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Abstract. Smart contracts — computer protocols that regulate the exchange of crypto-
assets in trustless environments — have become popular with the spread of blockchain
technologies. A landmark security property of smart contracts is liquidity : in a non-liquid
contract, it may happen that some assets remain frozen, i.e. not redeemable by anyone.
The relevance of this issue is witnessed by recent liquidity attacks to Ethereum, which have
frozen hundreds of USD millions. We address the problem of verifying liquidity on BitML, a
DSL for smart contracts with a secure compiler to Bitcoin, featuring primitives for currency
transfers, contract renegotiation and consensual recursion. Our main result is a verification
technique for liquidity. We first transform the infinite-state semantics of BitML into a
finite-state one, which focusses on the behaviour of a chosen set of contracts, abstracting
from the moves of the context. With respect to the chosen contracts, this abstraction is
sound, i.e. if the abstracted contract is liquid, then also the concrete one is such. We then
verify liquidity by model-checking the finite-state abstraction. We implement a toolchain
that automatically verifies liquidity of BitML contracts and compiles them to Bitcoin, and
we assess it through a benchmark of representative contracts.

1. Introduction

Smart contracts — computer protocols that regulate the exchange of assets in trustless
environments — have become popular with the growth of interest in blockchain technologies.
Mainstream blockchain platforms like Ethereum, Tezos and Cardano, feature expressive
high-level languages for programming smart contracts. This flexibility has a drawback in
that it may open the door to attacks that steal or tamper with the assets controlled by
vulnerable contracts [ABC17, LCO+16].

An alternative approach is to sacrifice the expressiveness of smart contracts to reduce
the attack surface. This approach was pursued first by Bitcoin, where transactions can
specify simple conditions on how to redeem them, using a limited set of logic, arithmetic,
and cryptographic operators. Despite the limited expressiveness of these conditions, it
is possible to encode a variety of smart contracts, e.g. gambling games, escrow services,
crowdfunding systems, by suitably chaining transactions [ADMM14a, ADMM14c, ADMM16,
ABC+18, BDM16, BZ17, BK14, KB14, KB16, KMB15, KVV16, MB17]. The common trait

Key words and phrases: Bitcoin, BitML, blockchain, smart contracts, liquidity, verification.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-18(1:22)2022
© M. Bartoletti, S. Lande, M. Murgia, and R. Zunino
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses


22:2 M. Bartoletti, S. Lande, M. Murgia, and R. Zunino Vol. 18:1

of these works is that they render contracts as cryptographic protocols, where participants
can exchange/sign messages, read the blockchain, and append transactions. Verifying
the correctness of these protocols is hard, since it requires to reason in a computational
model, where participants can manipulate arbitrary bitstrings, only being constrained to
use PPTIME algorithms.

Departing from this approach, BitML [BZ18a] allows to write Bitcoin contracts in a
high-level, process-algebraic language. BitML features a compiler that translates contracts
into sets of standard Bitcoin transactions. The compiler enjoys a computational soundness
property, which guarantees that the execution of the compiled contract is coherent with the
semantics of the source BitML specification, even in the presence of adversaries.

In this paper we address the problem of verifying BitML contracts, in an extension of
BitML with renegotiation and recursion [BMZ20]. In particular, we focus on a landmark
property of smart contracts, called liquidity, which ensures that funds cannot remain frozen
within a contract. Before discussing our main contributions, we overview below BitML and
our analysis technique.

1.1. BitML overview. In BitML, any participant can broadcast a contract advertisement
{G}C , where C is the contract, specifiying the rules to transfer bitcoins (B), while G is a
set of preconditions to its stipulation. Preconditions may require participants to deposit
some B in the contract, or to commit to some secret. Once {G}C has been advertised, each
participant can choose whether to accept it, or not. When all the preconditions G have been
satisfied, and all the involved participants have accepted, the contract C becomes stipulated.
Stipulated contracts have a balance, initially set to the sum of the deposits required by
its preconditions. This balance is updated when participants execute the contract, e.g. by
depositing/withdrawing funds to/from the contract.

A contract C is a choice among zero or more branches. Each branch is a guarded
contract, consisting of one action, and zero or more continuations. The guarded contract

withdraw A

transfers the whole balance to A, and then terminates. The guarded contract

split ‖ ni=1wi → Ci

decomposes the contract into n parallel components Ci, distributing the balance according
to the weights wi. The guarded contract

reveal~a if p

checks that all the secrets ~a have been revealed and satisfy the predicate p (of course, a
secret can be revealed only by the participant who has chosen it, as we will see in Section 2).

When enabled, the above-mentioned actions can be fired by anyone, at anytime. To
restrict who can execute actions and when, one can use the decoration A :D, which requires
the authorization of A, and the decoration after t :D, which requires to wait until time t.

Finally, the guarded contract

∗ : rngt X〈~E〉
allows participants to renegotiate the contract. This requires first a definition for the variable

X, which is given by an equation of the form X(~β) = {G}C . To finalize the renegotiation,
all the participants involved in the current contract must accept the new contract C ,1 by

1We use the asterisk in ∗ : rngt X〈~E〉 to stress that all the participants must accept the renegotiation.
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satisfying its precondition G (similarly to stipulation). When this happens, the control

passes to C , where the formal parameters ~β are instantiated to the actual parameters ~E.
Note that C could refer to X, so enabling recursion.

We exemplify BitML by specifying the timed commitment contract, a basic protocol to
construct more complex contracts, like e.g. lotteries and other games [ADMM14c]. Assume
that a participant A wants to choose a secret, and promises to reveal it before some time t.
The contract must ensure that if A does not reveal the secret in time, then she will pay a
penalty of 1B to B (e.g., the opponent in a game). In BitML, this is modelled as follows:

{A: 1 @x | A :secret a} (reveal a. withdraw A + after t : withdraw B)

The precondition requires A to pay upfront 1B, deposited in a transaction x, and
to commit to a secret a. The contract is a guarded choice between two branches: any
participant can fire an enabled guard, and make the contract evolve to its continuation. The
guard of the left branch is reveal a, which is enabled only after A reveals the secret. Its
continuation withdraw A allows anyone to transfer 1B to A. The guard of the right branch
is after t : withdraw B , which is enabled only after time t and allows anyone to transfer 1B
to B (here there is no continuation, since the withdraw terminates). So, before time t, A
has the option to reveal a (avoiding the penalty), or to keep it secret (paying the penalty).
If no branch is taken by time t, the first participant who fires its withdraw gets 1B.

1.2. Liquidity. The liquidity property requires that the contract balance can always be
transferred eventually to some participant: in a non-liquid contract, funds can be frozen
forever, unavailable to anyone, hence effectively destroyed2. A simple form of liquidity
could just require that participants can always cooperate to unfreeze funds. However, this
notion would contrast with the setting of smart contracts, where participants are mutually
untrusted, and may refuse to cooperate. For instance, consider a contract where A and B
contribute 1B each for a donation of 2B to either C or D:

{A: 1 @x | B: 1 @ y}
(
A :B : withdraw C + A :B : withdraw D

)
As in the timed commitment example, this contract is a choice between two branches, both
decorated with A :B : · · ·. This means that taking any branch requires the authorization of
both users: if A and B disagree on the branch to take, the funds are frozen. When A and B
agree on the recipient of the donation, the funds in the contract are unlocked, and they can
be transferred to the chosen recipient.

This contract would be liquid only by assuming the cooperation between A and B:
indeed, A alone cannot guarantee that the 2B will eventually be donated, as B can choose a
different recipient, or even refuse to give any authorization. Consequently, unless A trusts B,
it makes sense to consider this contract as non-liquid from A’s point of view (and for similar
reasons, also from that of B).

Consider again the timed commitment contract (we omit the preconditions for brevity):

reveal a. withdraw A + after t : withdraw B

This contract is liquid from A’s point of view, even if B is dishonest: indeed, A can
reveal the secret and then redeem the funds from the contract. The timed commitment is

2To the best of our knowledge, the use of the term “liquidity” to refer to a contract property was first
introduced in [TDD+18], in the setting of Ethereum contracts.
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also liquid from B’s point of view: if A does not reveal the secret (making the first branch
stuck), the funds in the contract can be redeemed through the second branch, after time t.

In a mutual timed commitment, where A and B have to exchange their secrets or pay a
1B penalty, achieving liquidity is a bit more challenging. We first consider a wrong attempt:

reveal a. reveal b. split (1B→ withdraw A | 1B→ withdraw B)

+ after t : withdraw B

This contract is liquid for B, but not for A. Indeed, if A performs the reveal a action,
B could refuse to reveal b, making the contract stuck. Instead, B can wait time t and then
fire withdraw B ; if, in the meanwhile, A has fired reveal a, B can reveal his secret and fire
reveal b, and then liquidate the contract.

To make the contract liquid for both participants, we amend it as follows:

reveal a.
(
reveal b. split (1B→ withdraw A | 1B→ withdraw B)

+ after t + 1 : withdraw A
)

+ after t : withdraw B

Now, if A has fired reveal a but B refuses to reveal b, after time t + 1 she can liquidate the
contract by performing the withdraw A .

As a more involved example, consider a recursive variant of the timed commitment:

X(n) = {A :secret a | A: 1 @ d}C
C = ∗ : rngt X〈n+ 1〉 + reveal a. withdraw A + after (t + n) : withdraw B

This contract is a toy example of a recursive contract, where X〈n〉 can be renegotiated,
transferring its balance to X〈n+ 1〉. When this happens, A must commit to a new secret a,
and provide an additional deposit d of 1B. Beyond renegotiation, X〈n〉 allows A to reveal
her secret and withdraw all the bitcoins deposited in the contract so far. If she does not
reveal, B can fire the last branch after time t + n, transferring the whole balance to himself.
This contract is liquid for both A and B. In every reachable state, a participant can stop
renegotiating the current contract X〈n〉. Then, anyone can liquidate the contract by either
waiting until time t + n and then performing the withdraw B , or firing the withdraw A
when this action is enabled.

The examples above, albeit elementary, show that detecting if a contract is liquid is not
straightforward, in general. Automatic techniques for the verification can be useful tools for
the developers of smart contracts.

1.3. Verifying liquidity. One of the main contributions of this paper is a verification
technique for the liquidity of BitML contracts. Our technique is based on a more general
result, i.e. a correspondence between the concrete semantics of BitML and a new abstract
semantics, which is finite-state and correctly approximates the concrete semantics. To obtain
a finite-state abstraction, we need to cope with several sources of infiniteness of the concrete
semantics: the unbounded passing of time, the stipulation and renegotiation of contracts,
and the operations on bitcoin deposits. When studying the liquidity of a set of contracts X
from the point of view of a participant A, we abstract away all this, by just recording the
actions which can be performed on the descendants of X, distinguishing between the actions
doable by A alone from those which require the cooperation of other participants. This
abstraction produces a finite-state transition system, which we model-check for liquidity.
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1.4. Contributions. We summarise our main contributions as follows:

• We introduce an extension of BitML featuring the renegotiation primitive ∗ : rngt X.
Compared to the version in [BZ18a], the current language is more expressive: besides
allowing participants to provide new deposits and secrets at run-time, it also allows for
unbounded recursion, still admitting compilation to Bitcoin.
• We formalize a notion of liquidity (Definition 3.3). With respect to a participant A, a

contract is liquid when A alone can ensure that funds do not remain frozen within the
contract, even in the presence of adversaries.
• We introduce an abstraction of the semantics of BitML which is finite-state, and sound

with respect to the concrete (infinite-state) semantics. Building upon this abstraction, we
devise a sound verification technique for liquidity in BitML (Theorem 5.7).
• We develop a toolchain for writing and verifying the liquidity of BitML contracts, and for

deploying them on Bitcoin. The toolchain is based on a BitML embedding in Racket [Fla12],
which allows for programming BitML contracts within the DrRacket IDE. The toolchain
also implements a compiler from BitML contracts to standard Bitcoin transactions.
• We implement a collection of BitML contracts, which we use as a benchmark to evaluate

our toolchain. This collection contains a variety of complex contracts, including financial
services, auctions, lotteries, and other gambling games.
• We discuss alternative renegotiation primitives, which allow participants to choose some

parameters (e.g. the amounts to be deposited) at renegotiation time, to change the set of
participants involved in the renegotiated contract, and to renegotiate contracts without
the consent of all participants.
• We discuss alternative notions of liquidity, e.g. taking into account participants’ strategies.

