operator symbols occurring
in p and q together, not counting parentheses. Since p and q are closed BCCSP terms, we
can assume that p =

∑
i∈I aipi and q =

∑
j∈J bjqj (see Remark 3.3).

We proceed by a case analysis according to the cardinalities of the sets I and J .

(1) Case |I| = 0 or |J | = 0. In case that |J | = 0, i.e., J = ∅, then q = 0, so ECT ` p ‖ q ≈ p
by P0, and p is the required closed BCCSP term. Similarly, if |I| = 0, i.e., I = ∅, then
p = 0, so ECT ` p ‖ q ≈ q ‖ p ≈ q by P0 and P1, and q is the required closed BCCSP term.

(2) Case |I| = |J | = 1. Let I = {i0} and J = {j0}, then

p ‖ q
(EL1)
≈ ai0(pi0 ‖ q) + bj0(p ‖ qj0).

Since both pi0 and qj0 have fewer symbols than p and q, respectively, by the inductive
hypothesis there exist closed BCCSP terms ri0 and rj0 such that ECT ` pi0 ‖ q ≈ ri0 and
ECT ` p ‖ qj0 ≈ rj0 . It follows that ECT ` p ‖ q ≈ ai0ri0 + bj0rj0 , where ai0ri0 + bj0rj0 is a
closed BCCSP term.

(3) Case |I| = 1 and |J | > 1. We can then assume that I = {i0} and there exist j0, j1 ∈ J
such that j0 6= j1, then

p ‖ q
(A2),(P1)
≈

bj0qj0 + bj1qj1 +
∑

j∈J\{j0,j1}

bjqj

 ‖ p
(CTP)
≈

bj0qj0 +
∑

j∈J\{j0,j1}

bjqj

 ‖ p+

bj1qj1 +
∑

j∈J\{j0,j1}

bjqj

 ‖ p
(A2),(P1)
≈

 ∑
j∈J\{j1}

bjqj

 ‖ p+

 ∑
j∈J\{j0}

bjqj

 ‖ p.
Since

∑
j∈J\{j0} bjqj and

∑
j∈J\{j1} bjqj have fewer symbols than q, by the inductive

hypothesis there exist closed BCCSP terms rj0 and rj1 such that

ECT ` p ‖

 ∑
j∈J\{j0}

bjqj

 ≈ rj0
ECT ` p ‖

 ∑
j∈J\{j1}

bjqj

 ≈ rj0 .
So we have ECT ` p ‖ q ≈ rj0 + rj1 and rj0 + rj1 is a closed BCCSP term.

(4) Case |I| > 1 and |J | = 1. This case can be obtained as the previous one, without the
initial application of axiom P1.

(5) Case |I|, |J | > 1. In this case there exist i0, i1 ∈ I with i0 6= i1 and j0, j1 ∈ J with
j0 6= j1. Then

p ‖ q
(A2),(P1),(CTP)

≈

 ∑
i∈I\{i0}

aipi

 ‖ q +

 ∑
i∈I\{i1}

aipi

 ‖ q+
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+ p ‖

 ∑
j∈J\{j0}

bjqj

+ p ‖

 ∑
j∈J\{j1}

bjqi

 .

Note that
∑

i∈I\{i0} aipi and
∑

i∈I\{i1} aipi have fewer symbols than p, and
∑

j∈J\{j0} bjqj
and

∑
j∈J\{j1} bjqi have fewer symbols than q, so by the inductive hypothesis there exist

ri0 , ri1 , rj0 and rj1 such that

ECT `

 ∑
i∈I\{i0}

aipi

 ‖ q ≈ ri0 ECT `

 ∑
i∈I\{i1}

aipi

 ‖ q ≈ ri1
ECT ` p ‖

 ∑
j∈J\{j0}

bjqj

 ≈ rj0 ECT ` p ‖

 ∑
j∈J\{j1}

bjqi

 ≈ rj1 .
Then ECT ` p ‖ q ≈ ri0 + ri1 + rj0 + rj1 and ri0 + ri1 + rj0 + rj1 is a closed BCCSP
term.

Proposition 5.11 (ECT elimination). For every closed BCCSP‖ term p there is a closed
BCCSP term q such that ECT ` p ≈ q.

Proof. The proof follows by an easy induction on p, using Lemma 5.10 in the case that p is
of the form p1 ‖ p2 for some p1 and p2.

Let us now focus on trace equivalence. We can prove that the axioms in ECT are derivable
from those in ET.

Lemma 5.12. The axioms in the system ECT are derivable from ET, namely,

(1) ET ` CT, and
(2) ET ` CTP.

Proof. In the case of CT, we have the following equational derivation:

a(bx+ z) + a(cy + w)
(T)
≈ a(bx+ z + cy + w).

For CTP, we have the following equational derivation:

(ax+ by + w) ‖ z
(A1),(A3)
≈ (ax+ w + by + w) ‖ z

(TP)
≈ (ax+ w) ‖ z + (by + w) ‖ z.

Hence, the elimination result for ∼T can be obtained as an immediate consequence of
Lemma 5.12 and the elimination result for completed traces (Proposition 5.11 above).

Proposition 5.13 (ET elimination). For every closed BCCSP‖ term p there exists a closed
BCCSP term q such that ET ` p ≈ q.

Remark 5.14. We can use the models in Tables 7 and 9 to prove that, respectively, neither
axiom EL2 nor axiom CSP2 are derivable from ECT. In detail, in the case of EL2 the
counterexample presented in Remark 4.5 holds also in the case of ECT. In the case of CSP2,
we notice that the instance of RSP2 used in Remark 5.4 is in fact also an instance of CSP2,
and thus the counterexample for RSP2 holds also in this case. We refer the interested reader
to Appendix C for the Mace4 codes generating the desired models.
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In light of Proposition 5.11, the ground-completeness of ECT over BCCSP‖ modulo ∼CT

follows from that of E0 ∪ {CT} over BCCSP provided in [Gla01]. Similarly, the ground-
completeness of E0 ∪ {T} over BCCSP proved in [Gla01] and Proposition 5.13 give us the
ground-completeness of ET over BCCSP‖.

Theorem 5.15 (Soundness and completeness of ECT and ET). Let X ∈ {CT, T}. The axiom
system EX is a ground-complete axiomatisation of BCCSP‖ modulo ∼X, i.e., p ∼X q if and
only if EX ` p ≈ q.

6. The negative results

We dedicate this section to the negative results: we prove that all the congruences between
possible futures equivalence (∼PF) and bisimilarity (∼B) do not admit a finite, ground-
complete axiomatisation over BCCSP‖. This includes all the nested trace and nested
simulation equivalences. In [AFGI04] it was shown that, even if the set of actions is a
singleton, the nested semantics admit no finite axiomatisation over BCCSP. Indeed, the
presence of the additional operator ‖ might, at least in principle, allow us to finitely
axiomatise the equations over closed BCCSP terms that are valid modulo the considered
equivalences. Hence, we prove these results directly.

In detail, firstly we focus on the negative result for possible futures semantics, cor-
responding to the 2-nested trace semantics [HM85]. To obtain it, we apply the general
technique used by Moller to prove that interleaving is not finitely axiomatisable modulo
bisimilarity [Mol89,Mol90a,Mol90b]. Briefly, the main idea is to identify a witness property.
This is a specific property of BCCSP‖ terms, say WN for N ≥ 0, that, when N is large
enough, is an invariant that is preserved by provability from finite, sound axiom systems.
Roughly, this means that if E is a finite set of axioms that are sound modulo possible futures
equivalence, the equation p ≈ q can be derived from E , and N is larger than the size of all
the terms in the equations in E , then either both p and q satisfy WN , or none of them does.
Then, we exhibit an infinite family of valid equations, called the witness family of equations,
in which WN is not preserved, namely it is satisfied only by one side of each equation.

Afterwards, we exploit the soundness modulo bisimilarity of the equations in the witness
family to lift the negative result for ∼PF to all congruences between ∼B and ∼PF.

Differently from the aforementioned negative results over BCCSP, ours are obtained
assuming that the set of actions contains at least two distinct elements. In fact, when the
action set is a singleton, and only in that case, the axiom

ax ‖ (ay + az) ≈ ax ‖ (ay + a(y + z)) + ax ‖ (az + a(y + z))

is sound modulo ∼PF. Due to this axiom we were not able to prove the negative result for
∼PF in the case that |A| = 1, which we leave as an open problem for future work.

6.1. Possible futures equivalence. According to possible futures equivalence [RB81] two
processes are deemed equivalent if, by performing the same traces, they reach processes
that are trace equivalent. For this reason, possible futures equivalence is also known as the
2-nested trace equivalence [HM85].

Definition 6.1 (Possible futures equivalence). A possible future of a process p is a pair

(α,X) where α ∈ A∗ and X ⊆ A∗ such that p
α−→ p′ for some p′ with X = T(p′). We write
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PF(p) for the set of possible futures of p. Two processes p and q are said to be possible
futures equivalent, denoted p ∼PF q, if PF(p) = PF(q).

Our order of business is to prove the following result.

Theorem 6.2. Assume that |A| ≥ 2. Possible futures equivalence has no finite, ground-
complete, equational axiomatisation over the language BCCSP‖.

In what follows, for actions a, b ∈ A and i ≥ 0, we let b0a denote a.0 and bi+1a stand
for b(bia). Consider now the infinite family of equations {eN | N ≥ 1} given, for a 6= b, by:

pN =
N∑
i=1

bia (N ≥ 1)

eN : a ‖ pN ≈ apN +
N∑
i=1

b(a ‖ bi−1a) (N ≥ 1).

