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Abstract. Commutative Supersingular Isogeny Diffie-Hellman (or CSIDH for short)
is a recently-proposed post-quantum key establishment scheme that belongs to the
family of isogeny-based cryptosystems. The CSIDH protocol is based on the action
of an ideal class group on a set of supersingular elliptic curves and comes with some
very attractive features, e.g. the ability to serve as a “drop-in” replacement for the
standard elliptic curve Diffie-Hellman protocol. Unfortunately, the execution time
of CSIDH is prohibitively high for many real-world applications, mainly due to the
enormous computational cost of the underlying group action. Consequently, there is a
strong demand for optimizations that increase the efficiency of the class group action
evaluation, which is not only important for CSIDH, but also for related cryptosystems
like the signature schemes CSI-FiSh and SeaSign. In this paper, we explore how
the AVX-512 vector extensions (incl. AVX-512F and AVX-512IFMA) can be utilized
to optimize constant-time evaluation of the CSIDH-512 class group action with the
goal of, respectively, maximizing throughput and minimizing latency. We introduce
different approaches for batching group actions and computing them in SIMD fashion
on modern Intel processors. In particular, we present a hybrid batching technique
that, when combined with optimized (8 × 1)-way prime-field arithmetic, increases
the throughput by a factor of 3.64 compared to a state-of-the-art (non-vectorized)
x64 implementation. On the other hand, vectorization in a 2-way fashion aimed to
reduce latency makes our AVX-512 implementation of the group action evaluation
about 1.54 times faster than the state-of-the-art. To the best of our knowledge, this
paper is the first to demonstrate the high potential of using vector instructions to
increase the throughput (resp. decrease the latency) of constant-time CSIDH.
Keywords: Post-Quantum Cryptography · Isogeny-Based Cryptography · CSIDH ·
AVX-512IFMA · Software Optimization · Constant-Time Implementation

1 Introduction
Quantum computing exploits quantum-mechanical effects and phenomena, such as state
superposition and entanglement, to efficiently solve certain computational problems, in
particular optimization and search problems [KLM07]. However, quantum computing has
also a destructive side since it is assumed that a quantum computer with a few thousand
logical qubits would be capable to break essentially any public-key cryptosystem in use
today [RNSL17]. The dawning era of quantum computing has spurred much research on
Post-Quantum Cryptography (PQC), a sub-domain of cryptography concerned with the
design, analysis and implementation of cryptosystems that are expected to resist attacks
executed on both conventional and quantum computers [SL21]. Almost all of the to-date
existing post-quantum key establishment and signature algorithms fall into one of five
categories, which are lattice-based cryptography, multivariate cryptography, hash-based
cryptography, code-based cryptography, and supersingular isogeny cryptography. These
categories differ with respect to the hard mathematical problems their security is based
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on, but also in terms of computational cost, key lengths, and the length of ciphertexts
(resp. signatures) [SL21]. The security of isogeny-based cryptosystems rests upon the
intractability of the problem of finding an explicit isogeny between two (supersingular)
elliptic curves over a finite field that are known to be isogenous [DeF17]. While isogeny-
based schemes are computation-intensive, their key sizes are among the smallest of the
five categories and come even close to that of pre-quantum elliptic curve schemes.

Various isogeny-based cryptosystems have appeared in the literature in the past ten
years. SIKE (short for Supersingular Isogeny Key Encapsulation) is a key encapsulation
mechanism whose security relies upon the supersingular isogeny walk problem between
two elliptic curves in the same isogeny class, which asks to find a path made of isogenies
of small degree [Cos19]. A variant of SIKE is an alternative candidate in the third round
of the PQC standardization project of the NIST [JAC+20]. CSIDH (an abbreviation
of Commutative Supersingular Isogeny Diffie-Hellman) is an “ECDH-like” key-exchange
scheme based on a commutative group action of an ideal class group [CLM+18]. Given
an initial elliptic curve E, a secret key in CSIDH is an ideal class a in a class group
(represented by its list of exponents), and the corresponding public key can be obtained
by computing the group action E′ = a ? E. The security of CSIDH is based on the hard
problem of finding an isogeny path from the isogenous curves E and E′. CSIDH has
received a lot of attention in recent years since it comes with highly attractive features
like efficient validation of public keys, making it suitable for non-interactive (i.e. static)
key exchange protocols. In fact, CSIDH can serve as “drop-in” replacement for classical
ECDH key exchange and does even comply with the requirements of “0-RTT” protocols
such as QUIC. Furthermore, class group actions provide a rich foundation for the design
of various other cryptosystems, e.g. signature schemes [BKV19, DG19]. However, the
downside of CSIDH is that the computation of group actions is very costly, which makes
CSIDH extremely slow, not only in relation to X25519 [Ber06] and other pre-quantum
ECDH variants, but also when compared to SIKE. For example, while an Intel Skylake
processor can execute a variable-base scalar multiplication on Curve25519 in less than
100 k cycles [NS20] and a SIKEp434 encapsulation or decapsulation in about 10 M cycles
[JAC+20], the to-date best constant-time implementation of a CSIDH-512 group action
evaluation and key validation requires close to 240 M clock cycles [HLKA20].

The lengthy computation time of CSIDH poses a major obstacle for its application in
security protocols like TLS or HTTPS when taking into account that, for example, the
web servers of large enterprises like Google or Facebook are confronted with thousands
of HTTPS requests per second. In order to be able to cope with such extreme volumes
of traffic, the server infrastructure of such enterprises often includes a so-called TLS
termination proxy or TLS reverse proxy, which transparently translates HTTPS sessions
to TCP sessions for back-end servers (e.g. web or database servers), see [JHH+11]. This
offloading of the TLS termination to a dedicated proxy frees the web server from having
to execute computation-intensive TLS handshakes that involve public-key operations to
authenticate the server to the client and establish a shared secret key using e.g. X25519
key exchange [Ber06]. A TLS termination proxy equipped with a high-end 64-bit Intel
processor clocked at 4 GHz is (in theory) able to perform 40,000 X25519 key exchanges
per second per core since, as mentioned before, a variable-base scalar multiplication on
Curve25519 costs below 100 k cycles1. Replacing X25519 by SIKEp434 would decrease
the (theoretical) upper bound of the number of key exchanges per second on one core to
around 400. Even worse, when X25519 gets replaced by CSIDH-512, the number of key
exchanges per core would go down to a mere 17 per second, which is more than three
orders of magnitude below the (theoretical) throughput of X25519. Therefore, it is little
surprising that techniques to speed up CSIDH are eagerly sought.

1These 40,000 key exchanges per second are a theoretical upper bound for the throughput of a single
processor core, which can only be reached under the assumption that the core executes nothing else than
scalar multiplications (i.e. all other operations, such as the transfer of public keys, are ignored).
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Contributions. The straightforward way of maximizing the throughput of CSIDH is to
minimize the latency of the underlying group action. However, we demonstrate in this
paper that the usual approach of maximizing throughput by minimizing latency leads to
sub-optimal results on Intel processors that are equipped with recent vector (i.e. SIMD)
extensions such as AVX-512. To be more concrete, we show that, when using AVX-512
instructions, minimizing the latency of one group action requires different optimization
strategies than maximizing the throughput of several group actions that are executed in
SIMD fashion. We explain how the “limb-slicing” method presented in [CGT+21] can be
applied to compute eight independent CSIDH group actions in parallel using AVX-512
instructions, whereby each group action uses a 64-bit element of a 512-bit vector. Limb-
slicing is somewhat related to the well-known “bit-slicing” technique used in symmetric
cryptography since it increases throughput at the expense of latency. We discuss in detail
the obstacles we had to overcome to efficiently batch group actions and execute them in
a SIMD-parallel way. Further, we describe software optimization techniques that enable
a highly-efficient (8× 1)-way parallel execution of the prime-field arithmetic operations
using AVX-512F and AVX-512IFMA instructions. We also present a latency-optimized
implementation of the group action for AVX-512IFMA, which can be used to speed up
client-side TLS processing (while our throughput-optimized implementation targets the
server side2 and can be used for TLS termination as described in [JHH+11]). Our results
for CSIDH-512 show that batch processing and limb-slicing achieve a throughput gain by
a factor of 3.64 compared to an optimized (but non-vectorized) x64 implementation. In
light of the recent debate about the post-quantum security of CSIDH-512, we emphasize
that our optimizations can also be applied to parameter sets with larger primes, and we
expect similar improvements in performance over non-vectorized implementations.

2 Preliminaries
In this section, we give a brief overview of the CSIDH protocol and the CSIDH class
group action of Castryck, Lange, Martindale, Panny, and Renes [CLM+18]. Further, we
summarize the existing constant-time implementations of the CSIDH class group action.
For a detailed analysis of the theory of elliptic curves that is relevant for isogeny-based
cryptography, we refer the reader to the lecture notes of De Feo [DeF17].

2.1 The CSIDH Key Exchange Protocol
The CSIDH protocol works over a finite field Fp, where p is a large prime of the special
form p = 4 · `1 · · · `n − 1 and `1 < . . . < `n are small odd primes. In addition, it uses
supersingular elliptic curves3 EA, defined over Fp and represented in Montgomery form
EA : y2 = x3 + Ax2 + x, with A2 6= 4, where the Fp-endomorphism ring4 of such curves
is isomorphic to an order in the imaginary quadratic field Q(

√
−p). Specifically, the

authors in [CLM+18] choose a supersingular Montgomery curve E0 (i.e. A = 0) with p ≡ 3
(mod 4), where in this case EndFp

(E0) ∼= Z[
√
−p]. Further, we define E``Fp

(Z[
√
−p]) as

the set of all supersingular elliptic curves with the same Fp-endomorphism ring Z[
√
−p].

2A TLS server under heavy load may have to serve thousands of connections per second, which means
it may have to compute eight or more key exchanges every few milliseconds. On the other hand, if the
load is low, it makes more sense to use a latency-optimized implementation. But when the load increases
and the server gets confronted with (at least) eight connections in a short period of time, switching from
the latency-optimized to the throughput-optimized implementation will lead to better performance. To
date, OpenSSL and other TLS stacks do not support the batching of public-key cryptosystems, but an
integration of batch processing is possible as demonstrated by SSLShader (see [JHH+11] for details).

3An elliptic curve E defined over Fp is called supersingular, iff #E(Fp) = p+ 1, otherwise it is ordinary.
4For an elliptic curve E, the Fp-endomorphism ring EndFp (E) contains all endomorphisms from E to

itself, that are defined over Fp.
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The CSIDH Class Group Action. The ideal class group Cl(Z[
√
−p]) acts freely and

transitively on E``Fp
(Z[
√
−p]), via isogenies5 (Theorem 7 in [CLM+18]). Every principal

ideal (`i) ⊂ Z[
√
−p] splits as a product of prime ideals (`i) = lili = 〈`i, π − 1〉〈`i, π + 1〉,

where π =
√
−p is the Frobenius endomorphism6 and since (`i) is principal, we get

li = l−1
i ∈ Cl(Z[

√
−p]). In CSIDH we are interested in computing the action of an ideal

a = le1
1 · · · len

n ∈ Cl(Z[
√
−p]), where e1, . . . , en are small exponents, chosen uniformly from

some interval [−b, b]. This is done by computing in sequence the action of the ideal li, if
ei ≥ 0, or li, if ei < 0, exactly |ei| times for every i ∈ {1, . . . , n}.

Algorithm 1: Computing the class group action for CSIDH [CLM+18]
Input: A ∈ Fp and a list of integers (e1, . . . , en).
Output: B ∈ Fp, such that (le1

1 · · · l
en
n ) ? EA = EB , where EB : y2 = x3 +Bx2 + x.