1.5. Comparison with previous work. This paper borrows and extends the contributions
of some past papers of ours. BitML was originally introduced in [BZ18a], in a version without
renegotiation and recursion. A main limitation of this version was that the participants
could not renegotiate the terms of a stipulated contract: this prevented from expressing
common financial contracts, where funds have to be added by participants at run-time.
Renegotiation and recursion were added in [BMZ20], where we showed that, despite the
increased expressiveness, it was still possible to execute BitML on standard Bitcoin, preserving
the security guarantees of BitML. These papers did not deal with verification of contracts,
and with liquidity. This notion was introduced in [BZ19], in the original version of BitML, i.e.
without renegotiation and recursion. The BitML toolchain was first presented in [ABL+19],
supporting the compilation and verification of contracts in the original version of BitML.

The current paper is the first one which studies liquidity in the full BitML. Recursion adds
significant complexity to verification, as it makes the calculus Turing-complete. Because of
this, the abstraction in [BZ19] is no longer usable, so the current paper devises an alternative
verification technique. The current paper also improves the BitML toolchain, extending the
compiler and the liquidity verifier to contracts with renegotiation and recursion.

2. BitML with renegotiation and recursion

We assume a set of participants, ranged over by A,B, . . ., a set of deposit names x, y, . . ., a
set of deposit variables d, e, . . ., and a set of secret names a, b, . . .. We use χ, χ′, . . . to range
over deposits (both names and variables), and v, v′, w to range over non-negative rational
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values. We denote with Hon the set of the honest participants. We denote with SA the set
of secret names usable by A, requiring that SA ∩ SB = ∅ if A 6= B.

Definition 2.1 (Contract precondition). Contract preconditions have the following syntax
(the deposits χ in a contract precondition G must be distinct):

G ::= A: v @χ deposit of vB put by A

| A :secret a secret committed by A (a ∈ SA)

| G | G composition �

The precondition A: v @χ requires A to own vB in a deposit χ, and to spend it for
stipulating the contract. The precondition A :secret a requires A to generate a secret a,
and commit to it before the contract starts. After stipulation, A can choose whether to
disclose the secret a, or not.

To define contracts, we assume a finite set of recursion variables, ranged over by X, Y, . . .,
and a language of static expressions E, E ′, . . ., formed by integer constants k, integer variables
β, β′, . . ., and the usual arithmetic operators. We omit to define the syntax and semantics
of static expressions, since they are standard. We assume that a closed static expression
evaluates to an integer value. We use the~· notation for finite sequences.

Definition 2.2 (Contract). Contracts are terms with the syntax in Figure 1, where: (i) the
summation

∑
i∈I Di is over a finite set of indices I; (ii) each recursion variable X has a unique

defining equation X(~β) = {G}C ; (iii) renegotiations ∗ : rngt X〈~E〉 have the correct number
of arguments; (iv) the names ~a in reveal~a if p are distinct, and they include those in p. We
denote with 0 the empty sum. The order of decorations is immaterial, e.g., after E :A :B :D
is equivalent to B :A : after E :D. �

A contract C is a choice among guarded contracts. The guarded contract withdraw A
transfers the whole balance to A. A guarded contract reveal~a if p. C ′ continues as C ′

once all the secrets ~a have been revealed and satisfy the predicate p. The guarded contract
split (w1 → C1 | · · · | wn → Cn) divides the contract into n contracts Ci, splitting the
balance according to the weights wi. To restrict who can execute a branch and when, one
can use the decoration A :D, requiring to wait for A’s authorization, and the decoration
after E :D, requiring to wait until the time specified by the static expression E. The guarded

contract ∗ : rngt X〈~E〉 allows the participants involved in the contract to renegotiate it.

Intuitively, if X(~β) = {G}C , then the contract continues as C{~E/~β} if all the participants
mentioned in G give their authorization, and satisfy the precondition G.

Definition 2.3 (Contract advertisement). A contract advertisement is a term {G}◦C , such
that: (i) ◦ is either empty or a deposit name; (ii) each secret name in C occurs in G; (iii) G

requires a deposit from each A in {G}◦C ; (iv) each ∗ : rngt X〈~E〉 in C refers to a defining

equation X(~β) = {G′}C ′ where the participants in G′ are the same as those in G. �

Intuitively, {G}C is the advertisement of a contract C with preconditions G, while
{G}xC is the advertisement of a renegotiation of an existing contract x. Condition (iii) is
used to guarantee that the contract is stipulated only if all the involved participants give
their consent: namely, A’s consent is rendered as A’s authorization to spend one of her
deposits. The last condition is only used to simplify the technical development: we outline
in Section 8 how to relax it, by allowing renegotiations to exclude some participants, or to
include new ones, which were not among those who originally stipulated the contract.
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C ::=
∑

i∈I Di contract

D ::= guarded contract

withdraw A transfer the balance to A

| reveal~a if p. C reveal secrets (if p is true)

| split ‖i (wi → Ci) split the balance

| A :D wait for A’s authorization

| after E :D wait until time E

| ∗ : rngt X〈~E〉 renegotiate the contract

p ::= true truth

| p ∧ p conjunction

| ¬p negation

| E = E equality

| E < E less than

E ::= E static expression

| a secret

| E + E addition

| E − E subtraction

Figure 1: Syntax of BitML contracts.

Γ ::= configuration

0 empty

| {G}◦C contract advertisement

| 〈C, v〉x active contract storing vB

| 〈A, v〉x A’s deposit of vB

| A[ξ] A’s authorization for ξ

| {A : a#N} committed secret of A

| A : a#N revealed secret of A

| t global time

| Γ | Γ′ composition

ξ ::= authorization to . . .

#B {G}◦C commit to {G}◦C
| x B {G}◦C spend x for {G}◦C
| x BD take branch D in contract x

| x, y B 〈A, v〉 join deposits x and y

| xB 〈A, v〉, 〈A, v′〉 split deposit x in two

| xB B donate deposit x to B

| ~x, iB y destroy i-th deposit in ~x

Figure 2: Configurations and authorizations.

We now define the semantics of BitML, starting from its configurations.

Definition 2.4 (Configuration). Configurations are terms with the syntax in Figure 2,
where: (i) in a committed secret, N ∈ N∪{⊥} (where ⊥ denotes an ill-formed commitment);
(ii) in a revealed secret, N ∈ N; (iii) in a configuration there are no duplicate authorizations;
(iv) in a configuration containing 〈· · ·〉x and 〈· · ·〉y , it must be x 6= y; (v) there exists at
most one term t. We assume that (|, 0) is a commutative monoid, and we denote indexed
parallel compositions with ‖ i. We say that Γ is initial when it contains only deposits (i.e.,
terms 〈A, v〉x), and that it is a timed configuration when it contains a term t. We denote
with cn(Γ) the set of contract names x such that Γ contains 〈C, v〉x , for some C and v. �

The intuition behind the various terms in configurations is the following:

• 〈C, v〉x is a stipulated contract storing vB, uniquely identified by the name x;
• 〈A, v〉x is a deposit of vB owned by A, and uniquely identified by the name x;
• A[ξ] is A’s authorizations to perform some action ξ;
• {A : a#N} represents A’s commitment to a secret N , identified by a;
• A : a#N represents a secret N , identified by a, and revealed by A.

Definition 2.5 (BitML semantics). The semantics of BitML is a Labelled Transition System
(LTS) between timed configurations. In the rest of this section we describe the reduction
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rules of the LTS, which implicitly define the labels `. A concrete run R is a sequence

Γ0
`0−→[ Γ1

`1−→[ · · ·, where Γ0 is timed. If R is finite, we write ΓR for the untimed part of its
last configuration.

Below we gently introduce the BitML semantics, first illustrating each construct through
examples, and then giving the general rule. Labels represent the actions performed by
participants. A decoration A : · · · in the label means that the action can be performed only
by A. The absence of such a decoration means that the action can be performed by anyone.
Note that labels are not instrumental to define the BitML semantics: yet, they are essential
to the definition of liquidity, since there we need to associate actions to the participants who
can perform them. In the examples, we will omit the labels.

Deposits. A deposit 〈A, v〉x can be reduced in several ways: it can be split into smaller
deposits, joined with another deposit, transferred to another participant, or destroyed. In
all cases, its owner A must first authorise the action. The reduction rules for deposits are
detailed in Figure 3. Rule [Dep-AuthJoin] allows A to authorize the merge of two deposits x, y
into a single one, creating the needed authorization. The label of the form A : · · · records
that only A can perform this move. Rule [Dep-Join] uses this authorization to create a single
deposit z of A. The rules [Dep-AuthDivide] and [Dep-Divide] act similarly, allowing a deposit of
A to be divided in two parts. The rules [Dep-AuthDonate] and [Dep-Donate] allow A to transfer
one of her deposits to another participant. The rules [Dep-AuthDestroy] and [Dep-Destroy] allow
a set of participants to destroy a set of deposits x1 · · ·xn. To do that, first each participant
Ai must provide the needed authorization Ai[~x, iB y] for their own deposit xi. When all the
authorizations have been collected, rule [Dep-Destroy] eliminates the deposits. The last two
rules in Figure 3 are needed to properly represent the fact that computational participants
can create (and put on the ledger) transactions without a counterpart in the symbolic model.
To achieve a meaningful correspondence between the symbolic and the computational models,
putting on the ledger such transactions is rendered with the rule [Dep-destroy].

Stipulation: advertisement. Any participant can broadcast a contract advertisement
{G}C , provided that all the deposits mentioned in G exist in the current configuration, and
that the names of the secrets in G are fresh. This is formalised by the following rule:

∀A: v @x in G : 〈A, v〉x in Γ all secrets in G fresh

Γ
adv({G}C )−−−−−−−→[ {G}C | Γ

[C-Adv]

We exemplify this and the following rules through a running example. Let:

G = A: 1 @x | B: 1 @ d | A :secret a

This precondition requires both A and B to deposit 1B, but A’s deposit name x is known,
while B’one is not known yet, so we refer to it through a deposit variable d. Let C be an
arbitrary contract involving only A and B, and let Γ0 = Γ | 〈A, 1〉x | 〈B, 1〉y for some Γ. By
rule [C-Adv], the configuration Γ0 can take the transition:

Γ0 →[ Γ0 | {G}C = Γ1
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〈A, v〉x | 〈A, v′〉y | Γ
A:x,y−−−→[ 〈A, v〉x | 〈A, v′〉y | A[x, y B 〈A, v + v′〉] | Γ

[Dep-AuthJoin]

Γ = A[x, y B 〈A, v + v′〉] | A[y, xB 〈A, v + v′〉] | Γ′ z fresh

〈A, v〉x | 〈A, v′〉y | Γ
join(x,y)−−−−−−→[ 〈A, v + v′〉z | Γ′

[Dep-Join]

〈A, v + v′〉x | Γ
A:x,v,v′

−−−−−→[ 〈A, v + v′〉x | A[x B 〈A, v〉, 〈A, v′〉] | Γ
[Dep-AuthDivide]

Γ = A[xB 〈A, v〉, 〈A, v′〉] | Γ′ y, y′ fresh

〈A, v + v′〉x | Γ
divide(x,v,v′)−−−−−−−−−→[ 〈A, v〉y | 〈A, v′〉y′ | Γ′

[Dep-Divide]

〈A, v〉x | Γ
A:x,B−−−−→[ 〈A, v〉x | A[x B B] | Γ

[Dep-AuthDonate]

Γ = A[xB B] | Γ′ y fresh

〈A, v〉x | Γ
donate(x,B)−−−−−−−−→[ 〈B, v〉y | Γ′

[Dep-Donate]

~x = x1 · · ·xn j ∈ 1..n y fresh (except in destroy authorizations for ~x)(
‖ ni=1〈Ai, vi〉xi

)
| Γ Aj :~x,j−−−−→[

(
‖ ni=1〈Ai, vi〉xi

)
| Aj [~x, j B y] | Γ

[Dep-AuthDestroy]

~x = x1 · · ·xn Γ =
(
‖ ni=1 Ai[~x, iB y]

)
| Γ′(

‖ ni=1〈Ai, vi〉xi

)
| Γ destroy(~x)−−−−−−−→[ Γ′

[Dep-Destroy]

Figure 3: Semantics of Bitcoin deposits.