Notice that the equations eN are sound modulo ∼PF for all N ≥ 1.
We also notice that none of the summands in the right-hand side of equation eN is,

alone, possible futures equivalent to a ‖ pN . However, we now proceed to show that, when
N is large enough, having a summand possible futures equivalent to a ‖ pN is an invariant
under provability from finite sound axiom systems, and it will thus play the role of witness
property for our negative result.

To this end, we introduce first some basic notions and results on ∼PF.
Firstly, as a simplification, we can focus on the 0 absorption properties of BCCSP‖.

Informally, we can restrict the axiom system to a collection of equations that do not introduce
unnecessary terms that are possible futures equivalent to 0 in the equational proofs, namely
0 summands and 0 factors. (We refer the interested reader to Appendix D for further
details.)

Definition 6.3. We say that a BCCSP‖ term t has a 0 factor if it contains a subterm of
the form t1 ‖ t2, where either t1 or t2 is possible futures equivalent to 0.

Next, we characterise closed BCCSP‖ terms that are possible futures equivalent to pN .

Lemma 6.4. Let q be a BCCSP‖ term that does not have 0 summands or factors and such
that CT(q) = CT(pN ) for some N ≥ 1. Then q does not contain any occurrence of ‖.

Proof. That q ∼CT pN implies that q does not contain any occurrence of ‖ directly follows
by observing that the completed traces of pN , and thus those of q, contain exactly one
occurrence of a, and this occurrence must be as the last action in the completed trace.

Lemma 6.5. Let q be a BCCSP‖ term that does not have 0 summands or factors. Then
q ∼PF pN , for some N ≥ 1, if and only if q =

∑
j∈J qj for some terms qj such that none of

them has + as head operator and:

• for each i ∈ {1, . . . , N} there is some j ∈ J such that bia ∼PF qj;
• for each j ∈ J there is some i ∈ {1, . . . , N} such that qj ∼PF b

ia.

Proof. Due to a slight difference in the technical development of the proof, we treat the case
of N = 1 separately.
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• Case N > 1.
(⇒) Let q ∼PF pN .

First of all, we show that q cannot be of the form q = b.q′ for some term q′. In

fact, in that case, since N > 1, we have that pN
b−→ a and pN

b−→ ba. Therefore, as
PF(q) = PF(pN ), it follows that both equalities must hold, (b, {ε, a}) = (b, T(q′)) and
(b, {ε, b, ba}) = (b, T(q′)) (since q′ is the only term reachable from q via the trace b, it has
to be trace equivalent to both a and ba, besides all the other terms reachable from pN via
the trace b in the case N > 2), which is a contradiction.

We have therefore obtained that q =
∑

i∈J qj for some J with |J | ≥ 2, and some qj ,

j ∈ J of the form b.q′j . Let i ∈ {1, . . . , N}. Since pN
b−→ bi−1a, we have that (b, T(bi−1a))

is a possible future of pN . Since q is possible futures equivalent to pN , there is some j
with T(q′j) = T(bi−1a). We claim that q′j is possible futures equivalent to bi−1a, which

yields that qj = b.q′j is possible futures equivalent to bia. To see this, assume, towards a

contradiction, that T(q′j) = T(bi−1a) but q′j is not possible futures equivalent to bi−1a. This

means that there are some k ≤ i−1 and q′ such that q′j
bk−−→ q′ and T(q′) is strictly included

in T(bi−1−ka). Since T(q′) is prefix closed, this means that T(q′) = {bh | 0 ≤ h ≤ `} for
some ` ≤ i − 1 − k. This means that q has (bk+1, T(q′)) as one of its possible futures.
On the other hand, pN has no such possible future, due to the missing trailing a, which
contradicts our assumption that q ∼PF pN .

Assume now, towards a contradiction, that there is a j ∈ J such that qj 6∼PF b
ia

for all i ∈ {1, . . . , N}. As qj is of the form b.q′j , for some q′j , we get that q
b−→ q′j and

(b, T(q′j)) ∈ PF(q). We can distinguish two cases according to the form of CT(q′j):

– CT(q′j) includes one completed trace of the form bka for some k ∈ {0, . . . , N − 1}. Since

pN is possible futures equivalent to q, there is some i ∈ {1, . . . , N} with T(bi−1a) = T(q′j).
In this case, the same reasoning applied above yields a contradiction with q ∼PF pN .

– There are bka, bha ∈ CT(q′j) for some k 6= h, k, h ∈ {0, . . . , N − 1}. Since there is no

p′ such that pN
b−→ p′ and CT(p′) = CT(q′j), we get an immediate contradiction with

q ∼PF pN .
(⇐) Assume now that q =

∑
j∈J qj , for some terms qj that do not have + as head

operator and such that
(1) for each i ∈ {1, . . . , N} there is a j ∈ J such that bia ∼PF qj , and
(2) for each j ∈ J there is a i ∈ {1, . . . , N} such that qj ∼PF b

ia.
Since possible futures equivalence is a congruence with respect to summation and, moreover,
summation is an idempotent operator (axiom A3 in Table 3), from these assumptions we
can directly conclude that q ∼PF pN .
• Case N = 1.

(⇒) Let q ∼PF p1. Hence

PF(q) =
{(
ε, {ε, b, ba}

)
,
(
b, {ε, a}

)
,
(
ba, {ε}

)}
Assume that q = b.q′ for some term q′. Then (b, T(q′)) ∈ PF(q) implies T(q′) = {ε, a}, and
hence q′ ∼PF a. This gives q =

∑
j∈J qj for some J with |J | = 1 and qj ∼PF ba. The two

properties relating the summands of q and p1 are then immediate.
Assume now that q =

∑
j∈J qj for some J with |J | ≥ 2 and some qj of the form b.q′j .

Assume, towards a contradiction, that there is some qj such that qj 6∼PF ba. Since q ∼PF p1
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implies T(q) = T(ba), we get that qj , and thus q, has (b, {ε}) as a possible future. This
gives an immediate contradiction with q ∼PF p1.

(⇐) The proof of this implication follows as in the case of N > 1.

This concludes the proof.

In light of Lemma 6.5, we can also provide a decomposition-like characterisation of
closed BCCSP‖ terms that are possible futures equivalent to a ‖ pN . To this end, we need
first to lift the notions of transition, norm and depth from closed terms to terms. The
action-labelled transition relation over BCCSP‖ terms contains exactly the literals that can

derived using the rules in Table 1. Clearly, t
a−→ t′ implies σ(t)

a−→ σ(t′) for all substitutions
σ. The norm and depth of a term are defined exactly as the norm and depth of processes,
by replacing the transition relation over processes with that over terms. Equivalently, the
norm and depth of terms can be defined inductively over the structure of terms as follows:

• norm(0) = 0;
• norm(x) = 0;
• norm(a.t) = 1 + norm(t);
• norm(t+ u) = min{norm(t), norm(u)};
• norm(t ‖ u) = norm(t) + norm(u).

• depth(0) = 0;
• depth(x) = 0;
• depth(a.t) = 1 + depth(t);
• depth(t+ u) = max{depth(t), depth(u)};
• depth(t ‖ u) = depth(t) + depth(u).

For k ≥ 0, we denote by vark(t) the set of variables occurring in the k-derivatives of t,

namely vark(t) = {x ∈ var(t′) | t α−→ t′, |α| = k}. Finally, we write t ∼PF u if σ(t) ∼PF σ(u)
for all closed substitutions σ.

Lemma 6.6. Let t, u be two BCCSP‖ terms that do not have 0 summands or factors. If
t ∼CT u then:

(1) For each k ≥ 0 it holds that vark(t) = vark(u).
(2) t has a summand x, for some variable x, if and only if u does.
(3) norm(t) = norm(u) and depth(t) = depth(u).

Proof. (1) Assume, towards a contradiction, that for some k ≥ 0 there is a variable x such
that x ∈ vark(t) \ vark(u). In particular, this means that there is a term t′ such that

t
α−→ t′ for some trace α with |α| = k and x ∈ var(t′). However, there is no u′ such that

u
β−→ u′ for some trace β with |β| = k and x ∈ var(u′). We can assume, without loss of

generality, that k is the largest natural number such that x ∈ vark(t).
Let n > depth(t),depth(u). Consider the closed substitution σ defined by

σ(y) =

{
an if y = x

0 otherwise.

Then t ∼CT u implies t ∼T u and thus t
α−→ t′ implies that u

α−→ u′ for some u′. Let us
proceed by a case analysis on the structure of t′ to obtain the desired contradiction.
• t′ = x + w for some term w. Then we get that σ(t) has αan as a completed trace.

However, due to the choices of n and σ, we have that σ(u) cannot perform the
completed trace an after α, thus contradicting t ∼CT u. By the assumption that k is
the largest natural number such that x ∈ vark(t) is suffices to consider two cases:
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• t′ = (x + w) ‖ w′ for some terms w,w′ with w′ 6= 0. From t ∼T u, we infer that for
all β ∈ CT(σ(w′)) we have that αβ is a trace of σ(t) and thus of σ(u). However, we
can proceed as in the previous case and argue that αanβ ∈ CT(t) \ CT(u), which is a
contradiction with t ∼CT u.

