
Logical Methods in Computer Science
Volume 18, Issue 2, 2022, pp. 9:1–9:37
https://lmcs.episciences.org/

Submitted Apr. 09, 2021
Published May 10, 2022

DETERMINISABILITY OF REGISTER AND TIMED AUTOMATA ∗

LORENZO CLEMENTE , SLAWOMIR LASOTA , AND RADOSLAW PIÓRKOWSKI

University of Warsaw, Poland
e-mail address: clementelorenzo@gmail.com, {sl,r.piorkowski}@mimuw.edu.pl
URL: https://sites.google.com/view/lorenzoclemente
URL: https://www.mimuw.edu.pl/~sl, https://www.mimuw.edu.pl/~rp

Abstract. The deterministic membership problem for timed automata asks whether
the timed language given by a nondeterministic timed automaton can be recognised by
a deterministic timed automaton. An analogous problem can be stated in the setting
of register automata. We draw the complete decidability/complexity landscape of the
deterministic membership problem, in the setting of both register and timed automata. For
register automata, we prove that the deterministic membership problem is decidable when
the input automaton is a nondeterministic one-register automaton (possibly with epsilon
transitions) and the number of registers of the output deterministic register automaton
is fixed. This is optimal: We show that in all the other cases the problem is undecidable,
i.e., when either (1) the input nondeterministic automaton has two registers or more (even
without epsilon transitions), or (2) it uses guessing, or (3) the number of registers of the
output deterministic automaton is not fixed. The landscape for timed automata follows a
similar pattern. We show that the problem is decidable when the input automaton is a
one-clock nondeterministic timed automaton without epsilon transitions and the number of
clocks of the output deterministic timed automaton is fixed. Again, this is optimal: We
show that the problem in all the other cases is undecidable, i.e., when either (1) the input
nondeterministic timed automaton has two clocks or more, or (2) it uses epsilon transitions,
or (3) the number of clocks of the output deterministic automaton is not fixed.

Key words and phrases: Timed automata, register automata, determinisation, deterministic membership
problem.
∗This paper is an extended version of the conference paper [CLP20a].
L. Clemente was partially supported by the Polish NCN grant 2017/26/D/ST6/00201. S. Lasota was

partially supported by the Polish NCN grant 2019/35/B/ST6/02322 and by the ERC grant LIPA, agreement
no. 683080. R. Piórkowski was partially supported by the Polish NCN grant 2017/27/B/ST6/02093.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-18(2:9)2022
© L. Clemente, S. Lasota, and R. Piórkowski
CC© Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0003-0578-9103
https://orcid.org/0000-0001-8674-4470
https://orcid.org/0000-0002-9643-182X
https://sites.google.com/view/lorenzoclemente
https://www.mimuw.edu.pl/~sl
https://www.mimuw.edu.pl/~rp
http://creativecommons.org/about/licenses

9:2 L. Clemente, S. Lasota, and R. Piórkowski Vol. 18:2

1. Introduction

1.1. Automata over infinite alphabets.

Timed automata. Nondeterministic timed automata (nta) are one of the most widespread
models of real-time reactive systems. They are an extension of finite automata with real-
valued clocks which can be reset and compared by inequality constraints. The nonemptiness
problem for nta is decidable and, in fact, PSpace-complete, as shown by Alur and Dill in
their landmark 1994 paper [AD94]. This paved the way for the automatic verification of
timed systems, leading to mature tools such as UPPAAL [BDL+06], UPPAAL Tiga (timed
games) [CDF+05], and PRISM (probabilistic timed automata) [KNP11]. The reachability
problem is still a very active research area these days [FJ15, HSW16, AGK18, GMS18,
GMS19, GHSW19], as are expressive generalisations thereof, such as the binary reachability
problem [CJ99, Dim02, KP05, FQSW20]. As a testimony to the model’s importance, the
authors of [AD94] received the 2016 Church Award [chu16] for the invention of timed
automata.

Deterministic timed automata (dta) form a strict subclass of nta where the suc-
cessive configuration is uniquely determined from the current one and the timed input
symbol. The class of dta enjoys stronger properties than nta, such as decidable universal-
ity/equivalence/inclusion problems, and closure under complementation [AD94]. Moreover,
the more restrictive nature of dta is needed for several applications of timed automata, such
as test generation [NS03], fault diagnosis [BCD05], and learning [VdWW07, TALL19], win-
ning conditions in timed games [AM99, JT07, BHPR07], and in a notion of recognisability of
timed languages [MP04]. For these reasons, and for the more general quest of understanding
the nature of the expressive power of nondeterminism in timed automata, many researchers
have focused on defining determinisable classes of timed automata, such as strongly non-Zeno
nta [AMPS98], event-clock nta [AFH99], and nta with integer-resets [SPKM08]. The
classes above are not exhaustive, in the sense that there are nta recognising deterministic
timed languages not falling into any of the classes above.

Another remarkable subclass of nta is obtained by requiring the presence of just one
clock (without epsilon transitions). The resulting class of nta1 is incomparable with dta:
For instance, nta1 are not closed under complement (unlike dta), and there are very simple
dta languages that are not recognisable by any nta1. Nonetheless, nta1, like dta, have
decidable inclusion, equivalence, and universality problems [OW04, LW08], although the
complexity is non-primitive recursive [LW08, Corollary 4.2] (see also [OW07, Theorem 7.2] for
an analogous lower bound for the satisfiability problem of metric temporal logic). Moreover,
the nonemptiness problem for nta1 is NLogSpace-complete (vs. PSpace-complete for
unrestricted nta and dta, already with two clocks [FJ15]), and the binary reachability
relation of nta1 can be computed as a formula of existential linear arithmetic of polynomial
size, which is not the case in general [CHT19].

Register automata. The theory of register automata shares many similarities with that
of timed automata. Nondeterministic register automata (nra) have been introduced by
Kaminski and Francez around the same time as timed automata. They were defined as an
extension of finite automata with finitely many registers that can store input values and
be compared with equality and disequality constraints. The authors have shown, amongst
other things, that nonemptiness is decidable [KF94, Theorem 1]. It was later realised that

Vol. 18:2 DETERMINISABILITY OF REGISTER AND TIMED AUTOMATA ∗ 9:3

the problem is, in fact, PSpace-complete [DL09, Theorems 4.3 and Theorem 5.1]. The class
of nra recognisable languages is not closed under complementation [KF94, Proposition 5];
moreover, universality (and thus equivalence and inclusion) of nra is undecidable [NSV04,
Theorem 5.1] (already for nra with two registers [DL09, Theorem 5.4]).

One way to regain decidability is to consider deterministic register automata (dra),
which are effectively closed under complement and thus have a decidable inclusion (and
thus universality and equivalence) problem1. dra also provide the foundations of learning
algorithms for data languages [MSS+17]. A recent result completing the theory of register
automata has shown that a data language is dra recognisable if, and only if, both this
language and its complement are nra recognisable [KLT21].

As in the case of timed automata, it has been observed that restricting the number of
registers results in algorithmic gains. Already in the seminal work of Kaminski and Francez,
it has been proved that the inclusion problem L(A) ⊆ L(B) is decidable when A is an nra
and B is an nra with one register [KF94, Appendix A], albeit the complexity is non-primitive
recursive in this case [DL09, Theorem 5.2].

1.2. The deterministic membership problem.

Timed automata. The dta membership problem asks, given an nta, whether there exists
a dta recognising the same language. There are two natural variants of this problem, which
are obtained by restricting the resources available to the sought dta . Let k ∈ N be a
bound on the number of clocks, and let m ∈ N be a bound on the maximal absolute value of
numerical constants. The dtak and dtak,m membership problems are the restriction of the
problem above where the dta is required to have at most k clocks, resp., at most k clocks
and the absolute value of maximal constant bounded by m. Notice that we do not bound the
number of control locations of the dta, which makes the problem non-trivial. (Indeed, there
are finitely many dta with a bounded number of clocks, control locations, and maximal
constant.)

Since untimed regular languages are deterministic, the dtak membership problem can
be seen as a quantitative generalisation of the regularity problem. For instance, the dta0

membership problem is precisely the regularity problem since a timed automaton with
no clocks is the same as a finite automaton. We remark that the regularity problem is
usually undecidable for nondeterministic models of computation generalising finite automata,
e.g., context-free grammars/pushdown automata [Sha08, Theorem 6.6.6], labelled Petri
nets under reachability semantics [VVN81], Parikh automata [CFM11], etc. One way to
obtain decidability is to either restrict the input model to be deterministic (e.g., [Val75,
VVN81, BLS06]), or to consider more refined notions of equivalence, such as bisimulation
(e.g., [GP20]).

This negative situation is generally confirmed for timed automata. For every number of
clocks k ∈ N and maximal constant m, the dta, dtak, and dtak,m membership problems
are known to be undecidable when the input nta has ≥ 2 clocks, and for 1-clock nta
with epsilon transitions [Fin06, Tri06]. To the best of our knowledge, the deterministic
membership problem was not studied before when the input automaton is nta1 without
epsilon transitions.

1In fact, even the inclusion problem L(A) ⊆ L(B) with A an nra and B a dra is decidable.

9:4 L. Clemente, S. Lasota, and R. Piórkowski Vol. 18:2

Register automata. The situation for register automata is similar to, and simpler than,
timed automata. The drak membership problem asks, given an nra, whether there exists
a dra with k registers recognising the same language, and the dra membership problem
is the same problem with no apriori bound on the number of registers of the deterministic
acceptor. Deterministic membership problems for register automata do not seem to have
been considered before in the literature.

1.3. Contributions. We complete the study of the decidability border for the deterministic
membership problem initiated for timed automata in [Fin06, Tri06], and we extend these
results to register automata.

Upper bounds. Our main result is the following.

Theorem 1.1. The dtak and dtak,m membership problems are decidable for nta1 languages.

Our decidability result contrasts starkly with the abundance of undecidability results
for the regularity problem. We establish decidability by showing that if a nta1,m recognises
a dtak language, then, in fact, it recognises a dtak,m language and, moreover, there is
a computable bound on the number of control locations of the deterministic acceptor
(c.f. Lemma 7.1). This provides a decision procedure since there are finitely many different
dta once the number of clocks, the maximal constant, and the number of control locations
are fixed.

In our technical analysis, we find it convenient to introduce the so-called always resetting
subclass of ntak. These automata are required to reset at least one clock at every transition
and are thus of expressive power intermediate between ntak−1 and ntak. Always resetting
nta2 are strictly more expressive than nta1: For instance, the language of timed words of
the form (a, t0)(a, t1)(a, t2) s.t. t2 − t0 > 2 and t2 − t1 < 1 can be recognised by an always
resetting nta2 but by no nta1. Despite their increased expressive power, always resetting
nta2 still have a decidable universality problem (the well-quasi order approach of [OW04]
goes through), which is not the case for nta2. Thanks to this restricted form, we are able
to provide in Lemma 7.1 an elegant characterisation of those nta1 languages which are
recognised by an always resetting dtak.

We prove a result analogous to Theorem 1.1 in the setting of register automata.

Theorem 1.2. The drak membership problem is decidable for nra1 languages.

Thanks to the effective elimination of ε-transition rules from nra1 (c.f. Lemma 3.3), the
decidability result above also holds for data languages presented as nra1 with ε-transition
rules.

Lower bounds. We complement the decidability results above by showing that the de-
terministic membership problem becomes undecidable if we do not restrict the number of
clocks/registers of the deterministic acceptor.

Theorem 1.3. The dta and dta_,m (m > 0) membership problems are undecidable for
nta1 without epsilon transitions.

Theorem 1.3 improves on an analogous result from [Fin06, Theorem 1] for nta2. We obtain
a similar undecidability result in the setting of register automata:

Theorem 1.4. The dra membership problem is undecidable for nra1.

Vol. 18:2 DETERMINISABILITY OF REGISTER AND TIMED AUTOMATA ∗ 9:5

The following lower bounds further refine the analysis from [Fin06] in the case of a fixed
number of clocks of a deterministic acceptor.

Theorem 1.5. For every fixed k,m ∈ N, the dtak and dtak,m membership problems are:
• undecidable for nta2,
• undecidable for ntaε1 (with epsilon transitions),
• HyperAckermann-hard for nta1.

A similar landscape holds for register automata, where the deterministic membership problem
for a fixed number of registers of the deterministic acceptor remains undecidable when given
in input either a nra2 or a nra1 with guessing. (Register automata with guessing are a
more expressive family of automata where a register can be updated with a data value not
necessarily coming from the input word, i.e., it can be guessed. We omit a formal definition
since we will not need to explicitly manipulate such automata in this paper.) In the decidable
case of a nra1 input, the problem is nonetheless not primitive recursive.

Theorem 1.6. Fix a k ≥ 0. The drak membership problem is:
(1) undecidable for nra2,
(2) undecidable for nrag

1 (nra1 with guessing), and
(3) not primitive recursive (Ackermann-hard) for nra1.

Related research. Many works have addressed the construction of a dta equivalent to
a given nta (see [BSJK15] and references therein). However, since the general problem is
undecidable, one has to either sacrifice termination, or consider deterministic under/over-
approximations. In a related line of work, we have shown that the deterministic separability
problem is decidable for the full class of nta, when the number of clocks of the separator is
given in the input [CLP20b]. This contrasts with the undecidability of the corresponding
membership problem. The deterministic separability problem for register automata has not
been studied in the literature. Decidability of the deterministic separability problem when
the number of clocks/registers of the separator is not provided remains a challenging open
problem.

2. Automorphisms, orbits, and invariance

This section contains preliminary definitions needed both for register and timed automata.

Atoms. Let A be a structure (whose elements are called atoms) providing a data domain on
which register and timed automata operate. In the case of register automata, we will primarily
be concerned with equality atoms (A,=), where A is a countable set, and the signature
contains the equality symbol only. However—as we discuss at the end of Section 7—our
positive results generalise to other atoms, for instance to densely ordered atoms (R,≤), where
R is the set of real numbers with the natural order “≤”. In the case of timed automata, we
will consider timed atoms (R,≤,+1), which extend densely ordered atoms with the increment
function “+1”.

9:6 L. Clemente, S. Lasota, and R. Piórkowski Vol. 18:2

Automorphisms. Let S ⊆ A be a (possibly empty) finite set of atoms. An S-automorphism
is a bijection π : A→ A that is the identity on S, i.e., π(a) = a for every a ∈ S, and which
preserves the atom structure. The latter condition is trivially satisfied for equality atoms. In
the case of densely ordered atoms, it also demands monotonicity: a ≤ b implies π(a) ≤ π(b).
For instance, a non-trivial automorphism of densely ordered atoms is π(a) = 2 · a, which is
also a {0}-automorphism since π(0) = 0. In the case of timed atoms automorphisms need to
additionally preserve integer differences: π(a+ 1) = π(a) + 1, for every a, b ∈ R. For instance,
if π(3.4) = 4.5, then the last condition necessarily implies π(5.4) = 6.5 and π(−3.6) = −2.5.
When S = ∅, we just say that π is an automorphism. Let AutS(A) denote the set of all
S-automorphisms of A, and let Aut(A) = Aut∅(A).

Informally speaking, by sets with atoms we mean sets whose elements are either sets or
atoms (for a formal definition of the hierarchy thereof, we refer to [Boj]). If X is a set with
atoms, then π(X) is the set with atoms which is obtained by replacing every atom a ∈ A
occurring in X by π(a) ∈ A. We present some commonly occurring concrete examples, relying
on standard set-theoretic encodings of tuples, functions, etc. Let Σ be a finite alphabet. A
data word is a finite sequence

w = (σ0, a0) · · · (σn, an) ∈ (Σ× A)∗ (2.1)

of pairs (σi, ai) consisting of an input symbol σi ∈ Σ and an atom ai ∈ A. An automorphism
π acts on a data word w as above point-wise: π(w) = (σ0, π(a0)) · · · (σn, π(an)).

