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Abstract. We introduce a model of register automata over infinite trees with extrema
constraints. Such an automaton can store elements of a linearly ordered domain in its
registers, and can compare those values to the suprema and infima of register values in
subtrees. We show that the emptiness problem for these automata is decidable.

As an application, we prove decidability of the countable satisfiability problem for
two-variable logic in the presence of a tree order, a linear order, and arbitrary atoms that
are MSO definable from the tree order. As a consequence, the satisfiability problem for
two-variable logic with arbitrary predicates, two of them interpreted by linear orders, is
decidable.

1. Introduction

Automata for words and trees find applications in diverse areas such as logic, verification, and
database theory (see, e.g., [Tho97, BKL08, Nev02]). Applications to logic include proofs of
decidability of the satisfiability problem for various logics, and this is the theme of this paper.
Many variations of automata for specific applications have been introduced, among them
automata over infinite words or trees, with output, timed automata, or automata working on
words and trees whose positions are annotated by data from an infinite domain. In this article
we study a variant of the latter family of automata called register automata [KF94, NSV04].

In its basic form, a register automaton extends a finite state automaton by registers
which can store data values from an infinite domain D. The inputs are data words, i.e.,
words labeled by pairs consisting of a label from a finite alphabet Σ, and a data value
from D. When reading a data word, a register automaton can store values from D in its
registers. Its state depends on the previous state, the label at the current position as well
as the relationship of the stored register values to the data value at the current position.
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Here, depending on the automaton model at hand, register values can be tested for equality,
compared with respect to some linear order on D, or others.

In this article we study a variant of register automata for infinite data trees, where the
data values form a complete dense total order. In addition to the ability of comparing data
values according to the linear order of D, our automaton model allows to compare register
values to the suprema and infima over values of registers in a subtree.

We show that the emptiness problem for this automaton model can be solved algorith-
mically.

Theorem 1.1. The emptiness problem for tree register automata with suprema and infima
constraints is decidable.

As an application of the above result, we consider the satisfiability problem for variants
of two-variable logic. In two-variable first-order logic (short: FO2) formulas may use only
two variables x and y which can be reused. The extension by existential second-order
quantifiers is denoted by ESO2, or EMSO2 if only monadic such quantifiers are allowed.
Two-variable first-order logic is reasonably expressive and enjoys a decidable satisfiability
problem [Mor75, Sco62]. However, an easy application of a two-pebble Ehrenfeucht-Fraïsse
game yields that FO2 cannot express transitivity of a binary relation. For this reason, FO2

has been studied on structures where some special relations are required to be transitive.
A particular interest has been in deciding the satisfiability problem for such extensions.

Recently a decision procedure for the finite satisfiability problem for ESO2 with one transitive
relation and for ESO2 with one partial order have been obtained [Pra18]. Previously ESO2

with two equivalence relations [KO12, KT09] and ESO2 with two “forest” relations have
been shown to be decidable [CW13]. While it is known that EMSO2 with three equivalence
relations is undecidable, this problem is still open for three “forest” relations. For ESO2 with
two linear orders, only a decision procedure for the finite satisfiability problem was known
[SZ12, ZH16]. The satisfiability problem and the finite satisfiability problem for EMSO2 is
undecidable for three linear orders [Kie11].

The question whether two-variable logic with two linear orders is decidable for general
(not necessarily finite) structures has been left open in [SZ12, ZH16], and is settled here
affirmatively. Beyond settling the question itself, we believe that the techniques developed
here might also be interesting in their own rights and applied to other problems, much like
in the case of finite satisfiability, where the used techniques were later exploited in work by
Dartois, Filiot, and Lhote on transducers [DFL18] and in recent work by Lutz, Jung, and
Zeume in relation to description logics [JLZ20].

In fact, we prove a more general result. A partial order (D, <) is a tree order (also called
a semi-linear order) if the set {y | y < x} is totally ordered by < for each x ∈ D, and any
two elements x, y have some lower bound.

Theorem 1.2. Countable satisfiability of ESO2 with one tree order, one linear order, and
access to MSO-defined atoms over the tree order, is decidable.

See Theorem 5.1 for a more precise restatement.
This theorem can alternatively be viewed from the perspective of ESO2 on data trees

where all nodes are annotated by distinct, linearly ordered data values. It then states that
ESO2 with access to the tree structure via MSO-definable atoms and with the ability to
compare data values with respect to the linear order on data values is decidable over such
trees. This should be compared with the decidability of EMSO2 on data trees with possibly
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Figure 1. (a) A structure with two linear orders represented as a point set
in the two-dimensional plane. The structure satisfies the existential constraint
∀x∃y(a(x)→ (b(y) ∧ x <1 y ∧ x <2 y)), and the universal constraint ∀x∀y¬(a(x) ∧
b(y) ∧ y <1 x ∧ y <2 x). A linearly ordered data word corresponding to the structure
is (a, 5)(a, 6)(c, 3)(b, 7)(a, 1)(b, 4)(b, 2). (b) In structures with two linear orders,
constraints on an element x can be imposed in directions (I)–(IV). For instance,
direction (II) corresponds to x <1 y ∧ x <2 y.

non-distinct data values, access to the tree structure via the children and sibling relation, as
well as the ability to test whether two data values are equal [BMSS09].

An immediate consequence of Theorem 1.2 is the decidability of satisfiability of ESO2

with two linear orders, because a linear order can be axiomatised from a tree order easily.

Corollary 1.3. Satisfiability of ESO2 with two linear orders is decidable.

In Section 5 these results are stated more formally, and other consequences of Theorem
1.2 are discussed. We now briefly discuss our proof method.

Theorem 1.2 is proved by a reduction to the emptiness problem for our variant of register
automata. To explain this reduction, let us consider the case of finite structures first. The
finite satisfiability problem for two-variable logic with two linear orders, FO2(<1, <2), can
be reduced to an emptiness test for register automata on words in two steps: (1) exhibit a
correspondence between structures with two linear orders and input data words for register
automata, and (2) verify the conditions imposed by a FO2(<1, <2)-formula with a register
automaton. For (1), finite structures with two linear orders <1 and <2 can be identified
with finite data words with distinct data values from the rationals. Here, the unary types
of single elements of the structure are represented as labels of the data word, the order <1

corresponds to the linear order of positions in the word, and <2 to the usual order of the
rationals on data values, i.e., if positions x and y have data values p and q, respectively, then
x <2 y if and only if p < q (where < is the usual linear order of the rationals). We refer to
Figure 1 for an illustration of this correspondence.

Instead of directly verifying conditions imposed by an FO2(<1, <2)-formula, it is conve-
nient to first convert such formulas into a set of existential and universal constraints [SZ12].
An existential constraint enforces that for each element x of unary type σ there is an element
y of unary type τ , such that y is in a specified direction from x with respect to <1 and <2,
for instance in direction x <1 y and x <2 y. A universal constraint can forbid patterns, that
is, it can state that it is not the case that x and y are elements with unary types σ and τ ,
respectively, and y is in a specified direction of x (see Figure 1).
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Such constraints can be easily verified by a register automaton. To this end, the
automaton has registers rσmax,←, rσmin,←, r

σ
max,→, and rσmin,→, for each label σ, intended to

store the maximal and minimal data value of σ-labeled positions to the left and right of the
current position, respectively. The content of these registers can be guessed and verified by
the automaton. Then, for determining whether an existential constraint such as the one
above is satisfied, the automaton verifies that, for each σ-labeled position x, the register
rτmax,→ stores a value larger than the data value at x. Similarly universal constraints can
be checked. Technically, the register automaton also has to ensure that all data values are
distinct. While this is not possible in general, it can verify a weaker condition that guarantees
that if some data word is accepted then so is one with distinct data values.

The above rough sketch can be used to obtain a new proof of decidability of finite
satisfiability problem of FO2 with two linear orders [SZ12]. This automata-based approach
generalizes well to various other results in this vein, by considering various domains D or
various shapes of the input structures. The present paper is an illustration of the power of
this approach.

To solve the general satisfiability of FO2(<1, <2) for linear orders <1 and <2, register
automata need to be generalized in two directions. First, to allow infinite domains, we
pass from finite data words to infinite objects with data, such as ω-words or infinite trees.
Considering ω-words allows to study the case when <1 is isomorphic to the naturals with
their order, which does not cover all infinite orders. To encompass arbitrary countable linear
orders, we move to infinite trees, as any countable order is isomorphic to a subset of the
infinite complete binary tree with the left-to-right order on its nodes. More generally, any
countable tree order can be encoded in the complete binary tree in a certain sense, so moving
to infinite trees allows us to consider arbitrary countable tree orders <1.

For the moment, let us focus on the case when <1 is considered to be isomorphic to the
naturals with their order, in which case we consider ω-words with data. Now, existential
constraints coming from the FO2 formula can enforce supremum-like conditions, e.g., they
can require that (1) every σ-labeled element x has a τ -labeled element y with x <1 y and
x <2 y and vice versa, that is, every τ -labeled element x has a σ-labeled element y with
x <1 y and x <2 y, and that (2) there is a ρ-labeled position that bounds from above
all these τ and σ-labeled positions with respect to <2. This is why we need to consider
register automata over ω-words with data, which can access at each position the infimum
and supremum of the values stored in a specified register in all future positions.

Finally, to solve the case of arbitrary countable orders <1, we move from ω-words to
infinite trees, as discussed above. Now, the infimum and supremum needs to be taken over
all nodes of the tree which are descendants of the current node. This leads us to the study of
tree register automata with suprema and infima constraints for infinite, binary trees with
data. These are introduced in Section 3.

For the variants of the satisfiability problem briefly mentioned above – whether <1 is a
finite order, or isomorphic to the order of the naturals, or a countable order, or a tree order –
the reduction of the satisfiability problem to the emptiness problem for the corresponding
variant of automata always follows essentially the simple idea described above. This is
described in Section 5.

On the other hand, deciding the emptiness problem for the corresponding models of
register automata discussed above becomes more involved as the models are generalized. The
overall idea of deciding emptiness tree register automata with extrema constraints is to (1)
reduce to the emptiness problem for tree register automata without extrema constraints and
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subsequently (2) reduce the emptiness problem for such automata to the emptiness problem
of parity automata over infinite trees. This is described in Section 4. Decidability then
follows from the fact that the emptiness problem for parity automata is decidable [Rab72].

This article is the long version of [TZ20]. It in particular provides full proofs for all
results.

2. Preliminaries

In this section we recapitulate basic notions and fix some of our notations.
A tree t is a prefix-closed subset of {0, 1}∗, and each element v ∈ t is called a node. The

ancestor order of a tree t, denoted <anc, is the strict prefix order on t.
We write ↙v and ↘v for the left child v0 and the right child v1 of v; and denote the

parent of v by ↑v. The subtree of t rooted at v is written as tv. Assigning a label from a set
Σ to every node of t yields a Σ-labeled tree.

A (strict) partial order < over a domain D is a transitive, antisymmetric, and antireflexive
relation, that is, if a, b, c ∈ D then a < b and b < c implies a < c; and a < b and b < a are
never both satisfied at the same time. We use standard notions of upper and lower bounds,
and of suprema and infima of subsets of a partially ordered set. A partial order is a linear
order if a < b or b < a for all a, b ∈ D with a 6= b. A partial order (D, <) is a tree order
if the set {y | y < x} is totally ordered by < for each x ∈ D, and additionally, any two
elements have some lower bound. For instance, all linear orders are tree orders, and the
ancestor orders of trees are tree orders. In general, a tree order may not be isomorphic to the
ancestor order of a tree. As examples consider a dense linear order, or an infinitely branching
tree, or a combination of the two, where a dense linear order branches into infinitely many
copies at each rational.

In a tree order (or tree) if u, v are two nodes and u < v then we say that u is an ancestor
of v, that u is smaller than v, and that v is larger than u.

3. Tree Register Automata with Suprema and Infima Constraints

Register automata are finite state automata equipped with a set of registers that can store
values from an infinite data domain. Here we introduce a variant of register automata for
infinite trees and ordered domains. In the next section we will prove that their emptiness
problem is decidable.

Our register automaton model is equipped with a mechanism for accessing infima and
suprema of subtrees. Therefore it uses values from the domain R df

= R ∪ {−∞,∞} linearly
ordered in the natural way. The only feature of R which will matter is that it is a dense
linear order and contains all infima and suprema. Instead of R we could equally well consider
the real interval [0, 1]. We therefore fix the ordered domain D

df
= 〈R, <〉 which is a complete

dense linear order with endpoints (treated as constants).
We consider a model of nondeterministic tree automata (with non-deterministic guessing

of data values) which process infinite binary trees whose nodes are labeled by a label from
a finite alphabet Σ and tuples of data values from D, representing input values. Such an
automaton has a finite set of registers storing values. It nondeterministically assigns to each
node of the input tree a state from a finite state space and a valuation of the registers in the
domain D (in particular, it allows for “guessing” of data values). At a node v, the transition
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relation has access to the automaton state as well as the Σ-label of v and its children ↙v, ↘v,
and it is capable of comparing the input numbers and the numbers stored in registers at
those nodes using the linear order. Furthermore it can compare any of those register values
to the infimum or supremum of data values in a given register at nodes in the subtree rooted
at v reachable from v by a path whose labels satisfy a given regular property, e.g. of the
form supremum of values of register r at all descendants of v reachable by a path labeled by
a∗ba∗. The transition relation is described by a propositional formula, whose atomic formulas
correspond to label and state tests, as well as register comparisons for the current node and
its children, and the suprema and infima of register values in the current subtree.