(2) Assume now that t has a summand x for some variable x. Then, from item (1) of this
lemma, x ∈ var0(t) implies x ∈ var0(u). By applying similar reasoning as in the proof
of the first statement of the lemma we obtain that it cannot be the case that all the
occurrences of x in u are in the scope of prefixing. Hence, u has, at least, one summand
u′ such that either u′ = x or u′ = (x+ w) ‖ w′, for some terms w,w′ with w′ 6= 0. Our
order of business is to show that it cannot be the case that all summands u′ of u with
x ∈ var0(u′) are of the latter form. To this end, assume, towards a contradiction, that
whenever x ∈ var0(u′) then u′ = (x+ w) ‖ w′. Let n > depth(u) and consider the closed
substitution σ′ defined by

σ′(y) =

{
an if y = x

b otherwise.

Since t has a summand x, we obtain that an ∈ CT(σ′(t)). However, an 6∈ CT(σ′(u)). In
fact, w′ 6= 0 and σ′(y) 6= 0 for all variables y ∈ V give that I(σ′(w′)) 6= ∅ for all terms
w′ occurring in the summands u′ of u such that x ∈ var0(u′). Therefore an 6∈ CT(σ′(u′))
for all such summands. Due to choices of σ′ and n, we can conclude that there is no
summand of σ′(u) having an has a completed trace, so that an 6∈ CT(σ′(u)). This gives
a contradiction with σ′(t) ∼CT σ

′(u) and thus with t ∼CT u.
(3) norm(t) = norm(u) and depth(t) = depth(u) follow immediately from t ∼CT u and

items (1), (2) of this lemma.

Remark 6.7. Since for all BCCSP‖ terms t, u we have that t ∼PF u implies t ∼CT u,
Lemma 6.6 holds also for all pairs of possible futures equivalent terms.

Proposition 6.8. Assume that p, q are two BCCSP‖ processes such that p, q 6∼PF 0, p, q do
not have 0 summands or factors, and p ‖ q ∼PF a ‖ pN , for some N > 1. Then either p ∼PF a
and q ∼PF pN , or p ∼PF pN and q ∼PF a.

Proof. By Lemma 6.6.3, from

p ‖ q ∼PF a ‖ pN (6.1)

we can infer that norm(p ‖ q) = 3. Hence, since p, q 6∼PF 0, we have that either norm(p) = 1
and norm(q) = 2, or vice versa. We consider only the former case and prove that then
p ∼PF a and q ∼PF pN . In the other case it can be proved that p ∼PF pN and q ∼PF a by
analogous reasoning.

So assume that norm(p) = 1 and norm(q) = 2. From Equation (6.1) we get that
I(p), I(q) ⊆ {a, b}. First of all we argue that it cannot be the case that a ∈ I(p) ∩ I(q). In
fact, in that case p ‖ q would be able to perform the trace a2, whereas a ‖ pN cannot do so,
thus giving a contradiction with Equation (6.1). We now proceed to show that a ∈ I(p).
Assume now, towards a contradiction, that this is not the case and I(p) = {b}. This, together
with norm(p) = 1, gives that p has a summand b. Hence, given any α ∈ CT(q) we have that
αb ∈ CT(p ‖ q). However, αb 6∈ CT(a ‖ pN ), as any completed trace of a ‖ pN must end with
an a, thus giving that p ‖ q 6∼CT a ‖ pN , which contradicts Equation (6.1). We have therefore
obtained that a ∈ I(p), a 6∈ I(q) and, moreover, p does not have a summand b. Since p has
norm 1, we conclude that it has a summand a.



15:32 L. Aceto, V. Castiglioni, A. Ingólfsdóttir, B. Luttik, and M. R. Pedersen Vol. 18:1

We now proceed to show that also depth(p) = 1, and thus p ∼PF a. Since p has a

summand a, we have that p ‖ q a−→ 0 ‖ q ∼PF q. By Equation (6.1), we get a ‖ pN
a−→ r for

some r such that q ∼T r. Since a ‖ pN has a unique initial a-transition a ‖ pN
a−→ 0 ‖ pN , we

get that r ∼PF pN and q ∼T pN . As a consequence, we obtain that depth(q) = N + 1. Then
we have

depth(p) = depth(p ‖ q)− depth(q)

= depth(a ‖ pN )− depth(q) (by Eq. (6.1) and Lem. 6.6.3)

= N + 2− (N + 1)

= 1.

Therefore, we have obtained that p ∼PF a and thus, since possible futures equivalence is a
congruence with respect to parallel composition, from Equation (6.1) it follows that

a ‖ q ∼PF a ‖ pN . (6.2)

Our order of business will now be to show that q ∼PF pN . We already know that T(q) = T(pN ).
Moreover, as an initial a-transition of a ‖ q cannot stem from q, from (abia, ∅) ∈ PF(a ‖ pN )
for all i ∈ {1, . . . , N}, we get that CT(pN ) ⊆ CT(q). Assume, towards a contradiction, that
CT(q) 6⊆ CT(pN ). As q ∼T pN , this implies that q has a completed trace of the form bj for
some 1 ≤ j ≤ N . Hence, (abj , ∅) ∈ PF(a ‖ q). However, no completed trace of a ‖ pN has a b
as last symbol and thus a ‖ pN has no possible future of the form (αb, ∅) for some trace α.
This gives a contradiction with Equation (6.2). Therefore, we have that T(q) = T(pN ) and
CT(q) = CT(pN ), thus giving q ∼CT pN . Notice that, by Lemma 6.4, this implies that q does
not contain any occurrence of ‖ and q can be written in the general form q =

∑
j∈J qj where

none of the qj has + as head operator.
Assume, towards a contradiction, that q 6∼PF pN . By Lemma 6.5 this implies that either

there is an i ∈ {1, . . . , N} such that bia 6∼PF qj for all j ∈ J , or there is a j ∈ J such that
qj 6∼PF b

ia for all i ∈ {1, . . . , N}. In both cases, we can proceed as in the proof of Lemma 6.5
and obtain a contradiction with a ‖ pN ∼PF a ‖ q.

We have therefore obtained that q ∼PF pN , and the proof is thus concluded.

The following lemma characterises the open BCCSP‖ terms whose substitution instances
can be equivalent in possible futures semantics to terms having at least two summands of
pN (N > 1) as their summands.

Lemma 6.9. Let t be a BCCSP‖ term that does not have + as head operator. Let m > 1 and

σ be a closed substitution such that σ(t) has no 0 summands or factors. If σ(t) ∼PF

∑m
k=1 b

ika,
for some 1 ≤ i1 < . . . < im, then t = x for some variable x.

Proof. For simplicity of notation, we let qm denote
∑m

k=1 b
ika. We proceed by showing that

the remaining possible forms for t give a contradiction with σ(t) ∼PF qm. We remark that
I(qm) = {b}, and σ(t) ∼PF qm implies CT(σ(t)) = CT(qm).

• t = b.t′ for some term t′. Then CT(σ(t′)) = {bik−1a | k ∈ {1, . . . ,m}}, and since m > 1 we
have that |CT(t′)| ≥ 2. It is then immediate to verify that (b, T(σ(t′))) ∈ PF(σ(t)), whereas

(b, T(σ(t′))) 6∈ PF(qm), since whenever qm
b−→ r then T(r) includes only one trace of the

form bja for some j ∈ {i1 − 1, . . . , im − 1}. This gives a contradiction with σ(t) ∼PF qm.
• t = t′ ‖ t′′ for some terms t′, t′′. Since σ(t) has no 0 summands or factors, neither

does t thus giving t′, t′′, σ(t′), σ(t′′) 6∼PF 0. Hence, we directly get a contradiction with
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CT(σ(t)) = CT(qm), since all completed traces of qm have exactly one occurrence of a and
this occurrence is as the last action in the completed trace. No process of the form p ‖ q
with I(p), I(q) 6= ∅ can satisfy the same property.

We now have all the ingredients necessary to prove Theorem 6.2. To streamline our
presentation, we split the proof of into two parts: Proposition 6.11 deals with the preservation
of the witness property under provability from the substitution rule of equational logic.
Theorem 6.12 builds on Proposition 6.11 and proves the witness property to be an invariant
under provability from finite sound axiom systems.

The following lemma is immediate.

Lemma 6.10. Let t be a BCCSP‖ term, and let σ be a closed substitution. If x ∈ var(t)
then depth(σ(t)) ≥ depth(σ(x)).

Proposition 6.11. Let t ≈ u be an equation over BCCSP‖ that is sound modulo ∼PF. Let
σ be a closed substitution with p = σ(t) and q = σ(u). Suppose that p and q have neither 0
summands nor 0 factors, and that p, q ∼PF a ‖ pN for some N larger than the sizes of t and
u. If p has a summand possible futures equivalent to a ‖ pN , then so does q.

Proof. Since σ(t) and σ(u) have no 0 summands or factors, neither do t and u. We can
therefore assume that, for some finite non-empty index sets I, J ,

t =
∑
i∈I

ti and u =
∑
j∈J

uj , (6.3)

where none of the ti (i ∈ I) and uj (j ∈ J) is 0 or has + as its head operator. Note that, as
t and u have no 0 summands or factors, neither do ti (i ∈ I) and uj (j ∈ J).

Since p = σ(t) has a summand which is possible futures equivalent to a ‖ pN , there is an
index i ∈ I such that

σ(ti) ∼PF a ‖ pN .
Our aim is now to show that there is an index j ∈ J such that

σ(uj) ∼PF a ‖ pN ,
proving that q = σ(u) has the required summand. This we proceed to do by a case analysis
on the form ti may have.

(1) Case ti = x for some variable x. In this case, we have that σ(x) ∼PF a ‖ pN and t
has x as a summand. As t ≈ u is sound with respect to possible futures equivalence,
from t ∼PF u we get t ∼CT u. Hence, by Lemma 6.6.2, we obtain that u has a summand
x as well, namely there is an index j ∈ J such that uj = x. It is then immediate to
conclude that q = σ(u) has a summand which is possible futures equivalent to a ‖ pN .