Let X be a finite set of register names and let A⊥ = A∪ {⊥}, where ⊥ 6∈ A represents an
undefined value. A register valuation is a mapping µ : AX

⊥ assigning an atom (or ⊥) µ(x) to
every register x ∈ X. An automorphism π acts on a register valuation µ as π(µ)(x) = π(µ(x))
for every x ∈ X, i.e., π(µ) = π ◦ µ, where we assume that π(⊥) = ⊥.

More generally, if X is a set with atoms, then π acts on X pointwise as π(X) =
{π(x) | x ∈ X}.

Orbits and invariance. A set with atoms X is S-invariant if π(X) = X for every S-
automorphism π ∈ AutS(A). Notice that π does not need to be the identity on X for X
to be S-invariant. A set X is invariant2 if it is S-invariant with S = ∅. The S-orbit of an
element x ∈ X (which can be an arbitrary object on which the action of automorphisms is
defined) is the set

orbitS(x) = {π(x) ∈ X | π ∈ AutS(A)}
of all elements π(x) which can be obtained by applying some S-automorphism π to x. The
orbit of x is just its S-orbit with S = ∅, written orbit(x). Clearly x, y ∈ X have the same
S-orbit orbitS(x) = orbitS(y) if, and only if, π(x) = y for some π ∈ AutS(A).

The S-orbit closure of a set X (or just S-closure) is the union of the S-orbits of its
elements:

ClS(X) =
⋃
x∈X

orbitS(x).

In particular, the S-orbit of x is the S-closure of the singleton set {x}: orbitS(x) = ClS({x}).
The ∅-closure Cl(X) we briefly call the closure of X. The following fact characterises
invariance in term of closures.

Fact 2.1. A set X is S-invariant if, and only if, ClS(X) = X.

2The term equivariant is also often used in the literature instead of invariant. Also, in the case of an
S-invariant set X, one can also find the term S-supported, and call S a support of X; see e.g. [Boj, BKL14].

Vol. 18:2 DETERMINISABILITY OF REGISTER AND TIMED AUTOMATA ∗ 9:7

Proof. The “only if” direction follows the definition of S-invariance. For the “if” direction,
observe that ClS(X) = X implies π(X) ⊆ X. The opposite inclusion stems from S-
automorphisms’ closure under inverse: π−1(X) ⊆ X, hence X ⊆ π(X).

3. Register automata

In this section, we define register automata over equality atoms (A,=). However, all the
definitions below can naturally be generalised to any atoms satisfying some mild assumptions,
as explained later in Section 4.2.

Constraints. A constraint is a quantifier-free formula ϕ generated by the grammar

ϕ,ψ ::≡ true | false | x = y | x = ⊥ | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ, (3.1)

where x, y are variables and ⊥ is a special constant denoting an undefined data value. A
valuation is a function µ ∈ AX

⊥ assigning a data value (or ⊥) µ(x) to every variable x ∈ X.
The satisfaction relation µ |= ϕ holds whenever the valuation µ satisfies the formula ϕ, and
it is defined in the standard way. The semantics of a constraint ϕ(x1, . . . , xn) with n free
variables X = {x1, . . . , xn} is the set of valuations satisfying it: JϕK = {µ ∈ AX

⊥ | µ |= ϕ}.
Using [Boj, Lemma 7.5] we easily deduce:

Claim 3.1. Subsets of AX
⊥ definable by constraints are exactly the invariant subsets of AX

⊥.

Register automata. Let Σ be a finite alphabet, and let Σε = Σ ∪ {ε} be Σ with the
addition of the empty word ε. A (nondeterministic) register automaton (nra) is a tuple
A = (X,Σ, L, LI , LF ,∆) where X = {x1, . . . , xk} is a finite set of register names, Σ is a finite
alphabet, L is a finite set of control locations, of which we distinguish those which are initial
LI ⊆ L, resp., final LF ⊆ L, and ∆ is a set of transition rules. We have two kinds of transition
rules. A non-ε-transition rule is of the form

(p, σ, ϕ, Y, q) ∈ ∆ (3.2)

and it means that from control location p ∈ L we can go to q ∈ L by reading input symbol
σ ∈ Σ, provided that the transition constraint ϕ(x1, . . . , xk, y) holds between the current
registers x1, . . . , xk and the input data value y being currently read; finally, all registers
in Y ⊆ X are updated to store the input data value y. An ε-transition rule is of the form
(p, ε, ϕ, q) ∈ ∆ and it means that from control location p ∈ L we can go to q ∈ L, but no
input is read, provided that the transition constraint ϕ(x1, . . . , xk) holds between the current
registers x1, . . . , xk.

Formally, the semantics of a register automaton A as above is provided in terms of an
infinite transition system JAK = (C,CI , CF ,→), where C = L×AX

⊥ is the set of configurations,
which are pairs (p, µ) consisting of a control location p ∈ L and a register valuation µ ∈ AX

⊥.
Amongst them, CI = LI ×{λx · ⊥} ⊆ C is the set of initial configurations, i.e., configurations
of the form (p, µ) with p ∈ LI and µ(x) = ⊥ for all registers x, and CF = LF × AX

⊥ is the
set of final configurations, i.e., configurations of the form (p, µ) with p ∈ LF (without any
further restriction on µ). The set of transitions “→” is determined as follows. For a valuation
µ ∈ AX

⊥, a set of registers Y ⊆ X, and an atom3 a ∈ A, let µ[Y 7→ a] be the valuation which

3It suffices to consider non-⊥ values a 6= ⊥ since we never need to reset a register to the undefined value
⊥.

9:8 L. Clemente, S. Lasota, and R. Piórkowski Vol. 18:2

is a on Y and agrees with µ on X \ Y. Every non-ε-transition rule (3.2) induces a transition
between configurations

(p, µ)
σ,a−−→ (q, µ[Y 7→ a])

labelled by (σ, a) ∈ Σ × A, provided that the current valuation µ satisfies the constraint
ϕ when variable y holds the input atom a, i.e., µ[y 7→ a] |= ϕ(x1, . . . , xk, y). Similarly, an
ε-transition rule (p, ε, ϕ, q) ∈ ∆ induces an ε-labelled transition (p, µ)

ε−→ (q, µ) whenever
µ |= ϕ(x1, . . . , xk). Finally, in order to deal with ε-transitions, we stipulate that whenever
we have transitions (p, µ)

b−→ _ ε−→ (q, ν), (p, µ)
ε−→ _ b−→ (q, ν), or (p, µ)

ε−→ _ b−→ _ ε−→ (q, ν)

with b ∈ (Σ× A) ∪ {ε}, then we also have the transition (p, µ)
b−→ (q, ν). A run of A over a

data word w as in (2.1) starting in configuration (p, µ) and ending in configuration (q, ν) is
a labelled path ρ in JAK of the form

ρ = (p, µ)
σ0,a0−−−→ (p0, µ0)

σ1,a1−−−→ · · · σn,an−−−→ (q, ν). (3.3)

The run ρ is accepting if its ending configuration is accepting. The language recognised by
configuration (p, µ) is the set of data words labelling accepting runs:

L(p, µ) = {w ∈ (Σ× A)∗ | JAK has an accepting run over w starting in (p, µ)}.

The language recognised by the automaton A is the union of the languages recognised by
its initial configurations, L(A) =

⋃
c∈CI

L(c). A configuration is reachable if it is the ending
configuration in a run starting in an initial configuration.

Remark 3.2. Register automata, as defined above, are without guessing, i.e. an automaton
can only store in a register an atom appearing in the input.

It turns out that nra with ε-transition rules are as expressive as nra without ε-transition
rules.

Lemma 3.3 Excercise 2 in [Boj]. For every k ∈ N and nrak one can effectively build an
nrak without ε-transition rules recognising the same language.

For this reason, from this point on, we deal exclusively with nra without ε-transition
rules, and we tacitly assume that an nra does not contain ε-transition rules.

Deterministic register automata. A register automaton A is deterministic (dra) if
it has precisely one initial location LI = {pI} and, for every two rules (p, σ, ϕ, Y, q) and
(p, σ, ϕ′, Y′, q′) starting in the same location p, over the same input symbol σ and with jointly
satisfiable guards Jϕ ∧ ϕ′K 6= ∅, we necessarily have Y = Y′ and q = q′. Hence A has at most
one run over every data word w. A dra can be easily transformed into a total one, i.e., one
where for every location p ∈ L and input symbol σ ∈ Σ, the sets defined by the constraints
{JϕK | ∃Y, q ·p σ,ϕ,Y−−−→ q} are a partition of all valuations AX∪{y}

⊥ . Thus, a total dra has exactly
one run over every timed word w.

There are other syntactical constraints, more or less restrictive, which would guarantee
uniqueness of runs. Our choice is motivated by the fact that every nra which has unique runs
can be transformed into an equivalent dra, albeit this may cause an exponential increase in
the number of control locations. Nonetheless, since we deal with computational problems
which are either undecidable or non-primitive recursive, this shall not be a concern in the
rest of the paper.

Vol. 18:2 DETERMINISABILITY OF REGISTER AND TIMED AUTOMATA ∗ 9:9

We write nrak, resp. drak, for the class of k-register nra, resp. dra, and we say that
a data language is an nra language, dra language, drak language, etc., if it is recognised
by a register automaton of the respective type.

Example 3.4. Let Σ = {σ} be a unary alphabet. As an example of a language L recognised
by an nra1, but not by any dra, consider the set of data words where the last atom reappears
earlier, i.e., words of the form: (σ, a1) · · · (σ, an) where ai = an for some 1 ≤ i < n. The
language L is recognised by the nra1 A = (X,Σ, L, LI , LF ,∆) with one register X = {x} and
three locations L = {p, q, r}, of which LI = {p} is initial and LF = {r} is final, and transition
rules

(p, σ, true, ∅, p) (p, σ, true, {x}, q) (q, σ, x 6= y, ∅, q) (q, σ, x = y, ∅, r).
Intuitively, the automaton waits in p until it guesses that the next input ai will be appearing
at the end of the word as well, at which point it moves to q by storing ai in the register.
From q, the automaton can accept by going to r exactly when the atom stored in the register
reappears in the input. The language L is not recognised by any dra since, intuitively, any
deterministic acceptor needs to store unboundedly many different atoms ai.

One-register automata. Nondeterministic register automata with just one register enjoy
stronger algorithmic properties than the full class of nondeterministic register automata. It
was already observed in Kaminski and Francez’s seminal paper that the inclusion problem
becomes decidable4.

Theorem 3.5 (c.f. [KF94, Appendix A]). For A ∈ nra and B ∈ nra1 the language inclusion
problem L(A) ⊆ L(B) is decidable.

We immediately obtain the following corollary, which we will use in Section 4.

Corollary 3.6. For A ∈ dra and B ∈ nra1 the language equality problem L(A) = L(B) is
decidable.

Proof. The inclusion L(A) ⊆ L(B) can be checked as a special instance of Theorem 3.5. The
reverse inclusion L(B) ⊆ L(A) reduces to checking emptiness of a product construction of B
with the complement of A.

Invariance of register automata. The following lemma expresses the fundamental invari-
ance properties of register automata. Given a valuation µ of registers X, by µ(X) ⊆ A we
mean the set of atoms stored in registers: µ(X) = {µ(x) | x ∈ X, µ(x) ∈ A}. Automorphisms
act on configurations by preserving the control location: π(p, µ) = (p, π(µ)) = (p, π ◦ µ).

Lemma 3.7 (Invariance of nra). (1) The transition system JAK is invariant: If c σ,a−−→ d in

JAK and π is an automorphism, then π(c)
σ,π(a)−−−−→ π(d) in JAK.

(2) The function L(_) mapping a configuration c to the language L(c) it recognises from c
is invariant: For all automorphisms π, L(π(c)) = π(L(c)).

(3) The language L(p, µ) recognised from a configuration (p, µ) is µ(X)-invariant: For all
µ(X)-automorphims π, π(L(p, µ)) = L(p, µ).

4A window in the terminology of [KF94] corresponds to a register in this paper’s terminology. [KF94,
Appendix A] shows that the inclusion problem L(A) ⊆ L(B) is decidable when B is a two-window automaton.
Due to the semantics of window reassignment of [KF94], two-window automata are of intermediate expressive
power between one-register automata and two-register automata.

9:10 L. Clemente, S. Lasota, and R. Piórkowski Vol. 18:2

We refrain from proving Lemma 3.7, since proofs of analogous invariance properties, in the
more involved setting of timed automata, are provided later (Facts 6.2–6.4 in Section 6). For
the proof of (1) in the setting of equality atoms, we refer the reader to [Boj, Sect.1.1]; the
other points are readily derivable from (1).

Deterministic membership problems. Let X be a subclass of nra . We are interested
in the following family of decision problems:

X membership problem.
Input: A register automaton A ∈ nra .
Output: Does there exist a B ∈ X s.t. L(A) = L(B)?

We study the decidability status of the X membership problem where X ranges over
dra and drak (for every fixed number of registers k). Example 3.4 shows that there are
nra languages that cannot be accepted by any dra . Moreover, there is no computable
bound for the number of registers k which suffice to recognise a nra1 language by a drak
(when such a number exists), which follows from the following three observations:
(1) the dra membership problem is undecidable for nra1 (Theorem 1.4),
(2) the problem of deciding equivalence of a given nra1 to a given dra is decidable by

Corollary 3.6 and
(3) if an nra1 is equivalent to some drak then it is in fact equivalent to some drak with

computably many control locations (by Lemma 4.1 from the next section).

4. Decidability of drak membership for nra1

In this section we prove our main decidability result for register automata, which we now
recall.

Theorem 1.2. The drak membership problem is decidable for nra1 languages.

The technical development of this section will also serve as a preparation for the more
involved case of timed automata from Sections 5 and 6. The key ingredient used in the proof
of Theorem 1.2 is the following characterisation of those nra1 languages which are also drak
languages. In particular, this characterisation provides a bound on the number of control
locations of a drak equivalent to a given nra1 (if any exists).

Lemma 4.1. Let A be a nra1 with n control locations, and let k ∈ N. The following
conditions are equivalent:
(1) L(A) = L(B) for some drak B.
(2) For every data word w, there is S ⊆ A of size at most k s.t. the left quotient w−1L(A) =
{v | w · v ∈ L(A)} is S-invariant.

(3) L(A) = L(B) for some drak B with at most f(k, n) = (k+1)! ·2n·(k+1) control locations.

Using the above lemma we derive a proof of Theorem 1.2:

Proof of Theorem 1.2. Given a nra1 A, the decision procedure enumerates all drak B with
at most f(k, n) locations and checks whether L(A) = L(B), using Corollary 3.6. If no such
drak B is found, the procedure answers negatively. Note that the fact that A is nra1 is
crucial here, since otherwise the equivalence check above would not be decidable. In fact,
this is the only place where the one register restriction really plays a rôle: A generalisation
of Lemma 4.1 for A being a nral for l ≥ 1 could be stated and proved; however we prefer to

Vol. 18:2 DETERMINISABILITY OF REGISTER AND TIMED AUTOMATA ∗ 9:11

avoid the additional notational complications of dealing with the general case since we need
Lemma 4.1 only in the case l = 1.

Remark 4.2 (Complexity). The decision procedure for nra1 invokes the Ackermann sub-
routine to check equivalence between a nra1 and a candidate dra . This is in a sense unavoid-
able, since we show in Theorem 1.6 that the drak membership problem is Ackermann-hard
for nra1.

The proof of Lemma 4.1 is presented below in Sec. 4.1. We remark that the lemma
partially follows from the literature of automata theory in sets with atoms. For instance,
the most interesting implication (2)⇒(3), even for A an arbitrary nral with l ≥ 1, minus
the concrete bound f(k, n) on control locations of B, follows from the following known
facts: (a) L(A) is recognised by a nondeterministic equivariant orbit-finite automaton [Boj,
Theorem 5.11], (b) the assumption (2) implies that the Myhill-Nerode equivalence of L has
orbit-finite index, (c) thus by [Boj, Theorem 5.14] L(A) is recognised by a deterministic
orbit-finite automaton B′, and (d) we can construct from B′ some language-equivalent drak′
B. However, this would not yield (1) the fact that we can even take k′ = k (i.e., the number
of registers of B can be taken to be the size k of the supports S in the assumption), and
(2) the concrete bound f(k, n) on the number of control locations of B (a computable such
bound is necessary in the automata enumeration procedure in the proof of Theorem 1.2).
For these reasons, we provide a full proof of the lemma.

