
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 1, pp. 309–335. DOI:10.46586/tches.v2024.i1.309-335

Smooth Passage with the Guards: Second-Order
Hardware Masking of the AES with Low

Randomness and Low Latency
Barbara Gigerl1, Franz Klug2, Stefan Mangard1,

Florian Mendel2 and Robert Primas3

1 Graz University of Technology, Graz, Austria first.last@iaik.tugraz.at
2 Infineon Technologies AG, Munich, Germany first.last@infineon.com

3 Intel Labs, Hillsboro, USA first.last@intel.com

Abstract. Cryptographic devices in hostile environments can be vulnerable to physical
attacks such as power analysis. Masking is a popular countermeasure against such
attacks, which works by splitting every sensitive variable into d+1 randomized shares.
The implementation cost of the masking countermeasure in hardware increases
significantly with the masking order d, and protecting designs often results in a
large overhead. One of the main drivers of the cost is the required amount of
fresh randomness for masking the non-linear parts of a cipher. In the case of AES,
first-order designs have been built without the need for any fresh randomness, but
state-of-the-art higher-order designs still require a significant number of random
bits per encryption. Attempts to reduce the randomness however often result in a
considerable latency overhead, which is not favorable in practice. This raises the need
for AES designs offering a decent performance tradeoff, which are efficient both in
terms of required randomness and latency.
In this work, we present a second-order AES design with the minimal number of three
shares, requiring only 3 200 random bits per encryption at a latency of 5 cycles per
round. Our design represents a significant improvement compared to state-of-the-art
designs that require more randomness and/or have a higher latency. The core of the
design is an optimized 5-cycle AES S-box which needs 78 bits of fresh randomness.
We use this S-box to construct a round-based AES design, for which we present a
concept for sharing randomness across the S-boxes based on the changing of the
guards (COTG) technique. We assess the security of our design in the probing model
using a formal verification tool. Furthermore, we evaluate the practical side-channel
resistance on an FPGA.
Keywords: Masking · AES · OpenTitan · Verification · Hardware

1 Introduction
Embedded devices running cryptographic hardware implementations need to be protected
against physical attacks, such as differential power analysis [KJJ99], in which an attacker
observes the power consumption of the device and uses the information to learn about
secret values, e.g., the cryptographic key. Masking is a popular approach to protect
against these attacks on implementation level, aiming at making the power consumption
independent of the processed sensitive value [CJRR99]. To protect against a d-th order
DPA attack, masking splits each sensitive value into d+ 1 shares such that an attacker
probing up to d shares cannot recover the sensitive value.

Applying the masking countermeasure to a cryptographic hardware implementation
comes with a considerable area overhead, which increases significantly with the masking

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-07-15 Accepted: 2023-09-15 Published: 2023-12-04

https://doi.org/10.46586/tches.v2024.i1.309-335
mailto:barbara.gigerl@iaik.tugraz.at,stefan.mangard@iaik.tugraz.at,
mailto:franz.klug2@infineon.com,florian.mendel@infineon.com
mailto:robert.primas@intel.com
http://creativecommons.org/licenses/by/4.0/


310 Smooth Passage with the Guards

order d [GIB18, NGPM22, SP06, ISW03, MRB18]. This overhead is not only caused by
an increased area for the handling of the shares but also by the increased demand for fresh
randomness that needs to be generated and distributed for masking the non-linear parts
of the cipher. While the linear parts can be computed by evaluating them for each share
individually, the non-linear parts, such as S-boxes, need to operate on several shares at once
and, therefore, require randomness for refreshing to prevent unmasking of intermediate
computation results, especially in the presence of glitches [GMK16, BDF+17, BBP+17,
ISW03, RBN+15]. The need for fresh randomness usually goes hand-in-hand with an
increased design area caused by the required random number generator (RNG) instances.

Methods to reduce randomness for a masked design have been studied extensively,
especially focusing on AES. Since its selection by NIST in 2000, the AES [Nat01] has
become an essential component for many cryptographic applications in industry. While the
first proposed first-order sharings of the AES required about 3 000 to 5 000 random bits per
encryption, there by now exist several works suggesting how to perform the computation
without any fresh randomness [WM18, Sug19, SM21]. Compared to that, higher-order
masked AES designs still require a significant amount of fresh randomness and area. While
first works on second-order masking of the AES in hardware require more than three
shares [CBR+15, BDRS21], in 2016, De Cnudde et al. [CRB+16] propose an S-box design
with three shares which needs 162 fresh random bits and has a latency of five cycles,
resulting in 19 440 random bits and 276 cycles per encryption. Gross et al. [GMK16]
improve this situation by proposing a 5-cycle S-box protected by DOM (Domain-Oriented
Masking) with only 84 random bits, resulting in 16 800 random bits and 200 cycles per
encryption. Reducing the amount of randomness for a design however comes at the price
of latency. Naturally, less randomness implies fewer capabilities to control the effect of
glitches in a circuit, which in turn needs to be compensated for with more register stages,
leading to a higher latency. For example, Dhooghe et al. [DSM22] recently show how
to construct a second-order masking of the AES with only 1 012 fresh random bits per
encryption, which however result in an S-box latency of 9 cycles per round. In recent
years, low-latency has been generally identified as an important design goal for masked
designs. Several works construct masked designs optimized for extremely low cycle counts
[GIB18, SBHM20, NGPM22, SBB+22]. For example, Gross et al. [GIB18] propose a
second-order masked low-latency DOM-AES S-box, which only needs two cycles per round
but requires almost 900 000 random bits per encryption.

On architectural level, the performance of AES designs can be improved by employing
a parallel or round-based design, in which the S-box is instantiated once per key/state
byte, and all instances operate in parallel. By contrast, serial designs instantiate the S-box
once, which is fed with a new key/state byte in every clock cycle. In parallel designs, the
number of pipeline stages in the S-box determines the latency of an encryption round,
and therefore, an S-box with a low latency is preferable. While most works in literature
focus on serial designs, parallel designs have only been marginally addressed despite their
clear practical relevance. For example, Google’s OpenTitan project [low19], which aims at
building an open root of trust (ROT) chip, includes a parallel AES architecture protected
by DOM. They use a first-order version of the 5-cycle DOM AES S-box, which leads to
an encryption latency of about 50 cycles per 128-bit block. One of the main challenges
when constructing such designs is the high amount of randomness required per cycle, and
in practice, it is not trivial to come up with RNGs allowing for such high demands of
bandwidth yet keeping the required amount of randomness somewhat balanced per cycle.

Given that first-order protection often does not provide the required security level in
practice, and serial designs are often not suitable for the desired performance, the goal is
to build second-order designs targeting both low-randomness and low-latency.



Barbara Gigerl , Franz Klug , Stefan Mangard , Florian Mendel and Robert Primas 311

1.1 Contributions
In practice, second-order masked AES designs should be efficient and provide a suit-
able tradeoff between area and latency, which clearly presumes a three-share design.
However, state-of-the-art three-share designs are either optimized for low-latency or for
low-randomness. Additionally, given the need for parallel designs, the demands of fresh
randomness per cycle of these designs are unevenly distributed and often simply too high.
We improve the situation by providing the following contributions:

• We present a second-order masked AES S-box based on DOM, which works with
the minimum number of three shares, has a latency of only five cycles, and requires
78 bits of fresh randomness. In order to construct this S-box, we take the original
DOM design as a starting point and demonstrate that fixing the flaw in higher-order
DOM-dep multipliers, as identified by [MMSS19], is possible using more randomness.
However, we also show that all DOM-dep multipliers can be replaced by more
area-efficient adapted DOM-indep multipliers, which allows to perform one S-Box
computation with 78 bits of fresh randomness. (Section 3)

• We propose an efficient parallel AES architecture similar to the one used in OpenTitan
with an encryption latency of 51 cycles. We show how one encryption can be
computed with only 3 200 bits by applying a special COTG-based concept for reusing
randomness across all S-box instances for the key and plaintext. The 3 200 bits can
smoothly be delivered by an RNG with a bandwidth of 64 fresh random bits per
cycle. Given the 5-cycle latency per round, our design currently requires the least
amount of fresh randomness in literature. (Section 4)

• We evaluate our AES design in terms of area and randomness and compare it to
other state-of-the-art designs. (Section 5)

• Using a formal verification tool, we show the second-order security of our S-box
design and investigate the security of our COTG-based sharing concept for key and
plaintext for one round. We deploy our design on an FPGA and show that no leakage
can be detected with up to 100 million traces. (Section 6)

• We provide access to the complete HDL code on GitHub1.