Stipulation: commitment. To stipulate an advertised contract, all the participants
mentioned in it must fulfill the preconditions, by making available the required deposits,
and committing to the required secrets. In our example, A has one secret to commit, so she
can perform the following step:

Γ1 →[ Γ1 | {A : a#N} | A[# B {G}C ] = Γ2 (2.1)

where the term {A : a#N} represents A’s commitment to the secret N , while A[# B {G}C ]
represents finalising the commitment phase for A. Participant B has no secrets to commit,
but he must choose one of his deposits (e.g., 〈B, 1〉y) to fulfill the precondition B: 1 @ d:

Γ2 →[ Γ2 | B : d ← y | B[# B {G}C ] = Γ3 (2.2)

In general, these steps are formalised by the following rule:

∆s = ‖ ki=1 {A : ai#Ni}
a1 · · · ak are all the secrets of A in G

∀i ∈ 1..k : @N : {A : ai#N} in Γ

∀i ∈ 1..k : @N : A : ai#N in Γ

∀i ∈ 1..k : Ni ∈

{
N if A ∈ Hon

N ∪ {⊥} otherwise

∆d = ‖ hi=1 A : di ← xi

d1 · · · dh are all the deposits of A in G

∀i ∈ 1..h : A: vi @ di in G

∀i ∈ 1..h : @x : (A : di ← x) in Γ

∀i ∈ 1..h : 〈A, vi〉xi in Γ

∀i 6= j ∈ 1..h : xi 6= xj

∀x, v, i ∈ 1..h : A: v @x in G =⇒ xi 6= x

{G}◦C | Γ A:{G}◦C,∆s|∆d−−−−−−−−−−−→[ {G}◦C | Γ | ∆s | ∆d | A[# B {G}◦C ]
[C-AuthCommit]
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The rule preconditions ensures that the final configuration fulfills the conditions required
by G. We use the notation {G}◦C to refer to a contract advertisement of the form {G}C
or {G}xC . The case {G}C corresponds to the original contract stipulation, while the other
case corresponds to renegotiation. In this way, we can use the same rule in both situations.
Note that condition (iii) in Definition 2.4 ensures that rule [C-AuthCommit] cannot be used
more than once to generate the same authorization. The same is true for all the other rules
that generate authorizations.

Stipulation: authorization. Back to our example, in the configuration Γ3 of (2.2), A and
B must perform an additional sequence of steps to authorize the transfer of their deposits x,
y to the contract:

Γ3 →[ Γ3 | A[x B {G}C ] →[ Γ3 | A[x B {G}C ] | B[y B {G}C ] = Γ4 (2.3)

where the terms A[xB {G}C ] and B[y B {G}C ] represent the authorizations to spend x
and y for stipulation. In general, these steps are obtained through the following rule:

∀B in G : B[# B {G}◦C ] in Γ A: v @χ in G Γ ` χ = x

{G}◦C | Γ A:{G}◦C,x−−−−−−−→[ {G}◦C | Γ | A[xB {G}◦C ]
[C-AuthInitDep]

The first premise requires that all participants have finalised the commitment phase. While
rule [C-AuthCommit] allows a participant to add all her commitments to the configuration in a
single step, each application of rule [C-AuthInitDep] allows one to authorize the spending of a
single deposit. If a deposit variable d was used in G, the relation Γ ` d = x ensures that
the configuration contains a binding A : d ← x. The relation ` is defined as follows:

Γ ` x = x Γ | A : d ← x ` d = x

Stipulation: initialization. In the configuration Γ4 of (2.3) all the needed authorizations
have been granted, so the advertisement can be turned into an active contract. This step
consumes the deposits and the authorizations, and it initializes the new contract, with a
fresh name z, and with a balance corresponding to the sum of all the consumed deposits:

Γ4 →[ Γ | {A : a#N} | 〈C, 2〉z

In general, this step is obtained through the following rule:

G =
(
‖ i∈IAi: vi @xi

)
|
(
‖ i∈JBi: v′i @ di

)
|
(
‖ i∈KCi :secret ai

)
z fresh

∆ =
(
‖ i∈I〈Ai, vi〉xi

)
|
(
‖ i∈J〈Bi, v′i〉x′i

)
|
(
‖ i∈JBi : di ← x′i

)
|(

‖ i∈IAi[xi B {G}C ]
)
|
(
‖ i∈JBi[x′i B {G}C ]

)
|
(
‖ A∈GA[# B {G}C ]

)
{G}C | ∆ | Γ init(G,C )−−−−−−→[ 〈C,

∑
i∈I vi +

∑
i∈J v

′
i〉z | Γ

[C-Init]

Note that the part {G}C | ∆ of the configuration contains all the terms that are consumed
by the step. The following rules define the behaviour of a contract after stipulation.
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Withdraw. Executing withdraw A terminates the contract, and transfers its balance to A:

〈withdraw A , v〉x →[ 〈A, v〉y

After the contract x is terminated, a fresh deposit of vB owned by A is created. The general
rule is the following:

y fresh

〈withdraw A , v〉x | Γ
withdraw(A,v,x)−−−−−−−−−−→[ 〈A, v〉y | Γ

[C-Withdraw]

The case where the action withdraw A has an alternative branch is dealt with by the rule
[C-Branch], discussed below.

Split. The split primitive divides the contract balance in parts, each one controlled by its
own contract. For instance:

〈(split 2→ C1 | 3→ C2), 5〉x →[ 〈C1, 2〉y | 〈C2, 3〉z

After this step, the new spawned contracts C1 and C2 are executed concurrently. The
general rule is the following:

w =
∑k

i=1wi vi = (v · wi)/w y1 · · · yk fresh

〈split ‖ ki=1(wi → Ci), v〉x | Γ
split(x)−−−−→[

(
‖ ki=1〈Ci, vi〉yi

)
| Γ

[C-Split]

Note that the weights wi in the split do not represent actual B values, but the proportion
w.r.t. the contract balance. For instance:

〈(split 2→ C1 | 3→ C2), 10〉x →[ 〈C1, 4〉y | 〈C2, 6〉z

Revealing secrets. Any participant can reveal one of her secrets, using the rule:

N 6= ⊥

{A : a#N} | Γ A:a−−→[ A : a#N | Γ
[C-AuthRev]

The premise N 6= ⊥ is needed to avoid the case where a participant does not know the
secret she has committed to. Indeed, at the level of Bitcoin, commitments are represented
as cryptographic hashes of bitstrings, and revealing a secret amounts to broadcasting a
preimage, i.e. a value whose hash is equal to the committed value. If a participant commits
to a random value, then with overwhelming probability she will not be able to provide a
preimage. The label A : a represents the fact that only A, the participant who performed
the commitment, can fire the transition.

Reveal. The prefix reveal~a if p can be fired if all the committed secrets ~a have been
revealed, and satisfy the guard p. For instance, if Γ = A : a#N | B : b#M :

〈reveal ab if a = b. C, v〉x | Γ →[ 〈C, v〉y | Γ if M = N

The general rule is the following:

~a = a1 · · · an ∆ = ‖ ni=1Bi : ai#Ni JpK∆ = true y fresh

〈reveal~a if p. C, v〉x | Γ | ∆
rev(~a,y)−−−−−→[ 〈C, v〉y | Γ | ∆

[C-Rev]
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where the semantics of predicates JpK∆ is defined by the following equations:

JtrueK∆ = true Jp1 ∧ p2K∆ = Jp1K∆ and Jp2K∆ J¬pK∆ = not JpK∆

JaK∆ = N if ∆ contains A : a#N JE1 • E2K∆ = JE1K∆ • JE2K∆ (• ∈ {+,−})

JNK∆ = N JE1 ◦ E2K∆ = JE1K∆ ◦ JE2K∆ (◦ ∈ {=, <})

Authorizing branches. A branch A :D can be taken only provided that A has granted
her authorization. This can be done through the following rule:

〈A :D + C, v〉x | Γ
A:(x,A :D)−−−−−−−→[ 〈A :D + C, v〉x | A[x B A :D] | Γ

[C-AuthBranch]

Reducing branches. Once all the authorizations for a branch occur in the configuration,
anyone can trigger the transition, provided that the time constraints (if any) are respected.
For instance, if D = A : after 1000 : withdraw B , we have the transition:

〈D + C, v〉x | A[xBD] | 1051→[ 〈B, v〉y | 1051

The general rule is the following:

〈D ′, v〉x | Γ
`−→[ Γ′ D = A1 : · · · :Ak : after t1 : · · · : after tm :D ′ D ′ 6= A : · · ·

x 6∈ cn(Γ′) t ≥ t1, . . . , tm D ′ 6= after t′ : · · ·

〈D + C, v〉x | ‖ ki=1Ai[x BD] | Γ | t `−→[ Γ′ | t
[C-Branch]

Delaying. In any configuration, we always allow time to advance:

δ > 0

Γ | t δ−→[ Γ | t + δ
[C-Delay]

Renegotiation: advertisement. Contract renegotiation is similar to stipulation, including
advertisement, commitment, authorization, and contract initialization. We illustrate these
phases through a running example. Consider a configuration:

Γ0 = 〈∗ : rngt X〈k〉+ Calt, v〉x | Γ where X〈β〉 = {G}C

where Calt contains the branches alternative to rngt, G = A: 1 @ d | B: 1 @ e | A : secret a ,
and C is an arbitrary contract involving only A and B, possibly containing the integer
variable β in static expressions. The renegotiation is advertised as follows:

Γ0 →[ Γ0 | {G′}xC ′ = Γ1 (2.4)

where {G′}xC ′ is obtained by transforming {G}C as follows: (i) variables d, e are renamed
into fresh ones d′, e′, and similarly the secret name a into a′ , (ii) the static expressions in
C are evaluated, assuming β = k, and replaced with their results. The superscript x in
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{G′}xC ′ is used to record that, when the renegotiation is concluded, the contract x must be
closed. In general, this step is defined through the following rule:

{G}C ≡ X〈~E〉
all secrets in G fresh
∀A: v @ d in G : d fresh

∀{G′}xC ′ in Γ : {G′}C ′ 6≡ X〈~E〉
∀Ai: vi @xi in G : 〈Ai, vi〉xi in Γ

〈∗ : rngt X〈~E〉+ Calt, v〉x | Γ
advRngt({G}xC )−−−−−−−−−−−→[

〈∗ : rngt X〈~E〉+ Calt, v〉x | Γ | {G}xC

[C-AdvRngt]

The relation {G}C ≡ X〈~E〉 used in the rule premise holds when, for some G′, C ′, there

exists a defining equation X(~β) = {G′}C ′ such that {G}C is the transformation of {G′}C ′
obtained by instantiating the formal parameters with the actual ones, and by α-converting
the secret names and deposit variables, as done e.g. in Equation (2.4). Before formalising
this transformation below in Equation (2.5), we need a few auxiliary notions. We denote
with JEK the evaluation of a closed static expression E (the actual definition is standard, so
we omit it). We overload J−K to contracts and contract advertisements: namely, JCK is the
contract obtained by substituting all the occurring static expressions with their valuation,
and J{G}CK = {G}JCK. Then, we denote with {G}C ≡α {G′}C ′ the α-equivalence between
two contract advertisements w.r.t. secret names and deposit variables. Finally, we define:

{G}C ≡ X〈~E〉 ⇐⇒ ∃G′, C ′ : X(~β) = {G′}C ′ and J{G′}C ′{ ~JEK/~β}K ≡α {G}C (2.5)

Renegotiation: commitment. In the subsequent steps participants choose the actual
deposit names, and A commits to her secret. If A owns in Γ a deposit 〈A, 1〉y , she can
choose d′ = y to satisfy the precondition G. Similarly, B can choose e′ = z if he owns such a
deposit in Γ. These choices are performed as follows:

Γ1 →[ Γ1 | A : d′ ← y | {A : a′#N} | A[# B {G′}xC ′] = Γ2

Γ2 →[ Γ2 | B : e′ ← z | B[# B {G′}xC ′] = Γ3

The general case is defined by the rule [C-AuthCommit] described before.