1 while some ei 6= 0 do
2 Sample a random x ∈ Fp

3 s← +1 if x3 +Ax2 + x is a square in Fp, else s← −1
4 Let S = {i | ei 6= 0, sign(ei) = sign(s)}. If S = ∅ then start over with a new x.
5 Let P = (x : 1), q ←

∏
i∈S

`i and compute T ← [(p+ 1)/q]P
6 for each i ∈ S do
7 R← [q/`i]T // R is the kernel generator
8 if R 6=∞ then
9 Compute φ : EA → EB = li ? EA with ker(φ) = 〈R〉

10 A← B, T ← φ(T ), q ← q/`i, ei ← ei − s

11 return B

For the action of the ideal li we choose a point R ∈ E(Fp) of order `i that lies in the
kernel of π − 1 and compute the isogeny φli : E → E/〈R〉 = li ? E, with ker(φli) = 〈R〉
and deg(φli) = `i. For the action of the ideal li we choose a random point R ∈ E(Fp2)
(i.e. the quadratic twist of E), of order `i in the kernel of π + 1. Note that in this case,
R = (x, iy), where x, y ∈ Fp and i =

√
−1. Then we compute the isogeny φli : E →

E/〈R〉 = li ? E, with ker(φli) = 〈R〉 and deg(φli) = `i. Both isogenies are computed
using the Vélu formulæ [Vél71], which require O(`i log p2) bit operations, hence they are
efficiently computed for relatively small primes `i. Iterating each isogeny computation
|ei| times, depending on the sign of ei and composing the resulting isogenies in each step,
yields the final codomain curve a ? E = (le1

1 · · · len
n ) ? E (see Algorithm 1 [CLM+18]).

CSIDH. The public parameters are the prime p = 4 · `1 · · · `n − 1, the starting curve
E0 : y2 = x3 + x and a positive integer b, such that (2b+ 1) ≥ n

√
#Cl(Z[

√
−p]) in order to

maintain security. Alice’s secret key is a list of exponents skA = (e1, . . . , en) ∈ [−b, b]n,
while her public key is derived from the action of the ideal le1

1 · · · len
n on the curve E0, using

Algorithm 1, i.e. pkA = EA = (le1
1 · · · len

n )?E0, which is sent to Bob. In the same vein, Bob’s
secret key is skB = (d1, . . . , dn) ∈ [−b, b]n, and his public key pkB = EB = (ld1

1 · · · ldn
n )?E0

is sent to Alice. For the shared secret, Alice and Bob compute the codomain curves
kA = (le1

1 · · · len
n ) ? EB and kB = (ld1

1 · · · ldn
n ) ? EA respectively, using Algorithm 1. The

two curves are Fp-isomorphic, because they are derived from the action of the ideal
le1+d1
1 · · · len+dn

n on the initial curve E0, as a result of the commutativity property of the
ideal class group Cl(Z[

√
−p]). Note that the public keys and the shared secret, are elliptic

curves in Montgomery form, hence they are represented as a single coefficient in Fp.

5Let ∞E be the point at infinity on E. An isogeny between two elliptic curves E and E′, over Fp, is a
non-constant rational map φ : E → E′ with finite kernel, that maps ∞E to ∞E′ .

6The Frobenius endomorphism π maps a point P = (x, y) on an elliptic curve E to (xp, yp)
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CSIDH features an efficient public-key validation process, which corresponds to testing
whether the public key is a supersingular Montgomery curve, and it is accomplished
with a series of scalar multiplications [CLM+18]. Castryck, Lange, Martindale, Panny,
and Renes presented a concrete instantiation for CSIDH. They choose a 511-bit prime
p = 4 · `1 · · · `74 − 1, where `1, . . . , `73 are the first odd primes starting from `1 = 3, and
`74 = 587. The secret exponents (e1, . . . , e74) are sampled from [−5, 5]74 (hence b = 5), in
which case 74 log2(2 · 5 + 1) ≈ 256. This instantiation is referred to as CSIDH-512.

Security of CSIDH. The security of CSIDH is based on the Group Action Inverse Problem
(GAIP). That is, given two supersingular elliptic curves E and E′, defined over Fp, with the
same Fp-endomorphism ring Z[

√
−p], to find an ideal a = le1

1 · · · len
n such that a ? E = E′.

The best known classical attack for solving GAIP is the meet-in-the-middle attack with
fully exponential complexity O(

√
N), where N = #Cl(Z[

√
−p]) ≈ √p. In the quantum

setting, Childs, Jao, and Soukharev [CJS14] have shown that solving the GAIP problem
can be reduced to the abelian hidden-shift problem, for which the subexponential quantum
algorithms of Regev [Reg04] and Kuperberg [Kup05] can be applied, where the latter has
complexity O(

√
log p) and the quantum space complexity O(log p).

Based on the above, Castryck, Lange, Martindale, Panny, and Renes [CLM+18]
conjectured that CSIDH-512 would achieve NIST’s post-quantum security level 1 based
on the asymptotic complexity of Kuperberg’s algorithm [Kup05, Kup13]. However, the
concrete security of CSIDH-512 is under debate since the works of Peikert [Pei20], Bonnetain
and Schrottenloher [BS20], and more recently Chávez-Saab, Chi-Domínguez, Jaques, and
Rodríguez-Henríquez [CCJR20], estimate that the prime p should be significantly larger
in order to meet NIST’s security level 1. In particular, [CCJR20] suggests that p should
be updated to 4096 bits.

2.2 Optimization Techniques for Constant-Time CSIDH
In practice, we require a constant-time implementation of Algorithm 1 to resist against
side-channel attacks. Given a secret exponent list (e1, . . . , en), Algorithm 1 computes
|e1| + . . . + |en| isogenies, and thus its execution time fully depends on the secret key.
Meyer, Campos, and Reith [MCR19] presented three leakage scenarios that appear when
implementing Algorithm 1. Timing leakage occurs since different secret keys lead to
different execution times of evaluating the class group action. Power analysis leaks
information on the sign distribution of the secret key since unbalanced, in terms of the
sign, secret exponents lead to scalar multiplications with larger scalars. Cache timing
attacks are also possible and leak information based on branch conditions or array indices.
The authors in [CLM+18] argued that a constant-time implementation can be obtained
when adding certain “dummy” operations, which will not be considered nor affect the final
output of the group action. The first constant-time implementations of Algorithm 1 are
due to Bernstein, Lange, Martindale, Panny [BLMP19] and Jalali, Azarderakhsh, Kermani,
Jao [JAKJ19], which add a large amount of dummy operations and have a probability of
failure in the class group action computation.

Meyer, Campos, and Reith. A constant-time implementation of the CSIDH class group
action with significant optimizations is presented in [MCR19], and it is known as the
“MCR-style”. The algorithm uses only positive secret exponents ei, each sampled from its
own space [0, bi] where all bi are chosen such that security is maintained. This mitigates
power attacks, while the different intervals allow to reduce the number of large degree
isogenies. Meyer et al. use dummy isogenies so that the same number of isogenies is
computed in each class group action. For each i their algorithm computes ei “real” and
bi−ei “dummy” `i-isogenies. Further, they use the Elligator 2 map [BHKL13] for sampling
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points on the curve. As observed in [MR18], they compute the class group action in
descending order in terms of the primes `i, which results in a speedup over the ascending
order. The most significant optimization is the SIMBA-m-µ technique, where the idea is
to partition the indices {1, . . . , n} into m disjoint subsets and evaluate the group action on
each subset individually, which results in smaller scalars in step 7 of Algorithm 1. However,
this should be done for a specific number of rounds µ, and the subsets should be merged
back after this threshold. The authors argue that finding optimal values for m and µ, as
well as for the upper bounds bi is a hard task. They present various choices, based on the
CSIDH-512 instance, where the best example is SIMBA-5-11.

Onuki, Aikawa, Yamazaki, and Takagi. In [OAYT19] the authors present a constant-
time implementation of Algorithm 1, known as the “OAYT-style”, that improves on the
MCR-style by 29.03%. In their algorithm each ei is also sampled from its own space, but
in contrast to the MCR-style, each ei is allowed to be negative as well. The algorithm
mitigates timing attacks by keeping track of two points P0 ∈ E[π − 1] and P1 ∈ E[π + 1]
and picking the appropriate point, depending on the sign of ei, in order to create the
kernel generator. Both points P0 and P1 are mapped through the isogeny, and the point
not used to derive the kernel is multiplied by `i. The algorithm also uses the Elligator 2
map for generating points on the curve and dummy isogenies as in the MCR-style.

Cervantes-Vázquez, Chenu, Chi-Domínguez, De Feo, Rodríguez-Henríquez, and Smith.
The work in [CCC+19] provides significant improvements on both the MCR- and OAYT-
style algorithms. The authors present efficient formulas in the twisted Edwards model
for performing isogeny computations, isogeny evaluations and curve operations (point
addition/doubling). They also use differential addition chains which provide a 25% improve-
ment compared to the classical Montgomery ladder, for computing scalar multiplications.
Besides the optimizations for the MCR- and OAYT-style algorithms, the authors present
a constant-time implementation that excludes the dummy operations, known as “dummy-
free-style”. Although this is less efficient compared to the MCR- and OAYT-style, it is
resistant against fault-injection attacks, i.e. stronger attackers who can interfere in compu-
tations and determine whether a modification happened on a “real” or a “dummy” isogeny.
Their optimized OAYT-style with SIMBA-3-8 is 39% faster than the MCR-style presented
in [MCR19], and their dummy-free-style group action is two times slower compared to
their OAYT-style implementation.

Optimal Strategies. In [HLKA20], Hutchinson, LeGrow, Koziel, and Azarderakhsh
further studied problems of choosing the optimal bounds bi for sampling secret exponents,
the optimal ordering of primes `i, and the optimal partition m for SIMBA technique.
Such selections are referred to as optimal strategies. Their optimal strategies offer 5.06%
improvement for the OAYT-style implementation in [CCC+19]. In [CR20], Chi-Domínguez
and Rodríguez-Henríquez generalized the computational strategies that are used in the
SIKE implementation [JAC+20] for the case of CSIDH. Their new algorithms do not
rely on the SIMBA approach and provide an improvement of 12.09%, 3.36%, and 10.58%
compared to the MCR-, OAYT-, and dummy-free-style implementations of [CCC+19],
respectively. The OAYT-style algorithm of [HLKA20], the MCR- and dummy-free-style
algorithms of [CR20] are to date the most efficient constant-time implementations of CSIDH
in the literature. These algorithms are further optimized by Adj, Chi-Domínguez, and
Rodríguez-Henríquez [ACR20] when applying certain tricks that reduce the computational
cost of new Vélu formulæ of [BDLS20].
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2.3 AVX-512
AVX-512 is the latest incarnation of Intel Advanced Vector eXtension (AVX), which
augments the execution environment of x64 by 32 registers of a length of 512 bits and
various new instructions. AVX-512 contains multiple extensions, but a specific processor
may support some but not all of them. From another perspective, all processors equipped
with AVX-512 support the core extension named AVX-512 Foundation (AVX-512F).

AVX-512IFMA. Among the extensions of AVX-512, AVX-512IFMA (Integer Fused
Multiply-Add), or simply IFMA, is very attractive for the public key cryptosystems
whose underlying arithmetic is the large integer arithmetic, including isogeny-based cryp-
tosystems. IFMA was first supported with Intel Cannon Lake and continued to be equipped
in its successors such as Ice Lake and Tiger Lake processors. Intel described IFMA in
[Int18] as “two new instructions for big number multiplication for acceleration of RSA
vectorized SW and other Crypto algorithms (Public key) performance”. Specifically, IFMA
introduced two novel instructions vpmadd52luq and vpmadd52huq. An IFMA instruction
first multiplies packed unsigned 52-bit integers in each 64-bit lane of two registers to
produce a 104-bit intermediate product. It then adds either the low or the high 52-bit from
the product with corresponding packed unsigned 64-bit integer (from the third register),
and stores the final results in a destination register. Compared to vpmuludq or vpmuldq
instruction in AVX-512F, IFMA not only offers wider multiplier (52-bit in IFMA vs 32-bit
in AVX-512F) but also fuses the multiplication and the addition in a single instruction.