2 Preliminaries
2.1 Notation
We denote the sharing of a sensitive variable X with X = (X0, X1, X2), i.e., the subscript
index denotes a specific share. Every state byte in the AES is described as s(i,j), where
i refers to the row index and j refers to the column index, according to the convention
introduced in the AES specification [Nat01]. For example, s(0,2)

0 refers to the first share
(share domain 0) of the state byte in row 0, column 2. Every key byte in the AES is
described as k(i,j) accordingly with the sharing k(i,j) = (k(i,j)

0 , k
(i,j)
1 , k

(i,j)
2 ).

2.2 Masking
Masking [CJRR99, GP99, ISW03] aims at defeating side-channel attacks that work by
randomizing sensitive values by splitting them into d+ 1 uniformly random shares. An
adversary observing (probing) up to d shares cannot deduce any information about the
sensitive value. In classical Boolean masking, the sharing of a sensitive variable s given
by (s0, s1, ...sd) must satisfy s = s0 ⊕ s1... ⊕ sd. The shares s0, s1, ...sd−1 are randomly

1https://github.com/barbara-gigerl/aes-secondorder-guards

https://github.com/barbara-gigerl/aes-secondorder-guards


312 Smooth Passage with the Guards

sampled from a uniform distribution, while sd = s⊕ s0 ⊕ s1...⊕ sd−1. For example, in a
second-order masking scheme (d = 2), s is represented by the sharing (s0, s1, s2) such that
s = s0 ⊕ s1 ⊕ s2. s0 and s1 are chosen uniformly at random and s2 = s0 ⊕ s1.

Implementing the masking countermeasure for non-linear functions such as the AES S-
box, which computes the inversion in GF (28), is especially challenging because they require
combining all shares of a sensitive value in a secure and correct way. Hardware-related
side-effects such as glitches and transitions need to be considered, which could reveal secret
information in an otherwise secure masked implementation [MPG05, MPO05, ISW03].
Masking schemes for the AES S-box have been addressed frequently in literature [OMPR05,
GMK16, CRB+16, RP10, MPL+11, SP06, DSM22, BDRS21]. Canright [Can05] presents
a decomposition into GF (24) and GF (22) field elements to perform the inversion more
efficiently, which has since then been the basis for many works on masking the AES,
including DOM by Gross et al. [GMK16].

2.3 Security Verification of Masking
Empirical measurements are generally an important indicator for the practical security
of a masked implementation. However, collecting power traces is usually cumbersome
and error-prone, and the results heavily depend on the platform and measurement setup.
Formal verification tools represent a complementary approach that allows the analysis of a
masked implementation within a specific attacker model, such as the classic probing model
[ISW03].

Rebecca [BGI+18] is a formal verification tool to prove the security of masked
hardware implementations at any order. It examines the leakage of a given circuit by
investigating each gate and determining whether the gate output correlates directly with the
unshared sensitive value. Rebecca approximates this correlation using Fourier expansions
of Boolean functions [O’D14] and checks for leaks using a SAT solver, making it feasible
to verify larger constructions at the cost of accuracy. However, it has been shown that
the rate of false positives (tool falsely reports leak) is very low, and false negatives (tool
falsely reports no leak) are not possible at all [GPM23]. Other tools like SILVER [KSM20]
determine this correlation by exhaustively computing the probability distribution of each
gate, which allows a very accurate analysis, but it hardly applies to more complex circuits
such as higher-order AES S-boxes [DSM22]. In this work, we will use Coco [GHP+21], a
tool based on Rebecca. Coco applies the time-constrained probing model, allowing an
adversary to place d probes on an arbitrary wire in the circuit. Each probe allows observing
the value of the wire for one specific clock cycle, including transitions and glitches. A
masked hardware implementation is considered dth-order secure if the adversary cannot
learn any information about the sensitive value by combining the values of these probes.

2.4 Changing of the Guards (COTG)
Masked designs based on TI (Threshold Implementation) require non-completeness and
uniformity to be first-order secure [NRR06], but obtaining a uniform output sharing of
a masked S-box often requires explicit remasking with fresh randomness. The changing
of the guards (COTG) concept was introduced by Daemen [Dae17] to achieve uniformity
more efficiently by replacing this fresh randomness with unrelated parts of the cipher state.
For example, considering a TI S-box function S and the respective component functions
S0, S1, S2 arranged in an S-box layer that maps the shared inputs a, b, c to the shared
outputs A,B,C as follows (for 0 ≤ i ≤ 2):

Ai = S0(bi, ci) Bi = S1(ai, ci) Ci = S2(ai, bi)

If the sharings of A,B,C are not uniform one needs to perform resharing, which can
either be done with fresh randomness or, as suggested by COTG, with another unrelated



Barbara Gigerl , Franz Klug , Stefan Mangard , Florian Mendel and Robert Primas 313

input share such as the one of the neighbor S-box (for 0 ≤ i ≤ 2):

Ai = S0(bi, ci) ⊕ bi−1 ⊕ ci−1 Bi = S1(ai, ci) ⊕ ci−1 Ci = S2(ai, bi) ⊕ bi−1

The values of b−1 and c−1 need to be instantiated with fresh random values. COTG
has been applied to several TI implementations including AES [DSM22, Sug19, SBM21,
WM18, ADN+22, BDRS21], KETJE [ANR19], Ascon and Keyak [SD17], ARX ciphers
[JPS18], and PRINCE [MMM21]. The original idea of COTG is to use the input bytes of
the right neighbor S-box as guards and use fresh randomness for the last S-box that does
not have a right neighbor. In our work, we propose a more complex selection of guards by
precisely analyzing which other state bytes are unrelated and which are not, eliminating
the explicit need for fresh randomness for the last S-box.

3 Efficiently Masking the AES S-box
In this section, we present a 5-stage pipelined AES S-box with three shares requiring only
78 bits of fresh randomness, which is currently the lowest amount of randomness required
for 5-cycle latency. The second-order S-box design DOM [GMK16], which serves as the
basis for our design, requires 104 random bits, while the 5-cycle TI-design of De Cnudde
et al. [CRB+16] needs 162 random bits.

In Section 3.1, we describe DOM and the basic structure of their proposed S-box,
which uses the Canright decomposition and performs the multiplications in GF (22) and
GF (24) with DOM-dep and DOM-indep multipliers. In 2019, [MMSS19] pointed out a
flaw in higher-order DOM-dep multipliers, which we revisit Section 3.2, and discuss a
possible fix for this. Unfortunately, including this fix into the second-order S-box requires
an additional 20 bits of fresh randomness, resulting in 104 bits in total. Therefore, in
Section 3.3, we show how one can optimize the S-box design such that the DOM-dep
multipliers are not needed anymore at all and can be replaced by three types of adapted
versions of DOM-indep multipliers, resulting in a randomness-optimized S-box design. We
check the second-order security of our S-box design with Coco and give details on the
verification in Section 6.

3.1 DOM-based Masking of the AES S-box
In 2016, Gross et al. [GMK16] introduce DOM as a low-cost method to protect circuits
against SCA at arbitrary protection orders. DOM is based on the idea of separating shares
into independent domains and adding fresh randomness whenever terms from different
domains are combined. They introduce a five-cycle variant of the AES S-box intended
for high-speed encryption, which serves as the basis of our work and is also used in the
OpenTitan project. The S-box design follows Canright’s propositions [Can05].

For both the subfield multiplications, Gross et al. propose two masked multiplication
gadgets. The second-order DOM-indep multiplier, which we will refer to DOM-indep
multiplier (Type A), is used to multiply two independently shared field elements A with
sharing (A0, A1, A2), and B with sharing (B0, B1, B2) using the random variables z0, z1, z2.
The resulting output sharing (C0, C1, C2), with registers indicated by parenthesis, is:

C0 = (A0 ×B0) ⊕ (A0 ×B1 ⊕ z0) ⊕ (A0 ×B2 ⊕ z1) (1)
C1 = (A1 ×B0 ⊕ z0) ⊕ (A1 ×B1) ⊕ (A1 ×B2 ⊕ z2) (2)
C2 = (A2 ×B0 ⊕ z1) ⊕ (A2 ×B1 ⊕ z2) ⊕ (A2 ×B2) (3)

The multiplication works in three phases. First, in the calculation phase, shares of different
domains (cross-domain multiplication) and shares of the same domain (inner-domain
multiplication) are multiplied in the respective field. Cross-domain multiplication terms



314 Smooth Passage with the Guards

are then refreshed with three fresh random values in the resharing phase and stored into a
register, while inner-domain terms do not need to be refreshed. In the integration phase,
the multiplication terms of each component function are accumulated.