(2) Case ti = ct′ for some action c ∈ {a, b} and term t′. This case is vacuous because,

since σ(ti) = cσ(t′)
c−→ σ(t′) is the only transition afforded by σ(ti), this term cannot be

possible futures equivalent to a ‖ pN .
(3) Case ti = t′ ‖ t′′ for some terms t′, t′′. We have that σ(ti) = σ(t′) ‖ σ(t′′) ∼PF a ‖ pN .

As σ(ti) has no 0 factors, it follows that σ(t′) 6∼PF 0 and σ(t′′) 6∼PF 0. Thus, by
Proposition 6.8, we can infer that, without loss of generality,

σ(t′) ∼PF a and σ(t′′) ∼PF pN .

Notice that σ(t′′) ∼PF pN implies CT(σ(t′′)) = CT(pN ). Now, t′′ can be written in the
general form t′′ = v1 + · · · + vl for some l > 0, where none of the summands vh is 0
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or a sum. By Lemma 6.5, σ(t′′) ∼PF pN implies that for each i ∈ {1, . . . , N} there is a
summand ri of σ(t′′) such that bia ∼PF ri, and for each summand r of σ(t′′) there is an
ir ∈ {1, . . . , N} such that r ∼PF b

ia. Observe that, since N is larger than the size of t,
we have that l < N . Hence, there must be some h ∈ {1, . . . , l} such that

σ(vh) ∼PF

m∑
k=1

bika

for some m > 1 and 1 ≤ i1 < . . . < im ≤ N . The term σ(vh) has no 0 summands or
factors, or else, so would σ(t′′) and σ(t). By Lemma 6.9, it follows that vh can only be a
variable x and

σ(x) ∼PF

m∑
k=1

bika. (6.4)

Observe, for later use, that, since t′ has no 0 factors, the above equation yields that
x 6∈ var(t′), or else σ(t′) 6∼PF a due to Lemma 6.10. So, modulo possible futures
equivalence, ti has the form t′ ‖ (x+ t′′′), for some term t′′′, with x 6∈ var(t′), σ(t′) ∼PF a
and σ(x+ t′′) ∼PF pN .

Our order of business will now be to show that σ(u) has a summand uj that is
possible futures equivalent to a ‖ pN . We recall that t ∼PF u implies t ∼CT u. Thus, by
Lemma 6.6.1 we obtain that vark(t) = vark(u) for all k ≥ 0. Hence, from x ∈ var0(ti)
we get that there is at least one j ∈ J such that x ∈ var0(uj).

So, firstly, we show that x cannot occur in the scope of prefixing in uj , namely uj
cannot be of the form c.u′ or (c.u′+ u′′) ‖ u′′′ for some c ∈ {a, b} and u′ with x ∈ var(u′).
We proceed by a case analysis:
(a) c = b and uj = (b.u′ + u′′) ‖ u′′′ for some u′, u′′, u′′′ ∈ BCCSP‖ with x ∈ var(u′).

As σ(u) does not have 0 summands or factors we have that σ(u′′′) 6∼PF 0. Let
D = max{d | x ∈ vard(u

′)}. From σ(x) ∼PF

∑m
k=1 b

ika (Equation (6.4)) and
CT(σ(u)) = CT(a ‖ pN ) we can infer that the completed traces of σ(u′′′) are of the
form bia, for some i ∈ {0, . . . , N − im −D − 1}. In fact, since σ(x) can perform at
least one completed trace of the form bika, for some 1 ≤ ik ≤ N , and the completed
traces of a‖pN contain exactly two occurrences of a, of which one as the final action
of the trace, we can infer that the completed traces of σ(u′′′) have to contain exactly
one occurrence of a, and this occurrence has to be as the last symbol of the completed

trace. Let α ∈ T(σ(u′)) be such that |α| = D and u′
α−→ w with x ∈ var(w). By

the choice of D, we can infer that x does not occur in the scope of prefixing in w,
and thus T(σ(x)) ⊆ T(σ(w)). Then we get that (biabα, T(σ(w))) ∈ PF(σ(u)), where

bia ∈ CT(σ(u′′′)). However, as m ≥ 2, there is no p′ such that a ‖ pN
biabα−−−−→ p′

and T(σ(x)) ⊆ T(p′), thus giving (biabα, T(σ(w))) 6∈ PF(a ‖ pN ). This gives a
contradiction with σ(u) ∼PF a ‖ pN .

(b) c = b and uj = b.u′ for some BCCSP‖ term u′ with x ∈ var(u′). The proof of this
case is similar to, actually simpler than, that of the previous case and it is therefore
omitted.

(c) c = a and uj = (a.u′ + u′′) ‖ u′′′ for some u′, u′′, u′′′ ∈ BCCSP‖ with x ∈ var(u′).
As σ(u) does not have 0 summands or factors we have that σ(u′′′) 6∼PF 0. From
σ(x) ∼PF

∑m
k=1 b

ika we infer that T(a.σ(u′)) includes traces having two occurrences
of action a. Since σ(u) ∼PF a ‖ pN , this implies that there is no α ∈ T(σ(u′′′))
such that α contains an occurrence of action a, for otherwise σ(u) could perform a
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trace having 3 occurrences of that action. In particular, this implies that the last
symbol in each trace of σ(u′′′) must be action b. This gives that there is at least one
completed trace of σ(uj), and thus of σ(u), whose last symbol is action b. Hence
we get CT(σ(u)) 6= CT(a ‖ pN ), thus giving a contradiction with σ(u) ∼PF a ‖ pN .

(d) c = a and uj = a.u′ for some BCCSP‖ term u′ with x ∈ var(u′). In this case we
are going to prove a slightly weaker property, namely that not all summands uj
with x ∈ var(uj) can be of this form. Despite being weaker, this property is enough
because, as shown above, all other possibilities for an occurrence of x in a summand
uj have already been excluded. To this end, consider the closed substitution σ′

defined by

σ′(y) =

{
apN if y = x

σ(y) otherwise.

Then we have that σ′(ti) = σ′(t′) ‖ σ′(x) + σ′(t′′′)
a−→ σ(t′) ‖ pN ∼PF a ‖ pN . Since

σ′(t) ∼PF σ
′(u) then there is a process r such that σ′(u)

a−→ r and T(r) = T(a ‖ pN ).
In particular, this means that depth(r) = N + 2. Hence, from the choices of N, σ
and σ′, we can infer that such an a-move by σ′(u) can only stem from a summand
uj such that x ∈ var(uj). Assume, towards a contradiction, that all such summands
uj are of the form a.u′j for some BCCSP‖ term u′j with x ∈ var(u′j) and r = σ′(u′j).

As depth(σ′(u′j)) = N + 2 = depth(σ′(x)), by Lemma 6.10 we get that u′j can only

be of the form u′j = x+wj for some BCCSP‖ term wj with depth(σ′(wj)) ≤ N + 2.

Notice that T(σ′(x)) ⊂ T(a ‖ pN ). Hence σ′(wj) 6= 0. More precisely, σ′(x) = apN
implies that {bα | bα ∈ T(a‖pN )} ⊆ T(σ′(wj)) ⊆ T(a‖pN ). Clearly, no trace starting
with action b can stem from σ′(x) and we can then infer, in light of Lemma 6.10,
that x 6∈ var(wj), as depth(σ′(wj)) ≤ N + 2. This implies that σ′(wj) = σ(wj) and
thus {bα | bα ∈ T(a‖pN )} ⊆ T(σ(wj)) ⊆ T(a‖pN ). In particular, σ(wj) can perform
at least one (completed) trace of the form bα where α contains two occurrences
of action a. From σ(uj) = a.(σ(x) + σ(wj)), we then get that (abα, ∅) ∈ PF(σ(u)),
namely σ(u) can perform at least one (completed) trace containing 3 occurrences
of action a. This gives a contradiction with σ(u) ∼PF a ‖ pN .

We have therefore obtained that x does not occur in the scope of prefixing in (at least
one) uj . We proceed now by a case analysis on the possible forms of this summand.
(a) uj = x. Then σ(u) has a summand which is possible futures equivalent to

∑m
k=1 b

ika.
We show that this gives a contradiction with σ(u) ∼PF a ‖ pN . This follows directly
by noticing that, due to the summand bi1a, we have that (bi1a, ∅) ∈ PF(σ(u)).
However, (bi1a, ∅) 6∈ PF(a ‖ pN ), since a ‖ pN by performing the trace bi1a can reach
either a process that can perform an a (in case the first b-move is performed by the
summand bi1a of pN ) or a b (in case the first b-move is performed by a summand
bia of pN such that i > i1).