Renegotiation: authorization. At this point, participants must authorise to spend their
deposits and the balance of the contract at x. This is done through a series of steps:

Γ3 →[ Γ3 | A[y B {G′}xC ′]
→[ Γ3 | A[y B {G′}xC ′] | A[x B {G′}xC ′] = Γ4

→[ Γ4 | B[z B {G′}xC ′]
→[ Γ4 | B[z B {G′}xC ′] | B[x B {G′}xC ′] = Γ5

The general case is defined by the rule [C-AuthInitDep] described above.
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Renegotiation: initialization. Finally, the renegotiated contract is stipulated. This
amounts to closing the old contract x, consuming the deposits y and z, and transferring the
balance v of the old contract to the new one, which is given a fresh name x′:

Γ5 →[ 〈C ′, v + 2〉x′ | Γ′

where Γ′ is Γ without the deposits y and z. Note that the branches in Calt are discarded
only in the last step above, where we complete the renegotiation. Before this step, it would
have been possible to take one of the branches in Calt, aborting the renegotiation.

The initialization step is defined by the following rule, which is analogous to [C-Init]:

{G}C ≡ X〈~E〉 y fresh

G =
(
‖ i∈IAi: vi @xi

)
|
(
‖ i∈JBi: v

′
i @ di

)
|
(
‖ i∈KCi :secret ai

)
∆ =

(
‖ i∈I〈Ai, vi〉xi

)
|
(
‖ i∈J〈Bi, v

′
i〉x′

i

)
|
(
‖ i∈JBi : di ← x′i

)
|(

‖ i∈IAi[xi B {G}xC ]
)
|
(
‖ i∈JBi[x

′
i B {G}xC ]

)
|(

‖ A∈GA[# B {G}xC ] | A[xB {G}xC ]
)

〈∗ : rngt X〈~E〉+ Calt, v〉x | {G}xC | Γ | ∆
rngt(x,G,C )−−−−−−−−→[

〈C, v +
∑

i∈I vi +
∑

i∈J v
′
i〉y | Γ

[C-Rngt]

The main difference between [C-Init] and [C-Rngt] is that the latter transfers the balance
v of the old contract to the new one.

Executing BitML on Bitcoin. Stipulating or renegotiating a BitML contract C in
Bitcoin requires each participant to invoke the BitML compiler, which was first introduced
in [BZ18a] and then extended in [BMZ20] with renegotiation and recursion. In particular,
each participant has to (i) generate a key pair for each subcontract of C , (ii) exchange the
generated public keys with the other participants, (iii) sign each subcontract of C , and
(iv) exchange all the signatures. The whole protocol is detailed in [BZ18b] (Definition 21).
When dealing with a contract C among N participants and having M subcontracts, such
protocol requires O(NM) broadcasts. After stipulation/renegotiation, executing a step of
the BitML semantics corresponds to appending a transaction to the Bitcoin blockchain.

3. Liquidity

In this section we formalise a notion of contract liquidity. Aiming at generality, we parame-
terise this notion over:

• an LTS →, which models the contract behaviour;
• a subset LA of the labels of the LTS→, which represents the moves that can be performed

by an honest participant A, without requiring the cooperation of the other participants.

Once these parameters are fixed, we define when, in a configuration Γ of the LTS, a
set X of contracts in Γ is liquid. Roughly, this happens when the honest participant A can
always make the funds stored by the contracts X be transferred to some participant. In the
meanwhile, the other participants may play against her, e.g. by not revealing some secrets,
or by not granting their authorizations for some branch. Note that by suitably instantiating
the parameters → and LA , we will be able to use the same notion of liquidity both with the
concrete and with the abstract BitML semantics. For instance, for the concrete semantics
we choose →=→[, and as LA all the labels except those of the form B : ` with B 6= A.
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origΓ(Γ, x) = x if x ∈ cn(Γ)

origΓ(R `−→ Γ′, x) =

{
origΓ(R, x) if x ∈ cn(ΓR) ∩ cn(Γ′)

origΓ(R, y) if x ∈ cn(Γ′) \ cn(ΓR) and {y} = cn(ΓR) \ cn(Γ′)

Figure 4: Origin of a contract name within a run.

We start by introducing an auxiliary partial function origΓ(R, x) that, given a contract
name x and a run R starting from Γ, determines the (unique) ancestor y of x in Γ, if any.
Intuitively, origΓ(R, x) = y means that y has evolved along the run R, eventually leading
to x, and possibly to other contracts. In BitML, this happens in one of the following cases.
First, a split can spawn new contracts, e.g.:

〈split (v1 → C1 | v2 → C2), v1 + v2〉x
split(x)−−−−→[ 〈C1, v1〉y1 | 〈C2, v2〉y2

Here, both y1 and y2 have x as ancestor. Second, reveal reduces as follows:

〈reveal a.C, v〉x | · · ·
reveal(a,x)−−−−−−−→[ 〈C, v〉y | · · ·

In this case, the ancestor of y is x. Third, a rngt evolves as follows:

〈∗ : rngt X〈~E〉, v〉x | · · ·
init(x,G,C )−−−−−−−→[ 〈C, v + · · ·〉y | · · ·

Also in this case, the ancestor of y is x.

Definition 3.1 (Origin). Let R be a run starting from Γ, and let x be a contract name.
We define the partial function origΓ(R, x) by induction on the length of R in Figure 4.

Note that, in Figure 4, the condition x ∈ cn(Γ′) \ cn(ΓR) checks that the name x has
been introduced in the last transition of the run. Dually, {y} = cn(ΓR) \ cn(Γ′) checks that
y has been consumed. The use of a singleton {y} is justified by the fact that in BitML each
transition can consume at most one contract name.

Example 3.2. Let Γ = 〈C1, v〉y | 〈A, v〉z , and let R be the following run starting from
Γ, where the contracts C1 and C2 are immaterial, but for the fact that they enable the
displayed moves:

〈C1, v〉y | 〈A, v〉z →[ 〈C1, v〉y | 〈A, v〉z | {G}C2 →∗[ 〈C1, v〉y | 〈C2, v〉x
split(x)−−−−→[ 〈C1, v〉y | 〈C2

′, v〉x′
split(y)−−−−→[ 〈C1

′, v′〉y′ | 〈C1
′′, v − v′〉y′′ | 〈C2

′, v〉x′

We have that origΓ(R, y′) = origΓ(R, y′′) = y, since the corresponding contracts have been
obtained through a split of the ancestor y, which was in Γ. Instead, origΓ(R, x′) is undefined,
because its ancestor x is not in Γ. Further, origΓ(R, y) = y, while origΓ(R, x) is undefined.

Before formalising liquidity, we give some further intuition. Assume that A is an honest
participant, who cares about the liquidity of a set of contracts X in Γ. After an arbitrary
sequence of transitions Γ → · · · → Γ′, where any participant may perform actions, A
wants to liquidate all the contracts in Γ′ originating from X, transferring their funds to
participants’ deposits. We want A to be able to liquidate contracts without the help of the
other participants.
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Definition 3.3 (Liquidity). Let → be an LTS, let LA be a subset of its labels, let Γ be a
configuration of the LTS, and let x be a contract name. We say that:

• x is liquidable in Γ if there exists a run R = Γ
`1−→ · · · `n−→ Γ′ such that:

(1) for all i ∈ 1..n, `i ∈ LA ;
(2) there exists no z ∈ cn(Γ′) such that origΓ(R, z) = x.
• x is liquid in Γ if, for all runs R = Γ −→ · · · −→ Γ′, all the contract names y with

origΓ(R, y) = x are liquidable in Γ′.

We extend this to sets X of contracts names: X is liquid in Γ iff all x ∈ X are liquid in Γ.

Intuitively, a contract x is liquidable by A when A can perform a sequence of transitions
which eventually lead to a configuration containing no contract names originated from x.
Consequently, all the funds in the contract x have been transferred to participants’ deposits.
When liquidating x, A’s moves can not reveal secrets of other participants, or generate
authorizations for them: A must be able to unfreeze the funds on her own, performing
actions `i ∈ LA . Note that if x 6∈ cn(Γ), then x is trivially liquidable in Γ.

The notion of liquidity is based upon that of liquidability. A contract x is liquid in a
configuration Γ when, after an arbitrary sequence of moves performed by any participant,
the contract names originated by x are liquidable by A.

We remark that, although Definition 3.3 will be instantiated with the semantics of
BitML, the basic concepts it relies upon (runs, origin of contracts, moves of a participant)
are quite general. Hence, our notion of liquidity, as well as the variants proposed in Section 7,
can be applied to other languages for smart contracts, using their transition semantics.

Example 3.4. Recall the timed commitment contract TC from Section 1:

{A: 1 @ z | A :secret a} (reveal a. withdraw A + after t : withdraw B)

Let Γ = 〈TC , 1〉x | {A : a#N} be a configuration where the contract has been stipulated.
We show that x is liquid in Γ with respect to any participant. In the configurations reachable
from Γ, the contract TC has not progressed, or it has reduced to withdraw A . In the first
case, x is liquidable by anyone, by firing withdraw B after time t (alternatively, A may reveal
the secret and then fire withdraw A). Instead, if the contract has reduced to withdraw A ,
anyone can liquidate it. Since all the descendants of x are liquidable, x is liquid.

Example 3.5. Let G = A: 1 @ y | B: 1 @ z | A : secret a . Consider the following contracts,
where p is an arbitrary predicate on a:

C1 = reveal a if p. withdraw A + reveal a if¬p. withdraw B

C2 = split
(
1→ reveal a if p. withdraw A | 1→ reveal a if¬p. withdraw B

)
C3 = withdraw A + B : split

(
1→ B : withdraw A | 1→ withdraw B

)
For i ∈ {1, 2, 3}, let Γi = 〈Ci, 2〉x | {A : a#N}, with N 6= ⊥. We have that:

• x is liquid in Γ1 for A, but not for any other participant. C1 has three reducts: C1 itself,
withdraw A , and withdraw B . The last two contracts are trivally liquidable by anyone.
Instead C1 is liquidable only by A, by revealing a and firing a reveal branch (since their
guards are p and ¬p, one of them will be enabled), and finally firing the corresponding
withdraw. Instead, from B’s viewpoint x is not liquid, because A could refuse to reveal.
• x is not liquid in Γ2 for anyone. Indeed, none of the reducts of C2 is liquidable, because

one of the two reveal branches is stuck.
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• x is liquid in Γ3 for B, but not for A. Indeed, if B authorizes and performs the split,
then the reduct is not liquidable by A, since B could deny his second authorization.

Note that liquidability in Definition 3.3 requires that the moves `1 . . . `n are performed
atomically, effectively forbidding the adversary to nterfere. Atomicity might be realistic in
some blockchains, but not in others. For instance, Algorand features atomic sequences of
transactions natively [BBL+21], while in Ethereum it is possible to perform atomically a
sequence `1 . . . `n of calls by deploying a new contract with a suitable function which calls
`1 . . . `n in sequence. Bitcoin, instead, does not support atomic sequences of transactions:
an honest participant could start to perform the sequence, but at some point in the middle
the adversary can interfere. Repeated interference could lead to an infinite run, where each
attempt by the honest participant is hindered by the adversary. To illustrate the issue,

consider a (not-BitML) LTS with states 0, 1, 2 and transitions 0
s−→ 1, 1

s−→ 2, and 1
p−→ 0,

where 0 is the initial state and 2 is the final state, where the funds have been liquidated. If
atomic sequences of moves were allowed, an honest participant could always reach the final
state by firing the atomic sequence s s. Otherwise, an adversary could always prevent the
participant from reaching the final state, by firing p after each s. Hence, this LTS would be
considered liquid only by assuming atomic sequences of moves.

However, infinite adversary interference as those shown above are not reproducible in
BitML, for the following reason. Our notion of liquidity requires that any descendent of
the contract must be liquidable by A alone. This means that A can do that by performing
a sequence of moves which do not include any renegotiation, since renegotiations can be
finalized only with the cooperation of all the other participants. Without renegotiation, the
contract eventually terminates, so an adversary can interfere at most a finite number of
times. After the last interference, A has still a way of terminating the contract, and she can
do this alone, satisfying item (2) of Definition 3.3.

4. Case studies

In this section we illustrate BitML and liquidity through a few example contracts. The
automatic verification of these contracts will be discussed later on in Section 6.