In case the multiplier inputs are not shared independently, e.g., when multiplying
A×A, one could simply use a DOM-indep multiplier and reshare one of its inputs, which
however comes at the cost of additional randomness and a register stage. Therefore, Gross
et al. propose the DOM-dep multiplier that uses a random blinding variable p with the
sharing (p0, p1, p2) to compute A×B = A× (B + p) + (A× p). A DOM-indep multiplier
is used to compute (A× p), and therefore, the complete second-order DOM-dep multiplier
requires six fresh random values.

Given these two multiplication gadgets, the 5-cycle S-box first converts the 8-bit
input shares from the polynomial basis to the normal basis, inverts them in GF (28) by
decomposition into GF (24) and GF (22) field elements, and converts them back. More
precisely, in Stage 1, the 8-bit input shares are converted using a linear mapping, which
linearly combines the bits of a share within one domain each. Due to glitches, the output of
the linear mapping might temporarily result in a related sharing, and therefore, a GF (24)
DOM-dep multiplier is used. In Stage 2, the resulting GF (24) field elements are combined
with the outputs of the square scalers, and glitches could temporarily produce a related
input sharing, therefore requiring the use of a GF (22) DOM-dep multiplier. In Stage 3, a
similar situation occurs, and consequently, both GF (22) multipliers must be DOM-dep
multipliers. The last multipliers in Stage 4 take as an input the pipelined S-box inputs and
the output of Stage 3, which are clearly independent of each other, and therefore, GF (24)
DOM-indep multipliers can be used. In Stage 5, the output shares are converted back to
the polynomial basis using the inverse linear mapping.

3.2 Fixing the second-order DOM-dep multiplier
In a follow-up work, Moos et al. [MMSS19] point out a flaw in the DOM-dep multiplier
for d ≥ 2. Recall from the previous section that a DOM-dep multiplier computes A×B =
A × (B + p) + (A × p). They show that DOM-dep multipliers are not secure in the
presence of glitches by combining information about the individual shares of A× (B + p),
and multiplication terms in the DOM-indep multiplier (Type A) computing (A× p). A
second-order adversary possesses two probes. One probe is used to access the individual
shares of A× (B + p), which includes A2 × (B0 ⊕ p0). The other probe is placed in the
DOM-indep multiplier to access the shared subproducts of (A × p), which includes the
cross-domain term A1 ×p0. By combining these two probed values and considering that the
sharings of A and B are related, the adversary can derive information about the sensitive
value A.

We propose a way to fix this issue by preventing the adversary from accessing B0 ⊕ p0
directly by adding more randomness to it. More concretely, we refresh the term B + p
with a sharing of the zero-bit vector (q0, q1, q0 ⊕ q1) and store that value to a register.
The computation performed is now A × B = A × (B + p + 0) + (A × p) with 0 being a
shared into q0 and q1 such that 0 = q0 ⊕ q1. Hence, the first probe will only allow access
to A2 × (B0 ⊕ p0 ⊕ q0), and no information about A can be inferred due to the random
value q0. The advantage of this solution compared to refreshing B and using a DOM-indep
multiplier afterward is that no additional register stage is required. Nevertheless, for the
fixed second-order DOM-dep GF (22) multiplier, 16 instead of 12 random bits are needed,
or 32 instead of 24 in the case of GF (24).

We successfully verify with Coco that our proposed solution indeed solves the issue
and is second-order probing-secure in the presence of glitches. Furthermore, we apply the
formal verification tool SILVER [KSM20] to prove that our construction is secure under
the 2nd-order PINI (Probe Isolating Non-Interference) [CS20] notion and can, therefore,
trivially be composed.



Barbara Gigerl , Franz Klug , Stefan Mangard , Florian Mendel and Robert Primas 315

A lin. map

Square
scaler

GF(24)
DOM-indep

Square
scaler

GF(22)
DOM-indep

Inverter

GF(22)
DOM-indep

GF(22)
DOM-indep

GF(24)
DOM-indep

GF(24)
DOM-indep

inv. lin.

map

Stage 5 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

B

y0, y1
z0, z1,
z2, z3

168

y0, y1, y2

6

z0, z1, z2,
z3, z4, z5

12

z0, z1, z2 z0, z1, z2

z0, z1, z2
12

B C

A

A

A

A

A

B

Sq Sq

A

B

A

B

A

A

B

B

8

4

4

A

B

2

2

2

2

4

6

6

z0, z1, z2

12

4

4

8

Figure 1: Our second-order AES DOM S-box with three shares and five register stages,
requiring 78 bits of randomness. For simplicity, we draw a single line for all three shares.
The indicates that a signal is split into a lower and upper part. The indicates that the
lower and upper parts of a signal are concatenated. Register stages are sketched by gray
dotted lines. The respective type of each DOM-indep multiplier is indicated by a letter in
the yellow box in the upper left corner, that is either Type A (Equations (1-3)), Type B
(Equations (4-6)) or Type C (Equations (7-9)).

3.3 Optimized second-order DOM S-box
Integrating the proposed fix directly into the S-box design requires 104 bits of fresh
randomness instead of the originally proposed 84 bits. For a complete AES encryption,
this results in 20 800 required random bits instead of 16 800. Therefore, we propose a
way to optimize this construction by replacing all DOM-dep multipliers with three types
(Type A, B, C) of adapted DOM-indep multipliers, which are more efficient in both area
and randomness. The resulting 78 bits of required fresh randomness are even less than
in the originally proposed design. While the Type A multiplier refers to the original
DOM-indep multiplier, the Type B and C multipliers work by additionally refreshing inner-
domain multiplication terms besides cross-domain multiplication terms, which leads to an
independent output sharing of a multiplier, and therefore allows the use of a DOM-indep
multiplier in the next pipeline stage. Figure 1 gives an overview of the complete S-box
design. Using Coco, we successfully verify the second-order security of our S-box. Now
we describe the design considerations made in each stage in detail.

Linear mapping of input. Our goal is to replace the DOM-dep multiplier in Stage 1 with
a DOM-indep multiplier. DOM-indep multipliers require that their inputs (the outputs of
the linear map in our case) are shared independently. In general, glitches may temporarily
cause a related sharing at the output of the linear map, and therefore, we need to store
the output of the linear map in a register. Since our goal is a considerably low latency, we
do not add an additional pipeline stage but move the computation of the linear map to
the pipeline stage before. Considering the entire AES design, the complete linear layer
(including the inverse linear map, ShiftRows, MixColumns, and AddRoundKey) is already
computed in Stage 5 (c.f. Section 4), where we now also move the linear map of the
SubBytes computation of the next round. Hence, the state registers in the design will not
store the field elements in the polynomial base but the field elements in the normal base.
From a security perspective, it is valid to do so because in Stage 5, only linear functions
are computed, and adding the linear map to the end will not cause any additional leakage.

Multiplier in Stage 1 (Type B). We want to replace the DOM-dep multiplier in Stage
2 with a DOM-indep multiplier. The DOM-indep multiplier in Stage 2 only supports
independent inputs, so the DOM-indep multiplier in Stage 1 needs to be modified such that



316 Smooth Passage with the Guards

it generates an independent output sharing. To do so, we need to perform the addition
of the square scaler already in Stage 1, protect the inner-domain multiplication terms
and use additional randomness on the cross-domain multiplication terms. The modified
DOM-indep multiplier, which will be referred to as the Type B multiplier, used in Stage 1
with parenthesis again indicating registers, is given by:

C0 = (A0 ×B0 ⊕ Sq0 ⊕ y0 ⊕ y1) ⊕ (A0 ×B1 ⊕ z0 ⊕ z3) ⊕ (A0 ×B2 ⊕ z1) (4)
C1 = (A1 ×B0 ⊕ z0) ⊕ (A1 ×B1 ⊕ Sq1 ⊕ y1) ⊕ (A1 ×B2 ⊕ z2) (5)
C2 = (A2 ×B0 ⊕ z1 ⊕ z3) ⊕ (A2 ×B1 ⊕ z2) ⊕ (A2 ×B2 ⊕ Sq2 ⊕ y0) (6)

Note that this multiplier does not support dependent inputs, but independent inputs are
obtained by storing the output of the linear map in a register. In the original design, the
square scaler terms (Sq0, Sq1, Sq2) were added to the output of the Stage 1 DOM-dep
multiplier in the second pipeline stage. This can potentially cause a related input sharing
to the multiplier in Stage 2 due to glitches. Therefore, we perform the addition of these
terms already in Stage 1 by adding them to the inner-domain multiplication terms before
the register layer. As a nice benefit, this saves registers to store the square scaler output
in the original design.