More formally, a tree register automaton with suprema and infima constraints (short:
TRASI ) consists of the following components:

• a finite input alphabet Σ;
• a finite set of states Q;
• a finite set of root states F ⊆ Q;
• a finite set of input registers I;
• a finite set of registers R containing the input registers I;
• a function L mapping each register r ∈ R to an associated regular language over Σ
(specified by a nondeterministic finite state automaton);
• a nondeterministic transition relation δ which is given by a propositional formula with
atomic formulas of the form
– σ, ↙σ,↘σ for σ ∈ Σ and q, ↙q,↘q for q ∈ Q, used for testing labels and states of the

current node and its children nodes;
– s < t or s = t, used for comparing register values or suprema/infima: s and t range

over the registers of the current node, the registers of its children nodes, or are domain
constants or suprema respective infima terms of the form sup r or inf r, for r ∈ R (that
is, s, t ∈ {r,↙r,↘r, sup r, inf r | r ∈ R}).

• a regular acceptance condition, given by a parity function Ω: Q→ N assigning a rank to
each state.

If a TRASI does not use suprema and infima terms (sup r or inf r for r ∈ R) in its transition
relation then it is called a tree register automaton.

We next define inputs and runs for a tree register automaton A with suprema and infima
constraints. An input tree for A is a complete infinite binary tree, whose vertices are labelled
by elements from Σ ×DI . The labelling by DI will form the register assignment for the
input registers.

For a regular language L ⊆ Σ∗ an input tree t and two of its nodes v and w, we say
that w is an L-descendant of v if w is a descendant of v (possibly v itself) and the labels
along the path from v to w in t form a word which belongs to L. The terms sup r and
inf r, evaluated at a node v, will denote the supremum/infimum of all values of register r at
nodes w which are L-descendants of v, where L is the language associated to register r. For
technical reasons, we provide a piecemeal definition of a run of a TRASI, in which the values
of the registers sup r and inf r are stored in auxiliary registers defined below, and then we
require that the values of those registers are as expected.

Let Rsup and Rinf be two copies of the set R, where Rsup = {rsup | r ∈ R} and
Rinf = {rinf | r ∈ R}. Denote R = R ∪Rsup ∪Rinf . Abusing language, elements of Rsup will
be called suprema registers, and elements of Rinf will be called infima registers.
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A pre-run ρ over an input tree t annotates each node of t by an element from Q×DR,
so that registers from I ⊆ R get a value according to the input tree. The state at a node
v in a pre-run ρ is the Q-component of ρ(v). The labelling by DR will form the register
assignment for the registers in R. We write rρ(v) for the value of register r in pre-run ρ, or
r(v) if ρ is clear from the context.

A pre-run ρ is locally consistent if each node v with left and right children ↙v and ↘v
satisfies δ with respect to ρ. Here, the satisfaction of the atomic formulas is defined as
follows:

• σ, ↙σ, and ↘σ are satisfied in v if v,↙v, and ↘v are labelled by σ ∈ Σ, respectively;
similarly for q, ↙q and ↘q, for q ∈ Q;
• given a node v, a term of the form r ∈ R evaluates to the value r(v). A term of the form
↙r, for r ∈ R, evaluates to the value r(↙v), and likewise for ↘r. Finally, a term of the
form sup r evaluates to rsup(v), and a term of the form inf r evaluates to rinf(v).
• if s, t are two terms as above, then the atomic formula s < t is satisfied in the node v if
the value of the term s is smaller than the value of the term t. The definition for s = t is
analogous.

Satisfaction for boolean operations is defined as usual.
A run is a locally consistent pre-run which additionally satisfies the following consistency

requirement: for every node v, rsup(v) is the supremum of the values r(w), where w ranges
over all L-descendants of v where L is the language associated to r, whereas rinf(v) is the
infimum of all such values. If no L-descendants exist, then the supremum is −∞ and infimum
is +∞ by definition. A pre-run ρ is accepting if the state at the root belongs to F , and every
branch of ρ satisfies the parity condition, i.e., on every (infinite, rooted) branch of ρ, if the
states at the nodes along this branch are q1, q2, . . . , then lim supn→∞(Ω(qn)) is even.

A TRASI accepts an input tree t if it has an accepting run over that tree. The emptiness
problem for TRASI is the problem of deciding whether a given TRASI accepts some input
tree. In the next section we prove that this problem is decidable.

Note that instead of equipping the automaton model with a parity acceptance condition,
we could equip it with an MSO acceptance condition, i.e. an MSO formula φ using two binary
predicates: s1 and s2, standing for left and right successor (in the binary tree), and for each
q ∈ Q a unary predicate λq, holding at nodes labeled with q. This would not change the
expressive power of the tree automata, since parity tree automata have the same expressive
power as MSO over infinite binary trees [Rab72, Tho97].

Example 3.1. (a) Consider the language of trees with one data value per node such that
the values on each infinite path form a strictly increasing sequence of numbers. A TRASI
for this language can work as follows. The data value is stored in an input register r.
The automaton has two states q> and q⊥, where q> represents the situation where the
sequence of the numbers from the root to the current node is increasing; q> is the only
root state. A path is accepted if q> occurs infinitely often, i.e. the parity function Ω is
defined as Ω(q>) = 2 and Ω(q⊥) = 1.

The transition relation is defined by(
↙q> ↔ (q> ∧ r < ↙r)

)
∧
(
↘q> ↔ (q> ∧ r < ↘r)

)
where the first part checks that the state is propagated properly to the left child, and the
second part does the same for the right child.
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(b) Consider the language of trees over Σ = {a, b, c} with one data value per node where
the data value of each a-labeled node equals the supremum of the b-labeled nodes below.
A TRASI for this language can work as follows. The data value is stored in an input
register r with associated language Σ∗b. The automaton uses two states q> and q⊥,
where q> represents the situation where all b-nodes seen on a path so far adhere to the
condition. A path is accepted if q> occurs infinitely often.

The transition relation is defined by(
↙q> ↔ (q> ∧ (¬a ∨ (r = sup r)))

)
∧
(
↘q> ↔ (q> ∧ (¬a ∨ (r = sup r)))

)
.

4. Deciding Emptiness

In this section we prove the following:

Theorem 4.1. The emptiness problem for tree register automata with suprema and infima
constraints is decidable.

Given a TRASI A, we construct (in Sections 4.1 and 4.2) a tree register automaton
Â (without extrema constraints) such that A has an accepting run if and only if Â has an
accepting run. As emptiness of register automata over infinite data trees is decidable (see
Section 4.3), this will yield decidability of the emptiness problem for TRASI.

4.1. Warm-Up: From TRASI with Trivial Path Languages to Tree Register Au-
tomata. For the sake of readability, we first prove how Â can be constructed when all
languages associated with registers in the TRASI A are equal to Σ∗, that is, if suprema and
infima of data values are taken over all nodes of a subtree. The proof for general regular
languages is deferred to the following section. In this section, we henceforth assume that all
languages associated with registers in a TRASI are equal to Σ∗.

We would like to construct Â so that it accepts exactly those pre-runs of A which are
actual runs. This requirement, however, is too strong. The reason is that applying an
arbitrary monotone bijection of D to an accepting run of a register automaton always yields
an accepting run, whereas the same property fails for accepting runs of TRASI’s, since such
a bijection might not preserve suprema and infima.

For this reason Â checks a weaker condition. Fix an input tree t, a register r and a node
v; recall that tv is the set of descendants of v in t. If the supremum of the values of r in tv is
equal to c, then either the supremum is attained at some node w of tv, or there must be an
infinite path starting from v such that the supremum of r has value c for all nodes along
this path. Then one can find a sequence of nodes v1, v2, . . . on the path that have nodes
w1, w2, . . . below them (but not necessarily on the path) whose r-values tend to c (cf. Fig. 2).
Such nodes w1, w2, . . . are called witness nodes in the following. The intention of Â is to
check for the existence of these witness nodes. As the automaton cannot check that their
data values actually tend to the supremum c, it chooses the witnesses w1, w2, . . . so that at
least they eventually exceed any values smaller than c which are stored at any point along
the path in some register. This is formalized below.

First, we impose a normalization assumption on the TRASI A. Namely, say that a
TRASI A is normalized if the transition relation does not allow directly comparing values in
the left and right child of a given node v, i.e., it does not contain atoms of the form ↘r < ↙s
or ↙r < ↘s or ↙r = ↘s, for r, s ∈ R. It is easy to see that any TRASI can be converted into
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Figure 2. An infinite path and finite paths departing from it, forming a witness of
a supremum. The path is constructed so that sup{r(w) | w ∈ tvn} is the same for all
n ≥ 0, and equal to sup{r(wn) | n ≥ 1}.

a normalized TRASI which accepts the same input trees (possibly at the cost of introducing
new registers).

Let ρ be a pre-run of A. Say that ρ is extrema-consistent if for every node v and r ∈ R,
rsup(v) = max(r(v), rsup(↙v), rsup(↘v)),

rinf(v) = min(r(v), rinf(↙v), rinf(↘v)).

Clearly, every run is extrema-consistent, and a tree register automaton (without extrema
constraints) can easily verify that a given pre-run is extrema-consistent and locally consistent.
Because of this,

from now on, we assume that every considered TRASI is normalized, and
that all pre-runs are locally consistent and extrema-consistent.

The existence of a pre-run as described above does not yet guarantee the existence of a
run, since the extrema might not be approached by actual values of registers. For example, it
might be the case that rsup(v) = 5 for all nodes v, whereas r(v) = 4 for all nodes v. This case
can be easily detected by a register automaton, which checks that whenever r(v) < rsup(v),
then there is some descendant v′ of v with r(v) < r(v′) < rsup(v). Now suppose that
rsup(v) = 5 and r(v) = 4 − 1/d for all nodes at depth d, which is still not an actual run.
Insofar as the register r is concerned, this pre-run can be modified into a run by simply
replacing rsup(v) by 4. However, suppose there is another register s such that s(w) = 4.5
for some w and that the inequalities r(w) < s(w) < rsup(w) are enforced by the acceptance
condition. Then we cannot easily fix this pre-run to obtain a run, since s(w) separates the
values r(v) from the value rsup(v). To make sure that such a situation does not occur, we
introduce witness families which ascertain that the values r(v) exceed all values s(w) which
are encountered along a branch.

Intuitively, a witness family partitions the nodes of a tree into finite paths such that
each such path provides a witness for an extremum of some register. To this end, paths
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{

Figure 3. A partition of the tree into witness paths, a labelling of the paths with
R± and the gap of a witness path.

of such a partition are labeled by r+ or r−, indicating whether they are the supremum or
infimum witness for a register r. This is formalized as follows.

We introduce two symbols r+ and r− for each register r ∈ R. Let R± = {r+, r− | r ∈ R}
be the collection of all such symbols, and fix an arbitrary total order on R±. Further fix a
partition P of the set of nodes of the tree underlying a pre-run ρ into finite paths (cf. Fig. 3).
Say that a path π in P is the father of a path π′ if the father of the smallest node (wrt. the
ancestor order) in π′ belongs to π.

Let λ : P → R± be a labeling of the paths in P . A path π ∈ P is called a sup-witness path
associated to r if λ(π) = r+ and it is called a inf-witness path associated to r if λ(π) = r−.
For a witness path π associated to r, its target value is r(w), where w is the largest node
in π wrt. the ancestor order. A witness path starts at its smallest node wrt. the ancestor
order. If π is a witness path associated to r which starts at v, then the associated extremum
is rsup(v) if π is a sup-witness path, and rinf(v) if π is an inf-witness path. Note that if
λ(π) = r+ then the target value of π is at most equal to the associated extremum of π, since
ρ is extrema-consistent (if λ(π) = r−, then the inequality is reversed).

The gap of a witness path with target value c and associated extremum d is the interval
with endpoints c (inclusively) and d (exclusively). It is empty precisely when the target value
attains the extremum. Intuitively, the length of the gap is a measure of the quality of the
witness path, shorter gaps being better witnesses.

Our goal is to state properties of a partition P of a pre-run and a labeling λ : P → R±

that guarantee the existence of a run (i.e., a pre-run that is consistent with respect to the
extrema). Such a combination of a partition and a labeling will be a certificate for the
existence of a run. For the case where all associated languages are Σ∗, periodically witnessing
extrema for each register with close enough target values suffices as a certificate.

A mapping λ : P → R± to labels from an ordered set R± is a cyclic labeling if:

• the label λ(π) of the path π containing the root is the smallest label in R±, and
• if a path π is the father of π′ then the label λ(π′) is the successor of the label λ(π), in
cyclic order, according to the fixed order on R±.

Clearly, there is exactly one cyclic labeling of P with labels from R±.
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Henceforth (in this section), when considering a partition P of a partial run ρ, we assume
that each path in P is labeled according to the cyclic labeling with labels from R± assuming
an arbitrary order on R±.