Target Platform. In this work, we target the Intel Ice Lake processor which supports
IFMA extension. The specific processor we used in our experiments is Intel Core i3-1005G1
CPU clocked at 1.2 GHz.

Relevant Instructions. Table 1 lists the most relevant AVX-512 instructions used in this
work, along with their latency and throughput data7 on the Ice Lake processor which we
obtained from Intel official document [Int20]; the throughput data is shown in Clock Per
Instructions (CPI) ratio [Int18]; the instruction mnemonic is used to describe algorithms
in this paper.

Table 1: The latency (in clock cycles) and throughput (CPI) of relevant AVX-512 instruc-
tions on Intel Ice Lake processor.

Type Mnemonic Instruction Latency CPI

Arithmetic ADD/SUB vpaddq/vpsubq 1 0.5
MUL vpmuludq – 1

Logic SHL/SHR vpsllq/vpsrlq 1 1
AND vpandd 1 0.5

Permutation
PERM vpermq 3 1
BCAST vpbroadcastq 3 1
ZERO vpxorq† 1 0.5

IFMA MACLO vpmadd52luq 4 1
MACHI vpmadd52huq 4 1

† XOR a ZMM register with itself to set it to zero.

7Here we consider the case that these instructions work on 512-bit ZMM registers not 128-bit XMM or
256-bit YMM registers. The instruction CPI of the latter case is lower since Port 1 can handle AVX-512
instructions working on XMM or YMM but on ZMM registers (see [Int18, Figure 2-1]).
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3 Methods for Batching CSIDH Group Actions
Recall from Section 2.2 that the to-date fastest constant-time CSIDH implementations are
the two OAYT-style variants of [HLKA20] and [CR20]. According to our measurements of
their group action evaluation (see Table 3), the former is 1% faster than the latter. The
optimization techniques used in both variants improve the OAYT-style implementation
of [CCC+19] by 5%, and they are all considered in terms of x64 implementation. When
the same optimization techniques are applied to AVX-512 software, the resulting effects
may be different. In this work we focus on batching the OAYT-style implementation of
[CCC+19]. However, we argue that the optimization techniques of [HLKA20, CR20] as
well as [ACR20] can also be applied in our batched implementation.

The OAYT-style class group action algorithm of [CCC+19] is described in Algorithm 2,
which was originally presented in [OAYT19]. Algorithm 2 takes advantage of the SIMBA-
m-µ technique [MCR19], in which the set of indices S = {1, . . . , n} is partitioned into
m subsets S1, . . . , Sm, where Sj = {j,m + j, 2m + j, . . .} for each j ∈ {1, . . .m}. For
the CSIDH-512 instantiation, the best choices according to [OAYT19] are m = 3 and
µ = 8. In this case, Algorithm 2 computes 404 “real” and “dummy” isogenies (i.e. the
variable tmax =

∑n
i=1 bi = 404, see Appendix A for the bound vector b and the ordering of

the small primes `). Following [CCC+19], we define the constant-time equality test and
constant-time conditional swap functions isequal and cswap, respectively, as:

isequal(x, y) =
{

1, if x = y
0, if x 6= y

, cswap(x, y, a) =
{
x↔ y, if a = 1
x= y, if a = 0

Further, we consider a constant-time function sign(x), which returns 0 if x < 0 while
returns 1 if x ≥ 0. More details on Algorithm 2 are given in [OAYT19, CCC+19].

3.1 Obstacles to Batching CSIDH Group Actions
We conceive our batched software where eight CSIDH group action instances in the fashion
of Algorithm 2 are to be computed simultaneously by AVX-512 instructions. Besides, each
instance is computed in 64-bit lane, and instances are independent of each other. Since
AVX-512 is in the paradigm of Single Instruction Multiple Data, from another perspective,
this requires that the same instruction must be executed at the same time in eight instances.
In other words, each of the eight instances in the execution of our batched software must
process the same instruction sequence or, we say, the same operation sequence at a higher
layer. This is a crucial requirement, in addition to having a constant-time implementation
which is already accomplished by Algorithm 2. The sequence of operations in Algorithm 2,
relies on specific conditional statements, which are (indirectly) affected by the value of the
random curve points generated internally at line 7 to 8.

Specifically, a closer look at Algorithm 2 reveals that the sequence of operations (and
instructions) that are carried out depends on whether the kernel generator R at line 13 is
infinity or not. If R 6=∞, the algorithm computes either a “real” or a“dummy” isogeny
(depending on whether ei is non-zero or not) in the “if”-branch, whereas it performs a scalar
multiplication in the “else”-branch if R =∞. In the scenario of eight parallel class group
actions that we are considering, this is problematic, and especially, it is very likely that
at some iterations the point R will be infinity at least in one of the parallel instances. In
particular, the probability for a point of order `i to be infinity is 1/`i, which is considerably
high when `i is small (e.g. 3, 5, 7, . . . in CSIDH). This will cause a mismatch between the
simultaneous instances and will affect other variables as well, such as the update of b′i
and the isogeny counter tisog at line 21, leading to different instruction sequences for the
different instances.

Clearly, in order to obtain a constant-time batched software where eight running
instances follow the same instruction sequence, we need to mitigate the mismatch caused
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Algorithm 2: The OAYT-style algorithm with SIMBA-m-µ for computing the
CSIDH group action.

Input: A ∈ Fp, bound b = (b1, . . . , bn), exponents e = (e1, . . . , en) where ei ∈ [−bi, bi].
Output: B ∈ Fp, such that (le1

1 · · · l
en
n ) ? EA = EB , where EB : y2 = x3 +Bx2 + x.

1 (e′1, . . . , e′n)← (e1, . . . , en), (b′1, . . . , b′n)← (b1, . . . , bn)
2 EB ← EA, tmax ←

∑n

i=1 bi, tisog ← 0, r ← 0, j ← 0
3 while tisog < tmax do
4 j ← (j mod m) + 1 // Subset index
5 if r = µ ·m then
6 S1 ← {i | bi 6= 0}, j ← 1, m← 1 // Merge subsets

7 u← random({2, . . . , (p− 1)/2}), q ←
∏

i∈Sj
`i

8 (P0, P1)← Elligator(EB , u) // P0 ∈ E[π − 1] and P1 ∈ E[π + 1]
9 (T0, T1)← ([(p+ 1)/q]P0, [(p+ 1)/q]P1)

10 for each i ∈ Sj do
11 s← sign(e′i)
12 cswap(T0, T1, 1− s)
13 R← [q/`i]T0 // R is the kernel generator
14 if R 6=∞ then
15 w ← 1− isequal(e′i, 0)
16 Compute isogeny φ : EB → EC = li ? EB s.t. ker(φ) = 〈R〉
17 T1 ← [`i]T1
18 (T2, T3)← (φ(T0), φ(T1))
19 T0 ← [`i]T0
20 cswap(T0, T2, w), cswap(T1, T3, w), cswap(B,C,w)
21 e′i ← e′i + (−1)s · w, b′i ← b′i − 1, tisog ← tisog + 1
22 else
23 T1 ← [`i]T1

24 cswap(T0, T1, 1− s), q ← q/`i

25 if b′i = 0 then
26 Remove i from Sj

27 r ← r + 1
28 return B

by the infinity check at line 14. We explore three methodologies that achieve a batching-
friendly CSIDH group action and deal with this specific if-else statement. In our first
method, the idea is to rewrite Algorithm 2 so that this if-else clause is no longer needed.
This requires the computation of additional dummy isogenies in the case where the kernel
point is infinity, and hence we refer to this method as extra-dummy (Section 3.2). In the
second method, we still keep this if-else statement but we force all eight instances to always
agree on the same branch. That is, if at least one kernel point in the eight instances is
the point at infinity, then all instances will enter the “else”-branch at line 22. We refer
to this methodology as extra-infinity method (Section 3.3). The third idea is based on
the combination of the extra-dummy and extra-infinity methods, therefore we call it the
combined method (Section 3.4).

Hybrid Mode. Notably, all of our three methods are constructed in a hybrid mode which
significantly improves the performance of the batched CSIDH implementation. In the con-
text of this paper, hybrid mode means that the entire batched software is composed of two
different types of class group action implementations, namely the batched component and
the unbatched component. The batched component is an incomplete implementation that
performs eight class group action evaluations simultaneously. The unbatched component
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is a latency-optimized implementation accelerating a single class group action evaluation
(such as the implementation of Algorithm 2, presented in [CCC+19]). The key idea in
the three methods is to first take advantage of the batched component to compute the
main bulk of the CSIDH group action (including almost all isogeny computations) for all
instances, and then use eight times in sequence the unbatched component to handle the
remaining computations needed in each instance.

The three methods are based on the OAYT-style implementation of Algorithm 2 with
SIMBA-m-µ. However, in Section 3.5, we show that all three methods can also be applied
to batch the dummy-free-style algorithm of [CCC+19], which is considered to be secure
against fault-injection attacks.

3.2 Extra-Dummy Method
Our first batching method initially aims at making Algorithm 2 independent of all inputs
as well as all randomness. In brief, we remove the if-else clause (line 14 and line 22)
that checks whether R is infinity, at a cost of extra dummy isogeny computations. This
idea was first presented in [BLMP19] and also adopted in [JAKJ19] for a constant-time
CSIDH implementation on 64-bit ARM processors. For both implementations there exists
a probability of failure in computing the correct codomain curve, and a large number of
dummy isogeny computations are required to make this probability negligible (e.g. 2−32).

In detail, according to [CCC+19], given a point P = (Y : T ) represented in twisted
Edwards Y T -coordinates8, we define a constant-time function for checking whether the
point P is infinity as:

isinfinity(P ) =
{

1, if Y = T ⇔ P =∞
0, if Y 6= T ⇔ P 6=∞

This time we compute a “real” isogeny from the kernel point R, if R 6= ∞ and e′i 6= 0;
whereas we compute a “dummy” isogeny if either R = ∞ or e′i = 0. Similarly, these
dummy isogenies will not be considered in the final result, but they will cause the counter
tisog to increment. Consequently, there is a possibility that for some indices i, the number
of the computed “dummy” isogenies exceeds the value bi − |ei| in which case we lose “real”
isogenies that should be computed. This implies that although the algorithm will terminate,
the resulting codomain curve will be incorrect since it will not correspond to the secret
exponents (e1, . . . , en). This probability of failure can be reduced by fixing the number
of dummy isogenies to be computed, as done in [BLMP19, JAKJ19]. In other words,
except for the dummy isogenies originally needed by Algorithm 2 to make the group action
independent of the secret exponents (we call them initial dummy isogenies), we import
extra dummy isogenies to make the group action independent of the randomness (we call
them extra dummy isogenies). The modified group action has now the same operation
sequence in each execution, which meets the requirement for batching. However, according
to our calculation, it requires to import more than

∑n
i=1 bi extra dummy isogenies to make

the failure probability below 2−32. Hence, this idea needs to compute more than two times
the number of isogenies needed in Algorithm 2, which significantly reduces the efficiency
of the algorithm, while the probability of failure still exists.

Based on the above discussion, we are looking for a way to drastically reduce the
number of extra dummy isogenies and eliminate the probability of failure, but meanwhile
retain this batching-friendly fashion of group action. This can be done using the hybrid
mode. As introduced in the previous subsection, the hybrid mode consists of the batched
component and the unbatched component. In the batched component, we still compute∑n

i=1 bi (“real” and “dummy”) isogenies, where in this case, dummy isogenies appear
8A point P on a projective twisted Edwards curve in Y T -coordinate representation is expressed as

P = (Y : T ), where Y/T is the affine y-coordinate of the point P .
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Algorithm 3: The batched component of our extra-dummy method for OAYT-style
group action evaluation.

Input: A ∈ Fp, bound b = (b1, . . . , bn), exponents e = (e1, . . . , en) where ei ∈ [−bi, bi].
Output: B̂ ∈ Fp, the lists (b̂1, . . . , b̂n) and (e′1, . . . , e′n).