4.1. Proof of Lemma 4.1. Let us fix a nra1 A = (X,Σ, L, LI , LF ,∆) and k ∈ N. Let
n = |L| be the number of control locations of A. The implication (3)⇒(1) holds trivially.
The implication (1)⇒(2) holds just because every left quotient w−1L(A) is the same as
w−1L(B) by the assumption L(A) = L(B) for a drak B, and, since B is deterministic,
the latter quotient w−1L(B) equals LB(c) for some configuration c = (p, µ). The latter is
µ(X)-invariant by Lemma 3.7(3), and clearly |µ(X)| ≤ k. (Notice that A did not play a rôle
here.)

It thus remains to prove the implication (2)⇒(3), which is the content of the rest of
the section. Assuming (2), we are going to define a drak B′ with registers X = {x1, . . . , xk}
and with at most f(k, n) locations such that L(B′) = L(A). We start from the transition
system X obtained by the finite powerset construction underlying the determinisation of A.
Next, after a series of language-preserving transformations, we will obtain a transition system
isomorphic to the reachable part of JB′K for some drak B′. As the last step, we extract from
this deterministic transition system a syntactic definition of B′. This is achievable due to the
invariance properties witnessed by the transition systems in the course of the transformation.

Macro-configurations. For simplicity, we will abuse the notation and write c = (p, a)
for a configuration c = (p, {x1 7→ a}) of A, where p ∈ L and a ∈ A ∪ {⊥}. A macro-
configuration is a (not necessarily finite) set X of configurations (p, a) of A. We use the
notation LA(X) :=

⋃
c∈X LA(c).

Let succσ,a(X) := {c′ ∈ JAK | c σ,a−−→ c′ for some c ∈ X} be the set of successors
of configurations in X which can be reached by reading (σ, a) ∈ Σ × A. We define a
deterministic transition system X consisting of the macro-configurations reachable in the
course of determinisation of A. Let X be the smallest set of macro-configurations and
transitions such that
• X contains the initial macro-configuration: X0 = {(p,⊥) | p ∈ LI} ∈ X ;

9:12 L. Clemente, S. Lasota, and R. Piórkowski Vol. 18:2

• X is closed under successor: for every X ∈ X and (σ, a) ∈ Σ × A, there is a transition
X

σ,a−−→ succσ,a(X) in X .
Due to the fact that JAK is finitely branching, i.e. succσ,a({c}) is finite for every fixed
(σ, a), all macro-configurations X ∈ X are finite. Let the final configurations of X be
FX = {X ∈ X | X ∩ F 6= ∅} where F ⊆ JAK is the set of final configurations of A.

Claim 4.3. LA(X) = LX (X) for every X ∈ X . In particular L(A) = LX (X0).

For a macro-configuration X we write Val(X) := {a ∈ A | ∃p · (p, a) ∈ X} to denote
the set of atoms appearing in X.

Pre-states. By assumption (2), for every macro-configuration X ∈ X , LA(X) is S-invariant
for some S of size at most k, but the macro-configuration X itself needs not be S-invariant
in general. Indeed, a finite macro-configuration X ∈ X is S-invariant if, and only if,
Val(X) ⊆ S, which is impossible in general when X is arbitrarily large while the size of
S is bounded (by k). Intuitively, in order to assure S-invariance we will replace X by its
S-closure ClS(X) (recall Fact 2.1).

The least support of a set with atoms X is the least S ⊆ A w.r.t. set inclusion s.t. X is
S-invariant. In the case of equality atoms every set with atoms has the least support, which
is moreover finite (see [BKL14, Cor. 9.4] or [Boj, Thm. 6.1]). By assumption, the least finite
support of every macro-configuration X in X has size at most k.

A pre-state is a pair Y = (X,S), where X is a macro-state whose least finite support is
S. Thus X is S-invariant which, together with the fact that S has size at most k, implies
that there are only finitely many pre-states up to automorphism. We define the deterministic
transition system Y as the smallest set of pre-states and transitions between them such that:
• Y contains the initial pre-state: Y0 = (X0, ∅) ∈ Y;
• Y is closed under the closure of successor: For every (X,S) ∈ Y and (σ, a) ∈ Σ × A,
the pre-state (X ′, S′) is in Y together with transition (X,S)

σ,a−−→ (X ′, S′), where S′ is
the least finite support of the language L′ = (σ, a)−1LA(X) = LA(succσ,a(X)), and
X ′ = ClS′(succσ,a(X)).

Example 4.4. Suppose that k = 3, a successor of some macro-configuration X has the
shape succσ,a1(X) = {(p, a1), (q, a1), (r, a2), (s, a3)} and the least finite support S′ of L′ is
{a1, a3}, where a1, a2, a3 ∈ A are pairwise-different. Then X ′ = {(p, a1), (q, a1)} ∪ {(r, a) |
a ∈ A \ {a1, a3}} ∪ {(s, a3)}.

By assumption, L′ is T -invariant for some T ⊆ A with |T | ≤ k. Since X is S-invariant, L′
is also (S ∪ {a})-invariant. By the least finite support property of equality atoms, finite
supports are closed under intersection, and hence S′ ⊆ (S ∪ {a}) ∩ T , which implies |S′| ≤ k.

By Lemma 3.7 we deduce:

Claim 4.5 (Invariance of Y). For every two transitions

(X1, S1)
σ,a1−−→ (X ′1, S

′
1) and (X2, S2)

σ,a2−−→ (X ′2, S
′
2)

in Y and an automorphism π, if π(X1) = X2 and π(S1) = S2 and π(a1) = a2, then we have
π(X ′1) = X ′2 and π(S′1) = S′2.

Let the final configurations of Y be FY = {(X,S) ∈ Y | X ∩ LF 6= ∅}. By induction on
the length of data words it is easy to show:

Claim 4.6. LX (X0) = LY(Y0).

Vol. 18:2 DETERMINISABILITY OF REGISTER AND TIMED AUTOMATA ∗ 9:13

States. We now introduce states, which are designed to be in one-to-one correspondence
with configurations of the forthcoming drak B′. Intuitively, a state differs from a pre-state
(X,S) only by allocating the values from (some superset of) S into k registers. Thus, while
a pre-state contains a set S, the corresponding state contains a register assignment µ : AX

⊥
with image µ(X) ⊇ S.

Let X = {x1, . . . , xk} be a set of k registers. A state is a pair Z = (X,µ), where X is a
macro-configuration, µ : AX

⊥ is a register assignment, and X is µ(X)-invariant. Thus every
state (X,µ) determines uniquely a corresponding pre-state τ(X,µ) = (X,S) where S ⊆ µ(X)
is the least finite support of X.

Example 4.7. We continue Example 4.4. States corresponding to the pre-state (X ′, S′)
feature the macro-configuration X ′, but can have different register valuations. One of them
is (X ′, µ′), where µ′ = {x1 7→ a1, x2 7→ a3, x3 7→ a1}.

We now define a deterministic transition system Z. Its states are all those (X,µ)
satisfying τ(X,µ) ∈ Y, and transitions are determined as follows: Z contains a transition
(X,µ)

σ,a−−→ (X ′, µ′) if Y contains the corresponding transition τ(X,µ)
σ,a−−→ τ(X ′, µ′) =

(X ′, S′), and µ′ = µ[Y 7→ a], where

Y = {xi ∈ X | µ(xi) /∈ S′ or µ(xi) = µ(xj) for some j > i}. (4.1)

The equation (4.1) defines a deterministic update policy5 of the register assignment µ that
amounts to updating with the current input atom a all registers xi whose value is either no
longer needed (because µ(xi) /∈ S′), or is shared with some other register xj , for j > i and
is thus redundant. It is easy to see that the above register update policy guarantees that
S′ ⊆ µ′(X) ⊆ S′ ∪ {a}. Using Claim 4.5 we derive:

Claim 4.8 (Invariance of Z). For every two transitions

(X1, µ1)
σ,a1−−→ (X ′1, µ

′
1) and (X2, µ2)

σ,a2−−→ (X ′2, µ
′
2)

in Z and an automorphism π, if π(X1) = X2 and π◦µ1 = µ2 and π(a1) = a2, then we have
π(X ′1) = X ′2 and π◦µ′1 = µ′2.

Let the initial state be Z0 = (X0, λx.⊥), and let final states be FZ = {(X,µ) ∈
Z | X ∩ F 6= ∅}. By induction on the length of data words one proves:

Claim 4.9. LY(Y0) = LZ(Z0).

In the sequel we restrict Z to states reachable from Z0.

Orbits of states. Recall that the action of automorphisms on macro-configurations and
reset-point assignments is extended to states as π(X,µ) = (π(X), π◦µ), and that the orbit
of a state Z is defined as orbit(Z) = {π(Z) | π ∈ Aut(A)}.

While a state is designed to correspond to a configuration of the forthcoming drak B′,
its orbit is designed to play the rôle of control location of B′. We therefore need to prove
that the set of orbits {orbit(Z) | Z ∈ Z} is finite and its size is bounded by f(k, n).

Let Mk denote the number of orbits of register valuations AX
⊥, which is the same as the

number of orbits of k-tuples Ak⊥. In case of equality atoms we have Mk ≤ (k + 1)! Indeed,
at the first position there are two possibilities, ⊥ or an atom; at the second position there

5There are in general many correct deterministic update policies, but for our purposes it suffices to define
one such deterministic update policy.

9:14 L. Clemente, S. Lasota, and R. Piórkowski Vol. 18:2

are at most three possibilities: ⊥, the same atom at the one at the first position, or a fresh
atom; and so on, until the last position where there are at most k + 1 possibilities.

Every l-element subset S = {a1, a2, . . . , al} ⊆ A of atoms induces, in the case of equality
atoms, exactly l + 1 different S-orbits of atoms:

S-orbits = {orbitS(a) | a ∈ A} = {{a1}, {a2}, . . . , {al},A− S}.
Therefore, each S ⊆ A of size at most k induces at most Nk := k + 1 different S-orbits of
atoms.

Consider a state Z = (X,µ) and let S = µ(X). We define the characteristic function
charZ : S-orbits→ P(L) as follows:

charZ(o) = {l ∈ L | (l, a) ∈ X for some a ∈ o}.
Since X is S-invariant, the choice of the atom a ∈ o is irrelevant, and we conclude:

Claim 4.10. Every state Z = (X,µ) is uniquely determined by its register valuation µ and
by the characteristic function charZ .

Claim 4.11. The size of {orbit(Z) | Z ∈ Z} is at most Mk · 2n·Nk .

Proof. We show that there are at most Mk · (2n)Nk different orbits of states. Consider two
states Z = (X,µ) and Z ′ = (X ′, µ) and let S = µ(X) and S′ = µ′(X). Suppose that the
register valuations µ and µ′ are in the same orbit: π ◦ µ = µ′ for some automorphism π.
Thus π(S) = S′, and moreover π induces a bijection π̃ between S-orbits and S′-orbits.
Note that, once S is fixed, there are at most (2n)Nk possible characteristic functions of Z,
and likewise for S′ and Z ′. Supposing further that the characteristic functions agree, i.e.,
satisfy charZ = charZ′ ◦ π̃, using Claim 4.10 we derive π(Z) = Z ′, i.e., Z and Z ′ are in the
same orbit. Therefore, since the number of orbits of register valuations µ, µ′ is at most Mk,
and for each such orbit the number of different characteristic functions is at most (2n)Nk ,
the number of different orbits of states is bounded as required.

For future use we observe that every state is uniquely determined by its register valuation
and its orbit:

Claim 4.12. Let Z = (X,µ) and Z ′ = (X ′, µ) be two states in Z with the same register
valuation. If π(X) = X ′ and π◦µ = µ for some automorphism π then X = X ′.

Proof. Indeed, X is µ(X)-invariant and hence π(X) = X, which implies X = X ′.

In the terminology of automata in sets with atoms, we have proved that Z is a deter-
ministic orbit-finite automaton (c.f. [Boj, Sec. 5.2] for a definition), with the concrete bound
on the number of orbits given by Lemma 4.11.

Construction of the dra. As the last step we define a drak B′ = (X,Σ, L′, {o0}, L′F ,∆′)
such that the reachable part of JB′K is isomorphic to Z. Let locations L′ = {orbit(Z) | Z ∈
Z} be the orbits of states from Z, the initial location be the orbit o0 of Z0, and final locations
L′F = {orbit(Z) | Z ∈ FZ} be orbits of final states. Let each transition Z = (X,µ)

σ,a−−→
(X ′, µ′) = Z ′ in Z induce a transition rule in B′

(o, σ, ψ, Y, o′) ∈ ∆′ (4.2)

where o = orbit(Z), o′ = orbit(Z ′), Y = {x ∈ X | µ′(x) = a}, and the constraint
ψ(x1, . . . , xk, y) defines the orbit of (µ(x1), . . . , µ(xk), a) (here we rely on Claim 3.1). We
argue that the automaton B′ is deterministic:

Vol. 18:2 DETERMINISABILITY OF REGISTER AND TIMED AUTOMATA ∗ 9:15

Claim 4.13. Suppose that B′ has two transition rules o σ,ψ1,Y1−−−−→ o′1 and o σ,ψ2,Y2−−−−→ o′2 with the
same source location o and jointly satisfiable constraints (Jψ1 ∧ ψ2K 6= ∅). Then the target
locations are equal (o′1 = o′2), and the same registers are updated (Y1 = Y2).

Proof. Since the constraints are jointly satisfiable, both transition rules are enabled in some
configuration c = (o, µ) and for some input atom a ∈ A. By Claim 4.12, c determines a
corresponding state Z = (X,µ) with o = orbit(Z) and, since the system Z is deterministic,
both transition rules are induced by a common transition (X,µ)

σ,a−−→ (X ′, µ′) in Z. This in
turn implies o1 = o2 and Y1 = Y2, as required.

Claim 4.14. Z is isomorphic to the reachable part of JB′K.

Proof. For a state Z = (X,µ), let ι(Z) = (orbit(Z), µ). Let Z ′ denote the reachable part of
JB′K. By Claim 4.12, the mapping ι(_) is a bijection between Z and its image ι(Z) ⊆ JB′K.
We aim at proving ι(Z) = Z ′.

By the very definition (4.2), the image ι(Z) is a subsystem of Z ′: ι(Z) ⊆ Z ′. For the
converse inclusion, recall that Z is total: for every (σ1, a1) . . . (σn, an) ∈ (Σ× A)∗, there is a
sequence of transitions (X0, µ0)

σ1,a1−−−→ · · · σn,an−−−→ (Xn, µn) in Z. Therefore ι(Z) is total too
and, since Z ′ is deterministic and reachable, the subsystem ι(Z) ⊆ Z ′ necessarily equals
Z ′.

Claims 4.3, 4.6, 4.9, and 4.14 jointly imply L(A) = L(B′), which completes the proof of
Lemma 4.1.

4.2. Other atoms. The proof of Theorem 1.2 straightforwardly generalises to any relational
structure of atoms A satisfying the following conditions:
• A is homogeneous [Fra53];
• A preserves well-quasi orders (wqo): finite induced substructures of A labelled by elements
of an arbitrary wqo, ordered by label-respecting embedding, are again a wqo (for details
we refer the reader to [Las16, item (A3), Sect.5]);
• A is effective: it is decidable, if a given finite structure over the vocabulary of A is an
induced substructure thereof;
• A has the least finite support property.
As an example, the structure of densely ordered atoms A = (R,≤) satisfies all the conditions
and hence Theorem 1.2 holds for register automata over this structure of atoms.

We briefly discuss the adjustments needed. The syntax of constraints (3.1) is extended
by adding atomic constraints for all relations in A, and Claim 3.1 holds by homogeneity of
A. The decision procedure checking equivalence of a nra1 and a dra from Corollary 3.6,
invoked in the proof of Theorem 1.2, works assuming that A preserves wqo and is effective.
The least finite support assumption is required in the definition of pre-states. Finally, again
due to homogeneity of A the bounds Mk and Nk used in Claim 4.11 are finite (but dependent
on A).