We now define when a partition P is a certificate. Intuitively, we require that the target
values of the witness paths are sufficiently close to the associated extrema, i.e., each gap is
sufficiently small. Formally, the partition P is a certificate if each witness path π satisfies
the following gap condition:

the gap of π does not contain any value c ∈ D such that c = s(v) or c = s(↑v)
for some s ∈ R, where v denotes the starting node of π.

Below we prove the following three properties of certificates:
(1) every run has a certificate,
(2) if some accepting pre-run of A has a certificate then A has some accepting run,
(3) a tree register automaton can verify if a given pre-run has a certificate.
These properties together easily yield Theorem 4.1 for the case when all associated languages
are trivial.

To show that every run of A has a certificate, we greedily add paths to the family P
without violating the gap condition, as shown below.

Lemma 4.2. Every run of A has a certificate.

Proof. Fix a run ρ. We construct the family P in stages. Initially, P is empty, and each
stage proceeds as follows. Pick a minimal node v such that v /∈

⋃
P. If the node v is the

root then let l ∈ R± be the smallest label in R±. Otherwise, the parent of v already belongs
to some path π ∈ P which has an assigned label l′, and let l ∈ R± be the successor of l′ in
cyclic order, according to the fixed order on R±. Assume l = r+ for some r ∈ R. The case
when l = r− is treated symmetrically. Pick any descendant w of v such that the interval
with endpoint r(w) (inclusively) and rsup(v) (exclusively) does not contain any value c ∈ D
such that c = s(v) or c = s(↑v) for some s ∈ R. Add the path joining v with w to the family
P and associate the label l with it. Proceed to the next stage.

By construction, in the limit we obtain a certificate.

The key point of certificates is that the existence of a certificate implies the existence of
a run.

Lemma 4.3. For every (locally consistent, extrema-consistent) pre-run ρ which has a
certificate there is a run ρ′ whose states agree with the states of ρ.

Proof. To prove the lemma, fix a pre-run ρ and some certificate P. We construct a run ρ′
which has the same states as ρ. The run ρ′ is obtained by successively processing all nodes v,
starting from the root, and shifting the register values in their subtrees, without changing
local relationships. Towards this goal, let v0, v1, . . . be an enumeration of the tree nodes in
which every node appears after all its ancestors (in particular, v0 is the root). We construct
a sequence ρv0 , ρv1 , . . . of pre-runs such that each run has the same states as ρ, and such
that the sequence converges to a run ρ′. Here, convergence means that for every node v, the
sequence ρv0(v), ρv1(v), . . . of labels in Q×R assigned to v is ultimately equal to ρ′(v).

Define ρv0
df
= ρ. We describe, for v df

= vi and u
df
= vi−1, how ρv is constructed, assuming

that ρu has already been constructed. The register values of the subtree tv will be shifted,
and the assignment will not change on nodes from t \ tv. This guarantees that the sequence
ρv0 , ρv1 , . . . indeed converges to some pre-run ρ′.
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The pre-run ρv is defined as follows. Outside of the subtree tv, it agrees with the
pre-run ρu. Inside the subtree tv, an arbitrary monotone bijection f : D → D with the
following properties is applied to all register values of nodes in tv in the pre-run ρu:
(1) f(c) = c for all c ∈ D such that c = s(v) or c = s(↑v), for some s ∈ R, and
(2) if c ∈ D is the target value of a witness path π starting at v with associated extremum

d, then |f(c)− f(d)| < 1
n , where n is the depth of the node v (note that c = f(c) by the

first item).
Intuitively, the bijection f shrinks the gap of π so that its length is smaller than 1

n . As the
gap of π did not contain any values of the form s(v) or s(↑v) by definition of a certificate, a
monotone bijection f with the above properties exists. This ends the description of ρv.

Note that after applying the bijection f to the values inside tv, the gap of π still does
not contain any values of the form s(v) or s(↑v). Hence, P is a certificate for ρv. Therefore,
the above construction preserves the following invariant:
• ρv is a (locally consistent, extrema-consistent) pre-run with the same states as ρ,
• ρv has certificate P.
It follows that the sequence of pre-runs ρv0 , ρv1 , . . . converges to a pre-run ρ′ with the above
properties. It remains to show that ρ′ is a run, i.e., that for every node v and register r,

rsup(v) = sup{r(v′) | v′ is a descendant of v} (4.1)

rinf(v) = inf{r(v′) | v′ is a descendant of v}. (4.2)

We prove (4.1) while (4.2) is proved analogously. The inequality ≥ in (4.1) follows from
extrema-consistency of ρ′.

Towards proving ≤, pick an inclusion-maximal branch π starting at v, such that rsup(v) =
rsup(v′) for all v′ ∈ π. If the branch π is finite then rsup(v) = r(w) where w is the largest
node in π (wrt. the ancestor order) and rsup(↙w), rsup(↘w) are both smaller than r(w).
By extrema-consistency of ρ′ it follows that the right-hand side in (4.1) is equal to r(w),
which proves (4.1) as rsup(v) = r(w).

Suppose now that π is infinite. To prove (4.1), it suffices to exhibit a sequence w1, w2, . . .
of descendants of v such that

rsup(v) = lim
n→+∞

r(wn). (4.3)

Construct sup-witness paths π0, π1, . . . associated to r, as follows. Assuming we have
constructed π0, π1, . . . , πn−1, the path πn is any sup-witness path associated to r such that
its starting node un is in π, is larger than un−1, and does not belong to π0 ∪ . . .∪ πn−1. It is
easy to see that such a node un exists, as P is a partition into finite paths, and the labeling
is cyclic.

Then the nodes v = u0, u1, . . . all lie on the path π. In particular, rsup(v) = rsup(un)
and un has depth at least n, for all n. Fix n and let wn be the largest node in πn wrt. the
ancestor order. By the second item in the definition of the bijection f obtained when defining
the pre-run ρun , the following holds for that pre-run:

|r(wn)− rsup(v)| = |r(wn)− rsup(un)| < 1

n
. (4.4)

We observe that the same inequality holds for the limit pre-run ρ′. This follows from the
first item in the definition of the bijection f obtained when defining the pre-runs ρw for all
w which are descendants of un.
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Since the inequality (4.4) holds for the pre-run ρ′ and for all n, this proves (4.3),
yielding (4.1). Hence ρ′ is a run.

It remains to show that the existence of certificates can be decided by tree register
automata. This is proved by encoding the data of a certificate for a pre-run ρ using a finite
labeling (for marking starting points and labels of witness paths) and one register (storing
at a node v the target value of the witness path containing v) and verifying that they form
a valid certificate: a parity condition for checking that the paths are finite, and inequality
constraints on the target values of the witness paths to verify that they satisfy the gap
condition of a certificate.

Lemma 4.4. There is a register automaton B which accepts a pre-run ρ of A if and only if it
has a certificate. Moreover, B can be constructed in polynomial time, given R = R∪Rsup∪Rinf .

Proof sketch. The automaton B guesses a certificate for ρ, as follows. A partition P of all
vertices into connected sets can be represented as the set X = {minP | P ∈ P} of least
elements of the sets in P . Then P is a partition into finite paths if and only if every branch
contains infinitely many elements of X and every node has at least one child in X.

The automaton B guesses the partition P, represented by the set X as described
above, and verifies that it is a partition into finite paths. Additionally, each node is
nondeterministically labeled by a label in R± and the automaton verifies that nodes in the
same part of P have equal labels, and that this yields a cyclic labeling of P . The automaton
has a single register t. At each node, it nondeterministically selects a value for this register
and verifies that the value t(v) is the same for all nodes v in the same part of P, and that
t(v) = r(v) if v is the largest node in its part (wrt. the ancestor order) and is labeled r+ or r−.
Hence, t(v) represents the target value of the witness path associated to r and containing v.

It remains to verify that the guessed partitions form a certificate for ρ. To this end,
the automaton verifies, for each node v and register r, that the interval with endpoint t(v)
(inclusively) and rsup(v) (exclusively) does not contain any value c ∈ D such that c = s(v)
or c = s(↑v) for some s ∈ R.

If all the above is confirmed, the automaton accepts. By construction, B accepts ρ if
and only if ρ has a certificate.

The special case of Theorem 4.1 where all associated languages are Σ∗ now follows easily
via a reduction from the emptiness problem for TRASI to the emptiness problem for tree
register automata. That the latter problem is decidable is shown in Section 4.3.

Fix a TRASI A. We construct a tree register automaton Â such that A has an accepting
run if and only if Â has an accepting run. First, construct the tree register automaton B as
given by Lemma 4.4. Then, construct an automaton Â which is the composition of A and B:
given a labeled input tree t, the automaton Â nondeterministically selects a pre-run ρ of A,
tests that it is locally consistent, extremum-consistent, satisfies the parity condition, and
uses B to verify that ρ has a certificate. If all those tests are passed, then Â accepts. Note
that Â is a tree register automaton (without extrema constraints).

Then Â has an accepting run if and only if A has an accepting run. In one direction,
suppose A has an accepting run ρ on some input tree t. Then Â also accepts t, as witnessed
by the pre-run ρ, which is accepted by B by Lemma 4.2. Conversely, suppose that Â has
an accepting run. This means that there is a pre-run ρ of A which is extrema-consistent,
satisfies the parity condition, and has a certificate. By Lemma 4.3, there is a run ρ′ of A
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whose states agree with the states of ρ. In particular, ρ′ satisfies the parity condition, so is
an accepting run of A.

This completes the reduction, and proves Theorem 4.1 in the special case where the
languages associated to the registers are trivial.

4.2. From TRASI to Tree Register Automata. In this section, we lift the construction
from the previous section to TRASIs where languages associated with registers can be
arbitrary regular languages.

Suppose that A is a TRASI. As before, we intend to construct a tree register automaton
Â that checks conditions on a pre-run that ensure that there is an actual run of A. Again,
we assume that the TRASI A is normalized.

We first adapt extrema-consistency for the case of arbitrary associated regular languages.
Consider a register r with associated language L. If the supremum of r at a σ-node v is c
then either (1) ε ∈ L and r has value c at node v, or (2) c is the supremum of the r-values
of L′-descendants of the left child of v, where L′ df= {x | σx ∈ L}, or (3) likewise for the
right child of v. It will therefore be convenient to assume that there are registers with such
associated languages L′.

For a regular language L there are only finitely many languages u−1L df
= {x | ux ∈ L}

for u ∈ Σ∗. We say that A is language-closed if whenever a register r has L as associated
language, then there is also a register with associated language u−1L for all u ∈ Σ∗. If r is
a register with associated language L, then we denote by ur the register with associated
language u−1L.

From now on, we assume without loss of generality that A is language-closed.
Let ρ be a pre-run of A. Say that ρ is regular extrema-consistent if for every node v

labeled with σ ∈ Σ and r ∈ R with associated language L,

rsup(v) = max(dsup, σrsup(↙v), σrsup(↘v))

rinf(v) = min(dinf, σrinf(↙v), σrinf(↘v))

where dsup
df
= r(v) if ε ∈ L and dsup = −∞ otherwise, and similarly for dinf.

Clearly, every run of A is regular extrema-consistent, and a tree register automaton
(without extrema constraints) can easily verify that a given pre-run is extrema-consistent
and locally consistent. Because of this,

from now on, we assume that every considered TRASI is normalized, and
that all pre-runs are locally consistent and regular extrema-consistent.

Next we adapt certificates. We introduce witness families that ensure that for each node
v and each register r with associated language L, the supremum of r at v is approached by
values of r of L-descendants of v. Essentially, again, this will be certified by a path starting
from v on which there is a sequence of nodes v1, v2, . . . with nodes w1, w2, . . . below them
(but not necessarily on the path) such that (1) there is an L-path from v to all wi and (2)
the r-values of the wi tend to c. The paths from vi to wi will be paths in the witness family.
The existence of such witness families will be verifiable by tree register automata (without
suprema constraints).

A complication arises from using arbitrary regular languages. Suppose that B = (Q, δ, s, F )
is a deterministic finite state automaton for L. If a path from v to vi brings B from its initial
state to state q, then the path from vi to wi has to be labeled by a word in the language
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Figure 4. Construction of tapes along an input word. The automaton has 4 states
and is deterministic. The dots are pairs consisting of a position in the word and a
state of the automaton. The arrows denote the transitions of the automaton along
the input letters. The colors correspond to the tapes. Every color occurs exactly once
at each position, and when following an edge, the color can either remain unchanged
or decrease.

L(Bq) of Bq
df
= (Q, δ, q, F ) to ensure that the path from v to wi is in L. Furthermore, the

extrema of all nodes v along a path π have to be witnessed as, intuitively, the automaton B
is “started” at each node v ∈ π.

As in the previous section, our goal is to state properties of a partition P of a pre-run of
our TRASI A and a labeling λ : P → R± that guarantee the existence of a run of A on the
same input tree (i.e., a pre-run that is consistent with respect to the suprema). For the case
where all associated languages may be arbitrary regular languages, the labeling is slightly
more involved and depends on the associated languages.

For ensuring witnesses for a register r with associated language L for all nodes, we
consider trees that encode all runs of an automaton for L along paths of an input tree.
Formally, let B = (Q, δ, s, F ) be a deterministic finite state automaton and < an arbitrary
order on Q. Let |Q| = m; the elements of {1, . . . ,m} will be called tapes. The run tree t̂
of a tree t, defined below, associates to each tape and node v a state in Q. The idea is
that tapes encode runs of B along the path. However, whenever two tapes i < j enter the
same state, only the smaller tape i continues this run; the other tape starts a new run from
an “unused” state. See Fig. 4 for the construction of the run tree in the case when t is a
word. This construction originates from [Boj09, Section 2], where it is applied to words. The
construction for trees is performed analogously, by carrying out the same construction on
each branch.