Another issue is that the Stage 1 multiplier might temporarily only output the same-
domain terms due to glitches if, e.g., the wire length of cross-domain terms is significantly
longer. In that case, the Stage 2 multiplier, which multiplies the lower and higher two
bits of the Stage 1 multiplier, might temporarily operate on related inputs. Therefore,
we use 2 × 4 random bits y0 and y1 to also refresh the inner-domain terms. In order to
maintain second-order probing security, the cross-domain terms need to be refreshed with
an additional z3 in this case. Otherwise, an attacker can place a probe in the calculation
phase of the Stage 2 multiplier to get a combination of masks, which is used to protect the
integration phase of the Stage 1 multiplier.

Multiplier in Stage 2 (Type C). We want to replace the DOM-dep multipliers in Stage
3 by a DOM-indep multiplier. The DOM-indep multiplier in Stage 3 only supports
independent inputs, so the DOM-indep multiplier in this stage needs to be modified
such that it generates an independent output sharing. To do so, we need to perform
changes similar to Stage 1, including shifting the addition of square scaler terms and
additional protection for inner-domain and cross-domain terms. In summary, the modified
DOM-indep multiplier, which will be referred to as the Type C multiplier, used in Stage 2,
with parenthesis indicating registers, is given by:

C0 = (A0 ×B0 ⊕ Sq0 ⊕ y0 ⊕ y1) ⊕ (A0 ×B1 ⊕ z0 ⊕ z3) ⊕ (A0 ×B2 ⊕ z1 ⊕ z5) (7)
C1 = (A1 ×B0 ⊕ z0 ⊕ z4) ⊕ (A1 ×B1 ⊕ Sq1 ⊕ y1 ⊕ y2) ⊕ (A1 ×B2 ⊕ z2 ⊕ z5) (8)
C2 = (A2 ×B0 ⊕ z1 ⊕ z3) ⊕ (A2 ×B1 ⊕ z2 ⊕ z4) ⊕ (A2 ×B2 ⊕ Sq2 ⊕ y0 ⊕ y2) (9)

Note that, also this multiplier does not support dependent inputs, but independent inputs
are obtained by appropriate refreshing in the stage before. Compared to the multiplier in
Stage 1 (Type B), we need more randomness for refreshing the multiplication terms. In
total, 3 × 2 bits are needed for inner-domain terms (y0, y1, y2), and 6 × 2 bits are needed
for cross-domain terms (z0, z1, z2, z3, z4, z5).

Multipliers in stages 3 and 4 (Type A). After performing these changes, the DOM-dep
multiplier in Stage 3 can simply be replaced by the original DOM-indep multiplier (Type
A) because independent inputs are obtained by refreshing in Stage 2. The multiplier in
Stage 4 has originally been a DOM-indep multiplier and therefore, no further modifications
are required there.



Barbara Gigerl , Franz Klug , Stefan Mangard , Florian Mendel and Robert Primas 317

Table 1: Comparison of the amount of fresh randomness required for the insecure and
fixed second-order DOM-dep multipliers, and the resulting insecure, fixed and optimized
second-order DOM AES S-boxes. For the S-box constructions we give in brackets the
amount of required random bits per stage.

Construction Fresh randomness Area

Insecure second-order DOM-dep [GMK16] GF (22) 12 bit
N/AGF (24) 24 bit

Fixed second-order DOM-dep GF (22) 16 bit
GF (24) 32 bit

Insecure second-order DOM AES S-box [GMK16] 84 bit (24/12/24/24) N/A
Fixed second-order DOM AES S-box 104 bit (32/16/32/24) 4.37 kGE
Optimized second-order DOM AES S-box 78 bit (24/18/12/24) 4.29 kGE

3.4 Discussion
In Table 1 we compare the randomness properties of the different constructions. As stated
by [GMK16], it requires 6/12 bits of fresh randomness for a GF (22)/GF (24) DOM-indep
multiplier. The insecure DOM-dep multiplier requires 12/24 bits of fresh randomness for
GF (22)/GF (24). The fixed version of the DOM-dep multiplier, which works with our fix,
requires 16/32 bits of fresh randomness. The amount of 84 bits for the whole insecure
S-box denotes to 24 bits in Stage 1, 12 bits in Stage 2, 2 × 12 = 24 bits in Stage 3, and
2 × 12 bits in Stage 4. When exchanging the DOM-dep multipliers in that design with our
fixed multipliers, the final construction leads to a randomness consumption of 104 bits,
implying an increase of 24%. More precisely, 32 bits of fresh randomness are now needed
in Stage 1, 16 bits in Stage 2, 32 bits in Stage 3 and 24 bits in Stage 4. Our optimized
second-order S-box design, which does not use any DOM-dep multipliers, has a lower
randomness consumption of 78 bits and also a slightly lower area (4.29 kGE) compared to
the originally proposed version.

4 COTG-based Design of AES
Using the S-box design described in Section 3 directly in a masked AES implementation
requires 15 600 bits of fresh randomness per encryption. In this section, we show how
a COTG-based concept inspired by [Dae17] can be used to reduce this number to only
3 200. In general, each S-box requires 78 bits for refreshing the multiplication terms in
the multipliers. Our main goal is to replace as many of these 78 bits by guards, i.e.,
shares of state bytes of another unrelated S-box, and use fresh randomness produced by an
RNG where necessary, such that in total, connecting an RNG producing 64 bits of fresh
randomness per cycle to the design is sufficient.

We give a general overview of our concept in Section 4.1. In Section 4.2, we give
more details on the exact COTG-based SubBytes operation for the shared plaintext. In
Section 4.3, we show how a similar concept applies to the key schedule. We verify the basic
assumptions made for our concept with Coco, as described in more detail in Section 6.

4.1 Overview
The AES round function can be divided into four smaller super boxes, mapping a 32-bit
input to a 32-bit output by applying SubBytes, MixColumns, AddRoundKey, and the
second SubBytes function. The four input bytes of a super box are the columns of the
state when viewed after ShiftRows. From a masking point of view, the non-linear SubBytes
operation processes each state byte individually but combines the share domains. In
contrast, the linear MixColumns operation combines the four state bytes of a super box
but does this for each share domain individually.



318 Smooth Passage with the Guards

s(0,0)

s(1,1)

s(2,2)

s(3,3)

s(0,1)

s(1,2)

s(2,3)

s(3,0)

s(0,2)

s(1,3)

s(2,0)

s(3,1)

s(0,3)

s(1,0)

s(2,1)

s(3,2)

s(0,0)

s(1,1)

s(2,2)

s(3,3)

s(0,1)

s(1,2)

s(2,3)

s(3,0)

s(0,2)

s(1,3)

s(2,0)

s(3,1)

s(0,3)

s(1,0)

s(2,1)

s(3,2)

Stage 1

s(0,0)

s(1,1)

s(2,2)

s(3,3)

s(0,1)

s(1,2)

s(2,3)

s(3,0)

s(0,2)

s(1,3)

s(2,0)

s(3,1)

s(0,3)

s(1,0)

s(2,1)

s(3,2)

Stage 3

s(0,0)

s(1,1)

s(2,2)

s(3,3)

s(0,1)

s(1,2)

s(2,3)

s(3,0)

s(0,2)

s(1,3)

s(2,0)

s(3,1)

s(0,3)

s(1,0)

s(2,1)

s(3,2)

Stage 2 Stage 4

s(0,0)

s(1,1)

s(2,2)

s(3,3)

s(0,1)

s(1,2)

s(2,3)

s(3,0)

s(0,2)

s(1,3)

s(2,0)

s(3,1)

s(0,3)

s(1,0)

s(2,1)

s(3,2)

Stage 5 (MixColumns)

Figure 2: Overview of the proposed COTG concept. The squares represent the 4x4 AES
state grouped in four super boxes (=the state after ShiftRows). For a specific state byte
(indicated by · ), the red arrow illustrates the other state bytes used as guards. In the
last stage, we sketch the MixColumns operation combining all bytes of a super box.