(b) uj = (x+ w) ‖ w′, for some terms w,w′ with w′ 6∼PF 0. From σ(u) ∼PF a ‖ pN , we
infer that CT(σ(uj)) ⊆ CT(a ‖ pN ). We recall that no completed trace of a ‖ pN has b
as last symbol and, moreover, in all the completed traces of a ‖ pN there are exactly
two occurrences of a. Hence, all (nonempty) completed traces of σ(x), σ(w) and
σ(w′) must have exactly one occurrence of a and this occurrence must be as the
last symbol in the completed trace.
We now proceed to show that σ(w′) has a summand a and a 6∈ I(σ(x) + σ(w)). We
start by noticing that it cannot be the case that a ∈ I(σ(x) + σ(w)) ∩ I(σ(w′)), for
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otherwise we would have a2 ∈ T(σ(uj)) ⊆ T(σ(u)), thus contradicting σ(u) ∼PF a‖pN .
Assume now, towards a contradiction, that I(σ(w′)) = {b}. Then, due to summand

bima of σ(x), we have that σ(uj)
bim−1

−−−−→ ba ‖ σ(w′) and aα 6∈ T(ba ‖ σ(w′)) for
any trace α ∈ A∗. Clearly, (bim−1, T(ba ‖ σ(w′))) ∈ PF(σ(uj)), and thus it is also
a possible future of σ(u). However, (bim−1, T(ba ‖ σ(w′))) 6∈ PF(a ‖ pN ), as the
interleaving of pN with a guarantees that after an initial trace of an arbitrary
number of b-transitions it is always possible to perform a trace starting with a.
This gives a contradiction with σ(u) ∼PF a ‖ pN . We have therefore obtained that
a ∈ I(σ(w′)). More precisely, from the constraints on the completed traces of σ(w′),
we can infer that σ(w′) has a summand a.

Our order of business will now be to show that σ(w′) ∼PF a. Since σ(w′)
a−→ 0, we

have that σ(uj)
a−→ (σ(x)+σ(w))‖0 ∼PF σ(x)+σ(w). Thus, σ(u) ∼PF a‖pN implies

that a ‖ pN
a−→ r for some r with T(r) = T(σ(x) + σ(w)). Since a ‖ pN has only one

possible initial a-transition, namely a‖pN
a−→ 0‖pN , we get that r ∼PF pN and thus

T(σ(x)+σ(w)) = T(pN ). In particular, this implies that depth(σ(x)+σ(w)) = N+1.
Therefore, we have

1 ≤ depth(σ(w′)) = depth(σ(uj))− depth(σ(x) + σ(w))

= depth(σ(uj))− (N + 1)

≤ depth(σ(u))− (N + 1)

= depth(a ‖ pN )− (N + 1) (by Lem. 6.6.3)

= N + 2− (N + 1)

= 1

and we can therefore conclude that σ(w′) ∼PF a. Furthermore, it is not difficult to
prove that CT(σ(x) + σ(w)) = CT(pN ), for otherwise we get a contradiction with
σ(u) ∼PF a ‖ pN .
So far we have obtained that, modulo possible futures equivalence,

σ(uj) ∼PF

(
m∑
k=1

bika+ σ(w)

)
‖ a and

CT

(
m∑
k=1

bika+ σ(w)

)
=
{
bia | i ∈ {1, . . . , N}

}
.

To conclude the proof, we need to show that
∑m

k=1 b
ika + σ(w) ∼PF pN . Let

Im = {i1, . . . , im} and IN = {1, . . . , N}. Assume, towards a contradiction, that∑m
k=1 b

ika + σ(w) 6∼PF pN . Since CT(σ(x) + σ(w)) = CT(pN ), from Lemma 6.4
we can infer that σ(w) does not contain any occurrence of ‖. In particular, σ(w)
can be written in the general form σ(w) =

∑
l∈L ql for some terms ql that do

not have + as head operator nor contain any occurrence of ‖. Moreover, as∑m
k=1 b

ika + σ(w) 6∼PF pN , by Lemma 6.5, this means that either there is an
i ∈ IN \ Im such that bia 6∼PF ql for any l ∈ L, or that there is a summand ql of
σ(w) such that ql 6∼PF b

ia for any i ∈ IN . In both cases, we obtain that there is (at
least) a summand ql of σ(w) such that bka, bha ∈ CT(ql) for some k 6= h, h, k ∈ IN .
We can then proceed as in the proof of Lemma 6.5 to prove that this gives the
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desired contradiction. We have therefore obtained that
∑m

k=1 b
ika+ σ(w) ∼PF pN .

Hence, since possible futures equivalence is a congruence with respect to parallel
composition, we get that

σ(uj) ∼PF a ‖ pN
and we can therefore conclude that σ(u) has the desired summand.

This concludes the proof.

We can now proceed to prove the witness property to be an invariant under provability
from finite sound axiom systems. Theorem 6.2 can be then obtained as a consequence of
the following result. In fact, as the left-hand side of equation eN , i.e., the term a ‖ pN , has
a summand possible futures equivalent to a ‖ pN , whilst the right-hand side, i.e., the term

apN +
∑N

i=1 b(a ‖ bi−1a), does not, we can conclude that the collection of infinitely many
equations eN (N ≥ 1) is the desired witness family.

Theorem 6.12. Let E be a finite axiom system over BCCSP‖ that is sound modulo ∼PF.
Let N be larger than the size of each term in the equations in E. Let p and q be closed terms
such that p, q ∼PF a ‖ pN . Assume, moreover, that p and q contain no occurrences of 0 as a
summand or factor. If E ` p ≈ q and p has a summand possible futures equivalent to a ‖ pN ,
then so does q.

Proof. Assume that E is a finite axiom system over the language BCCSP‖ that is sound
modulo possible futures equivalence, and that the statements (1)–(4) below hold, for some
closed terms p and q and positive integer N larger than the size of each term in the equations
in E :

(1) E ` p ≈ q,
(2) p ∼PF q ∼PF a ‖ pN ,
(3) p and q contain no occurrences of 0 as a summand or factor, and
(4) p has a summand possible futures equivalent to a ‖ pN .

We prove that q also has a summand possible futures equivalent to a ‖ pN by induction on
the depth of the closed proof of the equation p ≈ q from E . Recall that, without loss of
generality, we may assume that the closed terms involved in the proof of the equation p ≈ q
have no 0 summands or factors (by Proposition D.6, as E may be assumed to be saturated),
and that applications of symmetry happen first in equational proofs (that is, E is closed
with respect to symmetry).

We proceed by a case analysis on the last rule used in the proof of p ≈ q from E .
The case of reflexivity is trivial, and that of transitivity follows immediately by using the
inductive hypothesis twice. Below we only consider the other possibilities.

• Case E ` p ≈ q, because σ(t) = p and σ(u) = q for some equation (t ≈ u) ∈ E
and closed substitution σ. Since σ(t) = p and σ(u) = q have no 0 summands or
factors, and N is larger than the size of each term mentioned in equations in E , the claim
follows by Proposition 6.11.
• Case E ` p ≈ q, because p = cp′ and q = cq′ for some p′, q′ such that E ` p′ ≈ q′,

and for some action c. This case is vacuous because p = cp′ 6∼PF a ‖ pN , and thus p
does not have a summand possible futures equivalent to a ‖ pN .
• Case E ` p ≈ q, because p = p′ + p′′ and q = q′ + q′′ for some p′, q′, p′′, q′′ such

that E ` p′ ≈ q′ and E ` p′′ ≈ q′′. Since p has a summand possible futures equivalent to
a ‖ pN , we have that so does either p′ or p′′. Assume, without loss of generality, that p′ has
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a summand possible futures equivalent to a ‖ pN . Since p is possible futures equivalent to
a ‖ pN , so is p′. Using the soundness of E modulo possible futures equivalence, it follows
that q′ ∼PF a ‖ pN . The inductive hypothesis now yields that q′ has a summand possible
futures equivalent to a‖pN . Hence, q has a summand possible futures equivalent to a‖pN ,
which was to be shown.
• Case E ` p ≈ q, because p = p′ ‖ p′′ and q = q′ ‖ q′′ for some p′, q′, p′′, q′′ such that
E ` p′ ≈ q′ and E ` p′′ ≈ q′′. Since the proof involves no uses of 0 as a summand or a
factor, we have that p′, p′′ 6∼PF 0 and q′, q′′ 6∼PF 0. It follows that q is a summand of itself.
By our assumptions, q′ ‖ q′′ ∼PF a ‖ pN which, by Proposition 6.8 gives that either q′ ∼S a
and q′′ ∼S pN , or q′ ∼S pN and q′′ ∼S a. In both cases, we can conclude that q has itself
as summand of the required form.

This completes the proof of Theorem 6.12.

The proof of Theorem 6.2 is now concluded.

6.2. Extending the negative result. It is easy to check that the equations eN (N ≥ 1)
in the witness family of the negative result for ∼PF are all sound modulo bisimilarity, i.e.,
the largest symmetric simulation. Consequently, they are also sound modulo any congruence
R such that ∼B ⊆ R ⊆ ∼PF. Hence, the negative result for all these equivalences can be
derived from that for ∼PF, by exploiting this fact and that any finite axiom system that is
sound modulo R is also sound modulo ∼PF.

Theorem 6.13. Assume that |A| ≥ 2. Let R be a congruence such that ∼B ⊆ R ⊆
∼PF. Then R has no finite, ground-complete, equational axiomatisation over the language
BCCSP‖.

Proof. Let E be a finite equational axiomatisation for BCCSP‖ that is sound modulo R .
Since R is included in ∼PF, we have that the axiom system E is sound modulo ∼PF. Let N
be larger than the size of each term in the equations in E . Theorem 6.12 implies that the
equation

a ‖ pN ≈ apN +
N∑
i=1

b(a ‖ bi−1a)

cannot be derived from E . Since this equation is sound modulo R , namely

a ‖ pN R apN +
N∑
i=1

b(a ‖ bi−1a)

it follows that E is not complete modulo R .

Theorem 6.13 can be applied to establish for n ≥ 2 that the n-nested trace and simulation
semantics have no finite, ground-complete equational axiomatisation over BCCSP‖. The
n-nested trace equivalences were introduced in [HM85] as an alternative tool to define
bisimilarity. The hierarchy of n-nested simulations, namely simulation relations contained
in a (nested) simulation equivalence, was introduced in [GV92].