Formally the run tree t̂ of B for a tree t associates a tuple q̄ ∈ Qm to each node v of t as
follows. In such a tuple q̄, no two coordinates carry the same state; in particular all states
from Q appear in each such tuple. The root is annotated by (q1, . . . , qm) with qi < qi+1. If
a node is labeled by σ ∈ Σ and annotated by q̄ = (q1, . . . , qm) ∈ Qm then its children are
annotated by the permutation p̄ = (p1, . . . , pm) obtained according to the above intuition as
follows. Let p̄′ = (p′1, . . . , p

′
m) be such that p′i = δ(qi, σ). Then p̄ is constructed from p̄′ by

only keeping the smallest copies of identical states and replacing the other copies by states
not used in p̄′ in increasing order. Formally the components of p̄ are defined inductively for
i = 1, . . . ,m:

• if p′i is not equal to p1, . . . , pi−1 then pi
df
= p′i,

• else pi is defined to be the smallest state not occuring in p̄′ and p1, . . . , pi−1.
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The run tree of a register r is the run tree of a deterministic finite state automaton for
the language associated with r.

We now state properties of a partition P of a pre-run of our TRASI A and a labeling
λ : P → R± that guarantee the existence of a run on the same input tree.

Intuitively, a regular labeling λ : P → R± ensures that all “parallel” runs of an automaton
for a language associated to some register are witnessed periodically. Formally, let

K±
df
= {(r+, i), (r−, i) | r ∈ R, i ∈ {1, . . . ,m}}

and fix an arbitrary total order on K±.
A labeling λ : P → R± is regular if it is obtained from a cyclic labeling κ : P → K± as

follows. Consider a path π with κ(π) = (r+, i) and smallest node v. Suppose that the run
tree of r annotates v with (q1, . . . , qm), then λ(π) is t+ where t is the register with associated
language L(Bqi). Analogously for κ(π) = (r−, i). Intuitively, the path π is a witness for all
ancestors of v for which the automaton for the language associated with r reaches state qi at
node v.

Henceforth (in this section), when considering a partition P of a partial run ρ, we assume
that each path in P is labeled according to the (unique) regular labeling with labels from R±.

We now define when a partition P is a regular certificate. The partition P is a regular
certificate if each witness path π satisfies the following gap condition:

the gap of π does not contain any value c ∈ D such that c = s(v) or c = s(↑v)
for some s ∈ R, where v denotes the starting node of π.

As previously, we prove the following three properties of regular certificates:
(1) every run has a regular certificate,
(2) if some accepting pre-run of A has a regular certificate then A has some accepting run,
(3) a tree register automaton can verify if a given pre-run has a regular certificate.
These properties together easily yield Theorem 4.1. Their proofs are adaptions of the proofs
Lemmata 4.2, 4.3 and 4.4 from the previous section. For the sake of completeness, we repeat
the essential proof steps.

Lemma 4.5. Every run of A has a regular certificate.

Proof. Fix a run ρ. We construct the family P in stages. Initially, P is empty, and each
stage proceeds as follows. Pick a minimal node v such that v /∈

⋃
P . If the node v is the root

then let k ∈ K± be the smallest label in K±. Otherwise, the parent of v already belongs to
some path π ∈ P which has an assigned label k′, and let k ∈ K± be the successor of k′ in
cyclic order, according to the fixed order on K±. Assume k = (r+, i) for some r ∈ R. The
case when k = (r−, i) is treated symmetrically. Suppose that the run tree of r annotates
v with (q1, . . . , qm), then l is the label t+ where t is the register with associated language
L(Bqi). Pick any descendant w of v such that the interval with endpoint t(w) (inclusively)
and rsup(v) (exclusively) does not contain any value c ∈ D such that c = s(v) or c = s(↑v)
for some s ∈ R. Add the path joining v with w to the family P and associate the label l
with it. Proceed to the next stage.

By construction, in the limit we obtain a regular certificate.

Lemma 4.6. For every (locally consistent, regular extrema-consistent) pre-run ρ which has
a regular certificate there is a run ρ′ whose states agree with the states of ρ.
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Proof. To prove the lemma, fix a pre-run ρ and some regular certificate P. A run ρ′ which
has the same states as ρ is constructed exactly as in the proof of Lemma 4.3.

The difference with the proof of Lemma 4.3 is in showing that ρ′ is a run, i.e., that for
every node v and register r with associated language L,

rsup(v) = sup{r(v′) | v′ is an L-descendant of v} (4.5)

rinf(v) = inf{r(v′) | v′ is an L-descendant of v}. (4.6)

We prove (4.5) while (4.6) is proved analogously. The inequality ≥ in (4.5) follows from the
fact that ρ′ is extrema-consistent.

Denote by ϑ(v, v′) the word between the nodes v and v′. Recall that A is language-closed
and therefore for every register r with associated language L there is a register ϑr with
associated language ϑ−1L, for all ϑ ∈ Σ∗.

Towards proving ≤, pick an inclusion-maximal branch π starting at v, such that rsup(v) =
ϑ(v, v′)rsup(v′) for all v′ ∈ π. If the branch π is finite then rsup(v) = ϑ(v, w)r(w) where w is
the largest node in π (wrt. the ancestor order) and σrsup(↙w), σrsup(↘w) are both smaller
than r(w) and σ is the label of w. By regular extrema-consistency of ρ′ it follows that the
right-hand side in (4.5) is equal to ϑ(v, w)r(w), which proves (4.5) as ϑ(v, w)rsup(v) = r(w).

Suppose now that π is infinite. To prove (4.5), it suffices to exhibit a sequence w1, w2, . . .
of descendants of v such that

rsup(v) = lim
n→+∞

r(wn). (4.7)

Construct sup-witness paths π0, π1, . . . starting at nodes v = u0, u1, . . . associated to
registers ϑ(v, ui)r, as follows. Assuming we have constructed π0, π1, . . . , πn−1, the path πn is
any sup-witness path associated to ϑ(v, un)r such that its starting node un is in π, is larger
than un−1, and does not belong to π0 ∪ . . . ∪ πn−1. It is easy to see that such a node un
exists, by the fact that P is a partition into finite paths, and the fact that their labeling is
regular.

Then the nodes v = u0, u1, . . . all lie on the path π. In particular, rsup(v) = ϑ(v, un)rsup(un)
and un has depth at least n, for all n. Fix n and let wn be the largest node in πn wrt. the
ancestor order. By the second item in the definition of the bijection f obtained when defining
the pre-run ρun , the following holds for that pre-run:

|ϑ(v, wn)r(wn)− rsup(v)| = |ϑ(v, wn)r(wn)− rsup(un)| < 1

n
. (4.8)

We observe that the same inequality holds for the limit pre-run ρ′. This follows from the
first item in the definition of the bijection f obtained when defining the pre-runs ρw for all
w which are descendants of un.

Since the inequality (4.8) holds for the pre-run ρ′ and for all n, this proves (4.7),
yielding (4.5). Hence ρ′ is a run.

Lemma 4.7. There is a register automaton B which accepts a pre-run ρ of A if and only if
it has a regular certificate.

Proof sketch. The automaton B guesses a certificate for ρ, as follows. A partition P of all
vertices into connected sets can be represented as the set X = {minP | P ∈ P} of least
elements of the sets in P . Then P is a partition into finite paths if and only if every branch
contains infinitely many elements of X and every node has at least one child in X.

The automaton B guesses the partition P, represented by the set X as described
above, and verifies that it is a partition into finite paths. Additionally, each node is
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nondeterministically labeled by a label from K± and from R± and the automaton verifies
that nodes in the same part of P have equal labels, and that this yields a regular labeling of
P by simulating the finite state automata for the languageas associated to registers.

As previously, the properties (1)-(3) listed above and which have now been proved, yield
a reduction from the emptiness problem for TRASI to the emptiness problem for tree register
automata. It remains to show that the latter problem is decidable.

4.3. Emptiness for Tree Register Automata is Decidable. The last step in the proof
of Theorem 4.1 is an emptiness test for tree register automata. The proof is along the same
lines as the proof for register automata on finite words. The result is folklore, but we provide
the proof for the sake of completeness.

Lemma 4.8. Emptiness of tree register automata is decidable.

We will show that one can effectively construct, from each tree register automaton A,
a parity tree automaton A′ such that A is non-empty if and only if A′ is non-empty. One
obvious problem is that A is over an infinite alphabet, while A′ needs to work over a finite
alphabet. This problem can be tackled by a standard technique: the automaton A′ abstracts
the alphabet and the data values of an input tree for A into types that capture the essential
information.

For preciseness, let A be a tree register automaton with input alphabet Σ and input
registers I. As we are interested in emptiness, we may assume that I contains all registers
of A. Then each node of an input tree t for A is labelled by an element from Σ×DI .

Consider a node v of t with child nodes ↙v and ↘v. Then the type tp(v) of v is the set
of all satisfied propositional formulas with variables of the form σ,↙σ, and ↘σ, for all σ ∈ Σ
as well as s < t where s, t ∈ {r,↙r,↘r | r ∈ I}. Here satisfaction is defined as before. The
set of possible types is finite and henceforth denoted ΣTypes.

The input tree t can be converted into a type tree tp(t) over ΣTypes as follows. The tree
tp(t) has the same set of nodes as t and each node v is labelled by tp(v).

Lemma 4.9. One can construct a parity tree automaton A′ over ΣTypes such that for any
tree t over Σ×DI ,

A accepts t if and only if A′ accepts tp(t).

Proof. This follows from the fact that whether A accepts t depends only on the formulas
satisfied by each triple of neighbouring nodes.

Lemma 4.10. One can construct a parity automaton B′ over ΣTypes such that for every
tree t′ over ΣTypes:

B′ accepts t′ if and only if t′ = tp(t) for some tree t over Σ×DI .

Proof sketch. The automaton B′ only checks for consistency of neighbouring labels in t′.
Before explaining why this suffices, we define this notion more precisely.

We say that a triple of labels τ,↙τ,↘τ ∈ ΣTypes is consistent if there exists a finite
binary tree t over Σ×DI such that in tp(t) the root and its two sons have labels τ,↙τ,↘τ ,
respectively. The tree t is called a witness for τ,↙τ , and ↘τ .

Note that it suffices to consider witnesses which are binary trees of height 2. Therefore,
testing whether a triple of labels τ,↙τ,↘τ is consistent amounts to testing satisfiability of
a formula over constantly many variables Σ×DI . It boils down to testing if propositional
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variables that encode inequalities of register values are consistent. For example, if τ states
that two registers of the right child compare in a certain way, say ↘s < ↘t for two registers
s and t, then ↘τ must agree with that, i.e. it must state that s < t. This discussion implies
that set of consistent triples is computable. Obviously, it is also finite, since ΣTypes is finite.

The automaton B′ checks that for every node v with children ↙v and ↘v, the triple of
labels of these nodes is consistent.

Clearly, if t′ = tp(t) for some tree t over Σ×DI , then t′ is accepted by B′. It therefore
remains to show that if a tree t′ is accepted by B′, then there exists a tree t over Σ ×DI

such that t = tp(t′). We construct the tree t in a top-down fashion, defining the labels of
the nodes of t by induction on their height. In each step, we use the values provided by
the witnesses, and deform them using density of D so that they fit well into the values of t
constructed so far.

Proof of Lemma 4.8. From the above two lemmas it follows that A is non-empty if and only
if there is a tree t′ over ΣTypes which is accepted both by A′ and B′. Indeed, if t′ is accepted
by A′ and B′, then there is a tree t over Σ ×DI with t = tp(t′) by Lemma 4.10 which is
accepted by A due to Lemma 4.9. The other direction is immediate.

Since parity automata are closed under intersection, there is a parity tree automaton C′
which accepts a tree t′ if and only if it is accepted both by A′ and by B′. Therefore, deciding
emptiness of A is equivalent to deciding emptiness of C′.

5. Satisfiability of Two-Variable Logic with two Orders

In this section we prove Theorem 1.2, that is present a decision procedure for two variable
logic over countable structures that include one tree order <1, one linear order <2, and access
to binary atoms definable in MSO over <1. Our decision procedure uses the emptiness test
for tree register automata with suprema and infima constraints developed in the preceding
section.

The two-variable fragment of first-order logic (short: FO2) restricts first-order logic to
the use of only two variables, which can be reused arbitrarily in a formula. The two-variable
fragment of existential second-order logic (short: ESO2) consists of all formulas of the form
∃R1 . . . ∃Rkϕ where R1, . . . , Rk are relation variables and ϕ is a FO2-formula. Since each
FO2-atom can contain at most two variables we assume, from now on and without loss of
generality, that all relation symbols are of arity at most two; see [GKV97, page 5] for a
justification. Restricting the set quantifiers of ESO2 to be unary yields the fragment EMSO2.