5. Timed automata

The register-based model which is the closest to timed automata is based on timed atoms (R,≤
,+1) [BL12]. However, due to the syntactic and semantic restrictions which are traditionally
imposed on timed automata (such as monotonicity of time, nonnegative timestamps, the

9:16 L. Clemente, S. Lasota, and R. Piórkowski Vol. 18:2

special status of the initial timestamp 0, and the concrete syntax of transition constraints),
the latter can be seen only as as a strict subclass of the corresponding register model. For
this reason, we present our results on the deterministic membership probem in the syntax
and semantics of timed automata.

Timed words and languages. Fix a finite alphabet Σ. Let R and R≥0 denote the reals,
resp., the nonnegative reals6. Timed words are obtained by instantiating data words to timed
atoms, and imposing additional conditions: non-negativeness and monotonicity: A timed
word over Σ is any sequence of the form

w = (σ1, t1) . . . (σn, tn) ∈ (Σ× R≥0)∗ (5.1)

which is monotonic, in the sense that the timed atoms (called timestamps henceforth) ti’s
satisfy 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn. For w a timed word as in (5.1) and an increment δ ∈ R≥0,
let w + δ = (σ1, t1 + δ) . . . (σn, tn + δ) be the timed word obtained from w by increasing
all timestamps by δ. Let T(Σ) be the set of all timed words over Σ, and let T≥t(Σ) be, for
t ∈ R≥0, the set of timed words with t1 ≥ t. A timed language is any subset of T(Σ).

The concatenation w · v of two timed words w and v is defined only when the first
timestamp of v is greater or equal than the last timestamp of w. Using this partial operation,
we define, for a timed word w ∈ T(Σ) and a timed language L ⊆ T(Σ), the left quotient
w−1L := {v ∈ T(Σ) | w · v ∈ L}. Clearly w−1L ⊆ T≥tn(Σ).

Clock constraints and regions. Let X = {x1, . . . , xk} be a finite set of clocks. A clock
valuation is a function µ ∈ RX

≥0 assigning a non-negative real number µ(x) to every clock
x ∈ X. A clock constraint is a quantifier-free formula of the form

ϕ,ψ ::≡ true | false | xi − xj ∼ z | xi ∼ z | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ,
where “∼” is a comparison operator in {=, <,≤, >,≥} and z ∈ Z. A clock valuation µ
satisfies a constraint ϕ, written µ |= ϕ, if interpreting each clock xi by µ(xi) makes ϕ a
tautology. Let JϕK be the set of clock valuations µ ∈ RX

≥0 s.t. µ |= ϕ. If JϕK is non-empty
and it does not strictly include a non-empty JψK (JϕK for some constraint ψ, then we say
that it is a region. For example, for X = {x, y} we have that r0 = J1 < x < 2 ∧ y = 3K is a
region, while r1 = J1 < x ≤ 2 ∧ y = 3K is not. Nonetheless, the latter partitions into two
regions r1 = r0 ∪ Jx = 2 ∧ y = 3K, and we will later see that this is a general phenomenon.
A k,m-region is a region JϕK where ϕ has k clocks and absolute value of maximal constant
bounded by m. For instance, the clock constraint 1 < x1 < 2 ∧ 4 < x2 < 5 ∧ x2 − x1 < 3
defines a 2, 5-region consisting of an open triangle with nodes (1, 4), (2, 4) and (2, 5). A
region JϕK is bounded if it is bounded as a subset of RX

≥0 in the classical sense, i.e., there
exists M ∈ R≥0 s.t. JϕK ⊆ [0,M]X.

Timed automata. A (nondeterministic) timed automaton is a tuple A = (X,Σ, L, LI , LF ,∆),
where X is a finite set of clocks, Σ is a finite input alphabet, L is a finite set of control
locations, LI , LF ⊆ L are the subsets of initial, resp., final, control locations, and ∆ is a finite
set of transition rules of the form

(p, σ, ϕ, Y, q) (5.2)

with p, q ∈ L control locations, σ ∈ Σ, ϕ a clock constraint to be tested, and Y ⊆ X the set of
clocks to be reset. We write nta for the class of all nondeterministic timed automata, ntak

6Equivalently, the rationals Q could be considered in place of reals.

Vol. 18:2 DETERMINISABILITY OF REGISTER AND TIMED AUTOMATA ∗ 9:17

when the number k of clocks is fixed, nta_,m when the bound m on constants is fixed, and
ntak,m when both k and m are fixed.

An nta_,m A is always resetting if every transition rule resets some clock (Y 6= ∅ in (5.2)),
and greedily resetting if, for every clock x, whenever ϕ implies that the value of x belongs
to {0, . . . ,m} ∪ (m,∞), then x ∈ Y. Intuitively, a greedily reseting automaton resets every
clock whose value is either an integer, or exceeds the maximal constant m.

Reset-point semantics. We introduce a semantics based on reset points instead of clock
valuations. A reset-point assignment is a function µ ∈ RX

≥0 storing, for each clock x ∈ X, the
timestamp µ(x) when x was last reset. Reset-point assignments and clock valuations have
the same type RX

≥0, however we find it technically more convenient to work with reset points
than with clock valuations. The reset-point semantics has already appeared in the literature
on timed automata [Fri98] and it is the foundation of the related model of timed-register
automata [BL12].

A configuration of an nta A is a tuple (p, µ, t0) consisting of a control location p ∈ L, a
reset-point assignment µ ∈ RX

≥0, and a “now” timestamp t0 ∈ R≥0 satisfying µ(x) ≤ t0 for all
clocks x ∈ X. Intuitively, t0 is the last timestamp seen in the input and, for every clock x,
µ(x) stores the timestamp of the last reset of x. A configuration is initial if p is so, t0 = 0,
and µ(x) = 0 for all clocks x, and it is final if p is so (without any further restriction on µ
or t0). For a set of clocks Y ⊆ X and a timestamp u ∈ R≥0, let µ[Y 7→ u] be the assignment
which is u on Y and agrees with µ on X \ Y. A reset-point assignment µ together with t0
induces the clock valuation t0 − µ defined as (t0 − µ)(x) = t0 − µ(x) for all clocks x ∈ X.

Every transition rule (5.2) induces a transition between configurations

(p, µ, t0)
σ,t−→ (q, ν, t)

labelled by (σ, t) ∈ Σ × R≥0 whenever t ≥ t0, t − µ |= ϕ, and ν = µ[Y 7→ t]. The timed
transition system induced by A is (JAK ,−→, F), where JAK is the set of configurations,
−→ ⊆ JAK×Σ×R≥0 × JAK is as defined above, and F ⊆ JAK is the set of final configurations.
Since there is no danger of confusion, we use JAK to denote either the timed transition
system above, or its domain. A run of A over a timed word w as in (5.1) starting in
configuration (p, µ, t0) and ending in configuration (q, ν, tn) is a path ρ in JAK of the form
ρ = (p, µ, t0)

σ1,t1−−−→ . . .
σn,tn−−−→ (q, ν, tn). The run ρ is accepting if its last configuration

satisfies (q, ν, tn) ∈ F . The language recognised by configuration (p, µ, t0) is defined as:

LJAK(p, µ, t0) = {w ∈ T(Σ) | JAK has an accepting run over w starting in (p, µ, t0)}.

Clearly LJAK(p, µ, t0) ⊆ T≥t0(Σ). We write LA(c) instead of LJAK(c). The language recognised
by the automaton A is L(A) =

⋃
c initial LA(c).

A configuration is reachable if it is the ending configuration in a run starting in an
initial configuration. In an always resetting nta_,m, every reachable configuration (p, µ, t0)
satisfies t0 ∈ µ(X), where µ(X) = {µ(x) | x ∈ X}; in a greedily resetting one, (1) (p, µ, t0) has
m-bounded span, in the sense that µ(X) ⊆ (t0 −m, t0], and moreover (2) any two clocks x, y
with integer difference µ(x)− µ(y) ∈ Z are actually equal µ(x) = µ(y). Condition (2) follows
from the fact that if x, y have integer difference and y was reset last, then x was itself an
integer when this happened, and in fact they were both reset together in a greedily resetting
automaton.

9:18 L. Clemente, S. Lasota, and R. Piórkowski Vol. 18:2

Deterministic timed automata. A timed automaton A is deterministic if it has exactly
one initial location and, for every two rules (p, σ, ϕ, Y, q), (p, σ′, ϕ′, Y′, q′) ∈ ∆, if σ = σ′ and
the two transition constraints are jointly satisfiable Jϕ ∧ ϕ′K 6= ∅, then Y = Y′ and q = q′.
Hence A has at most one run over every timed word w. A dta can be easily transformed to
a total one, where for every location p ∈ L and σ ∈ Σ, the sets defined by clock constraints
{JϕK | ∃Y, q · (p, σ, ϕ, Y, q) ∈ ∆} are a partition of RX

≥0. Thus, a total dta has exactly one
run over every timed word w. We write dta for the class of deterministic timed automata,
and dtak, dta_,m, and dtak,m for the respective subclasses thereof. A timed language is
called nta language, dta language, etc., if it is recognised by a timed automaton of the
respective type.

Example 5.1. This is a timed analog of Example 3.4. Let Σ = {σ} be a unary alphabet.
As an example of a timed language L recognised by a nta1, but not by any dta, consider
the set of non-negative timed words of the form (σ, t1) · · · (σ, tn) where tn − ti = 1 for some
1 ≤ i < n. The language L is recognised by the nta1 A = (X,Σ, L, LI , LF ,∆) with a single
clock X = {x} and three locations L = {p, q, r}, of which LI = {p} is initial and LF = {r} is
final, and transition rules

(p, σ, true, ∅, p) (p, σ, true, {x}, q) (q, σ, x < 1, ∅, q) (q, σ, x = 1, ∅, r).
Intuitively, in p the automaton waits until it guesses that the next input will be (σ, ti), at
which point it moves to q by resetting the clock. From q, the automaton can accept by
going to r only if exactly one time unit elapsed since (σ, ti) was read. The language L
is not recognised by any dta since, intuitively, any deterministic acceptor needs to store
unboundedly many timestamps ti’s.

Deterministic membership problems. The decision problems for nta we are interested
in are analogous to the ones for nra, but additionally a bound on the maximal constant
appearing in a dta may be specified as a parameter. Let X be a subclass of nta . We are
interested in the following decision problem.

X membership problem.
Input: A timed automaton A ∈ nta .
Output: Does there exist a B ∈ X s.t. L(A) = L(B)?

In the rest of the paper, we study the decidability status of the X membership problem
where X ranges over dta, dtak (for every fixed number of clocks k), dta_,m (for every
maximal constant m), and dtak,m (when both clocks k and maximal constant m are fixed).
Example 5.1 shows that there are nta languages which cannot be accepted by any dta .
Moreover, similarly as in case of nra, there is no computable bound for the number of clocks
k which suffice to recognise a nta1 language by a dtak (when such a number exists).

6. Invariance of timed automata

A fundamental tool used below is invariance properties of timed languages recognised by
nta with respect to timed automorphisms. In this section we establish these properties, as
extension of analogous properties of register automata. We also prove a timed analog of the
least support property, and relate regions to orbits of configurations.

Recall that timed automorphisms are monotonic bijections R→ R that preserve integer
differences. A timed automorphism π acts on input letters in Σ as the identity, π(a) = a,

Vol. 18:2 DETERMINISABILITY OF REGISTER AND TIMED AUTOMATA ∗ 9:19

and is extended point-wise to timed words π((σ1, t1) . . . (σn, tn)) = (σ0, π(t1)) . . . (σn, π(tn)),

configurations π(p, µ, t0) = (p, π◦µ, π(t0)), transitions π(c
σ,t−→ c′) = π(c)

σ,π(t)−−−→ π(c′), and
sets X thereof π(X) = {π(x) | x ∈ X}.

Remark 6.1. In considerations about timed automata we restrict to nonnegative reals, while
a timed automorphism π can in general take a nonnegative real t ≥ 0 to a negative one. In
the sequel whenever we write π(x), for x being any object like a timestamp, a configuration,
a timed word, etc., we always implicitly assume that π is well-defined on x, i.e., yields a
timestamp, a configuration, a timed word, etc. In other words, for invariance properties
we restrict to those timed automorphisms that preserve nonnegativeness of all the involved
timestamps.

Let S ⊆ R≥0. An S-timed automorphism is a timed automorphism s.t. π(t) = t for all
t ∈ S. Let ΠS denote the set of all S-timed automorphisms, and let Π = Π∅. A set X is
S-invariant if π(X) = X for every π ∈ ΠS ; equivalently, for every π ∈ ΠS , x ∈ X if, and
only if π(x) ∈ X. A set X is invariant if it is S-invariant with S = ∅. The following three
facts express some basic invariance properties.

Fact 6.2. The timed transition system JAK is invariant.

Proof. Suppose c = (p, µ, t0)
σ,t−→ (p′, µ′, t) = c′ due to some transition rule of A whose clock

constraint ϕ compares values of clocks x, i.e., the differences t − µ(x), to integers. Since
a timed automorphism π preserves integer distances, the same clock constraint is satisfied
in π(c) = (p, π◦µ, π(t0)), and therefore the same transition rule is applicable yielding the

transition (p, π◦µ, π(t0))
σ,π(t)−−−→ (p, π◦µ′, π(t)) = π(c′).

By unrolling the definition of invariance in the previous fact, we obtain that the set of
configurations is invariant, the set of transitions −→ is invariant, and that the set of final
configurations F is invariant.

Fact 6.3 (Invariance of the language semantics). The function c 7→ LA(c) from JAK to
languages is invariant, i.e., for all timed automorphisms π, LA(π(c)) = π(LA(c)).

Proof. Consider a timed automorphism π and an accepting run of A over a timed word
w = (σ1, t1) . . . (σn, tn) ∈ T≥t0(Σ) starting in c = (p, µ, t0):

(p, µ, t0)
σ1,t1−−−→ · · · σn,tn−−−→ (q, ν, tn),

After σi is read, the value of each clock is either the difference ti − µ(x) for some 1 ≤ i ≤ n
and clock x ∈ X, or the difference ti − tj for some 1 ≤ j ≤ i. Likewise is the difference of
values of any two clocks. Thus clock constraints of transition rules used in the run compare
these differences to integers. As timed automorphism π preserves integer differences, by
executing the same sequence of transition rules we obtain the run over π(w) starting in
π(c) = (p, π◦µ, π(t0)):

(p, π◦µ, π(t0))
σ1,π(t1)−−−−−→ · · · σn,π(tn)−−−−−→ (q, π◦ν, π(tn)),

also accepting as it ends in the same location q. As w ∈ T(Σ) can be chosen arbitrarily, we
have thus proved one of inclusions, namely

π(LA(p, µ, t0)) ⊆ LA(p, π◦µ, π(t0)).

9:20 L. Clemente, S. Lasota, and R. Piórkowski Vol. 18:2

The other inclusion follows from the latter one applied to π−1 and LA(p, π◦µ, π(t0)):

π−1(LA(p, π◦µ, π(t0))) ⊆ LA(p, π−1◦π◦µ, π−1(π(t0))) = LA(p, µ, t0).

The two implications prove the equality.

Fact 6.4 (Invariance of the language of a configuration). The language LA(p, µ, t0) is
(µ(X) ∪ {t0})-invariant. Moreover, if A is always resetting, then LA(p, µ, t0) is µ(X)-invariant.

Proof. This is a direct consequence of the invariance of semantics. Indeed, for every (µ(X) ∪
{t0})-timed automorphism π the configurations c = (p, µ, t0) and π(c) = (p, π◦µ, π(t0)) are
equal, hence their languages LA(c) and LA(π(c)), the latter equal to π(LA(c)) by Fact 6.3,
are equal too. Thus, L = π(L). Finally, if A is always resetting, then t0 ∈ µ(X), from which
the second claim follows.