Definition 6.14 (n-nested semantics). For n ≥ 0, the relation ∼nT over P, called the
n-nested trace equivalence, is defined inductively as follows:

• p ∼0
T q for all p, q ∈ P,

• p ∼n+1
T q if and only if for all traces α ∈ A∗:
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x
α−→ x′

x ‖ y α−→ x′ ‖ y
y

α−→ y′

x ‖ y α−→ x ‖ y′
x

a−→ x′ y
ā−→ y′

x ‖ y τ−→ x′ ‖ y′
x

ā−→ x′ y
a−→ y′

x ‖ y τ−→ x′ ‖ y′

Table 11. Operational semantics of parallel composition with CCS com-
munication.

– if p
α−→ p′ then there is a q′ such that q

α−→ q′ and p′ ∼nT q′, and

– if q
α−→ q′ then there is a p′ such that p

α−→ p′ and p′ ∼nT q′.
For n ≥ 0, the relation vnS over P is defined inductively as follows:

• p v0
S q for all p, q ∈ P,

• p vn+1
S q if and only if pR q for some simulation R , with R−1 included in vnS .

n-nested simulation equivalence is the kernel of vnS , i.e., the equivalence ∼nS = vnS ∩ (vnS )−1.

Note that ∼1
T corresponds to trace equivalence, ∼2

T is possible futures equivalence, and
∼1

S is simulation equivalence. The following theorem is a corollary of Theorems 6.2 and 6.13.

Theorem 6.15. Assume that |A| ≥ 2. Let n ≥ 2. Then, n-nested trace equivalence and
n-nested simulation equivalence admit no finite, ground-complete, equational axiomatisation
over the language BCCSP‖.

7. Adding CCS synchronisation

The negative results provided above conclude our analysis of the axiomatisability of the
purely interleaving parallel composition operator modulo the congruences in the linear
time-branching time spectrum.

The most natural extension of our work consists in allowing the parallel components to
synchronise. In particular, we are interested in the CCS-style communication. It presupposes
a bijection · on A such that a = a and a 6= a for all a ∈ A. Following [Mil89], the special
action symbol τ 6∈ A, will result from the synchronised occurrence of the complementary
actions a and ā. Let Aτ = A ∪ {τ}. Then, we let the metavariables α, β, . . . range over Aτ .

The rules in Table 11 define the operational semantics of the parallel composition
operator when also synchronisation is taken into account.

Our order of business for this section will then be to show if and how the analysis we
carried out in the previous sections is affected by the addition of synchronisation à la CCS.

7.1. The positive results. It is not difficult to see that the arguments we used to prove
the existence of finite, ground-complete axiomatisations still hold also with synchronisation.
The only changes we need to apply are reported in Table 12. For Y ∈ {1, 2, 3}, the axiom
schema ELCY simply adds the terms related to communication to ELY.

We remark that, by convention,
∑

i∈∅ ti = 0. A finite, ground-complete axiomatisation
over BCCSP‖ modulo ∼X, for X ∈ {T, CT, F, R, FT, RT, S, CS, RS} is given by the axiom system
EcX obtained from EX as follows:

• we include {ELC1,ELC1τ} instead of EL1;
• we include ELC2 instead of EL2;
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(ELC1) αx ‖ βy ≈ α(x ‖ βy) + β(αx ‖ y) if α 6= β, or α = τ , or β = τ

(ELC1τ) αx ‖ βy ≈ α(x ‖ βy) + β(αx ‖ y) + τ(x ‖ y) if α = β

(ELC2)
∑

i∈I αixi ‖
∑

j∈J βjyj ≈
∑

i∈I αi(xi ‖
∑

j∈J βjyj) +
∑

j∈J βj(
∑

i∈I αixi ‖ yj)+
+
∑

i∈I,j∈J
αi=βj

τ(xi ‖ yj)

with αi 6= αk whenever i 6= k and βj 6= βh whenever j 6= h, ∀ i, k ∈ I, ∀ j, h ∈ J
(ELC3)

∑
i∈I αixi ‖

∑
j∈J βjyj ≈

∑
i∈I αi(xi ‖

∑
j∈J βjyj) +

∑
j∈J βj(

∑
i∈I αixi ‖ yj)+

+
∑

i∈I,j∈J
αi=βj

τ(xi ‖ yj)

Table 12. The different instantiations of the expansion law when commu-
nication is considered.

• all other axioms are unchanged (although the action variables occurring in them now
range over Aτ ).

For instance, a finite, ground-complete axiomatisation over BCCSP‖ modulo ready simulation
equivalence is given by the axiom system EcRS = E1 ∪ {RS,RSP1,RSP2,ELC2}.

7.2. The negative results. In [Mol89] it was proved that bisimilarity does not admit a
finite, ground-complete axiomatisation over BCCSP‖ with CCS-style synchronisation. We
now proceed to show that, by applying similar arguments to those used in Section 6.1, we
can obtain the same negative result for possible futures equivalence. More precisely, we
prove the following:

Theorem 7.1. Assume that |Aτ | ≥ 2. Possible futures equivalence has no finite, ground-
complete, equational axiomatisation over the language BCCSP‖ with CCS synchronisation.

To this end, consider the infinite family of equations {ecN | N ≥ 1} given by:

qN =

N∑
i=1

τ ia (N ≥ 1)

ecN : a ‖ qN ≈ aqN +
N∑
i=1

τ(a ‖ τ i−1a) (N ≥ 1).

Clearly, this family of equations coincides with that used to prove the negative result in
Section 6.1 where we have substituted all occurrences of action b with the special action τ .
We notice that the equations ecN are sound not only modulo possible futures equivalence, but
also modulo bisimilarity (each ecN is in fact a distinct closed instance of ELC3 in Table 12).
This means that if we can obtain the negative result for possible futures, then we can proceed
exactly as in Section 6.2 to extend it to all the congruences ∼ such that ∼B⊆∼⊆∼PF.

Since τ cannot communicate with any action, hence, in particular, it does not com-
municate with a, the analysis we carried out in Section 6.1 (with b replaced by τ) still
applies.

Remark 7.2. Most results in Section 6.2 rely on the assumption that terms do not contain
0 summands or factors. Notice that due to undefined communications, the expansion law
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schemas in Table 12 may actually introduce terms that are possible futures equivalent to 0
in the equational proofs.

However, we remark that this is not an issue. In fact, in general, we could extend the
results in Appendix D to deal with the possible 0 summands introduced by the expansion
laws. Briefly, whenever a 0 summand is introduced, we can assume that axioms A0 and P0
(Table 3) are also applied in order to get rid of the unnecessary 0 summands and factors.
Hence, the proof of Theorem 7.1 follows from Theorem 6.12 and the fact that none of the
summands in the right-hand side of the equations ecN is possible futures equivalent to a ‖ pN .

8. Concluding remarks

We have studied the finite axiomatisability of the language BCCSP‖ modulo the behavioural
equivalences in the linear time-branching time spectrum. On the one hand we have obtained
finite, ground-complete axiomatisations modulo the (decorated) trace and simulation seman-
tics in the spectrum. On the other hand we have proved that for all equivalences that are
finer than possible futures equivalence and coarser than bisimilarity a finite ground-complete
axiomatisation does not exist.

Since our ground-completeness proof for ready simulation equivalence proceeds via
elimination of ‖ from closed terms (Proposition 3.5), and all behavioural equivalences in
the linear time-branching time spectrum that include ready simulation have a finite ground-
complete axiomatisation over BCCSP, it immediately follows from the elimination result
that all these behavioural equivalences have a finite ground-complete axiomatisation over
BCCSP‖.

Exploiting various forms of distributivity of parallel composition over choice, we were able
to present more concise and elegant axiomatisations for the coarser behavioural equivalences.

In this paper we have considered both, a parallel composition operator that implements
interleaving without synchronisation between the parallel components, and a parallel com-
position operator with CCS-style synchronisation. It is natural to consider extensions of our
result to parallel composition operators with other forms of synchronisation. We expect the
extensions with ACP-style or CSP-style synchronisation to be less straightforward than the
extension with CCS-style synchronisation presented in this paper, especially in the case of
the negative results, and we leave these as topics for future investigations.

As previously outlined, in [AFGI04] it was proved that the nested semantics admit
no finite axiomatisation over BCCSP. However, our negative results cannot be reduced to
a mere lifting of those in [AFGI04], as the presence of the additional operator ‖ might,
at least in principle, allow us to finitely axiomatise the equations over BCCSP processes
that are valid modulo the considered nested semantics. Indeed, auxiliary operators can be
added to a language in order to obtain a finite axiomatisation of some congruence relation
(see, e.g. the classic example given in [BK84]). Understanding whether it is possible to lift
non-finite axiomatisability results among different algebras, and under which constraints
this can be done, is an interesting research avenue and we aim to investigate it in future
work. A methodology for transferring non-finite-axiomatisability results across languages
was presented in [AFIM10], where a reduction-based approach was proposed. However, that
method has some limitations and thus further studies are needed.

A behavioural equivalence is finitely based if it has a finite equational axiomatisation
from which all valid equations between open terms are derivable. In [FL00] and [AFIL09]
finite bases for bisimilarity with respect to PA and BCCSP‖ extended with the auxiliary



15:42 L. Aceto, V. Castiglioni, A. Ingólfsdóttir, B. Luttik, and M. R. Pedersen Vol. 18:1

operators left merge and communication merge were presented. Furthermore, in [CFLN08]
an overview was given of which behavioural equivalences in the linear time-branching time
spectrum are finitely based with respect to BCCSP. The negative results in Section 6
imply that none of the behavioural equivalences between possible futures equivalence and
bisimilarity is finitely based with respect to BCCSP‖. An interesting question is which of
the behavioural equivalences including ready simulation semantics is finitely based with
respect to BCCSP‖.