A fair lottery. Consider a lottery between two players. The preconditions require A and
B to commit to one secret each (a and b, respectively), and to put a deposit of 3B each (1B
as a bet, and 2B as a penalty for dishonest behaviour):

Lottery(Win ) = split
(

2→ (reveal b if 0 ≤ b ≤ 1. withdraw B) + (after t : withdraw A)

| 2→ (reveal a. withdraw A) + (after t : withdraw B)

| 2→Win
)

Win = reveal a b if a = b. withdraw A + reveal a b if a 6= b. withdraw B

The contract splits the balance in three parts, of 2B each. The first part allows B to reveal
b and then redeem 2B; otherwise, after the deadline A can redeem B’s penalty (as in the
timed commitment). Similarly, the second part allows A to redeem 2B by revealing a. To
determine the winner we compare the secrets, in the subcontract Win : A wins if the secrets
are the same, otherwise B wins. This lottery is fair, since: (i) if both players are honest,
then they will reveal their secrets within the deadline (redeeming 2B each), and then they
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will have a 1/2 probability of winning3; (ii) if a player is dishonest, not revealing the secret,
then the other player has a positive payoff, since she can redeem 4B.

Although fair, the lottery is not liquid, neither from A’s nor from B’s point of view,
because if one of the two players does not reveal her secret, then the Win subcontract is not
liquidable, and so the 2B stored therein are frozen. We can recover liquidity by replacing
Win with the following contract, where t′ > t:

Win2 = Win + (after t′ : reveal a. withdraw A) + (after t′ : reveal b. withdraw B)

Now, even if one of the two players does not reveal, the honest player fire her reveal at
time t′, liquidating the 2B stored in Win2.

Zero-coupon bonds. A zero-coupon bond [JES00] is a financial contract where an investor
A pays 1B upfront to a bank B, and receives back 2B after a maturity date (say, year 2030).
We can express this contract in BitML as follows. The contract precondition requires A to
provide a deposit x of 1B, and B to provide a deposit of 2B. The contract is as follows:

ZCB = split
(
1→ withdraw B | 2→ after 2030 : withdraw A

)
Upon stipulation, all the deposits required in the preconditions pass under the control

of ZCB , and can no longer be spent by A and B. The contract splits these funds in two
parts: 1B, that can be withdrawn by B at any moment, and 2B, that can be withdrawn by
A after the maturity date.

Although ZCB correctly implements the functionality of zero-coupon bounds, it is quite
impractical: for the whole period from the stipulation to the maturity date, 2B are frozen
within the contract, and cannot be used by the bank in any way. Although this is a desirable
feature for the investor, since it guarantees that he will receive 2B even if the bank bankrupts,
it is quite undesirable for the bank. In the real world, the bank would be free to use its
own funds, together with those of investors, to make further financial transactions through
which to repay the investments. The risk that the bank bankrupts is mitigated by external
mechanisms, like insurances or government intervention.

To overcome this issue, we can exploit renegotiation. We first revise the precondition,
which now requires only A’s deposit. The revised contract is:

ZCB2 = split
(
1→ withdraw B | 0→ ∗ : rngt X

)
X = {B: 2 @ d} after 2030 : withdraw A

As before, the bank can withdraw 1B at any moment after stipulation. In the second
part of the split, the participants renegotiate the contract: if they both agree, 0B pass
under the control of the contract X. The precondition of X requires the bank to provide 2B
in a fresh deposit; upon renegotiation, A can withdraw 2B after the maturity date. The
crucial difference with ZCB is that the deposit variable d is instantiated at renegotiation
time, unlike x, which must be fixed at stipulation time.

The revised contract ZCB2 solves the problem of ZCB , in that it no longer freezes
2B for the whole duration of the bond: the bank could choose to renegotiate the contract,
paying 2B, just before the maturity date. This flexibility comes at a cost, since A loses the

3Note that B could increase his probability to win the lottery by choosing a secret b > 1, since doing so
would increase the chances that a 6= b. We require that 0 ≤ b ≤ 1, so that if B chooses a secret outside that
range he will lose his 2B deposit in the first part of split, and so B’s average payoff would be negative.
Instead, A can only decrease decrease her probability to win by choosing a secret a 6∈ {0, 1}. For this reason,
it is not necessary to require that 0 ≤ a ≤ 1.
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guarantee to eventually receive 2B. To address this issue we need to add, as in the real world,
an external mechanism. More specifically, we assume an insurance company I that, for an
annual premium of pB paid by the bank, covers a face amount of fB (with 2 > f > 10p):

A: 1 @x1 | B: p @x2 | I: f @x3

We revise the bond contract as follows:

ZCB3 = split
(
1→ withdraw B

| p→ withdraw I

| f → ∗ : rngt X〈1〉+ after 2021 : withdraw A
)

X〈n ∈ 1..9〉 = {B: p @ d}
split

(
p→ withdraw I

| f → ∗ : rngt X〈n+ 1〉+ after (2021 + n) : withdraw A
)

X〈10〉 = {B: 2 @ d}
split

(
f → withdraw I

| 2→ after 2030 : withdraw A
)

The contract starts by transferring 1B to the bank, and the first year of the premium to
the insurer. The remaining fB are transferred to the renegotiated contract X〈1〉, or, if the
renegotiation is not completed by 2021, to the investor.

The contracts X〈n〉, for n ∈ 1..9, allow the insurer to receive the annual premium until
2030: if the bank does not renegotiate the contract for the following year (paying the
corresponding premium), then the investor can redeem the face amount of fB. Finally, the
contract X〈10〉 can be triggered if the bank deposits the 2B: when this happens, the face
amount is given back to the insurer, and the investor can redeem 2B after the maturity date.

Compared to ZCB2 , the contract ZCB3 offers more protection to the investor. To see
why, we must evaluate A’s payoff for all the possible behaviours of the other participants. If
B and I are both honest, then A will redeem 2B, as in the ideal contract ZCB . Instead, if
either B or I do not accept to renegotiate some X〈n〉, then A can redeem fB as a partial
compensation (unlike in ZCB2 , where A just loses 1B). In the real world, A could use this
compensation to cover the legal fee to sue the bank in court; also, I could e.g. increase the
premium for future interactions with B. By further refining the contract, we could model
these real-world mechanisms as oracles, which sanction dishonest participants according to
the evidence collected in the blockchain and in messages broadcast by participants. For
instance, if B and I accept the renegotiation X〈n〉 but A does not, then the oracle would be
able to detect A’s dishonesty by inspecting the authorizations broadcast in year 2021 + n.
The sanction could consist e.g. in preventing A from buying other bonds from B.

Despite the apparent complexity, the contract is liquid for any participant: indeed,
any potentially blocking renegotiation has an alternative timeout branch, which allows to
liquidate the contract.

A fair recursive coin flipping game. Consider a simple game where two players repeat-
edly flip coins, and the one who wins two consecutive flips takes the pot. The precondition
requires each player to deposit 3B and choose a secret:

A: 3 @x | A :secret a | B: 3 @ y | B :secret b
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CFG = reveal b if 0 ≤ b ≤ 1.
(

reveal ab if a = b. (∗ : rngt XA〈1〉 + after 3 : SplitA)
+ reveal ab if a 6= b. (∗ : rngt XB〈1〉 + after 3 : SplitB)
+ after 2 : withdraw B

)
+ after 1 : withdraw A

XA〈n〉 = {A :secret a | B :secret b}
reveal b if 0 ≤ b ≤ 1.

(
reveal ab if a = b. withdraw A

+ reveal ab if a 6= b. (∗ : rngt XB〈n+ 1〉 + after (3n+ 3) : SplitB)
+ after (3n+ 2) : withdraw B

)
+ after (3n+ 1) : withdraw A

XB〈n〉 = {A :secret a | B :secret b}
reveal b if 0 ≤ b ≤ 1.

(
reveal ab if a = b. (∗ : rngt XA〈n+ 1〉 + after (3n+ 3) : SplitA)

+ reveal ab if a 6= b. withdraw B
+ after (3n+ 2) : withdraw B

)
+ after (3n+ 1) : withdraw A

SplitA = split (4→ withdraw A | 2→ withdraw B)

SplitB = split (4→ withdraw B | 2→ withdraw A)

Figure 5: A recursive coin flipping game.

The contract CFG (Figure 5) asks B to reveal his secret first: if B waits too much, A
can withdraw the contract funds after time 1. Then, it is A’s turn to reveal (before time
2, otherwise B can withdraw the funds). The current flip winner is A if the secrets of A
and B are equal, otherwise it is B. At this point, the contract can be renegotiated as XA〈1〉
or XB〈1〉, depending on the flip winner (the parameter 1 represents the round). If players
do not agree on the renegotiation, then the funds are split fairly, according to the current
expected win. The contract XA〈n〉 requires A and B to generate fresh secrets for the n-th
round. If A wins again, she can withdraw the pot, otherwise the contract can be renegotiated
as XB〈n+ 1〉. If the players do not agree on the renegotiation, the pot is split fairly between
them. The contract XB is similar.

This game is fair, i.e. the expected payoff of a rational player is always non-negative,
notwithstanding the behaviour of the other player. Rational players must choose random
secrets in {0, 1}, since non uniformly distributed secrets can make the adversary bias the
coin flip in her favour. Further, choosing a secret different from 0 or 1 would be irrational:
if done by B, this would prevent himself from revealing (by the predicate in the reveal b),
and so A could win after the timeout; if done by A, this would make B win the round (since
B wins when the secrets are different). Rationality also requires to reveal secrets in time
(before the alternative after branch is enabled), and to take the Split branch if restipulation
does not occur in time. This ensures that, when renegotiation happens, there is still time to
reveal the round secrets. Indeed, a late renegotiation could enable the other player to win
by timeout. To show fairness, first consider the case where renegotiation always happens.
A rational player wins each coin flip with probability 1/2, at least: so, the probability of
winning the whole game is also 1/2, at least. In the general case, the renegotiation at
the end of each round may fail. When this happens, the rational player takes the Split
branch, distributing the pot according to the expected payoff in the current game state,
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thus ensuring the fairness of the game. The player who won the last coin flip is expected to
win pB, with p = 1/2 · 6 + 1/2 · (1/2 · p+ 1/2 · 0), giving p = 4. Accordingly, the Split contracts
transfer 4B to the winner of the last flip and (6− 4)B = 2B to the other player.

The contract CFG is liquid, because the after branches always offer liquidable alterna-
tives to potentially blocking branches.

5. A safe abstraction of the BitML semantics

The concrete BitML semantics is infinite-state, because participants can always create new
deposits, stipulate new contracts and renegotiate them, and can advance the current time.
In this section we introduce an abstract semantics of BitML, which reduces the state space
to a finite one, safely approximating liquidity. We construct our abstraction in three steps:

• First, we abstract concrete configurations Γ as abstract configurations αA,X(Γ), where
A ∈ Hon, and X is the (finite) set of contract names under observation. Roughly, αA,X(Γ)
discards all the terms in the configuration, except for the contracts X, which are abstracted
as follows. We remove reveal actions, authorizations, and time constraints, only recording
whether reducing a contract D requires cooperation from some participant different from
A. Further, the abstraction discards the actual parameters E of renegotiations.
• We define a semantics →] of abstract configurations. This semantics partitions the moves

in two sets: the moves x, which represent a reduction of the contract x that can be
performed by A alone, and the moves ∗ : x, which instead represent actions that may
require cooperation from other participants. Intuitively, the moves of the first kind are
those required by liquidability. Although this abstract semantics substantially simplifies
the concrete one, it is still infinite-state. We establish that the abstract semantics is an
over-approximation of the concrete one (Theorem 5.4). Further, we show that abstract
runs containing only moves of A alone under-approximate concrete runs (Theorem 5.5).
• We define a finite-state refinement →]fin of →], which allows for model-checking liquidity.

Liquidity w.r.t. →]fin is proved to be equivalent to liquidity w.r.t. →] (Theorem 5.10).

We start by defining the abstraction of configurations. Hereafter, we assume that all
the abstractions are done w.r.t. the same honest participant A.

Definition 5.1 (Abstraction of configurations). For all sets of contract names X, we
define the contract abstraction function αA and the configuration abstraction function αA,X

in Figure 6. We abstract each defining equation X(~β) = {G}C as X =] αA(C ). The syntax
of abstract configurations is implicitly given by the equations in Figure 6. We further allow
recursion variables X within abstract configurations. We identify ∗ : ∗ : D with ∗ : D.

The equations in Figure 6 follow the intuition described above. The prefix τ used in
reveal is used to abstract the fact that A alone can unconditionally reveal some of her
secrets. Instead, we abstract as ∗ : τ the case where some of the secrets to be revealed do
not belong to A, or the truth of the predicate p is unknown. Since the secrets have been
removed from configurations, this is a conservative (but safe) abstraction.