1 (e′1, . . . , e′n)← (e1, . . . , en), (b′1, . . . , b′n)← (b1, . . . , bn), (b̂1, . . . , b̂n)← (b1, . . . , bn)
2 EB̂ ← EA, tmax ←

∑n

i=1 bi, tisog ← 0, r ← 0, j ← 0
3 while tisog < tmax do
4 j ← (j mod m) + 1 // Subset index
5 if r = µ ·m then
6 S1 ← {i | bi 6= 0}, j ← 1, m← 1 // Merge subsets

7 u← random({2, . . . , (p− 1)/2}), q ←
∏

i∈Sj
`i

8 (P0, P1)← Elligator(EB̂ , u) // P0 ∈ E[π − 1] and P1 ∈ E[π + 1]
9 (T0, T1)← ([(p+ 1)/q]P0, [(p+ 1)/q]P1)

10 for each i ∈ Sj do
11 s← sign(e′i)
12 cswap(T0, T1, 1− s)
13 R← [q/`i]T0 // R is the kernel generator
14 f ← 1− isinfinity(R)
15 w ← 1− isequal(e′i, 0)
16 Compute isogeny φ : EB̂ → EC = li ? EB̂ with ker(φ) = 〈R〉
17 T1 ← [`i]T1
18 (T2, T3)← (φ(T0), φ(T1))
19 T0 ← [`i]T0

20 cswap(T0, T2, f&w), cswap(T1, T3, f&w), cswap(B̂, C, f&w)
21 e′i ← e′i + (−1)s · (f&w), b′i ← b′i − 1, tisog ← tisog + 1
22 b̂i ← b̂i − f
23 cswap(T0, T1, 1− s), q ← q/`i

24 if b′i = 0 then
25 Remove i from Sj

26 r ← r + 1

27 return B̂, (b̂1, . . . , b̂n), (e′1, . . . , e′n)

whenever a secret exponent is zero, or the kernel point is infinity. In addition, we keep
track of all the dummy isogenies that occurred from infinity kernel points. After the
batched component terminates, we take advantage of the unbatched component to compute
“compensatory” isogenies based on the previously recorded infinity cases. Since this method
adds extra dummy isogenies for each instance that occurred from the infinity cases, we
refer to it as the extra-dummy method.

Algorithm 3 explains the batched component of our extra-dummy method. We first
apply this batched component for computing eight group action instances in parallel.
Hence, in our batched software, the input is composed of a secret exponent list and a
starting curve:

〈(e(1)
1 , . . . , e(1)

n ), (e(2)
1 , . . . , e(2)

n ), . . . , (e(8)
1 , . . . , e(8)

n )〉 and 〈A(1), A(2), . . . , A(8)〉.

In Algorithm 3, apart from the bound list (b′1, . . . , b′n), we also create an additional bound
list for each instance to record the infinity cases:

〈(b̂(1)
1 , . . . , b̂(1)

n ), (b̂(2)
1 , . . . , b̂(2)

n ), . . . , (b̂(8)
1 , . . . , b̂(8)

n )〉,

which only decreases when an isogeny is computed from a non-infinity kernel point (line 22
in Algorithm 3). At the beginning of the batched component, each list (b̂(k)

1 , . . . , b̂
(k)
n ) is

initialized to b (same as (b′1, . . . , b′n)).



H. Cheng, G. Fotiadis, J. Großschädl, P. Y. A. Ryan, P. B. Rønne 629

When the batched component terminates, it outputs for each instance, a curve coefficient
B̂(k), the list (b̂(k)

1 , . . . , b̂
(k)
n ), and the list of exponents (e′(k)

1 , . . . , e′
(k)
n ), where most of the

e′
(k)
i (as well as current b̂(k)

i ) are 0, for i ∈ {1, . . . , n} and k ∈ {1, . . . , 8}. As a result, there
are only a few “real” (and “dummy”) remaining isogenies that need to be computed for
each instance, based on (e′(k)

1 , . . . , e′
(k)
n ) and (b̂(k)

1 , . . . , b̂
(k)
n ). Our experiments indicate that

for each instance there are often around 10 (“real” and “dummy”) isogenies remaining
to be computed, i.e. current

∑n
i=1 b̂

(k)
i ≈ 10. We compute the remaining isogenies by

executing the unbatched component for each instance in sequence:

B(k) ← unbatched(B̂(k), (b̂(k)
1 , . . . , b̂(k)

n ), (e′(k)
1 , . . . , e′

(k)
n ))

for k ∈ {1, . . . , 8}. Following the concrete CSIDH-512 parameters of [CCC+19], for
each instance, there are exactly 404 isogeny computations (“real” and “dummy”) in the
batched component while a few isogeny computations corresponding to non-zero b̂(k)

i in
the unbatched component. Thus, for each instance, the extra-dummy method computes
only a few more extra isogenies, compared to the conventional OAYT-style implementation
(Algorithm 2). Moreover, since the unbatched component has no failure probability, we
conclude that the extra-dummy method has no failure probability either.

3.3 Extra-Infinity Method
We assume that eight different instances of Algorithm 2 are computed in parallel. In brief,
the idea in our second method is that for each iteration of the inner loop (line 10 to line 26
of Algorithm 2), if the kernel generator is infinity in at least one of the eight instances,
then we force all instances to execute the “else”-branch at line 22. In particular, we define
the variable inf as:

inf = isinfinity(R(1)) | isinfinity(R(2)) | . . . | isinfinity(R(8)),

where R(k) denotes the kernel generator in the kth simultaneous instance. If inf = 0, then
R(k) 6=∞ for all k ∈ {1, . . . , 8} and all eight instances will enter the “if”-branch at line 14
in Algorithm 2, in order to compute a “real” or a “dummy” `i-isogeny. On the other hand,
if inf = 1, then R(k) =∞ for at least one k ∈ {1, . . . , 8} and all instances will proceed to
the “else”-branch. In this case, we need to execute the scalar multiplication T (k)

0 = [`i]T (k)
0 ,

in addition to T (k)
1 = [`i]T (k)

1 . This is not needed in Algorithm 2, because the `i-torsion
part of the point T0 has already vanished (since R =∞). In our approach, when inf = 1,
we are forcing all instances to proceed as if all R(k) were infinity, however the `i-torsion
parts of some points T (k)

0 have not vanished.
However, when inf = 1, the above idea imports some extra infinity-related computations,

which in principal are not needed by every instance. In addition to the two scalar
multiplications for T (k)

0 and T (k)
1 in the “else”-branch, these infinity-related computations

may include more point generation operations (using the Elligator map at line 8), which
will result in more scalar multiplications for the full order points P (k)

0 , P
(k)
1 (line 9) and the

kernel generator R(k) (line 13). For this reason, we refer to this method as the extra-infinity
method. Note also that the probability of inf = 1 is 1− (1− 1/`i)8, which is considerably
higher when `i is small (e.g. 3, 5, and 7). As a result, an increased number of inf = 1
cases (and hence, an increased number of infinity-related computations) is expected, which
affects the efficiency of the extra-infinity method.

We mitigate this problem by considering again the hybrid mode. More precisely, we
divide the primes ` = (`1, . . . , `n) into two subsets, `batch for the batched component
and `unbatch for the unbatched component. `unbatch contains only the smaller primes,
specifically 3, 5, 7, 11, 13, 17 and 19 in our implementation, whereas `batch includes the
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remaining primes in `. In the same way, the bound list b = (b1, . . . , bn) and the secret
exponent list e(k) = (e(k)

1 , . . . , e
(k)
n ) of each instance are split in two subsets, i.e. {bbatch,

bunbatch} and {e(k)
batch, e

(k)
unbatch} for k ∈ {1, . . . , 8}.

In the extra-infinity method, we first execute the batched component for eight parallel
group action instances, to compute the isogenies for the larger primes with the corresponding
subsets. The batched component outputs the resulting curve B̂(k) for each instance:

〈B̂(1), B̂(2), . . . , B̂(8)〉 ← batched(〈A(1), A(2), . . . , A(8)〉, bbatch, 〈e(1)
batch, e

(2)
batch, . . . , e

(8)
batch〉)

Then we execute the unbatched component (such as Algorithm 2) sequentially in order to
obtain the correct codomain curve for each instance:

B(k) ← unbatched(B̂(k), bunbatch, e
(k)
unbatch)

for k ∈ {1, . . . , 8}. The number of total isogenies (“real” and “dummy”) that are computed
in the batched component for each instance is the sum of all bi in bbatch, which is 358
when considering the CSIDH-512 parameters of [CCC+19]. In the unbatched component,
the number of total isogenies (“real” and “dummy”) is 46, i.e. the sum of all bi in bunbatch.

3.4 The Combination of Extra-Dummy and Extra-Infinity Methods

Before we introduce the combined method, we give a few more details on the extra-dummy
and extra-infinity methods. We consider an example where in an iteration of the inner loop,
ninf of the eight kernel points R(k) =∞, in the batched component of both methods. The
extra-dummy method will complete the computations of this iteration (from line 14 to 25 in
Algorithm 3), and later it will compute ninf “compensatory” isogenies with the unbatched
component. On the other hand, the extra-infinity method will enter its “else”-branch to
compute two scalar multiplications, for all eight instances, and it may later perform the
other infinity-related computations, which are in theory needed by ninf instances. Based
on the operations that are carried out in each method, we observe that the extra-dummy
method handles the infinity cases more efficiently than the extra-infinity method when
only few R(k) =∞, hence when ninf is small. On the other hand, the extra-infinity method
seems to be more efficient in handling the infinity cases, when most of the eight R(k) =∞
(i.e. when ninf is close to 8).

Based on the above observation, our idea is to combine the two approaches, aiming at
obtaining a more efficient method. In order to do this, we set the variable ninf as:

ninf = isinfinity(R(1)) + isinfinity(R(2)) + . . .+ isinfinity(R(8)),

so that ninf ∈ [0, 8]. Taking Algorithm 3 to describe this combined method, after the
computation at line 13 (where the kernel generator R(k) is computed), we add an if-else
statement to check if the variable ninf is within a predefined threshold nthld. If ninf ≤ nthld
which means there are few R(k) =∞, we do the same computations as in the extra-dummy
method (line 14 to 22 of Algorithm 3). On the other hand, if ninf > nthld which means
there are more R(k) = ∞, we proceed to the “else”-branch of the extra-infinity method
and perform the two scalar multiplications T (k)

1 = [`i]T (k)
1 and T (k)

0 = [`i]T (k)
0 . After this

if-else statement, the operations at line 23 to line 25 will be performed. Additionally, the
unbatched component of the combined method is the same as the one in the extra-dummy
method. From our experiments, when the threshold nthld = 3, this combined method
provides the best performance, and particularly, it is slightly faster than the extra-dummy
method and quite faster than the extra-infinity method.



H. Cheng, G. Fotiadis, J. Großschädl, P. Y. A. Ryan, P. B. Rønne 631

3.5 Batching Dummy-Free-Style Group Actions
The methods that we have considered in Sections 3.2, 3.3, and 3.4 for batching CSIDH
group actions are all based on the OAYT-style algorithm of [OAYT19] and require the
computation of dummy isogenies. More precisely, recall that Algorithm 2 computes |ei|
“real” and bi − |ei| “dummy” isogenies. Such implementations are vulnerable to fault
injection attacks. As observed in [CCC+19], an attacker can modify the codomain curve
or the images of the points T0, T1 under the isogeny φ in Algorithm 2 (fault injections),
and if the result is correct, he knows that a dummy isogeny is computed and thus ei = 0.
This is also true in Algorithm 3. If the same modification produces the correct result, then
the attacker knows that either ei = 0, or the current kernel generator R =∞.