Our interest is in the satisfiability problems for ESO2 and EMSO2 with two orders <1

and <2. It is easy to see that two-variable logics cannot express that a binary relation
is transitive and in particular that it is an order. Therefore we study two-variable logics,
where certain relation symbols are supposed to be interpreted only by order relations. More
formally, for a class K of structures over some fixed signature ∆, we write ESO2(K) if we
are only interested in evaluating formulas in ESO2 with structures from K. An ESO2(K)
formula is satisfiable if it has a model A ∈ K, and we say that such a formula is K-satisfiable.
Two ESO2(K) formulas are equivalent, if they are satisfied by the same structures from K.

By ESO2(<1, <2) and EMSO2(<1, <2) we denote that ∆ = {<1, <2} where <1 and
<2 are interpreted as orders. Often we will be interested in orders of a certain shape only,
which we will then state explicitly. For instance, when saying “ESO2(<1, <2) for a tree
order <1 and a linear order <2”, we mean ESO2 formulas with two distinguished binary
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relation symbols <1 and <2 which are always interpreted by a tree order and a linear order.
For simplicity, we assume that domains always have size at least two and we often identify
relation symbols with their respective interpretations.

Let EMSO2(MSO(<1), <2) denote the set of EMSO2(<1, <2) formulas that can use
binary atoms definable in MSO(<1) in addition to atoms from {<1, <2}. Below, we consider
the problem of deciding whether a given formula of this logic is satisfied in some countable
structure equipped with a tree order <1 and linear order <2. The following is a restatement
of Theorem 1.2, and is the main result of the paper.

Theorem 5.1. For the logic EMSO2(MSO(<1), <2), where <1 is a tree order and <2 is a
linear order, the countable satisfiability problem is decidable.

The theorem implies a decision procedure for general satisfiability (i.e., not necessarily
restricted to countable domains) for the logic EMSO2(FO(<1), <2), i.e., for the logic where
the additional atoms are restricted to be definable in FO. This follows from the observation
that (general) satisfiability of a formula ∃Z̄ϕ, where ϕ is first-order, is equivalent to (general)
satisfiability of ϕ (as a formula over extended signature {<1, <2, Z̄}); and the downward
Löwenheim-Skolem theorem for first-order logic.

Corollary 5.2. Satisfiability of EMSO2(FO(<1), <2) for a tree order <1 and a linear order
<2 is decidable.

Furthermore, the theorem implies decision procedures for EMSO2 with MSO-definable
and FO-definable classes of orders <1. We give two example corollaries.

Corollary 5.3. Satisfiability of EMSO2(<1, <2) is decidable when <2 is a linear order and
<1 is (i) a linear order, or (ii) the usual linear order on the naturals, or (iii) the usual linear
order on the integers.

Proof. For a tree order <1 one can axiomatize in FO that it is a linear order. Applying
Corollary 5.2 yields statement (i). The usual order on the naturals and integers can be
axiomatised in MSO, and thus statements (ii) and (iii) follow from Theorem 5.1.

Using techniques developed by Pratt-Hartmann in [Pra18] for partial orders (see Sec-
tion 5.2), one can reduce satisfiability of ESO2(<1, <2) to satisfiability of EMSO2(<1, <2)
when <1 and <2 are linear orders. Combining this reduction with Corollary 5.3 yields the
following result.

Theorem 5.4. Satisfiability of ESO2(<1, <2) for linear orders <1 and <2 is decidable.

The proof of Theorem 5.1 is provided in Section 5.1. The proof of Theorem 5.4 is
presented in Section 5.2.

5.1. Decision Procedure for a Tree Order and a Linear Order. The main ingredient
for the proof of Theorem 5.1 is a similar decidability result, for the the special case when <1

is restricted to be the ancestor order of the complete binary tree (see Section 5.1.1). We then
prove that every countable tree order can be interpreted in the ancestor order of the complete
binary tree in Section 5.1.2. Combining the two yields Theorem 5.1 (see Section 5.1.3).
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5.1.1. Countable satisfiability for EMSO2(MSO(<1), <2) in the Full Binary Tree. In this
section the focus is on deciding EMSO2(MSO(<1), <2) in the full binary tree.

Proposition 5.5. For the logic EMSO2(MSO(<1), <2), where <1 is the ancestor order of
the full binary tree and <2 is a linear order, the countable satisfiability problem is decidable.

The high level idea for testing countable satisfiability of an EMSO2(MSO(<1), <2)
sentence ϕ is to construct, from ϕ, a TRASI A such that ϕ has a model if and only if A
accepts some input tree. Then Proposition 5.5 follows immediately as emptiness for TRASIs
is decidable.

Instead of constructing A from a general EMSO2(MSO(<1), <2) sentence ϕ, it will be
convenient to start from a normal form for such formulas. Say that an EMSO2(MSO(<1), <2)-
formula is in Scott normal form, if it adheres to the form

∃Z̄
(
∀x∀yψ(x, y) ∧

∧
i

∀x∃yψi(x, y)
)

where ψ and all ψi are quantifier-free formulas whose atoms are MSO(<1)-formulas and
relation symbols from Z̄ ∪ {<2}. It is well known that an EMSO2(MSO(<1), <2)-formula
can be effectively transformed into an equisatisfiable EMSO2(MSO(<1), <2)-formula in Scott
normal form (see, e.g., [Sco62] and [GO99, page 17]).

Under the assumption that <2 is a linear order, formulas in Scott normal form can be
further simplified. An EMSO2(MSO(<1), <2)-formula is in constraint normal form if it is of
the form ∃Z̄ψ where ψ is a conjunction of existential constraints of the form

∀x∃y
(∨

i

(
x <2 y ∧ ηi(x, y)

)
∨
∨
i

(
x >2 y ∧ ϑi(x, y)

))
and of universal constraints of the form

∀x∀y
(
x <2 y → η(x, y)

)
or ∀x∀y

(
x = y → ζ(x)

)
where ηi, ϑi, and η are arbitrary, quantifier-free MSO(<1) formulas with free variables x
and y which may use relation symbols from Z̄, and ζ is a quantifier-free MSO formula with
free variable x over Z̄.

Formulas in Scott normal form can be easily converted into equisatisfiable formulas in
constraint normal form by using that <2 is a linear order (this leads to the restricted use of
<2-atoms in the constraints).

Lemma 5.6. Every EMSO2(MSO(<1), <2)-formula can be effectively transformed into an
equisatisfiable formula in constraint normal form.

The proof is standard (see, e.g., [ZH16, Lemma 2.2]) and therefore omitted here.
For the construction of A we will henceforth assume that an EMSO2(MSO(<1), <2)-

formula in constraint normal form is given. Let Θ be the signature of ϕ and Σ the set of
unary, quantifier-free types over Θ.

The automaton A works on input trees over Σ with a single data value per node.
Intuitively the tree order of such an input tree will encode the order <1 in ϕ and the order on
data values will encode the order <2. In this intuition we assume that all data values of data
trees are distinct: while the automaton cannot ensure this, we will later see a workaround.
The automaton A will be constructed such that it accepts a data tree over Σ if and only if ϕ
is satisfiable. Even more, there will be a one-to-one correspondence (up to morphisms of
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data values) between data trees t with distinct data values accepted by A and models of ϕ.
We next outline this correspondence and then show how to construct A.

Each structure S over Θ corresponds to a data tree t over Σ with distinct data values as
follows: the nodes of t are the elements of the domain of S labeled by their unary type in S;
the tree order of t is given by <1; and the order of the data values is given by <2, that is,
data values are assigned such that d(u) < d(v) if and only if u <2 v for all nodes u and v.
Here and in the following, d(v) denotes the single data value of a node v. Since <2 is a linear
order, all nodes of t have distinct data values.

On the other hand, a data tree t with distinct data values corresponds to the structure S
whose domain contains all nodes of t; unary relations are chosen according to the Σ-labels
of t; and <1 and <2 are interpreted according to the tree order of t and the order of the
unique data values, respectively.

For a data tree t with distinct data values, we say that t satisfies ϕ if its corresponding
structure S satisfies ϕ.

Lemma 5.7. From an EMSO2(MSO(<1), <2)-formula ϕ in constraint normal form one can
effectively construct a TRASI A such that

(1) for data trees t with distinct values, A accepts t if and only if t satisfies ϕ, and
(2) if A accepts some data tree, then it also accepts one with distinct data values.

Thus the TRASI from the lemma ensures that a data tree is accepted if and only if ϕ
has a model. Combining this lemma with the decision procedure for emptiness of TRASIs
yields Proposition 5.5.

The TRASI we construct for proving Lemma 5.7 has to handle MSO(<1) formulas
occuring in constraints. To do so, it will store type-information of nodes. Recall that a
k-ary MSO-type τ(x1, . . . , xk) of quantifier-rank q is a maximal consistent conjunction of
MSO-formulas of quantifier-rank q and free variables x1, . . . , xk (see [Lib04, Section 7.2] for
background on MSO-types). For a tree t with ancestor order < and an MSO(<)-type τ , we
write (t, u1, . . . , uk) |= τ if the tuple (u1, . . . , uk) of nodes in t is of type τ .

It is folklore that the rank-q MSO-type of a tree can be constructed from the rank-q
MSO-types of its components. This is implicit in Shelah’s Theorem on generalised sums
[She75], see also the exposition from Blumensath et al. [BCL08, Theorem 3.16].

We will use the following two special cases stating how the binary type of two nodes u
and v in a tree t can be inferred from type information of parts of t. The TRASI will store
and verify this additional type information and thereby be able to handle MSO(<1) formulas
occuring in constraints. As the MSO formulas in constraints have at most two free variables,
it suffices to consider unary and binary types only.

The first special case states that the type of two nodes u and v in a tree t can be
determined from the viewpoint of v by decomposing t into the components t \ tv, t↙v, t↘v,
and v, and combining their respective types.

Lemma 5.8. Suppose v is a node of a tree t. If u is a node in t \ tv, then the rank-q
MSO-type of (u, v) can be effectively obtained from the rank-q MSO-types of (1) (↑v, u) in
t \ tv, (2) ↙v in t↙v, (3) ↘v in t↘v, and of (4) v in the single-node tree consisting solely
of v. Similarly if u is a node of t↙v or t↘v, or if u = v.

The second special cases states that one can annotate all nodes of a tree such that this
information allows to determine the type of a node u and its ancestor v solely by looking at
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the annotated path between them. Intuitively, each node is annotated by the information of
how it relates to the rest of the tree MSO-wise.

Lemma 5.9. For every binary MSO(<)-type τ(x, y) with free first-order variables x and y
there is an alphabet Γ and a regular language L over Γ such that for every tree t with ancestor
order < there is a labelling with symbols from Γ which is MSO(<)-definable and such that
for all pairs (u, v) of nodes of t with u < v: (t, u, v) |= τ if and only if the labels on the path
from u to v constitute a string from L.

We are now ready to proceed with the proof of Lemma 5.7.

Proof of Lemma 5.7. The automaton A is the intersection of two automata Aϕ and A6=.
Intuitively, the automaton Aϕ verifies that an input tree satisfies ϕ under the assumption
that all data values are distinct, but with unspecified behaviour for input trees with distinct
nodes with the same data value. The automaton A 6= ensures that if a tree is accepted by Aϕ
(with possibly the same data value on more than one node) then so is a tree with distinct
data values on all nodes. Note that TRASIs can be easily seen to be closed under intersection.
In the following we formalize these intuitions.

We first explain the construction of the automaton Aϕ. This automaton checks whether
an input tree t satisfies each of the existential and universal constraints in ϕ. To this end, it
will (1) guess and verify MSO(<1)-type information for each node (recall that <1 corresponds
to the tree order), in order to handle the MSO(<1)-formulas ηi, ϑi, η, and ζ in the constraints,
and (2) use additional registers for checking the constraints themselves.

The automaton Aϕ guesses and verifies the following type information. Suppose that
q ∈ N is the maximal quantifier-rank of the formulas ηi, ϑi, η, and ζ. For each node v the
automaton guesses the following unary MSO(<1)-types of quantifier-rank q:
• the type ↑δ(v) of ↑v in t \ tv,
• the type ↙δ(v) of ↙v in t↙v, and
• the type ↘δ(v) of ↘v in t↘v.
Those guesses can be verified since tree register automata capture the power of parity
automata, and therefore also the power of MSO.

The automaton Aϕ uses two sets (A) and (B) of additional registers. The idea is that
the registers from (A) will be used to verify that the given data tree satisfies ϕ; and registers
from (B) will be used to verify the content of registers from (A).

The set (A) contains registers rτ,sup and rτ,inf for every binary MSO(<1)-type τ(x, y)
of quantifier-rank at most q. At a node v of an input tree t, these registers are intended to
store the supremum and infimum data value over all nodes u with (t, v, u) |= τ , that is it is
intended that

α(v, rτ,sup) = sup{d(u) | u ∈ t and (t, v, u) |= τ}
α(v, rτ,inf) = inf{d(u) | u ∈ t and (t, v, u) |= τ}

for register assignments α.
Assuming, that the information stored in registers in (A) is correct, the automaton can

locally check that each node satisfies the existential and universal constraints. For instance,
for checking existential constraints, the automaton can guess which of the disjuncts is satisfied
for each node of the input tree. If it guesses that for a node v there is a node u such that
v <2 u ∧ ηi(v, u), then it can verify this guess by checking whether there is a type τ that
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implies ηi and a node u such that d(u) > d(v) and (v, u) |= τ . This can be tested via a
constraint rτ,sup(v) > d(v). The verification of universal constraints is analogous.