We now describe the abstract semantics of BitML. In the relation →] between abstract
configurations, the rules to advertise contracts, for deposits, and for delays are removed.
There is a rule for making a contract 〈withdraw A , v〉x reduce to a deposit 〈A, v〉y is replaced
so that 〈withdraw A , v〉x reduces to 0 (the empty configuration).
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αA(
∑

i∈I Di) =
∑

i∈I αA(Di) αA(withdraw B) = withdraw B

αA(reveal~a if p. C ) =

{
τ. αA(C ) if p = true and ~a ⊆ SA
∗ : τ. αA(C ) otherwise

αA(split
(
‖ i∈I vi → Ci

)
) = split

(
‖ i∈I αA(Ci)

)
αA(B :D) =

{
αA(D) if B = A

∗ : αA(D) otherwise
αA(after t :D) = αA(D)

αA(∗ : rngt X〈~E〉) = ∗ : rngt X

αA,X(∆ | ∆′) = αA,X(∆) | αA,X(∆′)

αA,X(〈C, v〉x) = 〈αA(C )〉x if x ∈ X αA,X(∆) = 0 otherwise

Figure 6: Abstraction of contracts and configurations.

〈withdraw B〉x | Γ]
x−→] Γ]

[A-Withdraw]
y fresh

〈τ.C 〉x | Γ]
x−→] 〈C 〉y | Γ]

[A-Rev]

yi fresh

〈split ‖ i Ci〉x | Γ]
x−→] ‖ i 〈Ci〉yi | Γ]

[A-Split]

〈D〉x | Γ]
`−→] Γ′ ] x ∈ cn(`)

〈D + C 〉x | Γ]
`−→] Γ′ ]

[A-Branch]
〈D〉x | Γ]

`−→] Γ′ ] x ∈ cn(`)

〈∗ : D〉x | Γ]
∗:`−−→] Γ′ ]

[A-Ext]

X =] C y fresh

〈∗ : rngt X〉x | Γ]
∗:x−−→] 〈C 〉y | X | Γ]

[A-Rngt]

Figure 7: Abstract BitML semantics.

Definition 5.2 (Abstract semantics). We define the relation →] between abstract configu-
rations in Figure 7. We use ` to range over labels, which have the form x or the form ∗ : x,
where x is a contract name. We identify ∗ : ∗ : ` with ∗ : `. We define L] as the subset of
labels of the form x. An abstract run R] is a sequence Γ0 →] Γ1 →] · · ·.

We briefly comment the rules in Figure 7, which define the abstract semantics →]

of BitML. Most rules are straightforward. In rule [A-Ext], we record in the label ∗ : `
the fact that reducing a contract ∗ : D might require the cooperation from some other
participant. In rule [A-Rngt], we record through the term X in the configuration the fact that
we have unfolded the recursion variable X. This is not strictly needed to make the abstract
semantics safely approximate the concrete one: rather, it is a technical expedient to build
the finite-state semantics →]fin on-top of →].
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Correspondence between the semantics. We now establish a correspondence between
the abstract and the concrete semantics of BitML. In all the statements below, we assume
that the concrete configuration Γ is reachable from an initial configuration.

We introduce below the notion of descendants of a set of contracts, which is dual to
that of originator in Definition 3.1. This notion is exploited whenever we reduce an abstract
configuration αA,X(Γ) mimicking the steps of a concrete run R from Γ to Γ′. Intuitively,
the resulting configuration will be an abstraction of Γ′ against the descendants of X.

Definition 5.3 (Descendants). For all concrete configurations Γ, runs R = Γ →∗[ Γ′, and
set of contract names X, we define the set of contract names descΓ(R, X) as follows:

descΓ(R, X) =
{
x ∈ cn(Γ′)

∣∣ origΓ(R, x) ∈ X
}

Theorem 5.4 establishes that each concrete run R = Γ →∗[ Γ′ has a corresponding
abstract run, whose first element is the abstraction of Γ, and the last element is the
abstraction of Γ′, plus recursion variables.

Theorem 5.4 (Over-approximation). Let X ⊆ cn(Γ), and let R = Γ →∗[ Γ′ be a concrete
run. Then, there exist X1, X2, . . . such that:

αA,X(Γ)→∗] αA,descΓ (R,X)(Γ
′) | ‖ i Xi

Proof. (sketch) By induction on the number of concrete moves. We check that each move
∆ →[ ∆′ is matched by zero or one abstract moves. First, note that the abstract configuration
contains only contracts in X. We have the following cases, according to the concrete move:

• If ∆ →[ ∆′ does neither consume nor create a contract, then the abstractions of ∆ and
∆′ are the same, so we match the concrete move with zero abstract moves.
• If ∆ →[ ∆′ creates contracts without consuming any contract, then it is an instance of

rule [C-Init]. In this case, the created contract is not a descendant of any contract in X, so
it does not occur in the abstraction of ∆′. As in the previous case, we match the concrete
move with zero abstract moves.
• If ∆ →[ ∆′ consumes a contract x 6∈ X, then the abstraction discards the contract x and

its descendants, and so we match the concrete move with zero abstract moves.
• If ∆ →[ ∆′ consumes a contract x ∈ X, then one of the rules [C-Split], [C-Rev], [C-Withdraw]

or [C-Rngt] have been used. The moves [C-Split], [C-Withdraw] and [C-Rngt] are matched by
the corresponding [A-*] abstract moves. The move [C-Rev] is matched either by [A-Rev] or
[A-Ext], depending on how the reveal was abstracted. Note that [C-Rngt] may instantiate
the formal parameters in the contract with actual values. However, these values are
abstracted away by αA , so this instantiation is immaterial. The term X introduced by
[A-Rngt] is accounted for by the statement (it will belong to ‖i Xi).

Theorem 5.5 associates some abstract runs with concrete runs. More specifically, it
considers an abstract run starting from the abstraction of a concrete configuration Γ (plus
recursion variables), and whose labels represent actions performable by A (e.g., the actions
in L]). The theorem constructs a concrete run starting from Γ, whose last configuration,
once abstracted, matches the last configuration in the abstract run. Further, the labels in
the concrete run belong to the set of concrete actions performable by A (which we denote

by L[A , i.e. all the concrete labels except those of the form B : ` with B 6= A).

Theorem 5.5 (Under-approximation). Let X ⊆ cn(Γ), and assume that:

αA,X(Γ) | ‖ i Xi →∗] Γ′] with labels in L]
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Then, there exist R and Γ′ such that:

R = Γ →∗[ Γ′ with labels in L[A, and Γ′] = αA,descΓ (R,X)(Γ
′) | ‖ i Xi

Proof. (sketch) By induction on the number of moves. Since each abstract move must be
in L], it must be derived by one of the rules [A-Withdraw], [A-Rev], or [A-Split], possibly as a
premise of [A-Branch]. To fall into these cases, the concrete contract must have one of the
following forms:

• withdraw B or split · · · . Here, the abstract move is matched by the concrete moves
[C-Withdraw] or [C-Split], the labels of which belong to L[A .
• reveal~a if true where ~a are secrets of A, the participant w.r.t. whom we abstract. In

this case, the abstract move [A-Rev] is matched by [C-Rev], the label of which belongs to
L[A . If the secrets have not been revealed, yet, we perform one or more [C-AuthRev] moves

(the labels of which also belong to L[A) before the [C-Rev] move. Note that the premise
N 6= ⊥ in rule [C-AuthRev] is satisfied, because we are assuming that the participant A
against whom we are abstracting is honest (A ∈ Hon), and rule [C-AuthCommit] ensures
that honest participants have committed to secrets N 6= ⊥.
• any of the above, constrained by after t : · · · or B : · · · with B = A. Here, if needed, we

perform a [C-Delay] to advance the current time until time t (a move in L[A). Then, if

needed, A can perform a [C-AuthBranch] to authorize the branch (this move is also in L[A).
After that, the constraints are satisfied, so we proceed as in the previous items.

Safe approximation of liquidity. Theorem 5.7 below establishes the soundness of our
abstraction w.r.t. liquidity. It exploits the following corollary for liquidability.

Corollary 5.6 (Abstraction soundness against liquidability). Let x ∈ X ⊆ cn(Γ). If x is

liquidable in αA,X(Γ) | ~Y w.r.t. →] /L], then x is liquidable in Γ w.r.t. →[ /L[A.

Proof. Since x is liquidable in αA,X(Γ) | ~Y, there exists an abstract run with labels in L]
and leading to a configuration Γ′ ] without contracts originated from x. By Theorem 5.5,
there is a corresponding concrete run with labels in L[A starting from Γ and leading to a

configuration Γ′ the abstraction of which is Γ′ ]. Since the abstraction preserves all the
contracts originated from x, in Γ′ there are none. Therefore, x is liquidable in Γ.

Theorem 5.7 (Abstraction soundness against liquidity). Let x ∈ X ⊆ cn(Γ). If x is liquid

in αA,X(Γ) w.r.t. →] /L], then x is liquid in Γ w.r.t. →[ /L[A.

Proof. Let R = Γ −→ · · · −→ Γ′ be a concrete run, and let y be such that origΓ(R, y) = x.
By Theorem 5.4, there exists a corresponding abstract run:

Γ] = αA,X(Γ) →∗] Γ′ ] = αA,descΓ (R,X)(Γ
′) | ‖ i Xi

Since x is liquid in Γ] and y is a descendant of x in the abstract run, y is liquidable in Γ′ ].
By Corollary 5.6, y is liquidable in Γ′. Therefore, x is liquid in Γ.
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A finite-state abstraction of BitML. The abstract semantics →] is infinite-state, even
up-to renaming of contract names. Indeed, each application of rule [A-Rngt] unfolds a contract
X, which can spawn other parallel contracts before recursing. Therefore, the number of
parallel contracts in reachable abstract configurations can grow unboundedly. This hinders
verification based on model-checking the whole state space.

We now introduce another abstract semantics, called →]fin, which has a finite number
of reachable configurations (up-to renaming of contract names), and which preserves the
liquidity w.r.t. →]: more specifically, a contract is liquid w.r.t. →] if and only if it is liquid
w.r.t. →]fin. We define the transition relation →]fin by the following rule:

Γ
`−→] Γ′ @∆, X : Γ′ = ∆ | X | X

Γ
`−→]fin Γ′

Intuitively, →]fin can mimic any move of →], except for the moves [A-Rngt] which
renegotiate a contract which has already been renegotiated. Technically, this is ensured by
constraining the configuration to contain at most one occurrence of each recursion variable X.

Theorem 5.8. Starting from any abstract configuration, the set of states reachable through
→]fin is finite, up-to renaming of contract names.

Proof. Direct consequence of the definition of the abstract semantics.

The following lemma establishes the equivalence of →] and →]fin against liquidability,
and it is instrumental to prove that they also agree on liquidity (Theorem 5.10).

Lemma 5.9. Let Γ] be an abstract configuration without multiple occurrences of any X.
Then, for all contract names x:

x liquidable in Γ] w.r.t.→] /L] ⇐⇒ x liquidable in Γ] w.r.t.→]fin /L]

Proof. Recall that liquidability only considers moves in L]. The only difference between →]

and →]fin is that the latter forbids, in some configurations, the application of rule [A-Rngt].

Since the label of this rule is not in L], this difference is immaterial for liquidability.

Theorem 5.10. Let Γ] be an abstract configuration without occurrences of any X. Then,
for all contract names x:

x liquid in Γ] w.r.t.→] /L] ⇐⇒ x liquid in Γ] w.r.t.→]fin /L]

Proof. (sketch) For ⇒, consider a run R] of →]fin starting from Γ] and leading to some Γ′ ],

and let y be a descendant of x. Since →] includes →]fin, R] is also a run of →]. Since x is

liquid in Γ] w.r.t. →], then y must be liquidable in Γ′ ] w.r.t. →]. By Lemma 5.9, it follows

that y is liquidable also in →]fin. Therefore, x is liquid in Γ] w.r.t. →]fin.
For ⇐, take any contract 〈C 〉y which originates from the contract x in a run of →]

starting from Γ]. By contradiction, assume that y is not liquidable for →]. In the →]

run, 〈C 〉y might be reached after several renegotiations involving some defined contracts
X1, X2, . . . more than once. In such case, it is also possible to reach C without renegotiating
the same Xi more than once, because each use of rule [A-Rngt] on Xi spawns the same contract,
and contracts in parallel do not interact. Hence, there exists some →] run leading to a
non liquidable 〈C 〉z and whose configurations never include any Xi more than once. This
run is therefore also a →]fin run, leading to a non liquidable z according to Lemma 5.9 —
contradiction with the liquidity of x w.r.t. →]fin.
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Figure 8: Toolchain architecture.