In [CCC+19], Cervantes-Vázquez, Chenu, Chi-Domínguez, De Feo, Rodríguez-Henríquez,
and Smith presented a constant-time evaluation of the CSIDH class group action, without
the need of dummy isogeny computations [CCC+19, Algorithm 5]. In their dummy-free
approach, the secret exponents are chosen such that ei ∈ [−bi, bi] and ei ≡ bi (mod 2).
This choice allows the algorithm to compute the required |ei| isogenies, while for the
remaining bi − |ei|, it alternates between the actions of the ideals li and li

−1 and hence
these bi − |ei| isogenies cancel out (see [CCC+19, Section 5] for details). The dummy-free
approach is based on the SIMBA-m-µ technique, where the implementation of [CCC+19]
uses m = 5 and µ = 11 (see Appendix A for the selection of parameters).

We argue that the three methods that we have introduced in Sections 3.2, 3.3, and 3.4
can also be used to batch the dummy-free-style algorithm of [CCC+19]. In particular, for
the extra-dummy and the combined methods, we are still using dummy isogenies for the
case where the kernel generator R = ∞, however, these dummy isogenies do not reveal
any information about the secret exponent, since they depend only on the random kernel
generator. For the extra-infinity method, we follow the same strategy as in Section 3.3,
with the only difference being that the small prime list in the unbatched component is
`unbatch = (3, 5, 7, 11, 13, 17, 19, 23, 29). For the combined method in the dummy-free-style,
the optimal threshold to achieve the best performance is nthld = 5.

4 (8 × 1)-Way Prime-Field Arithmetic
In the batched components of all batching methods, we use the same curve and isogeny
arithmetic implementation that we developed, based on [CCC+19], with minor optimiza-
tions to better fit the batched software. At a lower layer, we developed all the needed
(8× 1)-way9 prime-field operations from scratch, using respectively AVX-512F and IFMA,
by taking advantage of “limb-slicing” technique [CGT+21]. This section only studies our
IFMA vectorized implementation of prime-field operations. Compared to the IFMA ver-
sion, the AVX-512F implementation has two fundamental differences; (i) it uses vpmuludq
instead of IFMA instructions to perform vector multiplication; (ii) the field element is
represented in radix-229 (with 18 limbs) due to the 32-bit multiplier.

4.1 Radix-252 Limb Vector Set
IFMA naturally provides a reduced radix representation, namely radix-252, for large
integers. Fortunately, radix-252 is well-suited for CSIDH-512. Specifically, there are ten
limbs for a 511-bit field element under radix-252. When considering a smaller radix, such
as radix-251, the representation of an element will require at least eleven limbs, which
leads to a higher consumption than radix-252. Formally, a field element f represented in

9The (n×m)-way implementation performs n field operations in parallel, where each field operation is
executed in a m-way parallel fashion and, thus, uses m elements of a vector.
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radix-252 is shown as:

f = f0 + 252f1 + 2104f2 + 2156f3 + 2208f4 + 2260f5 + 2312f6 + 2364f7 + 2416f8 + 2468f9,

where 0 ≤ fi < 252 for 0 ≤ i ≤ 9. This representation allows field elements to be up to
520-bit during computations.

The main data structure of our parallel software is a (8× 1)-way limb vector set, which
is composed of eight radix-252 elements. Given eight integers a, b, c, d, e, f, g, h ∈ Fp, a
(8× 1)-way limb vector set V is defined as:

V = 〈a, b, c, d, e, f, g, h〉 =


[a0, b0, c0, d0, e0, f0, g0, h0]
[a1, b1, c1, d1, e1, f1, g1, h1]

...
[a9, b9, c9, d9, e9, f9, g9, h9]

 = (V0, V1, . . . , V9), (1)

where each Vi = [ai, bi, ci, di, ei, fi, gi, hi] is called a limb vector. All the inputs and outputs
of our (8× 1)-way field operations are limb vector sets of which each limb is precisely 52
bits long. In terms of our field operations, we saved the final subtraction in Montgomery
reduction, and our addition and subtraction perform reduction modulo 2p instead of p.
This means all the integers inputted to or outputted from our field operations are in the
range [0, 2p− 1]. We use P = 〈p, p, p, p, p, p, p, p〉 to denote an (8× 1)-way limb vector set
of prime p, and Q = 2× P = 〈2p, 2p, 2p, 2p, 2p, 2p, 2p, 2p〉.

4.2 Field Addition and Subtraction
Field addition Z ←X + Y mod Q is performed in three steps. At first, we add X with Y
and store their sum in Z. We then subtract Q from Z, so there might be negative results
in some lanes of Z. Finally, we create a 512-bit mask vector where the 64-bit element is
set to all-1 if the corresponding lane’s integer in Z is negative, or to all-0 if non-negative.
Through the bitwise AND between this mask vector and Q, we add 2p to the negative
integers in Z whereas add 0 to the non-negative integers. There are only two steps in the
field subtraction Z ←X − Y mod Q, which first subtracts Y from X and then carries
out a same final step of field addition.

4.3 Field Multiplication
Field multiplication has a significant impact on the performance of any isogeny-based cryp-
tosystem and deserves special care. The field multiplication used in CSIDH is Montgomery
multiplication [Mon85] which consists of two phases, namely integer multiplication and
Montgomery reduction. There exist some different variants of Montgomery multiplication,
often termed with their implementation fashion, such as Separated Operand Scanning
(SOS) [KAK96], Finely Integrated Product Scanning (FIPS) [KAK96], Karatsuba-Comba-
Montgomery (KCM) [GAST05] and etc. The number of instructions (including addition,
multiplication, load/store) and memory consumption required for different variants are
different. Taking these two factors into account, implementers can choose a proper variant
when they develop software especially on resource-constrained devices like AVR or ARM
microcontrollers. For the cost comparison of different variants we refer to [KAK96, Table
1] and [GAST05, Table 4]. However, things become more complicated when developing
on a processor with more computing power. Considering our case, Ice Lake processor is
equipped with ten execution ports (and various execution units), so the processor can
execute several instructions simultaneously. Excluding the number of needed instructions
and instruction latency/throughput, we are supposed to take instruction-level parallelism
into account. The memory consumption receives less attention in this case since an Ice
Lake machine usually possesses a GB-level memory.
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Table 2: Information of our (8×1)-way implementation of field multiplication and squaring.

Field Operation ISA Integer Mul/Sqr Reduction Structure Latency†

Multiplication IFMA Product-Scan. Operand-Scan. Interleaved 436
Squaring IFMA Product-Scan. Operand-Scan. Interleaved 344

Multiplication AVX-512F Karatsuba Product-Scan. Separated 848
Squaring AVX-512F Product-Scan. Product-Scan. Interleaved 723

† Latency (in clock cycles) is the execution time of eight parallel Montgomery multiplication/squaring instances, and
it was measured on Ice Lake i3-1005G1 processor with turbo boost disabled.

Currently, most of the related AVX-512 implementations are designed for accelerating
1-, 2- or 4-way Montgomery multiplication. However, these optimization techniques are not
ideally applicable to our 8-way software. We discuss these implementations in more detail
in Section 5.1. Due to the “limb-slicing” pattern, our 8-way Montgomery multiplication
essentially “duplicates” 1-way implementation to eight lanes by AVX-512 instructions.
To the best of our knowledge, there are only two AVX-512 implementations of this type
in the literature. Takahashi proposed both AVX-512F and IFMA implementation of
8-way Montgomery multiplication in [Tak20], but this software works on 62-bit and 52-bit
operands, respectively, and not in the case of large integers. Buhrow, Gilbert, and Haider in
[BGH21] presented a Block Product Scanning (BPS) variant of Montgomery multiplication,
which is based on radix-232 representation. An 8-way 512-bit BPS variant implemented
with AVX-512F takes 189 clock cycles for each instance, which translates to 1512 clock
cycles for a whole 8-way implementation.

In order to find an optimal field multiplication for our software, the best way is
to develop the corresponding 8-way AVX-512 implementation of various Montgomery
multiplication variants and select the fastest one among them. From an algorithmic
viewpoint, all the variants differ in three aspects: (i) different methods to implement
integer multiplication, e.g. operand-scanning, product-scanning or the advanced technique
such as Karatsuba algorithm [KO63]; (ii) different methods to implement Montgomery
reduction, e.g. operand-scanning or product-scanning; (iii) whether Montgomery reduction
is separated from or interleaved with integer multiplication (and how it is interleaved in
the latter case). For our IFMA version, we conducted experiments in which we developed
a dozen of implementation candidates of 8-way field multiplication based on various
combinations from above three aspects. Notably, our 8-way implementation candidates are
not straightforwardly “duplicating” the ordinary 1-way x64 implementation of different
variants (or we say combinations). We rather concentrated on improving instruction-
level parallelism in each implementation candidate. In order to achieve this purpose,
we tried to improve the ports utilization by optimizing dependency chains in the code.
From our benchmarking results on Ice Lake processor, the implementation candidate
with the lowest latency is shown in Algorithm 11 at Appendix C, which possesses a
similar structure as Coarsely Integrated Hybrid Scanning (CIHS) [KAK96], and it serves
as field multiplication in our 8-way IFMA software. Our field multiplication uses product-
scanning for integer multiplication and utilizes operand-scanning to handle Montgomery
reduction, and reduction is interleaved with the second outer loop of product-scanning
integer multiplication (line 7 to 15 in Algorithm 11). As for our AVX-512F version, we
carried out a similar procedure to evaluate also a dozen of AVX-512F implementation
candidates. The optimal field multiplication in AVX-512F version switches to Karatsuba
algorithm for integer multiplication since there are 18 limbs of each element, and uses a
product-scanning Montgomery reduction that is separated from integer multiplication.

The information and latency of field multiplication in both versions are shown in
Table 2, which indicates that our Karatsuba-based AVX-512F implementation outperforms
the BPS variant in [BGH21]. We herein emphasize on the importance of using an optimal
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field multiplication in such parallel AVX-512 software of an isogeny-based cryptosystem. In
our experiments for IFMA version, the 8-way Separated Product Scanning (SPS) variant
[LG14] or 8-way original FIPS variant [KAK96] (i.e. the one that has not been optimized
for improving instruction-level parallelism) costs more than 700 clock cycles, i.e. taking
60% more CPU-cycles than Algorithm 11. From our experiments, using such unsuitable
field multiplication and squaring implementation will finally result in up to 30% more
CPU-cycles for CSIDH group action evaluation compared to the one using optimal variants.

4.4 Field Squaring
Most of the existing CSIDH implementations, e.g. [MCR19, OAYT19, CCC+19, CR20,
HLKA20], take advantage of a same x64 assembly implementation of field operations
originally from [CLM+18]. In this assembly implementation, a field squaring just invokes
a field multiplication in which two operands are same. In other words, field squaring
possesses the same latency as field multiplication. In this work, we developed a dedicated
Montgomery squaring instead of directly using field multiplication. Specifically, compared
to field multiplication, our field squaring utilizes a dedicated integer squaring instead of
integer multiplication.

In essence, integer squaring is a special instance of multiplication, where all partial
products in the form of fi · fj with i 6= j appear twice due to fi · fj = fj · fi. A classic
technique for optimizing squaring is to just compute these partial products once and
double them, thereby saving numerous multiplication instructions. We develop our integer
squaring by this classic technique, and again we developed many squaring candidates to
obtain an optimal implementation. The information of our field squaring implementation
is also listed in Table 2 where it proves a dedicated field squaring saves at least 15%
CPU-cycles than a field multiplication. The algorithmic description of our IFMA 8-way
Montgomery squaring is shown in Algorithm 12 at Appendix C.

5 Low-Latency Implementation
In our hybrid mode which is introduced in Section 3.1, the low-latency implementation of
a single group action evaluation serves as the unbatched component and is needed by each
instance. More importantly, this low-latency implementation can also be used in more
applications e.g. accelerating the CSIDH key exchange protocol on the client side.