Since timed automorphisms preserve integer differences, only the fractional parts of
elements of S ⊆ R≥0 matter for S-invariance, and hence it makes sense to restrict to subsets
of the half-open interval [0, 1). Let fract(S) = {fract(x) | x ∈ S} ⊆ [0, 1) stand for the set of
fractional parts of elements of S. The following lemma shows that, modulo the irrelevant
integer parts, there is always the least set S witnessing S-invariance (c.f. the least support
property of, e.g., equality atoms).

Lemma 6.5. For finite subsets S, S′ ⊆ R≥0, if a timed language L is both S-invariant and
S′-invariant, then it is also S′′-invariant as long as fract(S′′) = fract(S) ∩ fract(S′).

Proof. Let L be an S- and S′-invariant timed language, and let F = fract(S) and F ′ =
fract(S′). We prove that L is an (F ∩ F ′)-invariant subset of T(Σ). Consider two timed
words w,w′ ∈ T(Σ) such that w′ = π(w) for some (F ∩F ′)-timed automorphism π. We need
to show

w ∈ L iff w′ ∈ L,

which follows immediately by the following claim:

Claim 6.6. Every (F ∩F ′)-timed automorphism π decomposes into π = πn ◦ · · · ◦ π1, where
each πi is either an F - or an F ′-timed automorphism.

Composition of timed automorphisms makes Π into a group. In short terms, Claim 6.6
states that ΠF∩F ′ ⊆ ΠF + ΠF ′ , where ΠF + ΠF ′ is the smallest subgroup of Π including
both ΠF and ΠF ′ . We state below in Claim 6.8 a fact equivalent to Claim 6.6, and which
is based on the proof of Theorem 9.3 in [BKL14]. An important ingredient of the proof of
Claim 6.8 is the following fact where, instead of dealing with decomposition of π, we analyse
the individual orbit of F \ F ′, in the special case when both F \ F ′ and F ′ \ F are singleton
sets:

Claim 6.7. Let F, F ′ ⊆ [0, 1) be finite sets s.t. F \ F ′ = {t} and F ′ \ F = {t′}. For every
(F ∩ F ′)-timed automorphism π we have π(t) = (πn ◦ · · · ◦ π1)(t), for some π1, . . . , πn, each
of which is either an F - or an F ′-timed automorphism (i.e., belongs to ΠF + ΠF ′).

Proof of Claim 6.7. We split the proof into two cases.

Vol. 18:2 DETERMINISABILITY OF REGISTER AND TIMED AUTOMATA ∗ 9:21

Case F ∩ F ′ 6= ∅. Let l be the greatest element of F ∩ F ′ smaller than t, and let h be the
smallest element of F ∩ F ′ greater than t, assuming they both exist. (If l does not exist
put l := h′ − 1, where h′ is the greatest element of F ∩ F ′; symmetrically, if h does not
exists put h := l′ + 1, where l′ is the smallest element of F ∩ F ′.) Then the (F ∩ F ′)-orbit
{π(t) | π is an (F ∩ F ′)-timed automorphism} is the open interval (l, h). Take any (F ∩ F ′)-
timed automorphism π; without loss of generality assume that u = π(t) > t. The only
interesting case is t < t′ ≤ u. In this case, we show π(t) = π2(π1(t)),where
• π1 is some F ′-timed automorphism that acts as the identity on [t′, l + 1] and s.t. t <
π1(t) < t′,
• π2 is some F -timed automorphism that acts as the identity on [h−1, t] and s.t. π2(π1(t)) =
u.

Case F∩F ′ = ∅. Thus F = {t} and F ′ = {t′}. Take any timed automorphism π; without loss
of generality assume that π(t) > t. Let z ∈ Z be the unique integer s.t. t′+ z− 1 < t < t′+ z.
Let π1 be an arbitrary {t′}-timed automorphism that maps t to some t1 ∈ (t, t′+z). Note that
t1 may be any value in (t, t′ + z). Similarly, let π2 be an arbitrary {t}-timed automorphism
that maps t1 to some t2 ∈ (t′, t+ 1). Again, t2 may be any value in (t′, t+ 1). By repeating
this process sufficiently many times one finally reaches π(t) as required.

Claim 6.8. Let F, F ′ ⊆ [0, 1) be finite sets and let G ⊆ Π be a subgroup of Π. If ΠF ⊆ G
and ΠF ′ ⊆ G then ΠF∩F ′ ⊆ G.

Proof of Claim 6.8. The proof is by induction on the size of the (finite) set F ∪F ′. If F ⊆ F ′
or F ′ ⊆ F , then the conclusion follows trivially. Otherwise, consider any t ∈ F \ F ′ and
t′ ∈ F ′ \ F ; obviously t 6= t′. Define E = (F ∪ F ′) \ {t, t′}. We have F ⊆ E ∪ {t} and
F ′ ⊆ E ∪ {t′} hence

ΠE∪{t} ⊆ ΠF ⊆ G ΠE∪{t′} ⊆ ΠF ′ ⊆ G.
We shall now prove that ΠE ⊆ G. To this end, consider any π ∈ ΠE . By Claim 6.7, there
exists a permutation

τ = πn ◦ · · · ◦ π1 ∈ ΠE∪{t} + ΠE∪{t′}

such that π(t) = τ(t). In other words, each of π1, . . . , πn is either a (E ∪{t})- or a (E ∪{t′})-
timed automorphism. Since ΠE∪{t} ⊆ G and ΠE∪{t′} ⊆ G, all πi ∈ G, hence also τ ∈ G.

On the other hand, clearly ΠE∪{t} ⊆ ΠE and ΠE∪{t′} ⊆ ΠE , so all πi ∈ ΠE , therefore
τ ∈ ΠE . As a result, π−1 ◦ τ ∈ ΠE . Since (π−1 ◦ τ)(t) = t, we obtain π−1 ◦ τ ∈ ΠE∪{t},
therefore π−1 ◦ τ ∈ G. Together with τ ∈ G proved above, this gives π ∈ G. Thus we have
proved ΠE ⊆ G.

It is now easy to show that ΠF∩F ′ ⊆ G. Indeed, |F ∪ E| = |F ∪ F ′| − 1, so by the
inductive assumption for F and E, we have ΠF\{t} ⊆ G (note that F \{t} = F ∩E). Further,
|(F \ {t}) ∪ F ′| = |F ∪ F ′| − 1, so ΠF∩F ′ ⊆ G (note that (F \ {t}) ∩ F ′ = F ∩ F ′), as
required.

Claim 6.8 immediately implies Claim 6.6 by taking G = ΠF + ΠF ′ . Lemma 6.5 is thus
proved.

As a direct corollary of Lemma 6.5, we have:

Corollary 6.9. For every timed language L, the set {fract(S) | S ⊆fin R≥0, L is S-invariant},
if nonempty, has a least (inclusion-wise) element.

9:22 L. Clemente, S. Lasota, and R. Piórkowski Vol. 18:2

Finally, recall S-orbits and orbits of elements, as defined abstractly in Section 2. Every
bounded region corresponds to an orbit of configurations. Hence, in case of greedily resetting
nta where all reachable regions are bounded, orbits of reachable configurations are in bijective
correspondence with reachable regions:

Fact 6.10. Assume A is a greedily resetting ntak,m. Two reachable configurations (p, µ, t0)
and (p, µ′, t′0) of A with the same control location p have the same orbit if, and only if, the
corresponding clock valuations t0 − µ and t′0 − µ′ belong to the same k,m-region.

7. Decidability of dtak and dtak,m membership for nta1

In this section we prove our main decidability result for timed automata, which we now recall.

Theorem 1.1. The dtak and dtak,m membership problems are decidable for nta1 languages.

Both results are shown using the following key characterisation of those nta1 languages
which are also dtak languages.

Lemma 7.1. Let A be a nta1,m with n control locations, and let k ∈ N. The following
conditions are equivalent:
(1) L(A) = L(B) for some always resetting dtak B.
(2) For every timed word w, there is S ⊆ R≥0 of size at most k s.t. the last timestamp of w

is in S and w−1L(A) is S-invariant.
(3) L(A) = L(B) for some always resetting dtak,m B with at most f(k,m, n) = Reg(k,m) ·

2n(2km+1) control locations (Reg(k,m) stands for the number of k,m-regions).

As in case of register automata, this characterisation provides a bound on the number of
control locations of a dtak equivalent to a given nta1 (if any exists).

The proof of Theorem 1.1 builds on Lemma 7.1 and on the following fact:

Lemma 7.2. The dtak and dtak,m membership problems are both decidable for dta lan-
guages.

Proof. We reduce to a deterministic separability problem. Recall that a language S separates
two languages L,M if L ⊆ S and S ∩M = ∅. It has recently been shown that the dtak
and dtak,m separability problems are decidable for nta [CLP20b, Theorem 1.1], and thus,
in particular, for dta . To solve the membership problem, given a dta A, the procedure
computes a dta A′ recognising the complement of L(A) and checks whether A and A′ are
dtak separable (resp., dtak,m separable) by using the result above. It is a simple set-theoretic
observation that L(A) is a dtak language if, and only if, the languages L(A) and L(A′) are
separated by some dtak language, and likewise for dtak,m languages.

Proof of Theorem 1.1. We solve both problems in essentially the same way. Given a nta1,m A,
the decision procedure enumerates all always resetting dtak+1,m B with at most f(k+1,m, n)
locations and checks whether L(A) = L(B) (which is decidable by [OW04, Theorem 17]). If
no such dtak+1 B is found, the L(A) is not an always resetting dtak+1 language, due to
Lemma 7.1, and hence forcedly is not a dtak language either; the procedure therefore answers
negatively. Otherwise, in case when such a dtak+1 B is found, then a dtak membership
(resp. dtak,m membership) test is performed on B, which is decidable due to Lemma 7.2.

Vol. 18:2 DETERMINISABILITY OF REGISTER AND TIMED AUTOMATA ∗ 9:23

Remark 7.3 (Complexity). The decision procedure for nta1 invokes the HyperAcker-
mann subroutine of [OW04] to check equivalence between a nta1 and a candidate dta . This
is in a sense unavoidable, since we show in Theorem 1.5 that dtak and dtak,m membership
problems are HyperAckermann-hard for nta1.

In the rest of this section we present the proof of Lemma 7.1. The proof is a suitable
extension and refinement of the argument used in case of register automata in Section 4.

7.1. Proof of Lemma 7.1. Let us fix a nta1,m A = (Σ, L, {x}, LI , LF ,∆), where m is the
greatest constant used in clock constraints in A, and k ∈ N. We assume w.l.o.g. that A is
greedily resetting: This is achieved by resetting the clock as soon as upon reading an input
symbol its value becomes greater than m or is an integer ≤ m; we can record in the control
location the actual integral value if it is ≤ m, or a special flag otherwise. Consequently, after
every discrete transition the value of the clock is at most m, and if it is an integer then it
equals 0.

The implication 3⇒1 follows by definition. For the implication 1⇒2 suppose, by
assumption, L(A) = L(B) for a total always resetting dtak B. Every left quotient w−1L(A)
equals LB(c) for some configuration c, hence Point 2 follows by Fact 6.4. Here we use the
fact that B is always resetting in order to apply the second part of Fact 6.4; without the
assumption, we would only have S-invariance for sets S of size at most k + 1.

It thus remains to prove the implication 2⇒3, which will be the content of the rest
of the section. Assuming Point 2, we are going to define an always resetting dtak,m B′

with clocks X = {x1, . . . , xk} and with at most f(k,m, n) locations such that L(B′) = L(A).
We start from the timed transition system X obtained by the finite powerset construction
underlying the determinisation of A, and then transform this transition system gradually,
while preserving its language, until it finally becomes isomorphic to the reachable part
of JB′K for some dtak,m B′. As the last step we extract from this deterministic timed
transition system a syntactic definition of B′ and prove equality of their languages. This is
achieved thanks to the invariance properties of the transition systems in the course of the
transformation.

Macro-configurations. Configurations of the nta1 A are of the form c = (p, u, t0) where
u, t0 ∈ R≥0 and u ≤ t0. A macro-configuration is a (not necessarily finite) set X of
configurations (p, u, t0) of A which share the same value of the current timestamp t0, which
we denote as now(X) = t0. We use the notation LA(X) :=

⋃
c∈X LA(c). Let succσ,t(X) :=

{c′ ∈ JAK | c σ,t−→ c′ for some c ∈ X} be the set of successors of configurations inX. We define
a deterministic timed transition system X consisting of the macro-configurations reachable
in the course of determinisation of A. Let X be the smallest set of macro-configurations and
transitions such that
• X contains the initial macro-configuration: X0 = {(p, 0, 0) | p ∈ LI} ∈ X ;
• X is closed under successor: for every X ∈ X and (σ, t) ∈ Σ× R≥0, there is a transition
X

σ,t−→ succa,t(X) in X .
Due to the fact that JAK is finitely branching, i.e. succσ,t({c}) is finite for every fixed
(σ, t), all macro-configurations X ∈ X are finite. Let the final configurations of X be
FX = {X ∈ X | X ∩ F 6= ∅}.

Claim 7.4. LA(X) = LX (X) for every X ∈ X . In particular L(A) = LX (X0).

9:24 L. Clemente, S. Lasota, and R. Piórkowski Vol. 18:2

For a macro-configuration X we write Val(X) := {u | (p, u,now(X)) ∈ X}∪{now(X)}
to denote the reals appearing in X. Since A is greedily resetting, every macro-configuration
X ∈ X satisfies Val(X) ⊆ (now(X) −m,now(X)]. Whenever a macro-configuration X
satisfies this condition we say that the span of X is bounded by m.

Pre-states. By assumption (Point 2), LA(X) is S-invariant for some S of size at most k,
but the macro-configuration X itself needs not be S-invariant in general. Indeed, a finite
macro-configuration X ∈ X is S-invariant if, and only if, fract(Val(X)) ⊆ fract(S), which is
impossible in general when X is arbitrarily large, its span is bounded (by m), and size of
S is bounded (by k). Intuitively, in order to assure S-invariance we will replace X by its
S-closure ClS(X) (recall Fact 2.1).

A set S ⊆ R≥0 is fraction-independent if it contains no two reals with the same fractional
part. A pre-state is a pair Y = (X,S), where X is an S-invariant macro-state, and S is a
finite fraction-independent subset of Val(X) that contains now(X). The intuitive rationale
behind assuming the S-invariance of X is that it implies, together with the bounded span
of X and the bounded size of S, that there are only finitely many pre-states, up to timed
automorphism. We define the deterministic timed transition system Y as the smallest set of
pre-states and transitions between them such that:
• Y contains the initial pre-state: Y0 = (X0, {0}) ∈ Y;
• Y is closed under the closure of successor: for every (X,S) ∈ Y and (σ, t) ∈ Σ×R≥0, there
is a transition (X,S)

σ,t−→ (X ′, S′), where S′ is the least, with respect to set inclusion, subset
of S ∪ {t} containing t such that the language L′ = (σ, t)−1LA(X) = LA(succσ,t(X)) is
S′-invariant, and X ′ = ClS′(succσ,t(X)).

Observe that the least such fraction-independent subset S′ exists due to the following facts:
by fraction-independence of S there is a unique fraction-independent subset S̃ ⊆ S ∪ {t}
which satisfies fract(S̃) = fract(S ∪ {t}) (S̃ is obtained by removing from S any element
u such that fract(u) = fract(t), if any); since X is S-invariant, due to Fact 6.3 so it is its
language LA(X), and hence L′ is necessarily S̃-invariant; by assumption (Point 2), L′ is
R-invariant for some set R ⊆ R≥0 of size at most k containing t; let T ⊆ [0, 1) be the least
set of fractional values given by Corollary 6.9 applied to L′, i.e., T ⊆ fract(S̃) ∩ fract(R);
finally let S′ ⊆ S̃ be chosen so that fract(S′) = T ∪ fract({t}). Due to fraction-independence
of S̃ the choice is unique and S′ is fraction-independent. Furthermore, t ∈ S′ and the size of
S′ is at most k.