6. The BitML toolchain

We now describe the BitML toolchain, whose architecture is displayed in Figure 8. The
development workflow is the following: (a) write the BitML contract in the DrRacket IDE;
(b) verify that the contract is liquid w.r.t. the given participant; (c) compile the contract
to Bitcoin transactions; (d) execute the contract, by appending these transactions to the
Bitcoin blockchain according to the chosen strategy. The verifier implements the abstract
BitML semantics in Maude, a model-checking framework based on rewriting logic [CDE+02].
The toolchain is open-source4; a tutorial is available online5, including references to our
experiments on the Bitcoin testnet.

Benchmarks. To evaluate our toolchain, we use a benchmark of representative use cases6

including financial contracts [ST18, BKT17], auctions, lotteries [ADMM16, MB17] and
gambling games. For each contract in the benchmark, we display in Table 1 the number of
involved participants, the number of transactions obtained by the compiler, and the number
of Maude rewrites for checking liquidity. Notably, the tool automatically verifies that all the
contracts in the benchmark are liquid. The verification time for all the benchmarks is in the
order of milliseconds on a consumer-grade laptop, except for ZCB3 , which requires ∼ 1s.

We compare the performance of our tool against [ADMM14b], which models Bitcoin
contracts in Uppaal, a model-checking framework based on Timed Automata. The most
complex contract modelled in [ADMM14b] is the mutual timed commitment with 2 partici-
pants: this requires ∼ 30s to be verified in Uppaal, while our tool verifies the same property
in ∼ 1ms. This speedup is due to the higher abstraction level of BitML over [ADMM14b],
which operates at the (lower) level of Bitcoin transactions. Note that increasing the number
of participants in the mutual timed commitment significantly affects verification time. This
is because the size of the contract increases and there are more committed secrets in play.
Indeed, a larger number of secrets increases the branching in the (abstract) BitML LTS,

4https://github.com/bitml-lang
5https://blockchain.unica.it/bitml
6https://github.com/bitml-lang/bitml-compiler/tree/master/examples/benchmarks

https://github.com/bitml-lang
https://blockchain.unica.it/bitml
https://github.com/bitml-lang/bitml-compiler/tree/master/examples/benchmarks
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Contract Participants Transactions Rewrites

Mutual timed commitment 2 15 72
Mutual timed commitment 3 34 207
Mutual timed commitment 4 75 644
Mutual timed commitment 5 164 2097

Escrow (early fees) 3 12 104
Escrow (late fees) 3 11 110

Zero Coupon Bond 3 8 189
Coupon Bond 3 18 9101

Future(C) 3 5 + TC 136 + RC

Option(C,D) 3 14 + TC + TD 162 + RC +RD

Lottery (quadratic collateral) 2 15 1466
Lottery (0 collateral) 2 8 31
Lottery (0 collateral) 4 587 167
Rock-Paper-Scissors 2 23 2322

Morra game 2 40 89
Shell game 2 23 48

Auction (2 turns) 2 42 218
Coin flipping game 2 32 563

Zero coupon bond (v3) 3 44 1196813

Table 1: Benchmarks for the BitML toolchain.

since in each state any secret not revealed so far can be revealed. This increases the size of
the state space, and consequently the complexity of model checking.

We observe that the number of Maude rewritings for ZCB3 is particularly large. This
is due to the contract generating many parallel components, which cause the explosion of
the state space. More specifically, ZCB3 performs 10 steps of recursion, each one involving
a split, which creates several parallel sub-contracts (half of them with a choice).

The exponential blow-up due to parallel components is a common performance issue of
general model checking, and so it also occurs in our setting. Indeed, the benchmarks in Table
1 only include the contracts for which we have managed to verify liquidity. We have not
explicitly looked for the simplest examples for which the verification is practically unfeasible.
However, by the discussion above, we expect that increasing the number of recursion steps
by ∼20 units in the ZCB3 contract would be enough to make the model checker exhaust the
available resources. Besides increasing the number of recursion steps, there are many other
ways to design a contract for which verifying liquidity is unfeasible. For instance, if the
contract contains a split of N withdraw actions, the size of the state space is at least O(2N ).
A similar size is obtained for a contract with N reveal actions in sequence, since at each
point of the computation one has the option of revealing any of their secrets. The very same
problem is witnessed by a contract requiring N authorizations, e.g. as in A1 : · · · : AN :D.

Limitations. One of the main difficulties that we have encountered in developing contracts
is that some complex BitML specifications can not be compiled to pure Bitcoin, because of
the 520-byte limit on the size of each value pushed to the evaluation stack [And19]. In some
cases, we managed to massage the BitML contract so to make its compilation respect the
constraint. For instance, a pattern that easily violates the constraint is the following:
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( choice ( revealif (b) (pred (p0)) (C0))
( revealif (b) (pred (p1)) (C1))
( after T (C2)))

The choice is compiled into a transaction whose redeem script encodes the disjunction
of three logical conditions, corresponding to the three branches of the choice. Depending on
the predicates p0 and p1, and on the number of participants in the contract, this script may
violate the 520-byte constraint. A workaround is to rewrite the pattern above into:

( choice ( revealif (b) (pred (p0)) (C0))
( after T (tau ( choice

( revealif (b) (pred (p1)) (C1))
( after T1 (C2))))))

In this case the compilation includes two transactions, corresponding to the two choices.
The scripts of these transactions encode the disjunction of two logical conditions, corre-
sponding to the two branches of the choices. Using this workaround we have managed
to compile a 4-players lottery into standard transactions, at the price of increasing the
number of transactions (587 for the standard version vs. 138 for the nonstandard one).
Similar techniques (e.g. simplification of predicates7 ) allowed us to compile all the contracts
in Table 1 into standard Bitcoin transactions.

In general, the 520-byte constraint intrinsically limits the expressiveness of Bitcoin
contracts: for instance, since public keys are 33 bytes long, a contract which needs to
simultaneously verify 15 signatures can not be implemented using standard transactions.

7. Variants of liquidity

We now discuss some variants of the notion of liquidity of Section 3.

Liquidity under a strategy. The runs R = Γ −→ · · · −→ Γ′ in Definition 3.3 allow any
participant to perform any enabled move. For instance, consider the contract:

{A: 1 @x | A :secret a | A :secret a′}
(
reveal a. withdraw A + reveal a′ .B : withdraw A

)
This contract is not liquid for A: indeed, if A performs reveal a′ , the reduct B : withdraw A
is not liquidable by A alone, since B may refuse to give his authorization. To overcome
this issue, A can follow the strategy of always performing the reveal a. In this way, she is
sure to be able liquidate the contract from any reachable state. A possible extension of the
notion of liquidity in Definition 3.3 is to make it parametric on A’s strategy, and consider
only the runs R = Γ −→ · · · −→ Γ′ which are coherent with it.

Multiparty liquidity. Definition 3.3 requires that A alone can liquidate each descendent
of the contract. We can relax it by considering a set of collaborative participants. For
instance, consider an escrow contract between A and B, involving also a mediator M:

Escrow = A : withdraw B + B : withdraw A + A : Resolve + B : Resolve

Resolve = split(0.1→ withdraw M

| 0.9→ M : withdraw A + M : withdraw B)

7https://github.com/bitml-lang/bitml-compiler/blob/master/bitml/exp.rkt

https://github.com/bitml-lang/bitml-compiler/blob/master/bitml/exp.rkt
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After the contract has been stipulated, A can choose to pay B, by authorizing the first
branch. Similarly, B can allow A to take her money back, by authorizing the second branch.
If they do not agree, any of them can invoke a mediator M to resolve the dispute, invoking a
Resolve branch. There, the initial deposit (say, of vB) is split in two parts: 0.1v goes to the
mediator, while 0.9v is assigned either to A and B, depending on M’s choice. This contract
is not liquid for A, because B can invoke the mediator, who can refuse to act, freezing the
funds within the contract (similarly for B). Instead, assuming that M is collaborative, the
contract is liquid for both A and B. Indeed, a collaborative M will always authorize either the
withdraw A or the withdraw B to unlock 0.9v. Multiparty liquidity where all participants
are collaborative was used e.g. in [TDD+18] in the context of Ethereum contracts.

Quantitative liquidity. Definition 3.3 requires that no funds remain frozen within the
contract. However, in some cases A could accept the fact that a portion of the funds remain
frozen, especially when these funds would be assigned to other participants. We could define
a contract v-liquid for A if at least v bitcoins are guaranteed to be redeemable by anyone.
For instance, Lottery(Win ) of Section 4 is non-liquid for A, but it is 4B-liquid. Instead,
Lottery(Win2) is 6B-liquid, and then also liquid, under this strategy. A refinement of this
notion could require that at least vB are transferred to A, rather than to any participant.
Under this notion, both Lottery(Win ) and Lottery(Win2) would be 2B-liquid for A.

Other variants of liquidity may take into account the time when funds become liquid,
the payoff of strategies (e.g., ruling out irrational adversaries), or fairness issues.

8. Variants of contract primitives

The renegotiation primitive we have proposed for BitML is motivated by its simplicity, and
by the possibility of compiling into standard Bitcoin transactions. By adding some degree of
complexity, we can devise more general primitives, which could be useful in certain scenarios.
We discuss below some alternatives.

Renegotiation-time parameters. The primitive ∗ : rngt X〈~E〉 allows participants to
choose at run-time only the deposit variables used in the renegotiated contracts, and to
commit to new secrets. A possible extension is to allow participants to choose at run-time

arbitrary values for the renegotiation parameters ~E.
For instance, consider a mortgage payment, where a buyer A must pay 10B to a bank

B in 10 installments. After A has paid the first five installments (of 1B each), the bank
might propose to renegotiate the contract, varying the amount of the installment. Using the
BitML renegotiation primitive presented in Section 2, we could not model this contract, since
the new amount and the number of installments are unknown at the time of the original

stipulation. Technically, the issue is that the primitive ∗ : rngt X〈~E〉 only involves static
expressions E, the value of which is determined at stipulation time.

To cope with non-statically known values, we could extend guarded contracts with terms
of the form ∗ : rngt X〈B : v〉, declaring that the value v is to be chosen by B at renegotiation
time. For instance, this would allow to model our installments payment plan as IPP〈1〉,
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with the following defining equations:

IPP〈β < 5〉 = {A: 1 @ d}
(
split 1→ withdraw B | 0→ ∗ : rngt IPP〈β + 1〉

)
IPP〈5〉 = {A: 1 @ d}

(
split 1→ withdraw B | 0→ ∗ : rngt Y〈B : k,B : v〉

)
Y〈β 6= 1, β′〉 = {A:β′ @ d}

(
split β′ → withdraw B | 0→ ∗ : rngt Y〈β − 1, β′〉

)
Y〈1, β′〉 = {A:β′ @ d} withdraw B

where in IPP〈5〉, the bank chooses the number of installments k, as well as the amount v of
each installment. Note that if A does not agree with these values, the renegotiation fails.
A more refined version of the contract should take this possibility into account, by adding
suitable compensation branches. Although adding the new primitive would moderately
increase the complexity of the semantics and of the compiler, this extension can still be
implemented on top of standard Bitcoin.

Renegotiation with a given set of participants. As we have remarked in Section 2, a
renegotiation can be performed only if all the participants of the contract agree. We could
relax this, by just requiring the agreement of a given set of participants (possibly, not among
those who originally stipulated the contract).

For instance, consider an escrow service between a buyer A and a seller B for the
purchase of an item worth 1B. The normal case is when the A authorizes the transfer of 1B
after receiving the item, but it may happen that a dishonest B never ships the item, or that
a dishonest buyer never authorizes the payment. To cope with these cases, the participants
could renegotiate the contract, including an escrow service M which mediates the dispute:

A : withdraw B + B : withdraw A + A : M : rngt RefdA + B : M : rngt RefdB

RefdP = {P: 0.1 @ d} split
(
0.1→ withdraw M | 1→ withdraw P

)
where A : M : rngt RefdA means that only A and M need to agree in order for the contract
RefdA to be executed, resolving the dispute. In this case it is crucial that the renegotiation
is possible even without the agreement between A and B. Indeed, if M decides to refund A
(by authorizing RefdA), it is not to be expected that also B agrees. Similarly to the one
discussed before, also this extension can be implemented on-top of Bitcoin.