In this section we describe our (2×4)-way IFMA implementation, which is developed for
accelerating a single group action evaluation and used as the unbatched component in our
IFMA throughput-optimized software. In the case of AVX-512F, our experiments showed
that the (2× 4)-way AVX-512F implementation is slower than the x64 implementation of
[CCC+19]. Hence, for our AVX-512F throughput-optimized software, we use the [CCC+19]
implementation as the unbatched component.

5.1 (2 × 4)-Way Field Operations
Neither the structure nor the radix of the (2× 4)-way limb vector set is the same compared
to the (8× 1)-way set. To be specific, we take advantage of (2× 4)-way interleaved vectors
combined with radix-243 this time. The (2× 4)-way limb vector set V = 〈a, b〉 is defined
as follows:

V = 〈a, b〉 =

[a0, a3, a6, a9 , b0, b3, b6, b9 ]
[a1, a4, a7, a10, b1, b4, b7, b10]
[a2, a5, a8, a11, b2, b5, b8, b11]

 = (V0, V1, V2). (2)

Each limb vector Vi = [ai, ai+3, ai+6, ai+9, bi, bi+3, bi+6, bi+9] contains four limbs from each
integer a and b, and limbs are arranged in an interleaved pattern. The reason for using
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radix-243 instead of radix-252 is now easily inferred from the Equation (2). It is because
there will still remain three limb vectors if using radix-252 (ten limbs for each integer),
whereas radix-243 offers more headroom in each limb (ai or bi) and is thus friendly for
delaying the carry propagation. Similar to the (8× 1)-way implementation, our (2× 4)-way
implementation also saves a final subtraction in Montgomery reduction and performs
modulo 2p instead of p reduction in field addition and subtraction.

Mixed Addition and Subtraction. In curve and isogeny arithmetic, we can generally
perform a pair of field addition and subtraction simultaneously, but not two additions
or two subtractions due to sequential dependency. Therefore, it makes more sense to
develop a parallel and mixed operation of addition and subtraction. We denote this mixed
operation as “±”. Formally, it works as 〈r, s〉 ← 〈a, b〉 ± 〈c, d〉 where r = a+ c mod 2p and
s = b− d mod 2p. In essence, this mixed operation executes the similar steps described in
Section 4.2. At first, we construct two (2× 4)-way limb vector sets 〈c, 0〉 and 〈2p, d〉. We
add 〈a, b〉 with 〈c, 0〉, and then subtract 〈2p, d〉 from the sum to reach 〈a+ c− 2p, b− d〉.
The final step is similar to Section 4.2 in order to ensure the results of this mixed operation
are in [0, 2p− 1] by a mask vector.

Multiplication. As we mentioned in Section 4.3, some work has already been done for
accelerating 1-, 2- or 4-way Montgomery multiplication or squaring with AVX-512. Several
papers have been published which focus on using IFMA to accelerate 1-way large integer
arithmetic such as integer multiplication [GK16, KG19] and Montgomery squaring [DG18].

Algorithm 4: (2× 4)-way Montgomery multiplication using IFMA
Input: Operands X = 〈a, b〉 and Y = 〈c, d〉, prime P = 〈p, p〉, w = −p−1 mod 243.
Output: Product Z = 〈e, f〉 where e = a · c · 2−516 mod 2p and f = b · d · 2−516 mod 2p.

1 Li ← ZERO, Hi ← ZERO for i ∈ {0, 1, . . . , 14}
2 W ← BCAST(w), M ← BCAST(243 − 1)
3 for i from 0 to 11 by 1 do
4 T ← PERM(Yi mod 3, 0x55 · bi/3c)
5 for j from 0 to 2 by 1 do
6 Li+j ← MACLO(Li+j , T,Xj)
7 Hi+j ← MACHI(Hi+j , T,Xj)
8 U ← AND(MACLO(ZERO,W, PERM(Li, 0x00)),M)
9 for j from 0 to 2 by 1 do

10 Li+j ← MACLO(Li+j , U, Pj)
11 Hi+j ← MACHI(Hi+j , U, Pj)
12 Li+3 ← ADD(Li+3, 0x77, Li+3, PERM(Li, 0x39))
13 Li+1 ← ADD(Li+1, 0x11, Li+1, SHR(Li, 43))
14 Li+1 ← ADD(Li+1, SHL(Hi, 9))
15 L13 ← ADD(L13, SHL(H12, 9))
16 L14 ← ADD(L14, SHL(H13, 9))
17 Z0 ← L12, Z1 ← L13, Z2 ← L14
18 for i from 0 to 1 by 1 do
19 C ← SHR(Zi, 43)
20 Zi ← AND(Zi,M)
21 Zi+1 ← ADD(Zi+1, C)
22 C ← SHR(Z2, 43)
23 Z2 ← AND(Z2,M)
24 Z0 ← ADD(Z0, 0xEE, Z0, PERM(C, 0x93))
25 return Z = (Z0, Z1, Z2)
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Edamatsu and Takahashi in [ET20] presented an IFMA implementation of single large
integer multiplication, which takes advantage of Karatsuba algorithm. Apart from the
work on 1-way implementation acceleration, Orisaka, Aranha, and López presented a
well-designed and fast (4× 2)-way Montgomery multiplication for SIDH in [OAL18] by
AVX-512F, and their approach is working on the 4-way interleaved vectors. We designed
our (2× 4)-way IFMA Montgomery multiplication based on the approach of [OAL18] with
several modifications: (i) we use IFMA instructions to replace vpmuldq and save vpaddq;
(ii) we apply our (2 × 4)-way limb vector set; (iii) we implement integer multiplication
and reduction in interleaved fashion instead of separated one which is originally-used,
because the interleaved fashion is measured to be faster than the separated one from our
experiments. Our (2 × 4)-way field multiplication is described in Algorithm 4. Vector
sets L and H respectively accumulate the partial products produced by vpmadd52lo
and vpmadd52hi. Notably, excluding the computation at line 14, there is no dependency
between L and H in the main loop (line 3 to 14), which benefits the efficient utilization of
ports.

Squaring. Orisaka et al. did not present a dedicated integer squaring in [OAL18] but
planned it as a future work. We herein propose a fast integer squaring by using the classic
optimization technique that we described in Section 4.4. Our integer squaring can be
slightly modified to fit any (2×4)- or (4×2)-way AVX-512 Montgomery squaring that uses
interleaved vectors, e.g. the integer squaring needed in [OAL18]. Our method is described
in Algorithm 5, which saves 24 IFMA instructions compared to an integer multiplication
(corresponding to line 5 to 7 in Algorithm 4) which requires 72 IFMA instructions in total.
We keep the output of Algorithm 5 in two sets L and H , since our Montgomery reduction
is designed to directly work on them. Our complete Montgomery squaring just replaces
the integer multiplication part of Algorithm 4 by Algorithm 5.

Algorithm 5: (2× 4)-way integer squaring using IFMA
Input: Operand X = 〈a, b〉.
Output: L = 〈lo(e), lo(f)〉 and H = 〈hi(e), hi(f)〉, where e = a2 and f = b2.

1 Li ← ZERO, Hi ← ZERO for i ∈ {0, 1, . . . , 14}
2 for i from 0 to 11 do
3 k ← i mod 3
4 T ← PERM(Xk, 0x55 · bi/3c)
5 Li+k ← MACLO(Li+k, T,Xk)
6 Hi+k ← MACHI(Hi+k, T,Xk)
7 D ← ADD(T, T ) // Skip this addition when k = 2
8 for j from k + 1 to 2 by 1 do // Skip this loop when k = 2
9 Li+j ← MACLO(Li+j , D,Xj)

10 Hi+j ← MACHI(Hi+j , D,Xj)

11 return L = (L0, L1, . . . , L14), H = (H0, H1, . . . , H14)

5.2 Curve and Isogeny Arithmetic
Following [CCC+19], the curve arithmetic mainly includes y-coordinate point doubling,
point addition and scalar multiplication (using addition chains) on twisted Edwards curve,
whereas the isogeny operations contains y-coordinate isogeny computation and isogeny
evaluation. Fortunately, all of the above five operations can be internally parallelized in
2-way, where the cost10 switches from iM + jS to i

2 M2 + j
2 S2.

10M , S, A denote a 1-way field multiplication, squaring, addition/subtraction operation, respectively;
M2, S2, A2 denote a 2-way field multiplication, squaring, mixed addition and subtraction operation,
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The Elligator 2 map was originally introduced in [BHKL13] for generating random
points on Montgomery curves and was modified in [CCC+19] for the twisted Edwards
case. The latter takes as input the values A0 = a and A1 = a− d where a, d ∈ Fp are the
coefficients of the curve Ea,d in twisted Edwards form, a random u ∈ {2, . . . , (p− 1)/2}
which is used to derive the random curve points. Then it outputs two points P0 ∈ Ea,d[π−1]
and P1 ∈ Ea,d[π + 1]. The method of [CCC+19] requires 8M + 3S + 16A plus one square
test for the Legendre symbol, which we slightly improved by saving 2A. Our 2-way
implementation of the Elligator 2 map is based on [CCC+19], and it is presented in
Algorithm 6, with total cost 5M2 + 1S2 + 9A2 plus the square test for the Legendre
symbol.

Algorithm 6: Our 2-way implementation of Elligator 2 map
Input: The values (A0 : A1) = (a : a− d), u← random({2, . . . , (p− 1)/2}) and

Montgomery constant R = 2516 mod p.
Output: A pair of points P0 ∈ Ea,d[π − 1] and P1 ∈ Ea,d[π + 1].

1 α← 0
2 t0 ← A0 −A1
3 t0 ← A0 + t0
4 t0 ← t0 + t0 = A′

5 t1 ← u×R2 s1 ← t0 ×A1
6 t2 ← t21 s2 ← t20
7 t3 ← t2 +R s3 ← t2 −R
8 t4 ← A1 × s3 s4 ← s1 × s3
9 t5 ← t4 × t4 s5 ← s2 × t2

10 t5 ← s5 + t5 s0 ← α− t0 = −A′
11 t6 ← s4 × t5 s6 ← s0 × t2
12 cswap(α, t1, isequal(t6, 0)) // α← u if t6 = 0; else α← 0
13 t3 ← α× t3 s3 ← α× t4
14 t5 ← t0 + s3 s5 ← s6 − t3
15 t3 ← t3 + t6
16 m← issquare(t3) // m← 1 if t3 is a square in Fp; else m← 0
17 Y0 ← t5 − t4 T0 ← t5 + t4
18 Y1 ← s5 − t4 T1 ← s5 + t4
19 cswap(Y0, Y1, 1−m) cswap(T0, T1, 1−m)
20 return P0 = (Y0 : T0) and P1 = (Y1 : T1)

Specifically, the value u will be used to derive the random curve points, and the
Montgomery constant R is used to map the random value u to the Montgomery domain.
The algorithm first generates the two points using XZ-coordinate representation, namely
P0 = (X0 : Z0) and P1 = (X1 : Z1) on the birationally equivalent Montgomery curve,
C ′Y 2Z2 = C ′X3Z + A′X2Z2 + C ′XZ3, where A′ = 2(a + d) and C ′ = a − d. More
precisely, the two points are defined as:

P0 = (A′ + αC ′(u2 − 1) : C ′(u2 − 1)) and P1 = (−A′u2 − αC ′(u2 − 1) : C ′(u2 − 1)),

where α = 0, if A′ 6= 0; and α = u, if A′ = 011.
Then, the algorithm converts the two points in twisted Edwards form, using Y T -

coordinate representation, at lines 17 and 18. This is relatively cheap, since it requires
only 2A2 operations, namely

P0 = (Y0 : T0) = (X0 − Z0 : X0 + Z0) and P1 = (Y1 : T1) = (X1 − Z1 : X1 + Z1).

respectively.
11Given a point P = (X : Y : Z) on a Montgomery curve in projective form, the XZ-coordinate

representation of P is P = (X : Z), where x = X/Z is the x coordinate of P in affine form.
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At line 16, we use the constant time function issquare to check whether the value

t3 = α(u2 + 1) +A′C ′(u2 − 1)((A′u)2 + (C ′(u2 − 1))2)

is a square in Fp. If it is a square (m = 1), then the generated point lies on Ea,d, otherwise
(m = 0), the point lies on the quadratic twist of Ea,d. At the final step (line 19), the two
points are swapped according to m, so that the point P0 ∈ Ea,d[π−1] and P1 ∈ Ea,d[π+1].