These considerations suggest some general constraints regarding a COTG-based AES
design. First, without COTG, the state bytes are kept isolated from each other until
MixColumns, while with COTG, other state bytes are mixed in during the SubBytes
operation in terms of randomness required by the multipliers. As noted by [BDZ20], this
could change the diffusion properties of the masked cipher in an unfavorable way, for which
we account with super box-wise resharing using fresh randomness before MixColumns
similar to [DSM22]. Second, on the level of a single S-box, we need to choose guards for
refreshing the multipliers such that they are always independent of the multipliers’ inputs.
This becomes even more complex considering that a multiplier input is usually just the
output of another multiplier from the previous stage, which again directly relates to the
guards used there.

Therefore, from the view of a single S-box (located in super box i) in our design we
make the following decisions regarding which other state bytes can be used as guards for
refreshing (we sketch this in Figure 2):

• MixColumns combines all state bytes of a super box, i.e., all guards used in all Stage
4 multipliers of the super box bytes are combined. Therefore, the guards need to
be chosen from the three foreign super boxes i+ 1, i+ 2, i+ 3. To avoid changing
diffusion properties, we refresh the inner-domain terms with fresh randomness.

• Taking the guards for Stage 4 from the three foreign super boxes leaves us with no
choice but to ensure that the multiplier inputs are related to the domestic super
box. The inputs are (a) the plain shares after the linear map (by default related to
domestic super box i) and (b) the output of the Stage 3 multiplier. By choosing
guards from the domestic super box i in combination with fresh randomness, we
get independence here as well. In order to obtain the independence even in the
presence of glitches, the inner-domain terms in Stage 3 are again refreshed with fresh
randomness.

• The inputs of the Stage 3 multiplier are the outputs of stages 1 and 2. However,
the guards of the Stage 3 multiplier are independent of any unmasked state byte
because they are combined with fresh randomness. Hence, we can simply choose
guards from the domestic super box for Stage 1 and guards from the neighbor super
box for stage 2.

4.2 COTG for SubBytes of Plaintext
Choice of guards for Stage 4. Stage 5 of our design computes the complete linear layer,
i.e., the inverse linear map, ShiftRows, MixColumns, AddRoundKey, and the linear map
of SubBytes of the next round. Each operation is applied exactly once per share and does



Barbara Gigerl , Franz Klug , Stefan Mangard , Florian Mendel and Robert Primas 319

Table 2: Assignment of guards and fresh randomness to refresh the inner- and cross-domain
terms of the DOM-indep multipliers in our design. The operator X[a : b] extracts the
bits in range from b to (including) a from a given binary word X. The 64 bits of fresh
randomness R given to the design in every cycle is arranged in rows R0, R1, R2, R3 of 16
bits each.

DOM-indep multiplier
1 2 3/1 3/2 4/1 4/2

z0
s

(i+1,j+1)
0

Ri[7:0]
s

(i+2,j+2)
2 [5:0]

⊕ Ri[5:0]
s

(i+3,j+3)
0 [5:0]
⊕ Ri[13:8]

s
(i,j+1)
0 [3:0] s

(i,j+2)
1 [7:4]

z1 s
(i,j+1)
0 [7:4] s

(i,j+3)
2 [3:0]

z2 Ri[7:0]
s

(i,j+2)
1 [3:0] s

(i,j+3)
2 [7:4]

z3 - - - -
z4 s

(i+2,j+2)
1

⊕ Ri[15:8] s
(i+1,j+2)
0

⊕ Ri[15:8]

- - - -
z5 - - - -
y0 - Ri[7:6] Ri[7:6] Ri[3:0] Ri[11:8]
y1 - Ri[15:14] Ri[15:14] Ri[7:4] Ri[15:12]
y2 - s

(i+2,j+3)
1 [1:0] - - - -

not combine shares of different domains. The linear mappings of the S-box mix the bits
of a share byte, and AddRoundKey combines the state bytes bitwise with unrelated key
material. MixColumns however combines the bytes of each super box in the design, or,
when viewed from a masking perspective, combines the refreshed multiplication terms
of the Stage 4 multipliers of the four super box bytes. Due to glitches, every masked
multiplication term can be observed individually, and thus, all their combinations. In order
to refresh these multiplication terms, which is done in the two DOM-indep multipliers
using z0, z1, and z2, we instantiate 24 bits of guards. As shown in Table 2, we use guards
of three different foreign super boxes with rotating share domains for this purpose. For
example, the Stage 4 multipliers of the first two super boxes use the following state bytes
as guards:

s(0,0) : s(0,1)
0 , s

(0,2)
1 , s

(0,3)
2 s(0,1) : s(0,2)

0 , s
(0,3)
1 , s

(0,0)
2

s(1,1) : s(1,2)
0 , s

(1,3)
1 , s

(1,0)
2 s(1,2) : s(1,3)

0 , s
(1,0)
1 , s

(1,1)
2

s(2,2) : s(2,3)
0 , s

(2,0)
1 , s

(2,1)
2 s(2,3) : s(2,0)

0 , s
(2,1)
1 , s

(2,2)
2

s(3,3) : s(3,0)
0 , s

(3,1)
1 , s

(3,2)
2 s(3,0) : s(3,1)

0 , s
(3,2)
1 , s

(3,3)
2

Rotating share domains means that we use share domain 0 for the first guard, share
domain 1 for the second, and share domain 2 for the third. We cannot use the same
guard domain, e.g., domain 0, for all guards because that would lead to many Stage 4
multiplication terms being refreshed with the same guard. By rotating the domains, every
state byte share is used exactly once in the Stage 4 multipliers. Assume that the guards
for an S-box are not distributed across super boxes, but that for super box i, we use
state bytes of the same domestic super box i. That implies that s(0,0) uses s(3,3)

2 , s(1,1)

uses s(3,3)
1 and s(2,2) uses s(3,3)

0 as a guard, and hence, in MixColumns, state byte s(3,3) is
unmasked. The same holds when super box i uses state bytes of the same foreign super
box. Therefore, the guards need to originate from three different foreign superboxes. At
the same time, it is important to note that every MixColumns operation combines shares
of exactly one share domain of each super box. For example, super box 0 uses guards from
super box 1, but all of share domain 0. That is important to prevent an attacker from
placing two probes in the MixColumns operations of different super boxes. Additionally,
we use the 64 bits of fresh randomness produced by the RNG to refresh the inner-domain
terms with y0 and y1.



320 Smooth Passage with the Guards

Similar to [DSM22], instead of refreshing the complete state (which would require
256 bits of fresh randomness), we align the 64 bits of fresh randomness into four rows
R0, R1, R2, R3 of 16 bits each such that the randomness is reused in every super box.

Choice of guards for Stage 3. The Stage 4 DOM-indep multipliers multiply (a) the
plain input shares of the S-box after the linear map, with (b) the output of the Stage 3
multipliers. The guards used in Stage 4 must be independent of both (a) and (b). In the
case of (a), independence between the plain input shares of a specific S-box and state bytes
of other super boxes is naturally given. In the case of (b), the independence is determined
by the output of the multipliers in Stage 3 and, therefore, by the guards used in Stage 3.
In Stage 3, 2 × 6 = 12 bits are required for refreshing cross-domain multiplication terms
(z0, z1, z2 in multipliers 3/1 and 3/2), and additionally, 2 × 4 bit are required for refreshing
inner-domain multiplication terms (y0, y1) to achieve that even in the presence of glitches,
the inputs to Stage 4 are independent. In total, this makes 20 bits, which can however be
reduced to 16 bits because, in the multiplier 3/1 and the multiplier 3/2, the same values
for y0 and y1 can be used.