Non-consensual renegotiation. In the variants of ∗ : rngt discussed before, renegotiation
requires one or more participants to agree. Hence, each use of ∗ : rngt must include suitable
alternative branches, to be fired in case the renegotiation fails. In certain scenarios, we may
want to renegotiate the contract without the participants having to agree. To this purpose,
we can introduce a new primitive call X, which continues as X without requiring anyone to

agree. We assume that the defining equations of this primitive have the form X(~β) = {v}C ,
where v represents the amount of B added to the contract, by anyone.

We exemplify the new primitive in a two-players game which starts with a bet of 1B
from A, and a bet of 2B from B. Then, starting from A, players take turns adding 2B each
to the pot. The first one who is not able to provide the additional 2B within a given time
loses the game, allowing the other player to take the whole pot. The contract is as follows:

C = {A: 1 @x | B: 2 @ y}(call XA〈2〉+ after 1 : withdraw B)

XA〈n〉 = {2}(call XB〈n+ 1〉+ aftern : withdraw A)

XB〈n〉 = {2}(call XA〈n+ 1〉+ aftern : withdraw B)
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Unlike ∗ : rngt, the action call can be fired without the authorizations of all the players:
it just requires that the authorization to gather 2B is provided, by anyone. Even though the
sender of these 2B is not specified in the contract, it is implicit in the game mechanism: for
instance, when XA〈n〉 calls XB〈n+ 1〉, only participant B is incentivized to add 2B, since
not doing so will make A win.

Implementing the call primitive on top of Bitcoin seems unfeasible: even if it were
possible to use complex off-chain multiparty computation protocols [GMR+19], doing so
might be impractical. Rather, we would like to extend Bitcoin as much as needed for the
new primitive. In our implementation of BitML, we compile contracts to sets of transactions
and make participants sign them. In standard BitML this is doable since, at stipulation
time, we can finitely over-approximate the reducts of the original contract. Recursion can
make this set infinite, e.g. XA〈2〉, XA〈3〉, . . ., hence impossible to compile and sign statically.
A way to cope with this is to extend Bitcoin with malleable signatures which only cover the
part of the transaction not affected by the parameter n in XB〈n〉. Further, signatures must
not cover the in fields of transactions, since they change as recursion unfolds. In this way,
the same signature can be reused for each call.

Adding malleability provides flexibility, but poses some risks. For instance, instead of
redeeming the transaction corresponding to XA〈n〉 with the transaction of XB〈n+ 1〉 one
could instead use the transaction of XB〈n+ 100〉, since the two transactions have the same
signature. To overcome this problem, we could add a new opcode to allow the output script
of XB〈n〉 to access the parameter in the redeeming transaction, so to verify that it is indeed
n + 1 as intended. Similarly, to check that we have 2B more in the new transaction, an
opcode could provide the value of the new output. The same goal could be achieved by
exploiting covenants [MES16, OP17, BLZ20].

9. Conclusions

We have investigated linguistic primitives to renegotiate BitML contracts, and their imple-
mentation on standard Bitcoin. More expressive primitives could be devised by relaxing this
constraint, e.g. assuming the extended UTXO model [CCM+20].

Our verification technique is based on a sound abstraction of the state space of contracts.
Since this abstraction is finite-state, it can be model-checked to verify the required properties.
If we assume that integers are unbounded, and that participants always accept renegotiations,
the extension of BitML presented in Section 2 can simulate a counter machine, so making
BitML Turing-complete. Hence, any verification technique for BitML cannot be sound and
complete. Alternative techniques to model checking (e.g., type-based approaches [DBHP19])
could be used to analyse relevant contract properties.

Acknowledgements. Massimo Bartoletti is partially supported by Aut. Reg. Sardinia
projects Sardcoin, Smart collaborative engineering, and Conv. Fondazione di Sardegna &
Atenei Sardi project F74I19000900007 ADAM. Maurizio Murgia and Roberto Zunino are
partially supported by MIUR PON Distributed Ledgers for Secure Open Communities.

References

[ABC17] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on Ethereum smart
contracts (SoK). In Principles of Security and Trust (POST), volume 10204 of LNCS, pages
164–186. Springer, 2017. doi:10.1007/978-3-662-54455-6_8.

https://doi.org/10.1007/978-3-662-54455-6_8


22:32 M. Bartoletti, S. Lande, M. Murgia, and R. Zunino Vol. 18:1

[ABC+18] Nicola Atzei, Massimo Bartoletti, Tiziana Cimoli, Stefano Lande, and Roberto Zunino. SoK:
unraveling Bitcoin smart contracts. In POST, volume 10804 of LNCS, pages 217–242. Springer,
2018. doi:10.1007/978-3-319-89722-6.

[ABL+19] Nicola Atzei, Massimo Bartoletti, Stefano Lande, Nobuko Yoshida, and Roberto Zunino.
Developing secure Bitcoin contracts with BitML. In ESEC/FSE, pages 1124–1128. ACM, 2019.
doi:https://doi.org/10.1145/3338906.3341173.

[ADMM14a] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Fair
two-party computations via Bitcoin deposits. In Financial Cryptography Workshops, volume
8438 of LNCS, pages 105–121. Springer, 2014. doi:10.1007/978-3-662-44774-1_8.

[ADMM14b] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and  Lukasz Mazurek. Modeling
Bitcoin contracts by timed automata. In International Conference on Formal Modeling and
Analysis of Timed Systems (FORMATS), volume 8711 of LNCS, pages 7–22. Springer, 2014.
doi:10.1007/978-3-319-10512-3_2.

[ADMM14c] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Secure
multiparty computations on Bitcoin. In IEEE S & P, pages 443–458, 2014. First appeared on
Cryptology ePrint Archive, http://eprint.iacr.org/2013/784. doi:10.1109/SP.2014.35.

[ADMM16] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Secure
multiparty computations on Bitcoin. Commun. ACM, 59(4):76–84, 2016. doi:10.1145/2896386.

[And19] Gavin Andresen. Bitcoin script size limit, 2019. BIP 16, https://github.com/bitcoin/bips/
blob/master/bip-0016.mediawiki#520-byte-limitation-on-serialized-script-size.

[BBL+21] Massimo Bartoletti, Andrea Bracciali, Cristian Lepore, Alceste Scalas, and Roberto Zunino.
A formal model of Algorand smart contracts. In Financial Cryptography and Data Security,
volume 12674 of LNCS, pages 93–114. Springer, 2021. doi:10.1007/978-3-662-64322-8_5.

[BDM16] Waclaw Banasik, Stefan Dziembowski, and Daniel Malinowski. Efficient zero-knowledge contin-
gent payments in cryptocurrencies without scripts. In ESORICS, volume 9879 of LNCS, pages
261–280. Springer, 2016. doi:10.1007/978-3-319-45741-3_14.

[BK14] Iddo Bentov and Ranjit Kumaresan. How to use Bitcoin to design fair protocols. In CRYPTO,
volume 8617 of LNCS, pages 421–439. Springer, 2014. doi:10.1007/978-3-662-44381-1_24.

[BKT17] Alex Biryukov, Dmitry Khovratovich, and Sergei Tikhomirov. Findel: Secure derivative contracts
for Ethereum. In Financial Cryptography Workshops, volume 10323 of LNCS, pages 453–467.
Springer, 2017. doi:10.1007/978-3-319-70278-0_28.

[BLZ20] Massimo Bartoletti, Stefano Lande, and Roberto Zunino. Bitcoin covenants unchained. In ISoLA,
volume 12478 of ISOLA, pages 25–42. Springer, 2020. doi:10.1007/978-3-030-61467-6_3.

[BMZ20] Massimo Bartoletti, Maurizio Murgia, and Roberto Zunino. Renegotiation and recursion in
Bitcoin contracts. In Proc. COORDINATION, volume 12134 of LNCS, pages 261–278. Springer,
2020. doi:10.1007/978-3-030-50029-0_17.

[BZ17] Massimo Bartoletti and Roberto Zunino. Constant-deposit multiparty lotteries on Bitcoin. In
Financial Cryptography Workshops, volume 10323 of LNCS, pages 231–247. Springer, 2017.
doi:10.1007/978-3-319-70278-0.

[BZ18a] Massimo Bartoletti and Roberto Zunino. BitML: a calculus for Bitcoin smart contracts. In
ACM CCS, 2018. doi:10.1145/3243734.3243795.

[BZ18b] Massimo Bartoletti and Roberto Zunino. BitML: a calculus for Bitcoin smart contracts. IACR
Cryptol. ePrint Arch., page 122, 2018. URL: http://eprint.iacr.org/2018/122.

[BZ19] Massimo Bartoletti and Roberto Zunino. Verifying liquidity of Bitcoin contracts. In POST,
volume 11426 of LNCS. Springer, 2019.

[CCM+20] Manuel M.T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian,
Michael Peyton Jones, and Philip Wadler. The extended UTXO model. In Workshop on
Trusted Smart Contracts, 2020.

[CDE+02] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet, José
Meseguer, and Jose F. Quesada. Maude: specification and programming in rewriting logic.
Theor. Comput. Sci., 285(2):187–243, 2002. doi:10.1016/S0304-3975(01)00359-0.

[DBHP19] Ankush Das, Stephanie Balzer, Jan Hoffmann, and Frank Pfenning. Resource-aware session
types for digital contracts. CoRR, abs/1902.06056, 2019.

[Fla12] Matthew Flatt. Creating languages in Racket. Commun. ACM, 55(1):48–56, 2012. doi:10.
1145/2063176.2063195.

https://doi.org/10.1007/978-3-319-89722-6
https://doi.org/https://doi.org/10.1145/3338906.3341173
https://doi.org/10.1007/978-3-662-44774-1_8
https://doi.org/10.1007/978-3-319-10512-3_2
http://eprint.iacr.org/2013/784
https://doi.org/10.1109/SP.2014.35
https://doi.org/10.1145/2896386
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki#520-byte-limitation-on-serialized-script-size
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki#520-byte-limitation-on-serialized-script-size
https://doi.org/10.1007/978-3-662-64322-8_5
https://doi.org/10.1007/978-3-319-45741-3_14
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-319-70278-0_28
https://doi.org/10.1007/978-3-030-61467-6_3
https://doi.org/10.1007/978-3-030-50029-0_17
https://doi.org/10.1007/978-3-319-70278-0
https://doi.org/10.1145/3243734.3243795
http://eprint.iacr.org/2018/122
https://doi.org/10.1016/S0304-3975(01)00359-0
https://doi.org/10.1145/2063176.2063195
https://doi.org/10.1145/2063176.2063195


Vol. 18:1 VERIFYING LIQUIDITY OF RECURSIVE BITCOIN CONTRACTS 22:33

[GMR+19] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and Arthur Gervais.
Sok: Off the chain transactions. IACR Cryptology ePrint Archive, 2019:360, 2019.

[JES00] Simon L. Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing contracts: an ad-
venture in financial engineering, functional pearl. In International Conference on Functional
Programming (ICFP), pages 280–292, 2000. doi:10.1145/351240.351267.

[KB14] Ranjit Kumaresan and Iddo Bentov. How to use Bitcoin to incentivize correct computations.
In ACM CCS, pages 30–41, 2014. doi:10.1145/2660267.2660380.

[KB16] Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation with penalties. In ACM
CCS, pages 418–429, 2016. doi:10.1145/2976749.2978424.

[KMB15] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to use Bitcoin to play decentralized
poker. In ACM CCS, pages 195–206, 2015. doi:10.1145/2810103.2813712.

[KVV16] Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. Improvements to
secure computation with penalties. In ACM CCS, pages 406–417, 2016. doi:10.1145/2976749.
2978421.

[LCO+16] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making smart
contracts smarter. In ACM CCS, pages 254–269, 2016. doi:10.1145/2976749.2978309.

[MB17] Andrew Miller and Iddo Bentov. Zero-collateral lotteries in Bitcoin and Ethereum. In EuroS&P
Workshops, pages 4–13, 2017. doi:10.1109/EuroSPW.2017.44.
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