Example 7.5. Suppose k = 3, m = 2, succσ,t(X) = {(p, 3.7, 5), (q, 3.9, 5), (r, 4.2, 5)}
and S′ = {3.7, 4.2, 5}. Then X ′ = {(p, 3.7, 5)} ∪ {(q, t, 5) | t ∈ (3.7, 4.2)} ∪ {(r, 4.2, 5)}.
now(X ′) = 5. A corresponding state (as defined below) is (X ′, µ′), where µ′ = {x1 7→
3.7, x2 7→ 4.2, x3 7→ 5}.

By Fact 6.3, we deduce:

Claim 7.6 (Invariance of Y). For every two transitions

(X1, S1)
σ,t1−−→ (X ′1, S

′
1) and (X2, S2)

σ,t2−−→ (X ′2, S
′
2)

in Y and a timed permutation π, if π(X1) = X2 and π(S1) = S2 and π(t1) = t2, then we
have π(X ′1) = X ′2 and π(S′1) = S′2.

Vol. 18:2 DETERMINISABILITY OF REGISTER AND TIMED AUTOMATA ∗ 9:25

Proof. Let i range over {1, 2} and let X̃i := succa,ti(Xi). Thus S′i is the least subset of
Si ∪ {ti} containing ti such that LA(X̃i) is S′i-invariant, and X

′
i = ClS′i(X̃i). By invariance

of JAK (Fact 6.2) and invariance of semantics (Fact 6.3) we get

π(X̃1) = X̃2, and π(LA(X̃1)) = LA(X̃2),

and therefore π(S′1) = S′2, which implies π(X ′1) = X ′2.

Let the final configurations of Y be FY = {(X,S) ∈ Y | X ∩ LF 6= ∅}. By induction on
the length of timed words it is easy to show:

Claim 7.7. LX (X0) = LY(Y0).

Due to the assumption that A is greedily resetting and due to Point 2, in every pre-state
(X,S) ∈ Y the span of X is bounded by m and the size of S is bounded by k.

States. We now introduce states, which are designed to be in one-to-one correspondence
with configurations of the forthcoming dtak B′. Intuitively, a state differs from a pre-state
(X,S) only by allocating the values from S into k clocks, thus while a pre-state contains a
set S, the corresponding state contains a reset-point assignment µ : X → R≥0 with image
µ(X) = S.

Let X = {x1, . . . , xk} be a set of k clocks. A state is a pair Z = (X,µ), where X is
a macro-configuration, µ : X → Val(X) is a reset-point assignment, µ(X) is a fraction-
independent set containing now(X), and X is µ(X)-invariant. Thus every state Z = (X,µ)
determines uniquely a corresponding pre-state ρ(Z) = (X,S) with S = µ(X). We define the
deterministic timed transition system Z consisting of those states Z s.t. ρ(Z) ∈ Y, and of
transitions determined as follows: (X,µ)

σ,t−→ (X ′, µ′) if the corresponding pre-state has a
transition (X,S)

σ,t−→ (X ′, S′) in Y, where S = µ(X), and

µ′(xi) :=

{
t if µ(xi) /∈ S′ or µ(xi) = µ(xj) for some j > i

µ(xi) otherwise.
(7.1)

Intuitively, the equation (7.1) defines a deterministic update of the reset-point assignment µ
that amounts to resetting (µ′(xi) := t) all clocks xi whose value is either no longer needed
(because µ(xi) /∈ S′), or is shared with some other clock xj , for j > i and is thus redundant.
Due to this disciplined elimination of redundancy, knowing that t ∈ S′ and the size of S′ is at
most k, we ensure that at least one clock is reset in every step. In consequence, µ′(X) = S′,
and the forthcoming dtak B′ will be always resetting. Using Claim 7.6 we derive:

Claim 7.8 (Invariance of Z). For every two transitions

(X1, µ1)
σ,t1−−→ (X ′1, µ

′
1) and (X2, µ2)

σ,t2−−→ (X ′2, µ
′
2)

in Z and a timed permutation π, if π(X1) = X2 and π◦µ1 = µ2 and π(t1) = t2, then we
have π(X ′1) = X ′2 and π◦µ′1 = µ′2.

Proof. Let i range over {1, 2}. Let Si = µi(X) and (Xi, Si)
a,ti−−→ (X ′i, S

′
i) in Y. By Claim 7.6

we have
π(X ′1) = X ′2 and π(S′1) = S′2.

Since π◦µ1 = µ2 and the definition (7.1) is invariant:

π◦(µ′) = (π◦µ)′,

9:26 L. Clemente, S. Lasota, and R. Piórkowski Vol. 18:2

we derive π◦µ′1 = µ′2.

Let the initial state be Z0 = (X0, µ0), where µ0(xi) = 0 for all xi ∈ X, and let the final
states be FZ = {(X,µ) ∈ Z | X ∩ F 6= ∅}. By induction on the length of timed words one
proves:

Claim 7.9. LY(Y0) = LZ(Z0).

In the sequel we restrict Z to states reachable from Z0. In every state Z = (X,µ) in Z,
we have now(X) ∈ µ(X). This will ensure the resulting dtak B′ to be always resetting.

Orbits of states. While a state is designed to correspond to a configuration of the forthcom-
ing dtak B′, its orbit is designed to play the rôle of control location of B′. We therefore need
to prove that the set of states in Z is orbit-finite, i.e., the set of orbits {orbit(Z) | Z ∈ Z}
is finite and its size is bounded by f(k,m, n). We start by deducing an analogue of Fact 6.10:

Claim 7.10. For two states Z = (X,µ) and Z ′ = (X ′, µ′) in Z, their reset-point assignments
are in the same orbit, i.e., π◦µ = µ′ for some π ∈ Π, if, and only if, the corresponding clock
valuations now(X)− µ and now(X ′)− µ′ belong to the same k,m-region.

(In passing note that, since in every state (X,µ) in Z the span of X is bounded by m,
only bounded k,m-regions can appear in the last claim. Moreover, in each k,m-region one of
the clocks constantly equals 0.) The action of timed automorphisms on macro-configurations
and reset-point assignments is extended to states as π(X,µ) = (π(X), π◦µ). Recall that the
orbit of a state Z is defined as orbit(Z) = {π(Z) | π ∈ Π}.

Claim 7.11. The number of orbits of states in Z is bounded by f(k,m, n).

Proof. We finitely represent a state Z = (X,µ), relying on the following general fact.

Fact 7.12. For every u ∈ R≥0 and S ⊆ R≥0, the S-orbit7 orbitS(u) is either the singleton
{u} (when u ∈ S) or an open interval with end-points of the form t + z where t ∈ S and
z ∈ Z (when u /∈ S).

We apply the fact above to S = µ(X). In our case the span of X is bounded by m,
and thus the same holds for µ(X). Consequently, the integer z in the fact above always
belongs to {−m,−m+1, . . . ,m}. In turn, X splits into disjoint µ(X)-orbits orbitµ(X)(u)
consisting of open intervals separated by endpoints of the form t + z where t ∈ µ(X) and
z ∈ {−m,−m+1, . . . ,m}.

Example 7.13. Continuing Example 7.5, the endpoints are {3, 3.2, 3.7, 4, 4.2, 4.7, 5}, as
shown in the illustration:

7The orbits of states Z should not be confused with S-orbits of individual reals u ∈ R≥0.

Vol. 18:2 DETERMINISABILITY OF REGISTER AND TIMED AUTOMATA ∗ 9:27

Recall that µ(X) is fraction-independent. Let e1 < e2 < · · · < el+1 be all the endpoints of open-
interval orbits (l ≤ km), and let o1, o2, o3, . . . := {e1}, (e1, e2), {e2}, . . . be the consecutive
S-orbits orbitµ(X)(u) of elements u ∈ µ(X). The number thereof is 2l + 1 ≤ 2km+ 1. The
finite representation of Z = (X,µ) consists of the pair (O,µ), where

O = {(o1, P1), . . . , (o2l+1, P2l+1)} (7.2)

assigns to each orbit oi the set of locations Pi = {p | (p, u, t0) ∈ X for some u ∈ oi} ⊆ L,
(which is the same as Pi = {p | (p, u, t0) ∈ X for all u ∈ oi} since X is µ(X)-invariant, and
hence µ(X)-closed). Thus a state Z = (X,µ) is uniquely determined by the sequence O as
in (7.2) and the reset-point assignment µ.

We claim that the set of all the finite representations (O,µ), as defined above, is
orbit-finite. Indeed, the orbit of (O,µ) is determined by the orbit of µ and the sequence

P1, P2, . . . , P2km+1 (7.3)

induced by the assignment O as in (7.2). Therefore, the number of orbits is bounded by the
number of orbits of µ (which is bounded, due to Claim 7.10, by Reg(k,m)) times the number
of different sequences of the form (7.3) (which is bounded by (2n)2km+1). This yields the
required bound f(k,m, n) = Reg(k,m) · 2n(2km+1).

Construction of the dta. As the last step we define a dtak B′ = (Σ, L′, X, {o0}, L′F ,∆′)
such that the reachable part of JB′K is isomorphic to Z. Let locations L′ = {orbit(Z) | Z ∈
Z} be orbits of states from Z, the initial location be the orbit o0 of Z0, and final locations
L′F = {orbit(Z) | Z ∈ FZ} be orbits of final states. A transition Z = (X,µ)

σ,t−→ (X ′, µ′) =
Z ′ in Z induces a transition rule in B′

(o, a, ψ, Y, o′) ∈ ∆′ (7.4)

whenever o = orbit(Z), o′ = orbit(Z ′), ψ is the unique k,m-region satisfying t− µ ∈ JψK,
and Y = {xi ∈ X | µ′(xi) = t}. The automaton B′ is indeed a dta since o, σ and ψ uniquely
determine Y and o′:

Claim 7.14. Suppose that two transitions (X1, µ1)
σ,t1−−→ (X ′1, µ

′
1) and (X2, µ2)

σ,t2−−→ (X ′2, µ
′
2)

in Z induce transition rules (o, σ, ψ, Y1, o
′
1), (o, σ, ψ, Y2, o

′
2) ∈ ∆′ with the same source location

o and constraint ψ, i.e,

t1 − µ1 ∈ JψK t2 − µ2 ∈ JψK . (7.5)

Then the target locations are equal o′1 = o′2, and the same for the reset sets Y1 = Y2.

(Notice that we only consider two transition rules with the same constraint ψ, instead of
two different jointly satisfiable constraints ψ,ψ′ as in the definition of deterministic timed
automata, due to the fact that each constraint of B′ is a single k,m-region.)

Proof. We use the invariance of semantics of A and Claim 7.8. Let o = orbit(X1, µ1) =
orbit(X2, µ2). Thus there is a timed automorphism π such that

X2 = π(X1) µ2 = π◦µ1. (7.6)

It suffices to show that there is a (possibly different) timed permutation π′ satisfying the
following equalities:

t2 = π′(t1) {i | µ′1(xi) = t1} = {i | µ′2(xi) = t2} µ′2 = π′◦µ′1 X ′2 = π′(X ′1). (7.7)

9:28 L. Clemente, S. Lasota, and R. Piórkowski Vol. 18:2

We now rely the fact that both t01 = now(X1) ∈ µ1(X) and t02 = now(X2) ∈ µ2(X) are
assigned to the same clock due to the second equality in (7.6): t01 = µ1(xi) and t02 = µ2(xi).
We focus on the case when t1 − t01 ≤ m (the other case is similar and easier since all clocks
are reset due to greedy resetting), which implies t2 − t02 ≤ m due to (7.5). In this case we
may assume w.l.o.g., due to (7.5) and the equalities (7.6), that π is chosen so that π(t1) = t2.
We thus take π′ = π for proving the equalities (7.7). Being done with the first equality, we
observe that the last two equalities in (7.7) hold due to the invariance of Z (c.f. Claim 7.8).
The remaining second equality in (7.7) is a consequence of the third one.

Claim 7.15. Let Z = (X,µ) and Z ′ = (X ′, µ) be two states in Z with the same reset-point
assignment. If π(X) = X ′ and π◦µ = µ for some timed automorphism π then X = X ′.

Claim 7.16. Z is isomorphic to the reachable part of JB′K.

Proof. We essentially repeat the argument of Claim 4.14. For a state Z = (X,µ), let
ι(Z) = (o, µ, t), where o = orbit(Z) and t = now(X). Let Z ′ denote the reachable part of
JB′K. By Claim 4.12, the mapping ι(_) is a bijection between Z and its image ι(Z) ⊆ JB′K.
We aim at proving ι(Z) = Z ′.

By the very definition (4.2), the image ι(Z) is a subsystem of Z ′. Recall that Z is total:
for every (σ1, t1) . . . (σn, tn) ∈ T(Σ), there is a sequence of transitions (X0, µ0)

σ1,t1−−−→ · · · σn,tn−−−→
in Z. Therefore ι(Z) is total too and, since Z ′ is deterministic and reachable, the subsystem
ι(Z) necessarily equals Z ′.

Claims 7.4, 7.7, 7.9, and 7.16 imply L(A) = L(B′), which completes the proof of
Lemma 7.1.

8. Undecidability and hardness

In this section we complete the decidability and complexity landscape for the deterministic
membership problem by providing matching undecidability and complexity hardness results,
both for register and timed automata.

8.1. Lossy counter machines. Our undecidability and hardness results will be obtained
by reducing from the finiteness problem for lossy counter machines, which is known to be
undecidable. A k-counters lossy counter machine (k-LCM) is a tuple M = (C,Q, q0,∆),
where C = {c1, . . . , ck} is a set of k counters, Q is a finite set of control locations, q0 ∈ Q is
the initial control location, and ∆ is a finite set of instructions of the form (p, op, q), where op
is one of c ++, c --, and c ?

= 0. A configuration of an LCM M is a pair (p, u), where p ∈ Q is
a control location, and u ∈ NC is a counter valuation. For two counter valuations u, v ∈ NC ,
we write u ≤ v if u(c) ≤ v(c) for every counter c ∈ C. The semantics of an LCM M is
given by a (potentially infinite) transition system over the configurations of M s.t. there is a
transition (p, u)

δ−→ (q, v), for δ = (p, op, q) ∈ ∆, whenever
(1) op = c ++ and v ≤ u[c 7→ u(c) + 1], or
(2) op = c -- and v ≤ u[c 7→ u(c)− 1], or
(3) op = c

?
= 0 and u(c) = 0 and v ≤ u.

Vol. 18:2 DETERMINISABILITY OF REGISTER AND TIMED AUTOMATA ∗ 9:29

We omit δ in δ−→ when it is irrelevant, and write −→∗ for the transitive closure of −→. The
finiteness problem (a.k.a. space boundedness) for an LCM M amounts to deciding whether the
reachability set Reach(M) = {(p, u) | (q0, u0) −→∗ (p, u)} is finite, where u0 is the constantly
0 counter valuation.

Theorem 8.1 [May03, Theorem 13]. The 4-LCM finiteness problem is undecidable.

8.2. Register automata.

8.2.1. Undecidability of dra membership for nra1. We show that it is undecidable whether
a nra1 language can be recognised by some dra . In the following, it will be useful to be
able to refer to projection of a data word on the finite component of the alphabet. To this
end, for a data word w = (σ0, a0) · · · (σn, an) ∈ (Σ× A)∗, let undata(w) = σ0 · · ·σn ∈ Σ∗ be
the word obtained by removing the atom component. As already announced, we reduce
from the finiteness problem for lossy counter machines. Consider a lossy counter machine
M = (C,Q, q0,∆) with 4 counters C = {c1, c2, c3, c4}. We use the following encoding of
LCM runs as data words over the alphabet Σ = Q ∪∆ ∪ C comprising the control locations,
transitions, and counters of M . (A similar encoding has been used in the proof of Theorem
5.2 in [DL09] to show that the universality problem for nra1 is not primitive recursive.) We
encode a counter valuation u ∈ NC as the word over C ⊆ Σ

enc(u) = c1c1 · · · c1︸ ︷︷ ︸
u(c1) letters

c2c2 · · · c2︸ ︷︷ ︸
u(c2) letters

c3c3 · · · c3︸ ︷︷ ︸
u(c3) letters

c4c4 · · · c4︸ ︷︷ ︸
u(c4) letters

∈ {c1}∗{c2}∗{c3}∗{c4}∗. (8.1)

Consider a LCM run

π = (p0, u0)
δ1−→ (p1, u1)

δ2−→ · · · δn−→ (pn, un).