In summary, we therefore need to come up with 16 bits of randomness per S-box.
Similar to Stage 4, we again arrange the 64 bits of fresh randomness generated in this
cycle by the RNG in four rows of 16 bits and re-use this randomness in every super box.
Verification with Coco reveals that while this is valid for inner-domain terms (y0, y1), the
cross-domain terms must be refreshed with unique randomness (z0, z1, z2).As shown in
Table 2, we use a trick to generate unique terms by combining the fresh randomness from
the RNG with guards taken from the domestic super box. For example, the multiplier 3/1
of the first two super boxes uses the following values for z0, z1, z2:

s(0,0) : s(2,2)
2 [5:0] ⊕R0[5:0] s(0,1) : s(2,3)

2 [5:0] ⊕R0[5:0]

s(1,1) : s(0,0)
2 [5:0] ⊕R1[5:0] s(1,2) : s(3,0)

2 [5:0] ⊕R1[5:0]

s(2,2) : s(1,1)
2 [5:0] ⊕R2[5:0] s(2,3) : s(0,1)

2 [5:0] ⊕R2[5:0]

s(3,3) : s(2,2)
2 [5:0] ⊕R3[5:0] s(3,0) : s(1,2)

2 [5:0] ⊕R3[5:0]

By doing so, the uniqueness of the term is given by Ri within the super box, and by the
guards across super boxes, and every Stage 3 multiplier in all S-boxes uses unique values
to refresh the multiplication terms. Similar to Stage 4, we perform share domain rotation
by using share 2 for the 3/1 multipliers and share 0 for the 3/2 multipliers in order to
achieve that within a super box, two different shares of a state byte are used as guards.

Choice of guards for Stage 2. The Stage 3 DOM-indep multipliers multiply the output of
the Stage 2 multiplier with the output of the Stage 1 multiplier. The guards used in Stage
3 are inherently independent of these because the randomness generated by the RNG in
Stage 3, which is used to mask the guards, is only used in that cycle. Therefore, the choice
of guards for stages 1 and 2 is relatively unconstrained as long as they are independent
of each other (otherwise, a DOM-dep multiplier would need to be used). In Stage 2, 18
bits are required for refreshing cross-domain multiplication terms (z0, z1, z2, z3, z4, z5) and
inner-domain multiplication terms (y0, y1, y2). Using an analysis with Coco, we find out
that for second-order probing security, z0, z1, z2, z3 can be re-used across super boxes, while
the rest of the values need to be unique. As shown in Table 2, we apply a similar trick
as in Stage 3 to generate this uniqueness: We use the fresh randomness generated by the
RNG, distribute it over the columns of the state, and re-mask it with guards as necessary
to obtain a unique random value. For example, the values used for refreshing in the Stage



Barbara Gigerl , Franz Klug , Stefan Mangard , Florian Mendel and Robert Primas 321

2 multipliers are:

s(0,0) : R0[7:0], s(1,2)
0 ⊕R0[15:8], s(2,3)

1 [1:0] s(0,1) : R0[7:0], s(1,3)
0 ⊕R0[15:8], s(2,0)

1 [1:0]

s(1,1) : R1[7:0], s(2,3)
0 ⊕R1[15:8], s(3,0)

1 [1:0] s(1,2) : R1[7:0], s(2,0)
0 ⊕R1[15:8], s(3,1)

1 [1:0]

s(2,2) : R2[7:0], s(3,0)
0 ⊕R2[15:8], s(0,1)

1 [1:0] s(2,3) : R2[7:0], s(3,1)
0 ⊕R2[15:8], s(0,2)

1 [1:0]

s(3,3) : R3[7:0], s(0,1)
0 ⊕R3[15:8], s(1,2)

1 [1:0] s(3,0) : R3[7:0], s(0,2)
0 ⊕R3[15:8], s(1,3)

1 [1:0]

Note that we again perform share domain rotation, i.e., every byte in a superbox uses
guards from two different domains.

Choice of guards for Stage 1. The Stage 2 DOM-indep multiplier multiplies the four
most significant bits of the Stage 1 multiplier output with the four least significant bits.
The 24 bits required for refreshing in the Stage 1 multiplier hence need to be chosen
independently of the guards in Stage 2. Analysis with Coco reveals that in this situation,
the values for z0, z1, z4 and z5 need to be unique, while z2 and z3 can again be re-used
across super boxes. As shown in Table 2, for z2 and z3 we use a byte of fresh randomness
from the RNG, which is re-used once per super box. For z4 and z5 we use another byte
of fresh randomness from the RNG, which is also re-used once per super box, but made
unique by re-masking with a guard from the domestic super box. For z0 and z1 we need a
unique value as well, however, the 16 bits of randomness available are already used up,
and therefore, we directly use as a guard a state byte from the same domestic super box.
For example, the values used for refreshing in the Stage 1 multipliers are:

s(0,0) : s(1,1)
0 , R0[7:0], s(2,2)

1 ⊕R0[15:8] s(0,1) : s(1,2)
0 , R0[7:0], s(2,3)

1 ⊕R0[15:8]

s(1,1) : s(2,2)
0 , R1[7:0], s(3,3)

1 ⊕R1[15:8] s(1,2) : s(2,3)
0 , R1[7:0], s(3,0)

1 ⊕R1[15:8]

s(2,2) : s(3,3)
0 , R2[7:0], s(0,0)

1 ⊕R2[15:8] s(2,3) : s(3,0)
0 , R2[7:0], s(0,1)

1 ⊕R2[15:8]

s(3,3) : s(0,0)
0 , R3[7:0], s(1,1)

1 ⊕R3[15:8] s(3,0) : s(0,1)
0 , R3[7:0], s(1,2)

1 ⊕R3[15:8]

4.3 COTG for SubWord of Key Schedule
In our AES design, we use the same shared S-box design for the key as for the plaintext.
Masking the key schedule using COTG is however much simpler than for the plaintext
because only four key bytes are transformed using SubWord, which is comprised of four
S-boxes, and no MixColumns operation is performed during the key schedule (c.f. Figure 3).
Therefore, we first identify key state bytes that cannot be used in a straightforward way
as guards in the SubWord operation of the key schedule, that are, the set of key bytes
combined with each SubWord input byte. This set includes the SubWord input bytes
k(0,3), k(1,3), k(2,3), k3,3 themselves, and then for each byte, the three other key bytes added
to the S-box output later in the key schedule. For example, for k(0,3) we do not use
k(3,0), k(3,1), k(3,2) as guards. In Figure 3, we mark the key bytes not used as guards for a
specific S-box with stripes of the respective color.

For each of the four input bytes, we can then simply assign the remaining key state
bytes as guards for the respective S-box and perform share-domain rotation on that.
Using this technique, we can obtain the second-order probing security of the construction.
An adversary placing two probes in the same S-box of the key schedule cannot probe a
complete sharing of a guard byte because per S-box, at most one share of a guard is used.
With two probes in two different S-boxes, an adversary can therefore at most probe two
out of three shares.

The RNG connected to the AES design produces 64 bits of fresh randomness per cycle
for encrypting the plaintext. However, in Stage 5 of computing the S-box for the plaintext,



322 Smooth Passage with the Guards

k(0,0)

k(1,0)

k(2,0)

k(3,0)

k(0,1)

k(1,1)

k(2,1)

k(3,1)

k(0,2)

k(1,2)

k(2,2)

k(3,2)

k(0,3)

k(1,3)

k(2,3)

k(3,3)

S-box S-box S-box S-box

k(0,0) k(1,0) k(2,0) k(3,0)

k(0,1) k(1,1) k(2,1) k(3,1)

k(0,2) k(1,2) k(2,2) k(3,2)

k(0,3) k(1,3) k(2,3) k(3,3)

RC

(a)

k(0,3) :k(0,0)
0 , k

(0,1)
1 , k

(0,2)
2 , k(1,3) : k

(1,0)
0 , k

(1,1)
1 , k

(1,2)
2 ,

k
(1,0)
1 , k

(1,1)
2 , k

(1,2)
0 , k

(2,0)
1 , k

(2,1)
2 , k

(2,2)
0 ,

k
(2,0)
2 , k

(2,1)
0 , k

(2,2)
1 , k

(3,0)
2 , k

(3,1)
0 , k

(3,2)
1 ,

R[15:0] R[31:16]

k(2,3) :k(2,0)
0 , k

(2,1)
1 , k

(2,2)
2 , k(3,3) : k

(3,0)
0 , k

(3,1)
1 , k

(3,2)
2 ,

k
(3,0)
1 , k

(3,1)
2 , k

(3,2)
0 , k

(0,0)
1 , k

(0,1)
2 , k

(0,2)
0 ,

k
(0,0)
2 , k

(0,1)
0 , k

(0,2)
1 , k

(1,0)
2 , k

(1,1)
0 , k

(1,2)
1 ,

R[47:32] R[63:48]

(b)

Figure 3: (a) The AES key schedule. We mark the input bytes of SubWord with colors,
and hatch the key state bytes which are later combined with a specific input byte.
(b) The assignment of guards for the S-boxes of the key schedule.

no fresh randomness is required because only linear operations are performed, and we can
use the 64 bits of fresh randomness produced in that cycle for refreshing the key schedule.
We distribute the 64 bits over the four S-boxes, such that we add 16 distinct bits per S-box.
By that, we can keep the refreshing of plaintext and key completely independent of each
other, which is also important for probing security across multiple rounds, as discussed in
Section 6.