The values of the registers in (A) are verified with registers from a set (B) of registers.
The intuition for registers in (B) is as follows. For a node v, the supremum of data values of
nodes u with (t, v, u) |= τ is either achieved in v itself, or by nodes in t \ tv, or in the left
subtree t↙v of v, or in the right subtree t↘v, that is:

α(v, rτ,sup) = max


supu{d(u) | u = v and (t, v, u) |= τ},
supu{d(u) | u ∈ t \ tv and (t, v, u) |= τ},
supu{d(u) | u ∈ t↙v and (t, v, u) |= τ},
supu{d(u) | u ∈ t↘v and (t, v, u) |= τ}


The registers in (B) will allow the automaton to deduce the components of the maximum

on the right-hand side.
The set (B) contains the following registers for each binary type γ(x, y) of quantifier-

rank q:
(i) a register rγ,sup,↑ intended to store, for a node v, the supremum of all nodes u in t \ tv

with (t \ tv, ↑v, u) |= γ,
(ii) a register rγ,sup,↙ intended to store, for a node v, the supremum of all nodes u in t↙v

with (t↙v,↙v, u) |= γ,
(iii) a register rγ,sup,↘ intended to store, for a node v, the supremum of all nodes u in t↘v

with (t↘v,↘v, u) |= γ,
Analogously it contains further registers rγ,inf,↑, rγ,inf,↙, and rγ,inf,↘.

Assuming that the information stored in the register from (B) is correct, the automaton
can verify the values of registers in (A) using the intuition stated above, i.e., that, for a
node v, the supremum of data values of nodes u with (t, v, u) |= τ is either achieved in v
itself, or by nodes in t \ tv, or in the left subtree t↙v of v, or in the right subtree t↘v. Thus
the values of registers in (A) can be checked as follows:

α(v, rτ,sup) = max


{d(v) | composing ↑δ(v), ↙δ(v), ↘δ(v), and the type of (v, v) yields τ}

∪ {α(v, rγ,sup,↑) | composing γ, ↙δ(v), ↘δ(v), and the type of v yields τ}
∪ {α(v, rγ,sup,↙) | composing ↑δ(v), γ, ↘δ(v), and the type of v yields τ}
∪ {α(v, rγ,sup,↘) | composing ↑δ(v), ↙δ(v), γ, and the type of v yields τ}


The second line, for instance, takes care of the case when the supremum is achieved

in t \ tv. It collects, for each γ, the suprema values α(v, rγ,sup,↑) achieved by nodes u above
v with (t \ tv, ↑v, u) |= γ, but only if composing γ with the type of the rest of the tree yields
the type τ . That is, if the types (1) γ of (↑v, u) in t \ tv, (2) ↙δ(v) of ↙v in t↙v, (3) ↘δ(v)
of ↘v in t↘v, (4) v in the single-node tree consisting solely of v, compose to τ . Here, the
composition of types is according to Lemma 5.8. The equation can be easily implemented by
a TRASI.

We sketch how the automaton can verify the content of the registers in (B).
For verifying the values of rτ,sup,↙ and rτ,sup,↘ in a register assignment α, we use

additional registers rτ,sup,↓ with an associated language L, such that the supremum of these
registers with respect to L-descendants is the supremum over all nodes u with (tv, v, u) |= τ .
Thus the values of rτ,sup,↙ and rτ,sup,↘ can be verified by comparing them to these suprema.
The register rτ,sup,↓ stores the input data value of a node v. Its associated language L is the
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language over alphabet Γ for τ according to Lemma 5.9. As TRASI capture the power of
MSO, the automaton can guess and verify the Γ-labeling.

The value of rτ,sup,↑ on a node v can be verified as follows. Suppose that v is the left
child of its parent w (the cases when v is a right child or the root are very similar). Similarly
to the reasoning above, the value of rτ,sup,↑ is either achieved in w, or in t \ tw, or in t↘w.
Thus it can be computed using the following equation:

α(v, rγ,sup,↑) = max

 {d(w) | composing ↑δ(w), ↘δ(w), and the type of w yields γ}
∪ {α(w, rγ′,sup,↑) | composing γ′, ↘δ(w), and the type of w yields γ}
∪ {α(w, rγ′,sup,↘) | composing ↑δ(w), γ′, and the type of w yields γ}


This equation can be implemented easily by a tree register automaton with additional

auxiliary registers. This concludes the construction of Aϕ.
A tree register automaton with extrema constraints cannot verify that all data values of

a tree are distinct. Therefore the automaton A6= checks a weaker condition for a register
assignment of Aϕ, namely, that if the input value of two nodes v and v′ is d then there is a
node u on the shortest path from v to v′ (which may use tree edges in either direction) such
that no register (of Aϕ) in u has value d. We call an assignment with this property weakly
diverse. A careful analysis of the proof of decidability of the emptiness problem for tree
register automata with extrema constraints shows that if there is an accepting run which
is weakly diverse, then there is also a run with distinct data values. Basically, because the
values in a subtree tv can be shifted by π in such a way that fresh data values in registers at
node v are distinct from all data values in t \ tv.

We show how a TRASI A6= can check that the data values of an input data tree for Aϕ
are weakly diverse. For this it has to be verified that no two nodes v and v′ with the same
data value d are connected by a path on which each node has a register with value d. In other
words, no value d of a register may originate from the input register, hereafter denoted s, of
two different nodes v and v′.

Towards checking this condition, A6= guesses a source (v, r) for each data value d, where
v is a node and r is a register. It first ensures that on all nodes the input register is a source.
Now, verifying that no data value has two sources ensures that the assignment is weakly
diverse. For this verification, sources are annotated by labels from {Sr | r is a register} with
the intention that a node u is labelled by Sr if (u, r) is a source. For tracing values to their
source, each node is annotated by labels from {S↑r, S↙r , S↘r | r is a register} with the intention
that, e.g., if a node u is labelled by S↙r then the value of register r at node u originates
somewhere in the left subtree of u.

The automaton then checks the following for each node u:

(1) The node u is labelled by exactly one of the labels Sr, S
↑
r, S
↙
r , or S↘r , for each regis-

ter r. Furthermore the labels are consistent for registers with the same value, i.e. if
α(u, r) = α(u, r′) then u is labelled by Sr if and only if it is labeled by Sr′ , and similarly
for S↑r, S↙r , and S↘r .

(2) The labels Sr, S
↑
r, S
↙
r , or S↘r indicate the direction of the source of the data value of

register r at node u:
(a) If u is the left child of its parent v and α(u, r) = α(v, r′), then
• If u is labelled by Sr, S

↘
r or S↙r then v is labelled by S↙r′.

• If u is labelled by S↑r then v is labelled by Sr′ , S
↘
r′ , or S

↑
r′.
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(b) Similarly if u is the right child of v, and if u is the parent of v.
(3) The register s of node u is a source, i.e. each node u is labelled by Ss. (Recall that s is

the distinguished input register.)
The first condition ensures that no data value originates from register s of two different
nodes. The automaton A 6= now guesses and verifies the described annotation witnessing
weak diversity for the input register s with respect to the registers of Aϕ. This proves
Lemma 5.7.

Lemma 5.7 together with Theorem 4.1 yield Proposition 5.5.

5.1.2. All Tree Orders Interpret in the Complete Binary Tree. In this section we prove that
every countable tree can be encoded in the full binary tree using formulas. This will allow us
to derive Theorem 5.1 from Proposition 5.5 in Section 5.1.3.

A tree order is universal if it contains every countable tree order as a substructure.
Denote by T the complete binary tree encoded as a structure with domain V = {0, 1}∗ over
the signature {L,R,<} which interprets L and R as the left and right child relations, and <
as the ancestor order of the complete binary tree.

We strongly suspect that the following result is known; for lack of reference we provide a
proof sketch.

Lemma 5.10. There are first-order formulas δU (x) and δ≺(x, y) over signature {L,R,<}
such that the structure (U,≺) with

U
df
= {a ∈ V | T |= δU (a)}

≺ df
= {(a, b) ∈ U × U | T |= δ≺(a, b)}

is a universal tree order.

We proceed with the proof of Lemma 5.10. The following notation and facts will be used
in the proof. For a tree order ≺, we say that x is an ancestor of y, or that y is a descendant
of x, if x ≺ y or x = y, written x 4 y. The meet x∧ y of x and y is the greatest lower bound
of x and y, with respect to 4. Observe that if x, y1, . . . , ym are elements of the tree order,
then x ∧ y1, . . . , x ∧ ym are ancestors of x (if they exist). In particular, due to the definition
of tree orders, the tree order ≺ is total on x ∧ y1, . . . , x ∧ ym.

Proof of Lemma 5.10. Instead of working with universality directly, we use the following
stronger condition. A nonempty tree order ≺ satisfies the extension axioms if:
(1) for any node x and nodes y1, . . . , yn which are mutually incomparable descendants of x,

there exists yet another incomparable descendant y,
(2) for every node x there is some y such that y ≺ x, and
(3) for any two nodes x and y such that x ≺ y, there is a node z such that x ≺ z ≺ y.

Let us first show that every tree order ≺ on a set of nodes V satisfying the extension
axioms is universal. Let ≺′ be another tree order with countable domain V ′. Extending this
tree order by countably many points if necessary, we may assume that ≺′ is closed under
meets, i.e., the meet of any two elements of V ′ is in V ′. Fix an enumeration of the elements
of the domain V ′.

We inductively construct an embedding f : V ′ → V by defining f for larger and larger
finite meet-closed subsets X of V ′. For the induction basis, the first element of V ′ with
respect to the chosen enumeration is mapped to an arbitrary element of V . Now suppose
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x1 ∧ x2 ∧ x3

m

y x1 ∧ x2

x1 x2

x3

Figure 5. Illustration of the construction of the mapping from V ′ to V in the proof
of Lemma 5.10. Suppose the elements x1, x2, x3 are already in X. Due to the closure
under meets, also x1 ∧ x2 and x1 ∧ x2 ∧ x3 are in X. The set M contains the nodes
m = y ∧ x2 and nodes y ∧ x3.

that we have already embedded a finite subset X of V ′ into V . In the inductive step we
extend the embedding by considering the first node y of V ′ −X with respect to the chosen
enumeration. Consider the set

M
df
= {y ∧ x | x ∈ X} ⊆ V ′

of meets of y with the previously inserted nodes (see Figure 5). This set is a finite set of
ancestors of y, hence it has a largest element m with respect to ≺′. We observe that the set
M \ {m} is contained in X due to the meet closure of X.

If the element m does not already belong to X then we first extend f to X ∪ {m}. To
this end let b be the image under f of the ≺′-smallest element of the set {x ∈ X | x �′ m},
which exists since X is meet-closed.

If |M | = 1, apply the second extension axiom to b in order to obtain an element a ∈ V
with a ≺ b, and define f(m)

df
= a.

If |M | > 1 then let b′ be the image under f of the second-largest element of M (the
second largest element must be in X, due to meet-closure). Apply the third extension axiom
to b′ and b in order to obtain an element c of V ′ with b′ ≺ c ≺ b to which m will now be
mapped.

Once f is defined on X ∪ {m}, use the first extension axiom to extend the embedding to
y. Finally, replace X by X ∪ {m, y} and proceed to the next element of V ′ −X. Note that
the set X ∪ {m, y} is closed under meet.

This concludes the proof that ≺ is universal.

We will now show that a tree order satisfying the extension axioms can be first-order
interpreted in the complete binary tree T .

Step 1. The complete ranked ternary tree (each node has exactly one “left child”, one “right
child” and one “middle child”) T ′ and its tree order can be first-order interpreted into the
complete binary tree. This can be done by using the unary predicate V ′ ⊆ V = {0, 1}∗ defined
by the regular expression (0100 + 0110 + 0111)∗. The regular word language V ′ ⊆ {0, 1}∗
can be defined by a first-order sentence ϕ in the signature of words, that is {0, 1, <}, where
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< is the usual order on the positions of a word (equivalently, by a star-free expression, by
the McNaughton-Papert theorem). The sentence ϕ expresses the following:

• the word starts with 01,
• every occurrence of 01 is immediately followed either by 0001, or by 1001, or by 1101, or
occurs at the end of the word.

The sentence ϕ translates into a first-order formula δ′(x) that holds at a node v ∈ V of T if
and only of v ∈ V ′.

Thus, the set of nodes of the ternary tree T ′ is defined as the set V ′ of those nodes of T
that satisfy δ′(x). The ancestor relation of the ternary tree T ′ is then the restriction of the
ancestor relation of T to V ′.

Step 2. The Q-tree is the rooted tree T ′′ where each non-root node has a parent, and the
children of each node are ordered “from left to right” forming a dense order without endpoints.
The Q-tree, its tree order, and the order on siblings interpret in the complete ranked ternary
tree T ′.

As a warm-up we observe that the structure (Q,≤) interprets in the complete ranked
ternary tree T ′. The elements of (Q,≤) correspond to the nodes of T ′ which are middle
children, and which have no ancestor which is a middle child. The order ≤ is given by v ≤ w
if and only if v is the left descendant of the meet of v and w.