The set Enc(π) ⊆ (Σ×A)∗ of reversal-encodings of π contains all data words w ∈ (Σ×A)∗

satisfying the following conditions:
(E1) the finite part of w is of the form

undata(w) = pnδnenc(un) · · · p1δ1enc(u1) p0enc(u0) ∈ Σ∗; (8.2)

(E2) all atoms appearing in a single enc(ui) block are distinct;
(E3) for every transition δi = (pi−1, opi, pi) and for every counter cj ∈ {c1, c2, c3, c4}:

(E3.1) if opi = cj ++ increments counter cj , then (recalling that the lossy semantics
amounts to ui(cj)− 1 ≤ ui−1(cj)) we require that for each occurrence of cj in
enc(ui) there is a matching occurrence of cj in enc(ui−1) with the same atom,
with the exception of the last occurrence of cj in enc(ui);

(E3.2) if opi = cj -- decrements counter cj , then (recalling that the lossy semantics
amounts to ui(cj) + 1 ≤ ui−1(cj)) we require that for each occurrence of cj in
enc(ui) there is a matching occurrence of cj in enc(ui−1) with the same atom,
which is not the last occurrence of cj in enc(ui−1).

(E3.3) if opi = cj
?
= 0 tests whether counter cj is zero, then ui−1(cj) = ui(cj) = 0, and

thus we require that neither enc(ui) nor enc(ui−1) contain any occurrence of cj ;
(E3.4) otherwise the operation opi does not modify counter cj , i.e., ui(cj) ≤ ui−1(cj),

and we require that for each occurrence of cj in enc(ui) there is a matching
occurrence of cj in enc(ui−1) with the same atom.

9:30 L. Clemente, S. Lasota, and R. Piórkowski Vol. 18:2

The intuition underlying the first two items in condition (E3) is that the effect of an increment
or decrement of cj is encoded by creating or removing the last occurrence of cj in a block.

Let L =
⋃
π a run of M Enc(π) be the set of all reversal-encodings of runs ofM . Under this

encoding, we can build a nra1 A recognising the complement of L. Indeed, A can determine
bad encodings w 6∈ L by guessing one of finitely many reasons for this to occur:
(F1) the projection undata(enc(π)) to the finite alphabet Σ is not a word in the regular

language (Q∆{c1}∗{c2}∗{c3}∗{c4}∗)∗{q0} (notice that enc(u0) is the empty string, since
the initial valuation u0 assigns 0 to every counter), or there is a transition δi = (p,_, q)
s.t. either the source is incorrect p 6= pi−1 or the destination is incorrect q 6= pi. This
is even a regular language of finite words over Σ (i.e., without atoms). Thus in the
remaining cases below we can assume that the finite part of w is of the form as in (8.2);

(F2) there is a block enc(ui) containing the same atom twice;
(F3) there is a transition δi = (pi−1, opi, pi) and a counter cj ∈ {c1, c2, c3, c4} s.t. one of the

following condition holds:
(F3.1) op = cj ++ but there is a non-last occurrence of cj in enc(ui) without matching

occurrence of cj in enc(ui−1) with the same atom;
(F3.2) op = cj -- but some occurrence of cj in enc(ui) either has no matching occurrence

of cj in enc(ui−1) with the same atom, or has a matching occurrence which is
the last occurrence of cj in enc(ui−1).

(F3.3) op = cj
?
= 0 but either enc(ui) or enc(ui−1) contains an occurrence of cj ;

(F3.4) the operation op does not modify counter cj , but there is an occurrence of cj in
enc(ui) without a matching occurrence of cj in enc(ui−1) with the same atom.

One register is sufficient to recognise each of the possible mistakes above.

Lemma 8.2. The set of reachable configurations Reach(M) is finite if, and only if, L(A) is
a dra language.

Proof. The “only if” implication follows from the fact that if Reach(M) is finite, i.e., there is
a finite bound k on the sum of values of all counters of M in a run, then the complement
of L(A) (which encodes all correct reversal-encodings) is a drak language, and thus L(A)
itself is a dra language since dra languages are closed under complement. For the “if”
implication, assume that Reach(M) is infinite, and by way of contradiction assume that L(A)
is a dra language. In this case, the complement L of L(A) is recognised by some drak B
with a finite number of registers k. Since Reach(M) is infinite, there are runs where counter
(say) c1 is unbounded. In particular, there is a run π reaching a counter valuation ui with
ui(c1) ≥ k + 2. When B reads the corresponding encoding w ∈ Enc(π), after reading the
first k + 1 atoms a1, . . . , ak+1 in the enc(ui) block, it must forget at least one such atom, say
aj . The next atom ak+2 in the enc(ui) block can thus be replaced by aj and B still accepts
the corresponding data word w′. However, w′ is not the reversal encoding of any run of M ,
since it violates condition (E2). This contradicts that B recognises L, and thus L(A) is not
a dra language, as required.

We thus have a reduction from the LCM finiteness problem to the dra membership
problem for nra1, which is thus undecidable thanks to Theorem 8.1.

Corollary 8.3. The dra membership problem for nra1 languages is undecidable.

Vol. 18:2 DETERMINISABILITY OF REGISTER AND TIMED AUTOMATA ∗ 9:31

8.2.2. Undecidability and hardness for drak membership. The nra universality problem asks
whether a given nra A recognises every data word L(A) = (Σ×A)∗. All the lower bounds in
this section leading to undecidability and hardness results for the drak membership problem
are obtained by a reduction from the universality problem for corresponding classes of data
languages.

Lemma 8.4 (c.f. [Fin06, Theorem 1]). Let k ∈ N and let Y be a class of invariant data
languages that
(1) contains all the dra0 languages,
(2) is closed under union and concatenation, and
(3) contains some non-drak language.
The universality problem for data languages in Y reduces in polynomial time to the drak
membership problem for data languages in Y.

Proof. Let L ∈ Y be a data language over a finite alphabet Σ. We show that universality
of L reduces to drak membership. Thanks to the last assumption, let M ∈ Y be a data
language over some finite alphabet Γ which is not recognised by any drak. Consider the
following language over the extended alphabet Σ′ = Σ ∪ Γ ∪ {$}:

N := L · ({$} × A) · (Γ× A)∗ ∪ (Γ× A)∗ · ({$} × A) ·M,

where $ 6∈ Σ ∪ Γ is a fixed fresh alphabet symbol. Since Y contains the universal language,
by its closure properties the language N belongs to Y . We conclude by proving the following
equivalence:

L = (Σ× A)∗ if, and only if, N is recognised by a drak.

For the “only if” direction, if L is universal, then N = (Σ×A)∗ · ({$}×A) · (Σ×A)∗ is clearly
recognised by a drak. For the “if” direction suppose, towards reaching a contradiction, that
N is recognised by a drak A but L is not universal. Choose an arbitrary data word w 6∈ L
over Σ and consider an arbitrary extension u = w · ($, a) of w by one letter. Since $ does not
belong to the finite alphabet Σ ∪ Γ, the left quotient u−1N = {v | uv ∈ N} equals M . Let
(p, µ) be the configuration reached by A after reading u, which thus recognises L(p, µ) = M .
Since M is invariant as a language in Y , M is a drak language, which is a contradiction.

From Lemma 8.4 we immediately obtain the undecidability and hardness results for the
drak membership problem, which we now recall.

Theorem 1.6. Fix a k ≥ 0. The drak membership problem is:
(1) undecidable for nra2,
(2) undecidable for nrag

1 (nra1 with guessing), and
(3) not primitive recursive (Ackermann-hard) for nra1.

Proof. For the first point, consider the class Y consisting of all the nra2 languages. Clearly
this class contains all dra0 languages and it is closed under union and concatenation. Thanks
to Example 3.4 we know that there are nra1 (and thus nra2) languages which are not dra
languages. Thus the conditions of Lemma 8.4 are satisfied and the universality problem for
nra2 reduces in polynomial time to the drak membership problem for nra2. Since the
former problem is undecidable [DL09, Theorem 5.4], undecidability of the latter one follows.
For the other two points we can proceed in an analogous way, by using the fact that the
universality problem is undecidable for nrag

1 (nra1 with guessing) [Boj, Exercise 9], and
not primitive recursive for nra1 [DL09, Theorem 5.2].

9:32 L. Clemente, S. Lasota, and R. Piórkowski Vol. 18:2

8.3. Timed automata. We now focus on timed automata. Following similar lines as
in case of register automata in Section 8.2, in Section 8.3.1 we prove undecidability of
the dta membership problem for nta1 (c.f. Theorem 1.3) and in Section 8.3.2 we prove
HyperAckermann-hardness of the dtak membership problem for nta1 (c.f. Theorem 1.5).

8.3.1. Undecidability of dta and dta_,m membership for nta1. It has been shown in [Fin06,
Theorem 1] that it is undecidable whether a nta2 timed language can be recognised by
some dta . This was obtained by a reduction from the nta2 universality problem, which
is undecidable. While the universality problem becomes decidable for k = 1, we show in
this section that, as announced in Theorem 1.3, the dta membership problem remains
undecidable for nta1.

Since the universality problem for nta1 is decidable, we need to reduce from another
(undecidable) problem. As in the case of register automata, we reduce from the finiteness
problem of a LCM M with 4 counters, which is undecidable by Theorem 8.1. In the case
of timed automata, we can use the reversal encoding from [LW08, Definition 4.6] showing
that we can build a nta1 A recognising the complement of the set of reversal-encodings of
the runs of M . Since this construction has already been presented in full details in [CLP20c,
App. C] and since it is in complete analogy to the construction in Section 8.2.1 for register
automata, we omit it here. One can then prove the following property, which is analogous to
Lemma 8.2 in the case of register automata.

Lemma 8.5. The set of reachable configurations Reach(M) is finite if, and only if, L(A) is
a deterministic timed language.

Since the timed automaton constructed in the reduction above uses only constant 1, the
reduction works also for the dta_,m membership problem for every fixed m > 0, thus proving
Theorem 1.3. This result is the best possible in terms of the parameter m, since the problem
becomes decidable for m = 0. In fact, the class of dtak,0 languages coincides with the
class of dta1,0 languages (one clock is sufficient; c.f. [OW04, Lemma 19]), and thus dta_,0
membership reduces to dta1,0 membership, which is decidable for nta1 by Theorem 1.1.

8.3.2. Undecidability and hardness for dtak and dtak,m membership. All the lower bounds
in this section are obtained by a reduction from the universality problem for suitable language
classes (does a given timed language L ⊆ T(Σ) satisfy L = T(Σ)?), in complete analogy to
Section 8.2.2 dealing with register automata. Our starting point is the following result.

Theorem 8.6 [Fin06, Theorem 1]. The dta membership problem is undecidable for nta
languages.

We provide a suitable adaptation, generalization, and simplification of the result above
which will allow us to extend undecidability to the dtak membership problem for every
fixed k ≥ 0, and also to obtain a complexity lower bound for nta1 input languages. Fix two
languages L ⊆ T(Σ) and M ⊆ T(Γ), and a fresh alphabet symbol $ 6∈ Σ∪Γ. The composition
LBM is the timed language over Σ′ = Σ ∪ {$} ∪ Γ defined as follows:

LBM = {u($, t)(v + t) ∈ T(Σ′) | u ∈ L, v ∈M, t ∈ R≥0},
where t is necessarily larger or equal than the last timestamp of u by the definition of T(Σ′).
The following lemma exposes some abstract conditions on classes of timed languages which
are sufficient to encode the universality problem.

Vol. 18:2 DETERMINISABILITY OF REGISTER AND TIMED AUTOMATA ∗ 9:33

Lemma 8.7. Let k,m ∈ N and let Y be a class of timed languages that
(1) contains all the dta0 languages,
(2) is closed under union and composition, and
(3) contains some non-dtak (resp. non-dtak,m) language.
The universality problem for languages in Y reduces in polynomial time to the dtak (resp.
dtak,m) membership problem for languages in Y.

Lemma 8.7 is entirely analogous to Lemma 8.4 for data languages, except that invariance
of languages in Y is not required; moreover, notice that the notion of composition of timed
languages that we need to state and prove the lemma above is a bit more complicated than
the straightforward notion of concatenation that appears in the analogous statement for data
languages from Lemma 8.4.

Proof. We consider dtak membership (the dtak,m membership is treated similarly). Consider
some fixed timed language M ∈ Y which is not recognised by any dtak (relying on the
assumption 3), over an alphabet Γ. For a given timed language L ∈ Y, over an alphabet Σ,
we construct the following language over the extended alphabet Σ ∪ Γ ∪ {$}:

N := LB T(Γ) ∪ T(Σ) BM ⊆ T(Σ ∪ Γ ∪ {$}),
where $ 6∈ Σ ∪ Γ is a fixed fresh alphabet symbol. Since Y contains all the dta0 languages
thanks to the assumption 1, and it is closed under union and composition thanks to the
assumption 2, the language N belongs to Y . We claim that the universality problem for L is
equivalent to the dtak membership problem for N :

L = T(Σ) if, and only if, N is recognised by a dtak.

For the “only if” direction, if L = T(Σ) then clearly N = T(Σ) B T(Γ). Thus N is a dta0

languages, and thus also dtak for any k ≥ 0. For the “if” direction suppose, towards reaching
a contradiction, that N is recognised by a dtak A but L 6= T(Σ). Assume, w.l.o.g., that A
is greedily resetting. Choose an arbitrary timed word w = (σ1, t1) . . . (σn, tn) 6∈ L over Σ.
Therefore, for any extension v = (σ1, t1) . . . (σn, tn)($, tn + t) of w by one letter, we have

v−1N = t+M = {(σ′1, t+ u1) . . . (σ
′
m, t+ um) | (σ′1, u1) . . . (σ′m, um) ∈M}.

Choose t larger than the largest absolute value m of constants appearing in clock constraints
in A, and let (p, µ) be the configuration reached by A after reading v. Since t > m, all the
clocks are reset by the last transition and hence µ(x) = 0 for all clocks x. Consequently, if
the initial control location of A were moved to the location p, the so modified dtak A′ would
accept the language M . But this contradicts our initial assumption that M is not recognised
by a dtak, thus finishing the proof.

We can now prove the following refinement of Theorem 8.6 claimed in the introduction.

Theorem 1.5. For every fixed k,m ∈ N, the dtak and dtak,m membership problems are:
• undecidable for nta2,
• undecidable for ntaε1 (with epsilon transitions),
• HyperAckermann-hard for nta1.

Proof. Each of the three points follows by an application of Lemma 8.7. For instance, for the
first point take as Y the class of languages recognised by nta2. This class contains all dta0

languages, is closed under union and composition, and is not included in dtak for any k nor
in dtak,m for any k,m (c.f. the nta1 language from Example 5.1 which is not recognised by

9:34 L. Clemente, S. Lasota, and R. Piórkowski Vol. 18:2

any dta). Since the universality problem is undecidable for nta2 [AD94, Theorem 5.2], by
Lemma 8.7 the dtak and dtak,m membership problems are undecidable for nta2. The second
and third points follow in the same way, using the fact that universality is undecidable for
ntaε1 (nta1 with epsilon transitions) [LW08, Theorem 5.3], resp., HyperAckermann-hard
for nta1 (by combining the same lower bound for the reachability problem in lossy channel
systems [CS08, Theorem 5.5], together with the reduction from this problem to universality
of nta1 given in [LW08, Theorem 4.1]).

9. Conclusions

We have shown decidability and undecidability results for several variants of the deterministic
membership problem for timed and register automata. Regarding undecidability, we have
extended the previously known results [Fin06, Tri06] by proving that the dta membership
problem is undecidable already for nta1 (Theorem 1.3). Regarding decidability, we have
shown that when the resources available to the deterministic automaton are fixed (either
just the number of clocks k, or both clocks k and maximal constant m), then the respective
deterministic membership problem is decidable (Theorem 1.1) and HyperAckermann-hard
(Theorem 1.5). We have depicted a similar scenario for register automata, in regards of both
decidability (Theorem 1.2), undecidability and hardness (Theorems 1.4 and 1.6).