In [dFGPR13] an alternative classification of the equivalences in the spectrum with
respect to [Gla01] was proposed. In order to obtain a general, unified, view of process
semantics, the spectrum was divided into layers, each corresponding to a different notion of
constrained simulation [dFG08]. There are pleasing connections between the different layers
and the partitioning they induce of the congruences in the spectrum, as given in [dFGPR13],
and the relationships between the axioms for the interleaving operator we have presented in
this study.
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Appendix A. The Mace4 code for ECS
The following is the Mace4 code we used to generate a model for ECS in which EL2 (as given
in formulas(goals) below) does not hold.

s e t ( verbose ) .

a s s i g n ( max megs , 1000) .

a s s i g n ( domain s ize , 5 ) .

op (750 , p r e f i x , ” a ”) .

op (750 , p r e f i x , ” b”) .

op (850 , i n f i x , ” p lus ”) .

op (950 , i n f i x , ” par ”) .

formulas ( assumptions ) .

( x p lus 0) = x .

( x p lus y ) = ( y p lus x ) .

( ( x p lus y ) p lus z ) = ( x p lus ( y p lus z ) ) .

( x p lus x ) = x .

( x par 0) = x .

( x par y ) = ( y par x ) .

% Axiom EL1

( a x par a y ) = ( a ( x par a y ) p lus a ( y par a x ) ) .

( a x par b y ) = ( a ( x par b y ) p lus b ( y par a x ) ) .

(b x par b y ) = (b ( x par b y ) p lus b ( y par b x ) ) .

% Axiom CS

( a ( a x p lus ( y p lus z ) ) ) = ( a ( a x p lus ( y p lus z ) ) p lus a ( a

x p lus z ) ) .

( a (b x p lus ( y p lus z ) ) ) = ( a (b x p lus ( y p lus z ) ) p lus a (b

x p lus z ) ) .

(b ( a x p lus ( y p lus z ) ) ) = (b ( a x p lus ( y p lus z ) ) p lus b ( a

x p lus z ) ) .

(b (b x p lus ( y p lus z ) ) ) = (b (b x p lus ( y p lus z ) ) p lus b (b

x p lus z ) ) .

% Axiom CSP1

( ( a x p lus ( a y p lus u) ) par ( a z p lus ( a w plus v ) ) ) =

( ( ( a x p lus u) par ( a z p lus ( a w plus v ) ) )

p lus ( ( ( a y p lus u) par ( a z p lus ( a w plus v ) ) )

p lus ( ( ( a x p lus ( a y p lus u) ) par ( a z p lus v ) )

p lus ( ( a x p lus ( a y p lus u) ) par ( a w plus v ) )

) ) ) .

( ( a x p lus ( a y p lus u) ) par ( a z p lus (b w plus v ) ) ) =

( ( ( a x p lus u) par ( a z p lus (b w plus v ) ) )

p lus ( ( ( a y p lus u) par ( a z p lus (b w plus v ) ) )
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plus ( ( ( a x p lus ( a y p lus u) ) par ( a z p lus v ) )

p lus ( ( a x p lus ( a y p lus u) ) par (b w plus v ) )

) ) ) .

( ( a x p lus (b y p lus u) ) par ( a z p lus (b w plus v ) ) ) =

( ( ( a x p lus u) par ( a z p lus (b w plus v ) ) )

p lus ( ( ( b y p lus u) par ( a z p lus (b w plus v ) ) )

p lus ( ( ( a x p lus (b y p lus u) ) par ( a z p lus v ) )

p lus ( ( a x p lus (b y p lus u) ) par (b w plus v ) )

) ) ) .

( ( a x p lus (b y p lus u) ) par (b z p lus (b w plus v ) ) ) =

( ( ( a x p lus u) par (b z p lus (b w plus v ) ) )

p lus ( ( ( b y p lus u) par (b z p lus (b w plus v ) ) )

p lus ( ( ( a x p lus (b y p lus u) ) par (b z p lus v ) )

p lus ( ( a x p lus (b y p lus u) ) par (b w plus v ) )

) ) ) .

( ( b x p lus (b y p lus u) ) par (b z p lus (b w plus v ) ) ) =

( ( ( b x p lus u) par (b z p lus (b w plus v ) ) )

p lus ( ( ( b y p lus u) par (b z p lus (b w plus v ) ) )

p lus ( ( ( b x p lus (b y p lus u) ) par (b z p lus v ) )

p lus ( ( b x p lus (b y p lus u) ) par (b w plus v ) )

) ) ) .

% Axiom CSP2

( a x par ( a y p lus ( a z p lus w) ) ) =

( a ( x par ( a y p lus ( a z p lus w) ) )

p lus ( ( a x par ( a y p lus w) )

p lus ( ( a x par ( a z p lus w) )

) ) ) .

( a x par ( a y p lus (b z p lus w) ) ) =

( a ( x par ( a y p lus (b z p lus w) ) )

p lus ( ( a x par ( a y p lus w) )

p lus ( ( a x par (b z p lus w) )

) ) ) .

( a x par (b y p lus (b z p lus w) ) ) =

( a ( x par (b y p lus (b z p lus w) ) )

p lus ( ( a x par (b y p lus w) )

p lus ( ( a x par (b z p lus w) )

) ) ) .

(b x par ( a y p lus ( a z p lus w) ) ) =

(b( x par ( a y p lus ( a z p lus w) ) )

p lus ( (b x par ( a y p lus w) )

p lus ( (b x par ( a z p lus w) )

) ) ) .
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(b x par ( a y p lus (b z p lus w) ) ) =

(b( x par ( a y p lus (b z p lus w) ) )

p lus ( (b x par ( a y p lus w) )

p lus ( (b x par (b z p lus w) )

) ) ) .

(b x par (b y p lus (b z p lus w) ) ) =

(b( x par (b y p lus (b z p lus w) ) )

p lus ( (b x par (b y p lus w) )

p lus ( (b x par (b z p lus w) )

) ) ) .

e n d o f l i s t .

formulas ( goa l s ) .

( ( a x p lus b y ) par ( a z p lus b w) ) = ( a ( x par ( a z p lus b w) )

p lus (b( y par ( a z p lus b w) ) p lus ( a ( z par ( a x p lus b y ) )

p lus b(w par ( a x p lus b y ) ) ) ) ) .

e n d o f l i s t .

Appendix B. The Mace4 code for ERT
The following is the Mace4 code we used to generate a model for ERT in which RSP2 (as
given in formulas(goals) below) does not hold.

s e t ( verbose ) .

a s s i g n ( max megs , 1000) .

op (750 , p r e f i x , ” a ”) .

op (750 , p r e f i x , ” b”) .

op (850 , i n f i x , ” p lus ”) .

op (950 , i n f i x , ” par ”) .

formulas ( assumptions ) .

( x p lus 0) = x .

( x p lus y ) = ( y p lus x ) .

( ( x p lus y ) p lus z ) = ( x p lus ( y p lus z ) ) .

( x p lus x ) = x .

( x par 0) = x .

( x par y ) = ( y par x ) .

% Axiom RT

( a ( ( ( a x p lus a y ) p lus ( a u p lus a v ) ) p lus z ) ) =

( a ( ( a x p lus a u) p lus z )

p lus

a ( ( a y p lus a v ) p lus z )

) .

( a ( ( ( a x p lus a y ) p lus (b u p lus b v ) ) p lus z ) ) =

( a ( ( a x p lus b u) p lus z )
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plus

a ( ( a y p lus b v ) p lus z )

) .

( a ( ( ( b x p lus b y ) p lus (b u p lus b v ) ) p lus z ) ) =

( a ( ( b x p lus b u) p lus z )

p lus

a ( ( b y p lus b v ) p lus z )

) .

( b ( ( ( a x p lus a y ) p lus ( a u p lus a v ) ) p lus z ) ) =

( b ( ( a x p lus a u) p lus z )

p lus

b ( ( a y p lus a v ) p lus z )

) .

( b ( ( ( a x p lus a y ) p lus (b u p lus b v ) ) p lus z ) ) =

( b ( ( a x p lus b u) p lus z )

p lus

b ( ( a y p lus b v ) p lus z )

) .

( b ( ( ( b x p lus b y ) p lus (b u p lus b v ) ) p lus z ) ) =

( b ( ( b x p lus b u) p lus z )

p lus

b ( ( b y p lus b v ) p lus z )

) .

% Axiom FP

( ( a x p lus ( a y p lus w) ) par z ) = ( ( ( a x p lus w) par z ) p lus

( ( a y p lus w) par z ) ) .

% Axiom EL2

( a x par a y ) = ( a ( x par a y ) p lus a ( y par a x ) ) .

( a x par b y ) = ( a ( x par b y ) p lus b ( y par a x ) ) .

(b x par b y ) = (b ( x par b y ) p lus b ( y par b x ) ) .

( ( a x p lus b y ) par ( a z p lus b w) ) =

( a ( x par ( a z p lus b w) )

p lus ( b ( y par ( a z p lus b w) )

p lus ( a ( ( a x p lus b y ) par z )

p lus ( b ( ( a x p lus b y ) par w)

) ) ) ) .

e n d o f l i s t .

formulas ( goa l s ) .

( a x par (b u p lus (b v p lus w) ) ) =

( ( a x par (b u p lus w ) )

p lus ( ( a x par (b v p lus w ) )
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plus a ( x par (b u p lus (b v p lus w) ) )

) ) .

e n d o f l i s t .