For interpreting the Q-tree T ′′ in the complete ranked ternary tree T ′, the construction
for (Q,≤) is nested. More explicitly, the nodes of the Q-tree T ′′ are the nodes of T ′ which
are middle children (corresponding to the nodes (0100 + 0110 + 0111)∗0110 ⊆ V of T ), and
the ancestor relation is the ancestor relation of T ′ restricted to those nodes. The left-to-right
order on the children v, w (in the Q-tree) of a given node is such that v is to the left of w if
and only if v is the left descendant of the meet of v and w in T ′. Note that the nodes of T ′′
are again definable by a first-order formula δ′′(x) in T , and so is the ancestor relation of T ′′.

Step 3. Consider the interpretation of a tree order ≺ in the Q-tree T ′′, in which v ≺ w if
and only if v is a left sibling of an ancestor of w in the Q-tree. It is easy to see that ≺ is
indeed a tree order. Also all meets exist in ≺, since, for all elements x and y, there is a
meet z of x and y in the Q-tree with children x′ and y′ which are ancestors of x and y. The
smaller of the two nodes x′ and y′ with respect to the children order of the Q-tree is the
meet of x and y.

We further claim that ≺ satisfies the extension axioms, apart from the second one.
To show the first extension axiom, suppose that y1, . . . , yn are pairwise incomparable with
respect to ≺ and such that x ≺ yi for all i. Since x ≺ yi for all i there must be a node with
children x1, . . . , xn such that each xi is an ancestor of yi in the Q-tree T ′′, and without loss
of generality the xi appear in the order x1, . . . , xn. Since siblings in the Q-tree are dense,
there is a sibling x′ to the left of x1 such that x ≺ x′. Every child y of x in the Q-tree is
incomparable to y1, . . . , yn with respect to ≺.

Towards showing that ≺ satisfies the third extension axiom, suppose that x ≺ y. If x is
not a left sibling of y then choose some left sibling z of y, otherwise choose an arbitrary z
in-between x and y in the Q-tree (such a z exists as siblings in the Q-tree are dense). In
both cases x ≺ z ≺ y.

The order ≺ does not satisfy the second extension axiom, as it contains a smallest
element, corresponding to the root of the Q-tree. However, it follows from the third extension
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axiom that after removing the root, the second extension axiom is satisfied. Therefore, ≺
restricted to the set of non-root nodes of the Q-tree is a universal tree order.

It is not hard to verify that all steps are indeed definable in first-order logic, yielding
the required first-order formulas δU (x) and δ≺(x, y). More explicitly, δU (x) is the first-
order formula that checks membership of x ∈ {0, 1}∗ in the regular language U := (0100 +
0110 + 0111)∗0110, while δ≺(x, y) is the first-order formula that holds of u, v ∈ U if u is
lexicographically smaller than v and, writing u as u = u1 · u2 · 0110, where u1 is the longest
common prefix of u and v belonging to (0100+0110+0111)∗, we have that u2 ∈ (0100+0111)∗.
It follows from the reasoning presented above (and can be also verified directly), the relation
defined by δ≺(x, y) on U is a universal tree order. Moreover, both δU (x) and δ≺(x, y) are
first-order definable. This proves Lemma 5.10.

5.1.3. Countable satisfiability for EMSO2(MSO(<1), <2). We can at last prove Theorem 5.1.

Proof of Theorem 5.1. Suppose ϕ is an EMSO2(MSO(<1), <2) formula for a tree order <1

and a linear order <2. Then satisfiability of ϕ reduces to the EMSO2(MSO(<′1), <2) formula
ϕ′ = ∃Sψ where <′1 is the ancestor order of the full binary tree and ψ is obtained from ϕ by
(1) relativizing all first-order quantifiers via replacing subformulas ∃xγ(x) and ∀xγ(x) by
∃x(S(x) ∧ δU (x) ∧ γ(x)) and ∀x(S(x) ∧ δU (x)→ γ(x)), respectively, and

(2) replacing all atoms x <1 y by δ≺(x, y).
Here, δU (x) and δ≺(x, y) are the formulas from Lemma 5.10.

Thus, a tree order <1 in a model of ϕ is simulated in models of ϕ′ by guessing a
substructure (of domain S) of the universal tree order defined by δU (x) and δ≺(x, y).

5.2. Satisfiability of ESO2(<1, <2) reduces to EMSO2(<1, <2). In this section we prove
Theorem 5.4.

For many classes K of structures the general satisfiability problem of ESO2(K) can be
reduced to the satisfiability problem of EMSO2(K). Examples are two-variable logic with one
linear order [Ott01] and two-variable logic with one relation to be interpreted by a preorder
[Pra18].

Here we show that the same approach works for ordered structures with two linear orders.
This proves Theorem 5.4.

Proposition 5.11. The satisfiability problem of ESO2(<1, <2) effectively reduces to the
satisfiability problem of EMSO2(<1, <2), for linear orders <1 and <2.

For the proof of this proposition, we rely on a general reduction for a broad range of
classes of structures which is implicit in the procedure used by Pratt-Hartmann in [Pra18].
We make this approach explicit and show that it can also be applied to structures with two
linear orders.

Observe that the satisfiability problems for ESO2(K)- and EMSO2(K)-formulas are
inter-reducible with the satisfiability problems for FO2(K) over arbitrary signatures and,
respectively, signatures restricted to unary relation symbols apart from the signature of K.
For this reason we restrict our attention to two-variable first-order logic in the following. One
might wonder, why not concentrate on FO2 throughout, yet we prefer to state results such
as Proposition 5.11 in terms of ESO2 and EMSO2 instead of FO2 as the abbreviation FO2 is
ambiguously used for two-variable logic over unary and arbitrary signatures in the literature.
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The high level proof idea is as follows. Recall that a FO2-formula can be transformed
in a satisfiability-preserving way into Scott normal form. For structures with at least two
elements, formulas in Scott normal form can be transformed into an equisatisfiable formula
in standard normal form [Pra18], that is, into the form

∀x∀y(x = y ∨ ψ(x, y)) ∧
m∧
h=1

∀x∃y(x 6= y ∧ ψh(x, y))

where both ψ and all ψh are quantifier-free. Thus, a formula in standard normal form
poses some universal as well as some existential constraints on models. Each existential
constraint ∀x∃y(x 6= y ∧ ψh(x, y)) requires that all instantiations a of x are witnessed by
an instantiation b of y such that a and b satisfy ψh. Given a model, a witness function W
assigns a witness b to each ∀x∃y(x 6= y ∧ ψh(x, y)) and each instantiation a of x. We call
such an instantiation b a witness for a and ∀x∃y(x 6= y ∧ ψh(x, y)).

We will show that (1) under certain conditions, the ∀∃-constraints can be required
to spread their witnesses over distinct elements (see Lemma 5.13), and (2) if witnesses
are spread in this way, then binary relation symbols can be removed from formulas in a
satisfiability-preserving way (see Lemma 5.14). Proposition 5.11 will then follow from the
observation that FO2(<1, <2) allows to spread witnesses (see Lemma 5.12).

Let us first formalize what we mean by “spreading”. A witness function W spreads its
witnesses if for all elements a:
(1) The witnesses for a for all existential constraints are distinct elements.
(2) If a has a witness b for some constraints, then all witnesses for b are not the element a.

We start by refining the standard normal form to spread normal form with the intention
that if a formula in spread normal form has a model, then it has a witness function that
spreads its witnesses. Fix a class K of structures over some signature ∆. An FO2(K) formula
over ∆ ]Θ is in spread normal form [Pra18, p. 23] if it conforms to the pattern∧

θ∈Z
∃xθ(x) ∧ ∀x∀y(x = y ∨ ν(x, y))

∧
2∧

k=0

m−1∧
h=0

∀x∃y(λk(x)→ (λbk+1c(y) ∧ µh(y) ∧ θh(x, y)))

where (i) Z is a set of unary pure Boolean formulas; (ii) ν, θ0, . . . , θm−1 are quantifier-
and equality-free formulas; (iii) λ0, λ1, and λ2 are mutually exclusive unary pure Boolean
formulas; and (iv) µ0, . . . , µm−1 are mutually exclusive unary pure Boolean formulas. Here,
a formula is said to be pure Boolean if it is quantifier-free and only uses symbols from Θ. By
bk + 1c we denote k + 1 (mod 3).

It is easy to see that for each model of a formula in spread normal there is a witness
function that spreads its witnesses. The first condition – that witnesses for an element a
for the existential conjuncts are distinct elements – is ensured by the mutually exclusive µh.
The second condition – that if a has a witness b then all witnesses for b are not the element a
– is ensured by the mutually exclusive λk.

Our next goal is to find a general criterion for when FO2(K) formulas can be transformed
into equisatisfiable formulas in spread normal form, for a given class K of structures of
signature ∆. Intuitively, FO2(K) formulas ϕ can be transformed into a equisatisfiable
formula ϕ∗ in spread normal form, if elements can be “cloned” without affecting the truth
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of the formula. Indeed, if elements can be cloned, then disjoint witnesses for existential
constraints can be created on-demand by cloning elements. In a moment, after formalizing
what it means that an element can be cloned, we will see that not all elements can be cloned.
This will lead us to slightly adapt our goal and to rather look for a criterion for when FO2(K)
formulas can be transformed into a disjunction of equisatisfiable formulas in spread normal
form, where each disjunct essentially takes care of one configuration of the non-clonable
elements.

Let us formalize what it means that elements can be cloned. We first fix some notation.
In the following we denote the quantifier-free type of a tuple ā in a structure A by tpA[ā].
We say that a quantifier-free type τ is realized in A, if there is a tuple ā with tpA[ā] = τ . A
structure A over signature ∆ ]Θ is an expansion of a ∆-structure B, if A and B have the
same domain and agree on the interpretations of relation symbols from ∆.

Now, suppose K is a class of structures over ∆, and A is an expansion of a K-structure
with domain A over a signature ∆ ] Θ. Then A allows cloning of a set of elements B, if
there is a structure A′ with domain A′ df= A ∪B′ where B′ = {b′ | b ∈ B} such that

(i) A is a substructure of A′ and all quantifier-free binary types realized in A′ are realized
in A;

(ii) tpA
′
[a, b′] = tpA[a, b] for all a, b ∈ A with a 6= b; and

(iii) tpA
′
[b′1, b

′
2] = tpA[b1, b2] for all b1, b2 ∈ A with b1 6= b2; and

(iv) the ∆-structure obtained from A′ by forgetting the relations in Θ is a K-structure.
It is easy to see that it is not possible to clone elements whose unary quantifier-free

type is unique within a structure: when we clone such an element b, then the binary type
of b and its clone b′ has not been present before, which violates condition (i) from above.
This motivates the following definition. An element a of a structure A is a King, if there
is no other element b in A with the same quantifier-free type, i.e., there is no b 6= a with
tpA[a] = tpA[b].

Now, we say that a class K of structures allows cloning if every expansion of a K-structure
allows cloning of arbitrary sets of non-King elements. The following lemma establishes that
in structures with two linear orders we can clone arbitrary sets of non-King elements. The
same construction can be used for structures with more than two linear orders.

Lemma 5.12. The class of structures with two linear orders allows cloning.

Proof sketch. Consider a structure A with signature {<1, <2} ] Θ and domain A that
interprets <1 and <2 by linear orders. Let B be a set of non-King elements of A. The
structure A′ that clones B in A has domain A′ df= A ∪ {b′ | b ∈ B}. The relations between
elements in A within the structure A′ are inherited from A. The simple idea for new elements
b′ is to insert a copy b′ of b ∈ B immediately before/after b with respect to <1 and <2.
If c ∈ A is a non-king with the same unary type as b (such an element exists since b is a
non-King) and if, for instance, b <1 c and b <2 c then b′ is inserted directly after b in both
orders <1 and <2. The type of (b, b′) is then inherited from (b, c). Furthermore the element
b′ inherits its relation to all other elements from b′. See Figure 6 for an illustration.

More formally, the tuples of A′ have the following types :
(i) tpA

′
[a] = tpA[a] and tpA

′
[a, a′] = tpA[a, a′] for all a, a′ ∈ A;

(ii) tpA
′
[b′] = tpA[b] and tpA

′
[b′, a] = tpA[b, a] for all b ∈ B and a ∈ A;

(iii) tpA
′
[b′1, b

′
2] = tpA

′
[b1, b2] for all b1, b2 ∈ B with b1 6= b2;

(iv) tpA
′
[b, b′] = tpA[b, c] for c ∈ A with tpA(c) = tpA(b).
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(a)

<1

<2

b
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c

Figure 6. (a) A structure with non-King elements b and c with the same unary
type. (b) The structure obtained by cloning the element b once. For clarity only the
binary types between b and its clone b′ with respect to other elements are indicated.

It can be easily verified that A′ satisfies the conditions on cloning.

When a class K allows cloning then witnesses for a formula ϕ ∈ FO2(K) in Scott normal
form can be spread among cloned elements. Unfortunately, Kings need to be dealt with
separately as they cannot be cloned. But, essentially, for each possible “configuration” of
Kings and their witnesses one can find a formula in spread normal form such that their
disjunction is equisatisfiable to ϕ.

Lemma 5.13 (Adaption of Lemma 4.2 in [Pra18]). If a class K of structures allows cloning
then for all ϕ ∈ FO2(K) one can effectively find formulas (ϕC)C∈C , for some finite set C, in
spread normal form such that the following conditions are equivalent:
(1) ϕ is (finitely) satisfiable.
(2)

∨
C∈C ϕC is (finitely) satisfiable.