In Appendix B we present our 2-way algorithms for point doubling and (differential)
point addition, as well as the algorithms for the `-isogeny computation and evaluation,
where all algorithms use Y T -coordinate representation on twisted Edwards curves. At the
top layer, we respectively implemented an OAYT-style group action and a dummy-free-style
group action according to [CCC+19].

6 Experimental Results
We downloaded the original CSIDH software [CLM+18], all the OAYT-style and dummy-
free-style constant-time CSIDH software including [OAYT19], [CCC+19], [CR20] and
[HLKA20]. All the source codes are publicly available. In particular, the source code of
[CLM+18] is available at CSIDH website12, while the authors of [CCC+19], [CR20] and
[HLKA20] provided their source code links in their articles. In addition, although the
authors of [OAYT19] did not give the link of their source code in the article, we found the
source code repository of the implementation in [OAYT19] on GitHub13.

In order to figure out the real improvement of our work, we benchmarked our software
and the CSIDH group action evaluation of all the above implementations on an Intel Core
i3-1005G1 Ice Lake CPU clocked at 1.2 GHz. All source codes were compiled with GCC
version 9.3.0 and Turbo boost was disabled during the performance measurements. The
results of the OAYT-style implementations are shown in Table 3, where the speedup ratio
is defined by comparing the “CPU-cycles/#instances” between the baseline and the specific
implementation, i.e. the normalized throughput. We use [CCC+19] as baseline, because in
this way we know precisely how much our vector processing techniques improve the results
(note that [CCC+19] also served as baseline in other papers, e.g. [CR20, HLKA20]).

Table 3: Benchmark of OAYT-style CSIDH-512 group action implementations on Ice Lake.

Reference ISA Impl. #Inst. CPU-Cycles Speedup†

[CLM+18]‡ x64 1-way 1 133.7 M 1.52×
[OAYT19] x64 1-way 1 248.4 M 0.82×
[CCC+19] x64 1-way 1 203.6 M 1.00×
[CR20] x64 1-way 1 195.0 M 1.04×
[HLKA20] x64 1-way 1 194.7 M 1.05×
Low-Latency AVX-512F (2× 4)-way 1 232.2 M 0.88×

This Extra-Dummy AVX-512F (8× 1)-way 8 858.0 M 1.90×
work Extra-Infinity AVX-512F (8× 1)-way 8 1003.9 M 1.62×

Combined AVX-512F (8× 1)-way 8 850.1 M 1.92×
Low-Latency IFMA (2× 4)-way 1 132.1 M 1.54×

This Extra-Dummy IFMA (8× 1)-way 8 454.1 M 3.59×
work Extra-Infinity IFMA (8× 1)-way 8 550.5 M 2.96×

Combined IFMA (8× 1)-way 8 446.9 M 3.64×
† The speedup ratio is calculated with “CPU-cycles/#instances” and uses [CCC+19] as the baseline.
‡ This implementation is not constant-time.

12https://csidh.isogeny.org/software.html
13https://github.com/hiroshi-onuki/constant-time-csidh

https://csidh.isogeny.org/software.html
https://github.com/hiroshi-onuki/constant-time-csidh
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As shown in Table 3, our 2-way low-latency IFMA implementation has roughly the
same latency as the original non-constant-time implementation in [CLM+18], and it is
about 1.5 times faster than the x64 implementation of [CCC+19]. Our (8 × 1)-way
IFMA implementation, when applied with the combined batching method, takes 446.9 M
clock cycles for eight parallel instances, which represents a 3.64 times higher throughput
compared to the x64 implementation in [CCC+19]. An analysis of the execution times of
our (8× 1)-way software shows that all the IFMA implementations are nearly 1.9 times
faster than the corresponding AVX-512F implementations, which confirms that the IFMA
extension indeed significantly accelerates CSIDH compared to general AVX-512F.

Table 4: Benchmark of dummy-free-style CSIDH-512 group action implementations on Ice Lake.

Reference ISA Impl. #Inst. CPU-cycles Speedup†

[CCC+19] x64 1-way 1 433.3 M 1.00×
[CR20] x64 1-way 1 394.3 M 1.10×
Low-Latency AVX-512F (2× 4)-way 1 447.0 M 0.97×

This Extra-Dummy AVX-512F (8× 1)-way 8 1811.0 M 1.91×
work Extra-Infinity AVX-512F (8× 1)-way 8 2172.3 M 1.60×

Combined AVX-512F (8× 1)-way 8 1801.4 M 1.92×
Low-Latency IFMA (2× 4)-way 1 253.8 M 1.71×

This Extra-Dummy IFMA (8× 1)-way 8 967.0 M 3.58×
work Extra-Infinity IFMA (8× 1)-way 8 1220.5 M 2.84×

Combined IFMA (8× 1)-way 8 955.3 M 3.63×
† The speedup ratio is calculated with “CPU-cycles/#instances” and uses [CCC+19] as the baseline.

The benchmarking results of dummy-free-style implementations are summarized in
Table 4. These results show that our proposed batching methods still work efficiently when
applied to the dummy-free-style CSIDH group action and can yield an up to 3.63 times
higher throughput compared to the x64 implementation in [CCC+19].

Performance Evaluation and Analysis. Though AVX-512 can work on eight 64-bit ele-
ments simultaneously with a single instruction, the theoretical maximum speedup factor of
an AVX-512 implementation (compared to x64 implementation) of isogeny-based crypto is
actually far from eight. The main reason is the multiplier. An x64 implementation executed
on an Ice Lake CPU has to use a single multiplier sequentially, but this multiplier can
execute a full (64× 64→ 128)-bit multiplication, which is very beneficial for the field arith-
metic. On the other hand, AVX-512F can execute eight (64× 64→ 64)-bit multiplications
(vpmullq) or eight (32 × 32 → 64)-bit multiplications (vpmuludq/vpmuldq) in parallel,
whereby the latter is typically used in multi-precision arithmetic. An AVX-512IFMA
instruction can perform eight multiplications on 52-bit operands, but the result is either
the lower half or the upper half of the eight 104-bit products, i.e. two IFMA instructions
are necessary. Taking the multiplication of 512-bit integers using the schoolbook method
as example, an x64 implementation needs 82 = 64 mul instructions for one instance, while
AVX-512F needs at least 162 = 256 vectorized mul instructions for eight instances (a
radix-229 representation would even need more instructions) and AVX-512IFMA requires
102 ·2 = 200 IFMA instructions for eight instances. Since the CPI of these mul instructions
is same on Ice Lake CPU (see [Int20]), the approximate speed-up (compared to an x64
implementation) of AVX-512F and AVX-512IFMA is a factor of 2.0 and 2.56, respectively.
This is also the case for the Montgomery reduction. As we mentioned before in Section 4.3,
the field multiplication significantly affects the performance of CSIDH so that the theo-
retical maximum speedup factor of AVX-512 for CSIDH group action evaluation should
be far from 8. Taking this analysis into account, our throughput-optimized AVX-512
implementations have the expected speed-ups.
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As for the latency-optimized implementation, a 2-way IFMA latency-optimized im-
plementation of SIKEp503 was presented by Kostic and Gueron in [KG19], which is 1.72
times faster than the x64 assembly implementation of SIKEp503. We can thus conclude
that our 2-way IFMA low-latency implementations (which achieve speed-up factors of 1.54
and 1.71, respectively) also correspond to the expected acceleration. There are several
reasons that make the 2-way latency-optimized implementation less efficient than the
throughput-optimized implementation, including (i) the overheads caused by aligning and
blending AVX-512 vectors in 2-way curve and isogeny operations; (ii) the fact that some
point operations (e.g. y-coordinate doubling and Elligator 2) can not be parallelized in
an ideal14 2-way fashion due to the dependencies of internal field operations; (iii) some
computations in the field operations (e.g. the complete carry propagation) cannot be
parallelized in an ideal (2× 4)-way fashion due to sequential dependencies of instructions;
(iv) the instruction-level parallelism of (2 × 4)-way is lower than (8 × 1)-way since four
limbs are stored in one vector. For all these reasons and because of the 32-bit multi-
plier in AVX-512F, the 2-way AVX-512F implementation is actually slower than the x64
implementation, which is confirmed by our experimental results.

7 Conclusions

Vector engines like Intel’s AVX have become steadily more powerful from one generation
to the next, not only because of the addition of new functionality, but also through the
extension of the supported vector lengths. The expectation of this trend to continue in
the coming years makes AVX an important platform for the implementation of PQC, in
particular for computation-intensive isogeny-based cryptosystems. Although CSIDH has
a couple of highly-desirable and unique features, the massive computational cost of the
underlying class group action hampers its deployment in security protocols like TLS. In
this paper we demonstrated how the enormous parallel processing power of AVX-512 can
be exploited to, respectively, maximize the throughput of eight instances and minimize the
latency of one instance of CSIDH-512 group action evaluation; the former alleviates the
burden of server-side TLS processing, while the latter is beneficial on the client side. Our
latency-optimized implementation makes CSIDH-512 group action evaluation roughly 1.5
times faster compared to a state-of-the-art non-vectorized x64 implementation that can
resist timing attacks. On the other hand, by developing efficient batching methods for the
class group action and combining them with highly-optimized (8× 1)-way parallel field
arithmetic based on the “limb-slicing” technique, we were able to achieve a 3.6-fold gain in
throughput compared to a state-of-the-art x64 implementation of the CSIDH-512 group
action evaluation. In light of this significant improvement, we expect that our batching
methods are also highly beneficial for optimizing CSIDH-based digital signature schemes,
such as CSI-FiSh [BKV19] and SeaSign [DG19], in which multiple independent class group
actions are computed in the key generation, signing and verification processes.

The correct parameterization of CSIDH (including the order of the underlying prime
field) to achieve NIST’s security level 1 is currently still a topic of debate. It was suggested
that, for level-1 security, the prime p should be much longer than 512 bits, e.g. 4096 bits
[CCJR20]. Our CSIDH software was developed in a modular and parameterized way so as
to reduce the effort when adapting it for other parameter sets since the point arithmetic
(e.g. point addition, point doubling, scalar multiplication) and also certain parts of the
field arithmetic can be re-used.

14We define an ideal 2-way parallelized fashion of point or isogeny operation has the cost of i
2 M2 +

j
2 S2 + k

2 A2 when the corresponding 1-way implementation has the cost of iM + jS + kA.
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A Vectors of Small Primes and Exponent Bound
A.1 Instantiation of the OAYT-style algorithm
Based on [CCC+19], the ordering of the small primes ` = (`1, . . . , `74) is:

` = (349, 347, 337, 331, 317, 313, 311, 307, 293, 283, 281, 277, 271,
269, 263, 257, 251, 241, 239, 233, 229, 227, 223, 211, 199, 197,
193, 191, 181, 179, 173, 167, 163, 157, 151, 149, 139, 137, 131,
127, 113, 109, 107, 103, 101, 97, 89, 83, 79, 73, 71, 67,
61, 59, 53, 47, 43, 41, 37, 31, 29, 23, 19, 17, 13,
11, 7, 5, 3, 587, 373, 367, 359, 353)

The secret key space or equivalently, the list of bounds for the secret exponents is:

b = (2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 10, 10, 10,

10, 9, 8, 8, 8, 7, 7, 7, 7, 7, 6, 5, 1, 2, 2, 2, 2)

The OAYT-style implementation of [CCC+19] uses the SIMBA-3-8 technique.