Our deterministic membership algorithm is based on a characterisation of nta1 languages
which happen to be dtak (Lemma 7.1), which is proved using a semantic approach leveraging
on notions from the theory of sets with atoms [BL12]. It would be interesting to compare
this approach to the syntactic determinisation method of [BBBB09]. Analogous decidability
results for register automata have been obtained with similar techniques.

Finally, our decidability results extend to the slightly more expressive class of always
resetting nta2, which have intermediate expressive power strictly between nta1 and nta2.

Acknowledgment

We thank S. Krishna for fruitful discussions.

References

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126:183–235,
1994.

[AFH99] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata: a determinizable
class of timed automata. Theor. Comput. Sci., 211:253–273, January 1999.

[AGK18] S. Akshay, Paul Gastin, and Shankara Narayanan Krishna. Analyzing Timed Systems Using
Tree Automata. Logical Methods in Computer Science, Volume 14, Issue 2, May 2018. doi:
10.23638/LMCS-14(2:8)2018.

[AM99] Eugene Asarin and Oded Maler. As soon as possible: Time optimal control for timed automata.
In Proc. of HSCC’99, HSCC ’99, pages 19–30, London, UK, UK, 1999. Springer-Verlag. URL:
http://dl.acm.org/citation.cfm?id=646879.710314.

[AMPS98] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller synthesis for timed
automata. In Proc. of the 5th IFAC Conference on System Structure and Control (SSSC’98),
volume 31, pages 447–452, 1998. doi:10.1016/S1474-6670(17)42032-5.

https://doi.org/10.23638/LMCS-14(2:8)2018
https://doi.org/10.23638/LMCS-14(2:8)2018
http://dl.acm.org/citation.cfm?id=646879.710314
https://doi.org/10.1016/S1474-6670(17)42032-5

Vol. 18:2 DETERMINISABILITY OF REGISTER AND TIMED AUTOMATA ∗ 9:35

[BBBB09] Christel Baier, Nathalie Bertrand, Patricia Bouyer, and Thomas Brihaye. When are timed
automata determinizable? In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias,
Sotiris Nikoletseas, and Wolfgang Thomas, editors, Proc of ICALP’09, pages 43–54, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[BCD05] Patricia Bouyer, Fabrice Chevalier, and Deepak D’Souza. Fault diagnosis using timed automata.
In Proc. of FOSSACS’05, pages 219–233, Berlin, Heidelberg, 2005. Springer-Verlag. doi:10.
1007/978-3-540-31982-5_14.

[BDL+06] Gerd Behrmann, Alexandre David, Kim G. Larsen, John Hakansson, Paul Petterson, Wang Yi,
and Martijn Hendriks. Uppaal 4.0. In Proceedings of the 3rd International Conference on the
Quantitative Evaluation of Systems, QEST ’06, pages 125–126, Washington, DC, USA, 2006.
IEEE Computer Society. doi:10.1109/QEST.2006.59.

[BHPR07] Thomas Brihaye, Thomas A. Henzinger, Vinayak S. Prabhu, and Jean-François Raskin. Minimum-
time reachability in timed games. In Lars Arge, Christian Cachin, Tomasz Jurdziński, and Andrzej
Tarlecki, editors, In Proc. of ICALP’07, pages 825–837, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

[BKL14] Mikolaj Bojanczyk, Bartek Klin, and Slawomir Lasota. Automata theory in nominal sets. Log.
Methods Comput. Sci., 10(3), 2014. doi:10.2168/LMCS-10(3:4)2014.

[BL12] Mikolaj Bojańczyk and Sławomir Lasota. A machine-independent characterization of timed
languages. In Proc. ICALP 2012, pages 92–103, 2012.

[BLS06] Vince Bárány, Christof Löding, and Olivier Serre. Regularity problems for visibly pushdown
languages. In Proc. of STACS’06, STACS’06, pages 420–431, Berlin, Heidelberg, 2006. Springer-
Verlag. doi:10.1007/11672142_34.

[Boj] Mikołaj Bojańczyk. Slightly infinite sets. URL: https://www.mimuw.edu.pl/~bojan/paper/
atom-book.

[BSJK15] Nathalie Bertrand, Amélie Stainer, Thierry Jéron, and Moez Krichen. A game approach to
determinize timed automata. Formal Methods in System Design, 46(1):42–80, 2015. doi:10.
1007/s10703-014-0220-1.

[CDF+05] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier Lime. Efficient
on-the-fly algorithms for the analysis of timed games. In Martín Abadi and Luca de Alfaro,
editors, Proc. of CONCUR’05, pages 66–80, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[CFM11] Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. On the expressiveness of Parikh automata
and related models. In Rudolf Freund, Markus Holzer, Carlo Mereghetti, Friedrich Otto, and
Beatrice Palano, editors, Proc. of NCMA’11, volume 282 of books@ocg.at, pages 103–119. Austrian
Computer Society, 2011.

[CHT19] Lorenzo Clemente, Piotr Hofman, and Patrick Totzke. Timed Basic Parallel Processes. In
Wan Fokkink and Rob van Glabbeek, editors, Proc. of CONCUR’19, volume 140 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 15:1–15:16, Dagstuhl, Germany, 2019.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CONCUR.2019.15.

[chu16] https://siglog.org/the-2016-alonzo-church-award-for-outstanding-contributions-to-logic-and-
computation/, 2016.

[CJ99] Hubert Comon and Yan Jurski. Timed automata and the theory of real numbers. In Proc. of
CONCUR’99, pages 242–257, London, UK, UK, 1999. Springer-Verlag.

[CLP20a] Lorenzo Clemente, Sławomir Lasota, and Radosław Piórkowski. Determinisability of One-Clock
Timed Automata. In Igor Konnov and Laura Kovács, editors, Proc. of CONCUR’20, volume 171
of LIPIcs, pages 42:1–42:17, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.CONCUR.2020.42.

[CLP20b] Lorenzo Clemente, Sławomir Lasota, and Radosław Piórkowski. Timed games and deterministic
separability. In Proc. of ICALP 2020, pages 121:1–121:16, 2020.

[CLP20c] Lorenzo Clemente, Sławomir Lasota, and Radosław Piórkowski. Timed games and deterministic
separability. arXiv e-prints, page arXiv:2004.12868, April 2020. arXiv:2004.12868.

[CS08] Pierre Chambart and Philippe Schnoebelen. The ordinal recursive complexity of lossy channel
systems. In Proc. of LICS’08, pages 205–216, 2008.

[Dim02] C. Dima. Computing reachability relations in timed automata. In Proc. of LICS’02, pages
177–186, 2002.

https://doi.org/10.1007/978-3-540-31982-5_14
https://doi.org/10.1007/978-3-540-31982-5_14
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.2168/LMCS-10(3:4)2014
https://doi.org/10.1007/11672142_34
https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://doi.org/10.1007/s10703-014-0220-1
https://doi.org/10.1007/s10703-014-0220-1
https://doi.org/10.4230/LIPIcs.CONCUR.2019.15
https://doi.org/10.4230/LIPIcs.CONCUR.2020.42
http://arxiv.org/abs/2004.12868

9:36 L. Clemente, S. Lasota, and R. Piórkowski Vol. 18:2

[DL09] Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log., 10(3):16:1–16:30, 2009. doi:10.1145/1507244.1507246.

[Fin06] Olivier Finkel. Undecidable problems about timed automata. In Proc. of FORMATS’06, pages
187–199, Berlin, Heidelberg, 2006. Springer-Verlag. doi:10.1007/11867340_14.

[FJ15] John Fearnley and Marcin Jurdziński. Reachability in two-clock timed automata is PSPACE-
complete. Information and Computation, 243:26–36, 2015. doi:10.1016/j.ic.2014.12.004.

[FQSW20] Martin Fränzle, Karin Quaas, Mahsa Shirmohammadi, and James Worrell. Effective definability
of the reachability relation in timed automata. Information Processing Letters, 153:105871, 2020.
doi:10.1016/j.ipl.2019.105871.

[Fra53] R. Fraïssé. Theory of relations. North-Holland, 1953.
[Fri98] Laurent Fribourg. A closed-form evaluation for extended timed automata. Technical report,

CNRS & ECOLE NORMALE SUPERIEURE DE CACHAN, 1998.
[GHSW19] R. Govind, Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Revisiting Local Time

Semantics for Networks of Timed Automata. In Wan Fokkink and Rob van Glabbeek, editors,
Proc. of CONCUR 2019, volume 140 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 16:1–16:15, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.CONCUR.2019.16.

[GMS18] Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Reachability in Timed Automata with Diagonal
Constraints. In Sven Schewe and Lijun Zhang, editors, Proc. of CONCUR’18, volume 118 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 28:1–28:17, Dagstuhl, Germany,
2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CONCUR.2018.28.

[GMS19] Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Fast algorithms for handling diagonal con-
straints in timed automata. In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification,
pages 41–59, Cham, 2019. Springer International Publishing.

[GP20] Stefan Göller and Paweł Parys. Bisimulation finiteness of pushdown systems is elementary. In
Proc. of LICS’20, pages 521–534, 2020.

[HSW16] Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better abstractions for timed automata.
Information and Computation, 251:67–90, 2016. doi:10.1016/j.ic.2016.07.004.

[JT07] Marcin Jurdziński and Ashutosh Trivedi. Reachability-time games on timed automata. In In
Proc. of ICALP’07, pages 838–849, Berlin, Heidelberg, 2007. Springer-Verlag. URL: http:
//dl.acm.org/citation.cfm?id=2394539.2394637.

[KF94] Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci., 134(2):329–
363, 1994.

[KLT21] Bartek Klin, Sławomir Lasota, and Szymon Toruńczyk. Nondeterministic and co-nondeterministic
implies deterministic, for data languages. Proc. of FOSSACS’21, 12650:365–384, 03 2021. doi:
10.1007/978-3-030-71995-1_19.

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time
systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. of CAV’11, volume 6806 of LNCS,
pages 585–591. Springer, 2011.

[KP05] Pavel Krčál and Radek Pelánek. On sampled semantics of timed systems. In Sundar Sarukkai and
Sandeep Sen, editors, In Proc. of FSTTCS’05, volume 3821 of LNCS, pages 310–321. Springer,
2005. doi:10.1007/11590156_25.

[Las16] Slawomir Lasota. Decidability border for petri nets with data: WQO dichotomy conjecture. In
Fabrice Kordon and Daniel Moldt, editors, Proc. PETRI NETS 2016, volume 9698 of Lecture
Notes in Computer Science, pages 20–36. Springer, 2016. doi:10.1007/978-3-319-39086-4_3.

[LW08] Slawomir Lasota and Igor Walukiewicz. Alternating timed automata. ACM Trans. Comput.
Logic, 9(2):10:1–10:27, 2008. doi:10.1145/1342991.1342994.

[May03] Richard Mayr. Undecidable problems in unreliable computations. Theor. Comput. Sci., 297(1-
3):337–354, March 2003. doi:10.1016/S0304-3975(02)00646-1.

[MP04] Oded Maler and Amir Pnueli. On recognizable timed languages. In Igor Walukiewicz, editor,
Proc. of FOSSACS’04, volume 2987 of LNCS, pages 348–362. Springer Berlin Heidelberg, 2004.
doi:10.1007/978-3-540-24727-2_25.

[MSS+17] Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, and Michał Szynwelski.
Learning nominal automata. In Proc. of POPL’17, POPL 2017, pages 613–625, New York, NY,
USA, 2017. ACM. doi:10.1145/3009837.3009879.

https://doi.org/10.1145/1507244.1507246
https://doi.org/10.1007/11867340_14
https://doi.org/10.1016/j.ic.2014.12.004
https://doi.org/10.1016/j.ipl.2019.105871
https://doi.org/10.4230/LIPIcs.CONCUR.2019.16
https://doi.org/10.4230/LIPIcs.CONCUR.2018.28
https://doi.org/10.1016/j.ic.2016.07.004
http://dl.acm.org/citation.cfm?id=2394539.2394637
http://dl.acm.org/citation.cfm?id=2394539.2394637
https://doi.org/10.1007/978-3-030-71995-1_19
https://doi.org/10.1007/978-3-030-71995-1_19
https://doi.org/10.1007/11590156_25
https://doi.org/10.1007/978-3-319-39086-4_3
https://doi.org/10.1145/1342991.1342994
https://doi.org/10.1016/S0304-3975(02)00646-1
https://doi.org/10.1007/978-3-540-24727-2_25
https://doi.org/10.1145/3009837.3009879

Vol. 18:2 DETERMINISABILITY OF REGISTER AND TIMED AUTOMATA ∗ 9:37

[NS03] Brian Nielsen and Arne Skou. Automated test generation from timed automata. Interna-
tional Journal on Software Tools for Technology Transfer, 5(1):59–77, Nov 2003. doi:10.1007/
s10009-002-0094-1.

[NSV04] Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Logic, 5(3):403–435, July 2004. doi:10.1145/1013560.1013562.

[OW04] Joël Ouaknine and James Worrell. On the language inclusion problem for timed automata: Closing
a decidability gap. In Proc. of LICS’04, pages 54–63, 2004. doi:10.1109/LICS.2004.1319600.

[OW07] Joël Ouaknine and James Worrell. On the decidability and complexity of Metric Temporal
Logic over finite words. Logical Methods in Computer Science, Volume 3, Issue 1, February 2007.
doi:10.2168/LMCS-3(1:8)2007.

[Sha08] Jeffrey Shallit. A Second Course in Formal Languages and Automata Theory. 2008.
[SPKM08] P. Vijay Suman, Paritosh K. Pandya, Shankara Narayanan Krishna, and Lakshmi Manasa. Timed

automata with integer resets: Language inclusion and expressiveness. In Proc. of FORMATS’08,
pages 78—92, Berlin, Heidelberg, 2008. Springer-Verlag. doi:10.1007/978-3-540-85778-5_7.

[TALL19] Martin Tappler, Bernhard K. Aichernig, Kim Guldstrand Larsen, and Florian Lorber. Time to
learn - learning timed automata from tests. In Étienne André and Mariëlle Stoelinga, editors,
Proc. of FORMATS’19, pages 216–235, Cham, 2019. Springer International Publishing.

[Tri06] Stavros Tripakis. Folk theorems on the determinization and minimization of timed automata.
Inf. Process. Lett., 99(6):222–226, September 2006.

[Val75] Leslie G. Valiant. Regularity and related problems for deterministic pushdown automata. J.
ACM, 22(1):1–10, January 1975. doi:10.1145/321864.321865.

[VdWW07] Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. An algorithm for learning real-time
automata. In Proc of. the Annual Belgian-Dutch Machine Learning Conference (Benelearn’078),
2007.

[VVN81] Rüdiger Valk and Guy Vidal-Naquet. Petri nets and regular languages. Journal of Computer
and System Sciences, 23(3):299–325, 1981. doi:10.1016/0022-0000(81)90067-2.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1007/s10009-002-0094-1
https://doi.org/10.1007/s10009-002-0094-1
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1109/LICS.2004.1319600
https://doi.org/10.2168/LMCS-3(1:8)2007
https://doi.org/10.1007/978-3-540-85778-5_7
https://doi.org/10.1145/321864.321865
https://doi.org/10.1016/0022-0000(81)90067-2

	1. Introduction
	1.1. Automata over infinite alphabets
	1.2. The deterministic membership problem
	1.3. Contributions

	2. Automorphisms, orbits, and invariance
	3. Register automata
	4. Decidability of DRA-k membership for NRA-1
	4.1. Proof of Lemma 4.1
	4.2. Other atoms

	5. Timed automata
	6. Invariance of timed automata
	7. Decidability of DTA-k and DTA-k,m membership for NTA-1
	7.1. Proof of Lemma 7.1

	8. Undecidability and hardness
	8.1. Lossy counter machines
	8.2. Register automata
	8.3. Timed automata

	9. Conclusions
	Acknowledgment
	References