Proof. This follows immediately from the proof of Lemma 4.2 in [Pra18]. The structures
A1, . . . ,Ai used in that proof can be easily constructed inductively by successively cloning
non-King elements. The rest of the proof is independent of the class K.

For the sake of completeness we provide a proof sketch. Suppose K contains structures
over signature ∆ and ϕ is a FO2(K) formula over signature ∆ ]Θ in standard normal form:

∀x∀y(x = y ∨ ψ(x, y)) ∧
m∧
h=1

∀x∃y(x 6= y ∧ ψh(x, y)

Each of the formulas ϕC in spread normal form that we will construct is responsible for
one configuration of Kings and their witnesses in models of ϕ. More precisely, let ΓK be a
set of unary types over the signature ∆]Θ. A court structure for ΓK and ϕ is a structure C
such that
(1) the types of Kings in C are exactly the types in ΓK ,
(2) C satisfies ∀x∀y(x = y ∨ ψ(x, y)), and
(3) for all Kings a of C and all h ∈ {1, . . . ,m} there is exactly one b 6= a in C such that

C |= ψh(a, b).
Thus, such a court structure represents a set of Kings as well as their witnesses. Denote by
C the set of all court structures for all sets ΓK of unary types.
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For each A with A |= ϕ, the court structure induced by A is the substructure of A
induced by the Kings of A as well as their witnesses.

Our goal is to construct formulas ϕC in spread normal form for each C ∈ C such that
the following conditions are equivalent:
(1) ϕ has a (finite) model with court structure C.
(2) ϕC has a (finite) model.
Then the statement of the proposition follows by observing that ϕ has a (finite) model if and
only if

∨
C∈C ϕC has a (finite) model.

Thus we aim at constructing, for each C ∈ C, a formula ϕC in spread normal form with
the above property. Recall that a formula is in spread normal form, if it is of the form∧

θ∈Z
∃xθ(x) ∧ ∀x∀y(x = y ∨ ν(x, y))

∧
2∧

k=0

n∧
h=1

∀x∃y(λk(x)→ (λbk+1c(y) ∧ µh(y) ∧ θh(x, y)))

where (i) Z is a set of unary pure Boolean formulas; (ii) ν, θ1, . . . , θn are quantifier- and
equality-free formulas; (iii) λ0, λ1, and λ2 are mutually exclusive unary pure Boolean formulas;
and (iv) µ1, . . . , µn are mutually exclusive unary pure Boolean formulas.

The formula ϕC ensures a set of conditions on models. Suppose that C has the elements
a1, . . . , at ordered in such a way that a1, . . . , as are its Kings and as+1, . . . , at are its non-King
elements.

A first set of conditions, encoded in formulas δ1 and δ2, ensures that the court structure
of models of ϕC are isomorphic to C. To this end, let Q1, . . . , Qt be fresh unary relation
symbols.

The formula δ1 ensures that each such relation Qi contains exactly one element (intended
to be the ith element ai of C):

t∧
i=1

∃xQi(x) ∧ ∀x∀y
(
x = y ∨

t∧
i=1

¬(Qi(x) ∧Qi(y))
)

The formula δ2 ensures that the substructure induced by elements in the Qis is isomorphic
to C:

t−1∧
i=1

t∧
j=i+1

∀x∀y
(
x = y ∨ ((Qi(x) ∧Qj(y))→ tpC [ai, aj ])

)
A second set of conditions, encoded in formulas γ1, γ2, and γ3 ensures that witnesses are

spread. To this end, let Qh,1, . . . , Qh,s be fresh unary relation symbols. The intuition is that
Qh,i shall contain all elements a such that the ψh-witness of a is the ith King. For spreading
non-King witnesses, further fresh unary relation symbols W1, . . . ,Wm and N0, N1, N2 are
used.

Witnesses for an element a will then be ensured by distinguishing between King witnesses,
handled by γ2, and non-King witnesses, handeled by γ3.

The formula γ1 enforces that each element is either a King, or occurs in exactly one Wi

and in exactly one Ni:
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∀x∀y
(
x = y ∨

s∨
i=1

Qi(x) ∨ µ(x)
)

Here, µ(x) is a formula stating that x occurs in exactly one Wi and in exactly one Ni.
(Note that the quantification of y is not really necessary, but makes it easy to see that γ2
adheres to the conditions for spread normal form.)

The formula γ2 ensures that King witnesses are present:

s∧
i=1

m∧
h=1

∀x∀y
(
x = y ∨ ((Qh,i(x) ∧Qi(y))→ ψh(x, y))

)
Finally, the formula γ3 ensures that each element has its non-King witnesses:

2∧
k=0

m∧
h=1

∀x∃y
(
Nk(x)→ (Nbk+1c(y) ∧Wh(y) ∧ ψ∗h(x, y))

)
where ψ∗h(x, y) is of the form

ψ∗h(x, y)
df
=
( s∧
i=1

¬Qh,i(x)
)
→ ψh(x, y)

Now, formula ϕC can be obtained by transforming the conjunction of δ1, δ2, γ1, γ2, γ3,
and ν df

= ∀x∀y(x = y ∨ ψ(x, y)) into spread normal form. Due to the form of these formulas,
this can be easily achieved. This concludes the construction of ϕC

It remains to show that ϕ has a (finite) model with court structure C if and only if ϕC
has a (finite) model.

From a model AC of ϕC one can construct a model A of ϕ by ignoring the interpretations
of all new relation symbols in ϕC , that is, by ignoring the relations QAC

i , QAC
h,i , W

AC
i and NAC

i .
The thus obtained structureA satisfies the ∀∀-constraints of ϕ due to ν, and the ∀∃-constraints
due to δ2, γ2, and γ3. The court structure induced by A is C due to δ2.

Conversely suppose that A is a model of ϕ with induced court structure C. A model AC
of ϕC can be constructed from A as follows. Let A be the universe of A, let A0

df
= {a1, . . . , as}

be its set of Kings, and let B df
= A \A0.

The structure AC is constructed by cloning B. It has universe A0 ∪
⋃2
k=0

⋃m
h=1Bk,h

where each Bk,h is a copy of B.
The relations QAC

i and QAC
h,i are defined as:

QAC
i

df
= {ai} and QAC

h,i

df
= {b′ | b′ is a copy of an element b with ψh(b, ai)}

The relations WAC
h and NAC

k are defined as:

WAC
h

df
=

2⋃
k=0

Bk,h and NAC
k

df
=

m⋃
h=1

Bk,h

It remains to argue that the thus constructed structure AC is a model of ϕC . The
formulas δ1 and δ2 are satisfied, as C is the court structure induced by A. The formula
γ1 is satisfied due to the construction of WAC

h and NAC
k . The formula γ2 is satisfied due
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the construction of QAC
h,i . The formula γ3 is satisfied due to the construction of WAC

h and
NAC
k , and because the ∀∃-constraints of ϕ are satisfied in A. For seeing that ν is satisfed we

observe that it is satisfied in A, and cloning does not lead to new binary types (see (i) in the
definition of cloning).

The proofs of Lemma 4.3, Lemma 4.4, and Theorem 4.5 in [Pra18] implicitly imply the
following lemma.

Lemma 5.14. Suppose K is a class of structures with signature ∆ and ϕ is a FO2(K)
formula over ∆ ] Θ. If ϕ is in spread normal form then one can effectively construct an
equisatisfiable FO2(K) formula over signature ∆ ]Θ′ where Θ′ only contains unary relation
symbols.

Proof. We provide two ways of proving the statement.

Adaption of the proof of Pratt-Hartmann [Pra18]. The proofs of Lemma 4.3 and
Lemma 4.4 in [Pra18] are independent of the class K of structures. Thus, in particular,
Lemma 4.4 can be restated for arbitrary classes K with a spread normal form.

Suppose that ϕ is an FO2(K) formula in spread normal form with signature ∆ ]Θ. By
Lemma 4.4 in [Pra18], ϕ can be translated into ϕ◦ such that (1) ϕ◦ does not use atoms of
the form r(x, y) or r(y, x) for r ∈ Θ, (2) the formula ϕ implies ϕ◦, and (3) if ϕ◦ has a model
over domain A, then so has ϕ. As the only binary atoms from Θ occurring in ϕ◦ are of the
form r(x, x) or r(y, y), they can be replaced by new unary atoms, see Theorem 4.5 in [Pra18].
This yields the intended equisatisfiable formula.

Direct proof. Let ϕ be a FO2(K) formula over signature ∆ ]Θ in spread normal form∧
θ∈Z
∃xθ(x) ∧ ∀x∀y(x = y ∨ ν(x, y))

∧
2∧

k=0

m−1∧
h=0

∀x∃y(λk(x)→ (λbk+1c(y) ∧ µh(y) ∧ θh(x, y)))

where (i) Z is a set of unary pure Boolean formulas; (ii) ν, θ0, . . . , θm−1 are quantifier- and
equality-free formulas; and (iii) λ0, λ1, and λ2 are mutually exclusive unary pure Boolean
formulas; and (iv) µ0, . . . , µm−1 are mutually exclusive unary pure Boolean formulas.

Suppose, without loss of generality, that the formulas ν and θh are of the form∨
i

αi(x, y)

where all αi are binary types.
For a binary type α, denote by α∗ the set of formulas obtained from α by replacing

all literals of the form R(x, y), R(y, x), ¬R(x, y), and ¬R(y, x) for R ∈ Θ by true. Further
denote by ν∗ and θ∗h the formulas obtained by replacing all binary types α by α∗ in ν and θh.

Consider the formula ϕ∗ defined as∧
θ∈Z
∃xθ(x) ∧ ∀x∀y(x = y ∨ ν∗(x, y))

∧
2∧

k=0

m−1∧
h=0

∀x∃y(λk(x)→ (λbk+1c(y) ∧ µh(y) ∧ θ∗h(x, y)))
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This formula only uses literals from ∆, unary literals over Θ and binary literals of the form
R(x, x), R(y, y),¬R(x, x),¬R(y, y) over Θ.

We claim that ϕ∗ and ϕ are equisatisfiable. Certainly a model A of ϕ is also a model
of ϕ∗ (as can be seen by inspecting the conjuncts of ϕ∗).

For the converse suppose that A∗ is a model of ϕ∗. Then a model A of ϕ can be obtained
as follows (cf. proof of Lemma 4.4 in [Pra18]). The structure A has the same elements as A∗.
Further A inherits the unary types from A∗. It remains to fix the binary types for A.

Fix an element a. If a satisfies one of the λi (and since these are disjoint, no other λj),
then for all h there exists b such that A |= λi+1(b)∧ µh(b). Let α∗ be a disjunct of θ∗h that is
satisfied by (a, b). Suppose α∗ was obtained from a type β of θh in the construction of ϕ∗,
then chose β as the binary type of (a, b). Note that β is consistent with the (already assigned)
unary types of a and b, as α∗ was obtained from β by replacing strictly binary literals by
true. In this way, all witnesses for a are fixed. Since all µh are disjoint (since ϕ is in spread
normal form), all such witnesses are distinct.

The above procedure is repeated for all a. Note that for a tuple (a, b) the binary types
assigned for determining the witnesses of a and b do not conflict since witnesses satisfy λbi+1c
which is disjoint from λi. Furthermore, the types assigned in this fashion do not conflict
with ν, because all types α used in the formulas θh must be consistent with ν.

It remains to assign the binary types in A for all remaining tuples (a, b). This has to be
done in accordance with the condition ν. As A∗ satisfies ϕ∗, the tuple (a, b) satisfies ν∗ and
hence some formula α∗ that was obtained from some binary type β in ν. The binary type of
(a, b) is chosen as β. This, again, does not conflict with previously chosen unary types of a
and b.

Hence ϕ and ϕ∗ are equisatisfiable. Now, an equisatisfiable formula ψ for ϕ over signature
∆]Θ′ where Θ′ only contains unary relation symbols can be obtained from ϕ∗ as follows (cf.
proof of Theorem 4.5 in [Pra18]). All binary atoms in ϕ∗ with relation symbols from Θ are
of the form R(x, x) or R(y, y). Replacing these atoms by atoms R̂(x) and R̂(y) where R̂ is a
fresh unary relation symbol yields the equisatisfiable formula ψ over signature ∆ ]Θ′ where

Θ′
df
= {S ∈ Θ | S is unary} ] {R̂ ∈ Θ | R ∈ Θ is binary}.

Proof of Proposition 5.11. By Lemma 5.12 structures with two linear order allow cloning,
and therefore each FO2(<1, <2) formula can be transformed into an equisatisfiable disjunction∨
i ϕi of formulas ϕi over signature {<1, <2} ] Θi in spread normal form by Lemma 5.13.

Now, each ϕi can be transformed into an equisatisfiable formula ϕ′i over {<1, <2}]Θ′i where
each Θ′i is unary, by Lemma 5.14. Now, Proposition 5.11 follows from the fact that

∨
i ϕ
′
i is

equisatisfiable to
∨
i ϕi.

Recall that Theorem 5.1 implies the (general) decidability of EMSO2(<1, <2), see
Corollary 5.2. Therefore, Proposition 5.11 yields Theorem 5.4.
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