A.2 Instantiation of the dummy-free-style algorithm
For the dummy-free algorithm, based on the instantiation of [CCC+19], the ordering of
the small primes is the same as the OAYT-style, while the list of bounds for the secret
exponents is:

b = (7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11, 11, 11, 11, 11,

11, 11, 11, 11, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 5, 7, 7, 7, 7)

The dummy-free-style implementation of [CCC+19] uses the SIMBA-5-11 technique.

B 2-Way Curve and Isogeny Operations
Let Ea,d be an elliptic curve over a finite field Fp, represented in twisted Edwards form. In
this section we present the 2-way implementation for y-coordinate doubling, (differential)
addition, isogeny computation and the evaluation of an isogeny at a specific point on Ea,d.
In all algorithms, any elliptic curve point is represented using projective Y T -coordinates
according to [CCC+19].
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B.1 Point doubling
For a point P = (YP : TP ) on the curve Ea,d, the point R = [2]P is defined as:

YR = eY 2
PT

2
P − (T 2

P − Y 2
P )(eY 2

P + a(T 2
P − Y 2

P ))
TR = eY 2

PT
2
P + (T 2

P − Y 2
P )(eY 2

P + a(T 2
P − Y 2

P )),

where e = a − d [CCC+19]. Algorithm 7 describes our 2-way doubling process using
Y T -coordinate arithmetic, with cost 2M2 + 1S2 + 3A2.

Algorithm 7: 2-way implementation for Y T -coordinate point doubling
Input: A point P = (YP : TP ) on the curve Ea,d and the values (A0 : A1) = (a : a− d).
Output: The point R = [2]P = (YR : TR).

1 t0 ← Y 2
P s0 ← T 2

P

2 t1 ← s0 − t0
3 t2 ← A0 × t1 s2 ← A1 × t0
4 t3 ← s2 + t2
5 t0 ← t1 × t3 s0 ← s2 × s0
6 YR ← s0 − t0 TR ← s0 + t0
7 return R = (YR : TR)

B.2 Point addition
For point addition, we use the formulas that are presented in [CCC+19]. These formulas
correspond to the differential addition using Y T -coordinates on twisted Edwards curves.
In particular, let P = (YP : TP ) and Q = (YQ : TQ) be two points on the curve and let
PQ = P −Q = (YP−Q : TP−Q). The point R = P +Q is derived from the coordinates of
the points P,Q and PQ, using the formulas:

YR = (TP−Q − YP−Q)(YPTQ + YQTP )2 − (TP−Q + YP−Q)(YPTQ − YQTP )2

TR = (TP−Q − YP−Q)(YPTQ + YQTP )2 + (TP−Q + YP−Q)(YPTQ − YQTP )2,

Algorithm 8 is the 2-way (differential) addition process using Y T -coordinate arithmetic
with cost 2M2 + 1S2 + 3A2.

Algorithm 8: 2-way implementation for Y T -coordinate (differential) addition
Input: Points P = (YP : TP ), Q = (YQ : TQ) and PQ = (YP−Q : TP−Q) on Ea,d.
Output: The point R = P +Q = (YR : TR).

1 t0 ← TP−Q + YP−Q s0 ← TP−Q − YP−Q

2 t1 ← YP × TQ s1 ← YQ × TP

3 t2 ← t1 − s1 s2 ← t1 + s1
4 t2 ← t22 s2 ← s2

2
5 t1 ← t0 × t2 s1 ← s0 × s2
6 YR ← s1 − t1 TR ← s1 + t1
7 return R = (YR : TR)

B.3 `-isogeny computation
Algorithm 9 describes the procedure for computing an isogeny of some odd degree `, using
Y T -coordinate representation on twisted Edwards curves. The algorithm takes as input the



H. Cheng, G. Fotiadis, J. Großschädl, P. Y. A. Ryan, P. B. Rønne 647

values A0 = a,A1 = a− d, where Ea,d is an elliptic curve in twisted Edwards form, a point
P = (YP : TP ) and the degree of the isogeny ` = 2k+ 1. Then the algorithm computes the
codomain curve Ea′,d′ and the list of points {P1 = (Y1 : T1), . . . , Pk = (Yk : Tk)}, where
Pi = [i]P , for each i ∈ {1, . . . , k}. Based on the work of Moody and Shumow [MS16], the
coefficients of the codomain curve are defined as:

a′ = a`

(
k∏

i=1
Ti

)8

and d′ = d`

(
k∏

i=1
Yi

)8

.

Algorithm 9 outputs the values A′0 = a′ and A′1 = a′ − d′, as well as the list of points
{P1 = (Y1 : T1), . . . , Pk = (Yk : Tk)}.

Algorithm 9: 2-way `-isogeny computation, with ` = 2k + 1
Input: Point P = (YP : TP ), (A0 : A1) = (a : a− d), ` = 2k + 1.
Output: Curve (A′0 : A′1) = (a′ : a′ − d′), list {P1 = (Y1 : T1), . . . , Pk = (Yk : Tk)}.

1 (`)2 ← (bn, . . . , b0)2 // binary representation of `
2 t1 ← A0 −A1
3 t0 ← A0, Y1 ← YP , YQ ← YP s0 ← t1, T1 ← TP , TQ ← TP

4 P2 ← [2]P = (Y2 : T2) // point doubling
5 for i from 3 to k by 1 do
6 YQ ← YQ × Yi−1 TQ ← TQ × Ti−1
7 Pi ← Pi−1 + P = (Yi : Ti) // point addition
8 end
9 t2 ← YQ × Yk s2 ← TQ × Tk

10 m← isequal(`, 3)
11 cswap(YQ, t2, 1−m) cswap(TQ, s2, 1−m)
12 for i from n− 1 to 0 by 1 do
13 t0 ← t20 s0 ← s2

0
14 if bi = 1 then
15 t0 ← t0 ×A0 s0 ← s0 × t1
16 end
17 end
18 for i from 0 to 2 by 1 do
19 YQ ← Y 2

Q TQ ← T 2
Q

20 end
21 A′0 ← t0 × TQ A′1 ← s0 × YQ

22 A′1 ← A′0 −A′1
23 return (A′0 : A′1), {P1 = (Y1 : T1), . . . , Pk = (Yk : Tk)}

B.4 `-isogeny evaluation
Algorithm 10 computes the image R = (YR : TR) of a point Q = (YQ : TQ) under an isogeny
of odd degree ` = 2k + 1, that is computed with Algorithm 9. In particular, the algorithm
takes as input the point Q and the list of points {P1 = (Y1 : T1), . . . , Pk = (Yk : Tk)}
that was computed in Algorithm 9, where P is the kernel point and Pi = [i]P , for each
i ∈ {1, . . . , k}. Based on the formulas provided in [CCC+19], the image R of Q has
coefficients:

YR = (TQ + YQ)
(

k∏
i=1

(YQTi + TQYi)
)2

− (TQ − YQ)
(

k∏
i=1

(YQTi − TQYi)
)2

TR = (TQ + YQ)
(

k∏
i=1

(YQTi + TQYi)
)2

+ (TQ − YQ)
(

k∏
i=1

(YQTi − TQYi)
)2
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The total cost for our 2-way isogeny evaluation, that is described in Algorithm 10 is:
2kM2 + 1S2 + (k + 2)A2.

Algorithm 10: 2-way `-isogeny evaluation, with ` = 2k + 1
Input: Point Q = (YQ : TQ) and list {P1 = (Y1 : T1), . . . , Pk = (Yk : Tk)}.
Output: The point R = φ(Q) = (YR : TR).

1 t0 ← YQ × T1 s0 ← TQ × Y1
2 YR ← t0 + s0 TR ← t0 − s0
3 for i from 2 to k by 1 do
4 t0 ← YQ × Ti s0 ← TQ × Yi

5 t1 ← t0 + s0 s1 ← t0 − s0
6 YR ← YR × t1 TR ← TR × s1

7 end
8 YR ← Y 2

R TR ← T 2
R

9 t0 ← TQ + YQ s0 ← TQ − YQ

10 t0 ← t0 × YR s0 ← s0 × TR

11 YR ← t0 − s0 TR ← t0 + s0

12 return R = (YR : TR)

C (8 × 1)-Way IFMA Field Multiplication and Squaring
Algorithm 11 has a similar structure as the Coarsely Integrated Hybrid Scanning (CIHS)
method described in [KAK96]. The differences are that the first outer loop (line 3 to 6) of
Algorithm 11 is product-scanning while the first outer loop in CIHS is operand-scanning,
and Algorithm 11 takes more memory.

Algorithm 11: (8× 1)-way Montgomery multiplication using IFMA
Input: Operands X and Y , prime P , w = −p−1 mod 252

Output: Product Z = X × Y × 2−520 mod Q

1 Zi ← ZERO for i ∈ {0, 1, . . . , 19}
2 W ← BCAST(w), M ← BCAST(252 − 1)
3 for i from 0 to 9 by 1 do
4 for j from 0 to i by 1 do
5 Zi ← MACLO(Zi, Xj , Yi−j)
6 Zi+1 ← MACHI(Zi+1, Xj , Yi−j)

7 for i from 0 to 9 by 1 do
8 for j from i+ 1 to 9 by 1 do // Skip this loop when i = 9
9 Zi+10 ← MACLO(Zi+10, Xj , Yi−j+10)

10 Zi+11 ← MACHI(Zi+11, Xj , Yi−j+10)
11 T ← MACLO(ZERO, Zi,W )
12 for j from 0 to 9 do
13 Zi+j ← MACLO(Zi+j , T, Pj)
14 Zi+j+1 ← MACHI(Zi+j+1, T, Pj)
15 Zi+1 ← ADD(Zi+1, SHR(Zi, 52))
16 for i from 10 to 18 by 1 do
17 Zi+1 ← ADD(Zi+1, SHR(Zi, 52))
18 Zi−10 ← AND(Zi,M)
19 Z9 ← Z19

20 return Z = (Z0, Z1, . . . , Z9)
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Algorithm 12: (8× 1)-way Montgomery squaring using IFMA
Input: Operand X, prime P , w = −p−1 mod 252

Output: Product Z = X2 × 2−520 mod Q

1 Zi ← ZERO for i ∈ {0, 1, . . . , 19}
2 W ← BCAST(w), M ← BCAST(252 − 1)
3 for i from 1 to 9 by 1 do
4 for j from 0 to b(i− 1)/2c by 1 do
5 Zi ← MACLO(Zi, Xj , Xi−j)
6 Zi+1 ← MACHI(Zi+1, Xj , Xi−j)
7 Zi ← ADD(Zi, Zi)
8 if i is odd then
9 k ← (i− 1)/2

10 Zi−1 ← MACLO(Zi−1, Xk, Xk)
11 Zi ← MACHI(Zi, Xk, Xk)

12 for i from 0 to 9 by 1 do
13 for j from bi/2c+ 6 to 9 by 1 do // Skip this loop when i = 8 or 9
14 Zi+10 ← MACLO(Zi+10, Xj , Yi−j+10)
15 Zi+11 ← MACHI(Zi+11, Xj , Yi−j+10)
16 Zi+10 ← ADD(Zi+10, Zi+10)
17 if i is odd then
18 k ← (i+ 9)/2
19 Zi+9 ← MACLO(Zi+9, Xk, Xk)
20 Zi+10 ← MACHI(Zi+10, Xk, Xk)
21 T ← MACLO(ZERO, Zi,W )
22 for j from 0 to 9 do
23 Zi+j ← MACLO(Zi+j , T, Pj)
24 Zi+j+1 ← MACHI(Zi+j+1, T, Pj)
25 Zi+1 ← ADD(Zi+1, SHR(Zi, 52))
26 for i from 10 to 18 by 1 do
27 Zi+1 ← ADD(Zi+1, SHR(Zi, 52))
28 Zi−10 ← AND(Zi,M)
29 Z9 ← Z19

30 return Z = (Z0, Z1, . . . , Z9)
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