5 Architecture
Masked AES hardware implementations either follow a serial or a parallel design paradigm.
Serial AES designs instantiate the S-box once, which is fed with a new state or key byte
every clock cycle. Most existing masked AES designs in literature focus on serial designs,
including [DSM22, GMK16, Sug19, MPL+11, BGN+14, BGN+15, ADN+22], which is
suitable for low-area, low-power purposes, but less for high throughput or low latency
[UMHA16]. Super box-serial designs instantiate four S-boxes that are fed with a new
super box every clock cycle and therefore provide a higher performance at the cost of area.
Parallel or round-based AES designs instantiate the S-box 20 times, 16 inside SubBytes
and 4 inside KeyExpand, which enables even higher performance at the cost of area. Our
design follows a parallel architecture, as we use the AES implementation of the OpenTitan
project as a basis. OpenTitan includes a first-order masked AES with a fully-parallel
data path in order to achieve higher performance, but also because parallel architectures
increase the noise in a system, which makes SCA harder [low23].

We give a sketch of our design in Figure 4. It takes 50+1 cycles to encrypt a block of 16
plaintext bytes. One cycle in the beginning is needed because the key schedule is started 1
cycle earlier than the processing of the plaintext in our design, such that the round key
used in AddRoundKey for a specific round always comes from the key state registers. The
linear map of our S-box design is now computed in the fifth stage of a round, which means
the state registers of our implementation do not store the plain AES state but the state in
the normal basis. We connect a Trivium RNG [Can06] to our design in order to further
analyze the area overhead caused by utilizing multiple RNGs. We choose Trivium only as



Barbara Gigerl , Franz Klug , Stefan Mangard , Florian Mendel and Robert Primas 323

KeyExpand

State

Shift 
RowsShift 

Rows

SubBytes

s(0,0)

s(1,1)

s(2,2)

s(3,3)

s(0,1)

s(1,2)

s(2,3)

s(3,0)

s(0,2)

s(1,3)

s(2,0)

s(3,1)

s(0,3)

s(1,0)

s(2,1)

s(3,2)

S-box

S-box

S-box

S-box

S-box

S-box

S-box

S-box

S-box

S-box

S-box

S-boxS-box S-boxS-box

Shift 
Rows

Shift 
RowsShift 

RowsMix 
Columns

Key

k(0,0)

k(1,1)

k(2,2)

k(3,3)

k(0,1)

k(1,2)

k(2,3)

k(3,0)

k(0,2)

k(1,3)

k(2,0)

k(3,1)

k(0,3)

k(1,0)

k(2,1)

k(3,2)

S-box

S-box

S-box

S-box

S-box

S-box

S-box

S-box

S-box

S-box

S-box

Trivium
RNG64

Guards

Guards

Plaintext

lin.

map

Key

Ciphertext

Figure 4: Architecture of our second-order AES implementation. Pipeline stages are
sketched with gray lines, inputs and outputs are marked in turquoise, and terms used for
refreshing the S-box multipliers (guards and fresh randomness) are printed in purple.

an example that can, in practice, be replaced by any other RNG producing randomness
at a sufficient quality. Our Trivium implementation provides 64 bits of fresh randomness
per clock cycle. The randomness produced in the first four cycles of a round is consumed
by the plaintext encryption (256 bits), and the randomness produced in the fifth cycle is
consumed by the key schedule (64 bits). Our design requires 320 bits of fresh randomness
per round, or 3 200 bits for 10 rounds.

5.1 Implementation and Comparison
We implement our design and obtain area measures using Cadence Genus Synthesis Solution
19.11-s087_1 for synthesis. All data is collected for a UMC 64 nm process and is expressed
in 2-input NAND gate equivalents. The area of one NAND gate is 1.44µm2. In Table 3a,
we give details about the area consumption of our AES design, which is in total 102 kGE.
Two-thirds of the total area is attributed to the S-box instances for the plaintext/data,
followed by the S-box instances for the key schedule. Since, to the best of our knowledge,
our design is currently the only second-order parallel AES design, any direct comparison
on cipher-level to related work is not possible. [ADN+22] provide a first-order parallel
AES design with a 5-cycle S-box requiring 102.4 kGE, which is about the same as our
second-order design. However, the comparison is not fair because the design does not use
any online randomness at all, and the gate libraries as well as design compilers do not
match.

On S-box level, we compare our design to related work in literature, as shown in
Table 3b. However, it must be noted that these implementations use different CMOS
libraries and design compilers, and therefore, the comparison only serves as a rough point
of reference. Our optimized S-box design requires 4.3 kGE, which is slightly less (-0.1 kGE)
than the fixed version of [GMK16], in which we include the fixed DOM-dep multipliers.
Compared to the original versions of [GMK16], the area consumption of our design has
not changed significantly. [SBB+22] and [NGPM22] propose S-box designs with a much
lower latency than ours (1 cycle) but also with a higher area consumption. Gross et al.
[GIB18] construct another DOM-S-box design focused on low-latency (2 cycles) without
dual-rail logic, which however has a higher overhead in area and randomness than our



324 Smooth Passage with the Guards

Table 3: Evaluation and comparison of our design in terms of area (* including control
logic for COTG)

Module Area
[%] [kGE]

DOM-AES with COTG
Data SubBytes 62% 63.7
Key SubWord 15% 15.7
MixColumns 3% 2.8
Control logic, state registers, etc 20% 19.8
Total AES 100% 102

(a)
2nd-order AES

S-box
Area
[kGE]

Latency
[cycles]

Rand.
[bits]

CMOS
library

[CBR+15] 7.8 6 126 NanGate 45nm
[CRB+16] 3.8 5 162 NanGate 45nm
[GIB18] 57.1 2 4446 UMC 90nm
[NGPM22] 14.8 1 51 UMC 65nm
[SBB+22] 11.4 1 108 N/A (40nm)
[GMK16] 5.3 8 54 UMC 180nm
[GMK16] (insecure) 5.7 5 84 UMC 180nm
[GMK16] (fixed) 4.4 5 104 UMC 65nm
This work 4.3 5 78 UMC 65nm

(b)

Module Area
[%] [kGE]

DOM-AES with COTG,
1 Trivium instance

AES* 87% 102
Trivium instance 5% 5.2
Outer control logic 8% 9.4
Total 100% 116.6

DOM-AES without COTG,
7.5 Trivium instances

AES 68% 96.9
Trivium instances 25% 35.7
Outer control logic 7% 10.4
Total 100% 142.1
DOM-AES with fixed DOM-dep,

10 Trivium instances
AES 65% 115.1
Trivium instances 30% 51.7
Outer control logic 5% 9.4
Total 100% 176.2

(c)

design. The five-cycle S-box proposed by [CRB+16] has a slightly lower area than our
design but requires more than twice as much randomness.

In Table 3c, we compare our design with COTG to two versions of the design without
COTG, connected to multiple instances of the Trivium RNG. This comparison highlights
how important the reduction of randomness in a masked design is to achieve area efficiency.
We evaluate our DOM-AES design using COTG, to which we connect a single Trivium
instance, providing 64 bits of fresh randomness per clock cycle. The whole design requires
116.6 kGE, and the RNG makes 5% of the total area. We compare this to a version of our
design where we do not use COTG but exclusively use fresh randomness for refreshing in
the S-boxes, which consequently requires 7.5 Trivium instances. The total design area is
142.1 kGE, thus, represents an overhead of 22%. In a third scenario, we analyze the area
consumption of the original DOM-AES design using our fixed DOM-dep multipliers. Here,
10 Trivium instances necessary, which consume 30% of the total design area, which is
176.2 kGE and represents an overhead of about 50% compared to our design using COTG.
The area of the AES core has an overhead of 13% by using the DOM-dep multipliers
instead of the smaller DOM-indep multipliers. Note that our AES design provides plenty
of further possibilities for optimization, which would eventually reduce the area even more,
including the elimination of the extensively used control logic for COTG. Additionally,
instead of placing multiple Trivium instances, the Trivium state update function can
further be unrolled to save area, as described in [CMM+23].