Appendix C. The Mace4 code for ECT
The following is the Mace4 code we used to generate a model for ECT in which EL2 (as given
in formulas(goals) below) does not hold.

s e t ( verbose ) .

a s s i g n ( max megs , 1000) .

a s s i g n ( domain s ize , 5 ) .

op (750 , p r e f i x , ” a ”) .

op (750 , p r e f i x , ” b”) .

op (850 , i n f i x , ” p lus ”) .

op (950 , i n f i x , ” par ”) .

formulas ( assumptions ) .

( x p lus 0) = x .

( x p lus y ) = ( y p lus x ) .

( ( x p lus y ) p lus z ) = ( x p lus ( y p lus z ) ) .

( x p lus x ) = x .

( x par 0) = x .

( x par y ) = ( y par x ) .

% Axiom EL1

( a x par b y ) = ( a ( x par b y ) p lus b ( y par a x ) ) .

( a x par a y ) = ( a ( x par a y ) p lus a ( y par a x ) ) .

(b x par b y ) = (b ( x par b y ) p lus b ( y par b x ) ) .

% Axiom CT

( a ( a x p lus z ) p lus a ( a y p lus w) ) = ( a ( a x p lus ( a y p lus ( z

p lus w) ) ) ) .

( a ( a x p lus z ) p lus a (b y p lus w) ) = ( a ( a x p lus (b y p lus ( z

p lus w) ) ) ) .

( a (b x p lus z ) p lus a ( a y p lus w) ) = ( a (b x p lus ( a y p lus ( z

p lus w) ) ) ) .

( a (b x p lus z ) p lus a (b y p lus w) ) = ( a (b x p lus (b y p lus ( z

p lus w) ) ) ) .

(b( a x p lus z ) p lus a ( a y p lus w) ) = (b( a x p lus ( a y p lus ( z

p lus w) ) ) ) .

(b( a x p lus z ) p lus a (b y p lus w) ) = (b( a x p lus (b y p lus ( z

p lus w) ) ) ) .

(b(b x p lus z ) p lus a ( a y p lus w) ) = (b(b x p lus ( a y p lus ( z

p lus w) ) ) ) .
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(b(b x p lus z ) p lus a (b y p lus w) ) = (b(b x p lus (b y p lus ( z

p lus w) ) ) ) .

% Axiom CTP

( ( a x p lus ( a y p lus w) ) par z ) = ( ( ( a x p lus w) par z ) p lus ( (

a y p lus w) par z ) ) .

( ( a x p lus (b y p lus w) ) par z ) = ( ( ( a x p lus w) par z ) p lus ( (

b y p lus w) par z ) ) .

( ( b x p lus (b y p lus w) ) par z ) = ( ( ( b x p lus w) par z ) p lus ( (

b y p lus w) par z ) ) .

e n d o f l i s t .

formulas ( goa l s ) .

( ( a x p lus b y ) par ( a z p lus b w) ) = ( a ( x par ( a z p lus b w) )

p lus (b( y par ( a z p lus b w) ) p lus ( a ( z par ( a x p lus b y ) )

p lus b(w par ( a x p lus b y ) ) ) ) ) .

e n d o f l i s t .

By combining the formulas(assumptions) given above with the formulas(goals)

presented below, we can generate a model for ECT in which CSP2 does not hold.

formulas ( goa l s ) .

( a x par (b u p lus (b v p lus w) ) ) =

( ( a x par (b u p lus w ) )

p lus ( ( a x par (b v p lus w ) )

p lus a ( x par (b u p lus (b v p lus w) ) )

) ) .

e n d o f l i s t .

Appendix D. Simplifying the equational theory: saturated systems

The axioms A0 and P0 in Table 3 (used from left to right) are enough to establish that each
BCCSP‖ term that is possible futures equivalent to 0 is also provably equal to 0.

Lemma D.1. Let t be a BCCSP‖ term. Then t ∼PF 0 if and only if the equation t ≈ 0 is
provable using axioms A0 and P0 in Table 3 from left to right.

Proof. The “if” implication is an immediate consequence of the soundness of the equations
A0 and P0 with respect to ∼PF. To prove the “only if” implication, define, first of all, the
collection NIL of BCCSP‖ terms as the set of terms generated by the following grammar:

t ::= 0 | t+ t | t ‖ t,
We claim that each BCCSP‖ term t is ∼PF equivalent to 0 if and only if t ∈ NIL. Using this
claim and structural induction on t ∈ NIL, it is a simple matter to show that if t ∼PF 0,
then t ≈ 0 is provable using axioms A0 and P0 from left to right, which was to be shown.

To complete the proof, it therefore suffices to show the above claim. To establish the “if”
implication in the statement of the claim, one proves, using structural induction on t and the
congruence properties of ∼PF, that if t ∈ NIL, then σ(t) ∼PF 0 for every closed substitution
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σ. To show the “only if” implication, we establish the contrapositive statement, namely that
if t 6∈ NIL, then σ(t) 6∼PF 0 for some closed substitution σ. To this end, it suffices only to

show, using structural induction on t, that if t 6∈ NIL, then σa(t)
a−→ for some action a ∈ A,

where σa is the closed substitution mapping each variable to the closed term a0. The details
of this argument are not hard, and are therefore left to the reader.

In light of the above result, we shall assume, without loss of generality, that each axiom
system we consider includes the equations in Table 3. This assumption means, in particular,
that our axiom systems will allow us to identify each term that is possible futures equivalent
to 0 with 0.

We recall that a BCCSP‖ term t has a 0 factor if it contains a subterm of the form
t1 ‖ t2, where either t1 or t2 is possible futures equivalent to 0.

It is easy to see that, modulo the equations in Table 3, every BCCSP‖ term t has the
form

∑
i∈I ti, for some finite index set I, and terms ti (i ∈ I) that are not 0 and do not have

themselves the form t′ + t′′, for some terms t′ and t′′. The terms ti (i ∈ I) will be referred to
as the summands of t. Moreover, again modulo the equations in Table 3, each of the ti can
be assumed to have no 0 factors.

We can now introduce the notion of saturated system, namely an axiom system such
that if a closed equation that relates two terms containing no occurrences of 0 as a summand
or factor, then there is a closed proof for it in which all of the terms have no occurrences of
0 as a summand or factor (cf. [Mol89, Proposition 5.1.5]).

Definition D.2. For each BCCSP‖ term t, we define t/0 thus:

0/0 = 0 x/0 = x at/0 = a(t/0)

(t+ u)/0 =


u/0 if t ∼PF 0

t/0 if u ∼PF 0

(t/0) + (u/0) otherwise

(t ‖ u)/0 =


u/0 if t ∼PF 0

t/0 if u ∼PF 0

(t/0) ‖ (u/0) otherwise.

Intuitively, t/0 is the term that results by removing all occurrences of 0 as a summand
or factor from t.

The following lemma collects the basic properties of the above construction.

Lemma D.3. For each BCCSP‖ term t, the following statements hold:

(1) The equation t ≈ t/0 can be proven using the equations in Table 3, and therefore
t ∼PF t/0.

(2) The term t/0 has no 0 summands or factors.
(3) t/0 = t, if t has no occurrence of 0 as a summand or factor.
(4) σ(t/0)/0 = σ(t)/0, for each substitution σ.

Proof. Immediate by structural induction over t.

Definition D.4 (Saturated system). We say that a substitution σ is a 0-substitution if and
only if σ(x) 6= x implies that σ(x) = 0, for each variable x. Let E be an axiom system. We
define the axiom system cl(E) thus:

cl(E) = E ∪ {σ(t)/0 ≈ σ(u)/0 | (t ≈ u) ∈ E , σ a 0-substitution}.
An axiom system E is saturated if E = cl(E).

The following lemma collects some basic sanity properties of the closure operator cl(·).
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Lemma D.5. Let E be an axiom system. Then the following statements hold.

(1) cl(E) = cl(cl(E)).
(2) cl(E) is finite, if so is E.
(3) cl(E) is sound modulo possible futures equivalence, if so is E.
(4) cl(E) is closed with respect to symmetry, if so is E.
(5) cl(E) and E prove the same equations, if E contains the equations in Table 3.

Proof. We limit ourselves to sketching the proofs of statements (1) and (5) in the lemma.
In the proof of statement (1), the only non-trivial thing to check is that the equation

σ(σ′(t)/0))/0 ≈ σ(σ′(u)/0))/0

is contained in cl(E), whenever (t ≈ u) ∈ E and σ, σ′ are 0-substitutions. This follows from
Lemma D.3.(4) because the collection of 0-substitutions is closed under composition.

To show statement (5), it suffices only to argue that each equation t ≈ u that is provable
from cl(E) is also provable from E , if E contains the equations in Table 3. This can be done
by induction on the depth of the proof of the equation t ≈ u from cl(E), using Lemma D.3.(1)
for the case in which t ≈ u is a substitution instance of an axiom in cl(E).

We are now ready to state our counterpart of [Mol89, Proposition 5.1.5].

Proposition D.6. Assume that E is a saturated axiom system. Suppose furthermore that
we have a closed proof from E of the closed equation p ≈ q. Then replacing each term r in
that proof with r/0 yields a closed proof of the equation p/0 ≈ q/0. In particular, the proof
from E of an equation p ≈ q, where p and q are terms not containing occurrences of 0 as a
summand or factor, need not use terms containing occurrences of 0 as a summand or factor.

Proof. The proof follows the lines of that of [Mol89, Proposition 5.1.5], and is therefore
omitted.
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