5.2 Application to other use-cases
Despite our decision to follow a parallel (round-based) design concept, the proposed concept
for COTG can easily be carried over to serial and super box-serial architectures. The
choice of guards stays the same; only the distribution of the randomness supplied by the
RNG slightly changes. In a parallel design, all four super boxes are computationally in the
same pipeline stage p in a specific cycle, and the 64 bits of fresh randomness are sent to
that stage. In a super box-serial design, super box 0 would be in stage p, but super box 1
would be in stage p− 1. Hence, one can send the 64 bits of fresh randomness to stage p
for super box 0 and to stage p− 1 for super box 1. Similar considerations are possible for
a serial design, although an RNG supplying less than 64 bits would be sufficient.

While we focus on the second-order case, the proposed techniques can theoretically



Barbara Gigerl , Franz Klug , Stefan Mangard , Florian Mendel and Robert Primas 325

also be applied to higher-order (d > 2) DOM-protected AES implementations. To do
so, one needs first to replace the DOM-dep multipliers in the S-box with DOM-indep
multipliers, which requires adding even more fresh randomness per DOM-indep multiplier.
Next, independent state bytes need to be identified, which can be used as guards in each
S-box stage, similar to what is done in this work. We expect that this analysis, which is
not trivial and becomes harder the higher the masking order, needs to be done individually
for every order, while some knowledge, e.g., about the general dependency of state bytes,
can be re-used from the second-order case.

The applicability of the concept to other ciphers, potentially protected by techniques
other than DOM, highly depends on the concrete construction and requires a more in-depth
individual analysis. For example, we expect that a similar technique can be applied to
Ascon [DEMS21], and obtaining a COTG-based concept might be even less complex since
DOM-masked Ascon implementations are available without using DOM-dep multipliers
[GM17].

6 Security Evaluation
In this section, we elaborate on the security of our second-order DOM-AES implementation
using COTG. First, we provide a formal security analysis of the design for which we use the
formal verification tool Coco [GHP+21]. Second, we provide a practical security analysis
by porting the circuit to an FPGA and showing that no leakage could be detected using
TVLA with up to 100 million traces.

6.1 Formal verification setup
In this work, we use Coco [GHP+21] for formally verifying our design in the time-
constrained probing model. The original purpose of Coco is to verify masked software
implementations directly on the CPU netlist by incorporating control signals originating
from the software execution. Given that Coco operates on gate-level netlists, it can also
be used directly to verify masked hardware circuits with control logic, as demonstrated in
[HB21]. To apply Coco, our design is first synthesized with Yosys [Wol16] to obtain such
a gate-level netlist. We simulate the design to obtain values for control signals generated
by the state machine in our design for the verification. Additionally, labels are assigned to
the circuit inputs in order to indicate their purpose (share of a sensitive variable, fresh
randomness, or unimportant/control signal). We further add some small modifications
to Coco for our needs. For example, the original version of Coco constructs one SAT
equation per sensitive bit in the circuit and then uses the incremental CaDiCaL SAT
solver [BFFH20] to solve the equations in a sequential order. More precisely, the solver
first checks the equation of the first sensitive bit and then uses the learned clauses for the
remaining ones. Incremental SAT solving however comes with a certain overhead, e.g., for
storing the learned clauses, and we found out that for our second-order hardware designs,
the amount of re-usable learned clauses is so small that incremental solving does not pay
off. Therefore, we use a parallel solver that solves all SAT equations individually but at
the same time in parallel. We therefore adapt the Coco backend such that it uses the
Kissat [BFFH20] solver. All experiments are executed on a machine with 88 CPU cores
with 500 GB of RAM, such that approximately one CPU core is available per SAT formula.

6.2 Formal security of the design
In order to evaluate the security of our design, we follow a multi-step approach. First,
we formally verify the second-order security of the S-box, treating the 78 input bits for
refreshing the multipliers as fresh randomness first. Second, we take a look at the security



326 Smooth Passage with the Guards

of the design for one round on super box-level, including the usage of guards for refreshing,
and formally verify it for both the key schedule and plaintext using Coco. Finally, we
comment on the situation for the later rounds.

Formal verification of the S-box. As a first step, we formally verify with Coco that
our proposed fix for the second-order DOM-dep multipliers is secure. For that, we create a
GF (22) and a GF (24) DOM-dep multiplier implementation in System Verilog and verify
the security in the time-constrained probing model for both implementations, which takes
a few seconds. We then focus on the S-box construction proposed in Section 3.3, which
does however not use the fixed DOM-dep multipliers to save randomness, which we verify
for six cycles. We mark the three input shares (eight bits each) as sensitive values and
the 78 bits of randomness for refreshing, which we all mark as uniformly random. Coco
confirms the second-order security of our S-box implementation in the time-constrained
probing model after running for approximately 1.5 days.

Formal verification of COTG for SubWord of key schedule. In order to formally verify
one round of the key schedule using COTG, we label the three shares of the complete
128-bit key state as sensitive variables. During the computation of SubWord, these will
be used as guards for refreshing. Additionally, we mark the 64 bits of fresh randomness
required by the key schedule in Stage 4 of the S-boxes. With Coco, we can confirm the
probing security of the construction computing four S-boxes in parallel over one round
in 2 days and 18 h. This involves solving one SAT formula per unshared key bit, i.e., 128
SAT formulas in parallel. Not every SAT formula needs the same amount of time to solve,
for example, the formulas of key bits that are not processed by SubWord are solved very
quickly (in 2 s), while it takes up to the indicated 2 days and 18 h to check the security of
key bits processed by the S-box.

One of the goals when constructing our design was to keep the refreshing terms used in
the key schedule and plaintext isolated from each other to allow for easier security analysis.
That is, no randomness or guards for refreshing are used in both the key schedule and the
processing of the plaintext, and the only meeting point is AddRoundKey. Processing of
the plaintext does not require fresh randomness in Stage 5 where the linear operations are
done, but still, the RNG produces 64 bits of fresh randomness in that cycle, which we use
for refreshing the key state after SubWords, impeding to probe key bytes in two different
rounds.

Formal verification of COTG for SubBytes of plaintext. Compared to verification of
the key schedule, verification of the COTG-based concept for the plaintext is much harder
due to more complex dependencies between the state bytes. First, 16 S-boxes are computed
in parallel instead of only four, and the guards used for these S-boxes are at the same
time sent through their own S-box, where other guards are used. Second, we are using a
combination of guards and fresh randomness for refreshing the multipliers connected by
the ⊕ operation. Due to these two aspects, verifying a complete round for the complete
128-bit state becomes computationally infeasible.

Therefore, we constrain the verification to super boxes 0 and the first byte of super
box 1 (s(0,1)), i.e., we mark the whole 128-bit state of the AES as sensitive but disable the
S-box computation for (s(1,2), s(2,3), s(3,0)) and the bytes of the super boxes 2 and 3. This
should not affect the verification of super box 0 since, in the first three stages, every super
box uses guards only from the same or neighbor super box. Using this setup, we verify
the construction for the first three stages, including the resharing phase of Stage 4. In
Section 4.2, we discuss that inputs to Stage 4 are independent of each other, which allows
to start the verification after Stage 3, assuming independent input shares. We verify the



Barbara Gigerl , Franz Klug , Stefan Mangard , Florian Mendel and Robert Primas 327

design beginning with the integration phase in Stage 3 until the end of Stage 5, including
MixColumns, which is completed successfully.

An attempt to verify a complete round at once was not conclusive, as the verification
has been running for 55 days, and no leak has been found yet, but the security for all bits
could not be confirmed either. The formula for the 88 bits not sent through S-boxes, which
are only used as guards, could be solved within seconds, for further five bits we could
confirm probing security after 37, 40, 41, 47, and 48 days respectively, but the confirmation
for the remaining bits is still open.

Security across several rounds. As described above, our COTG-based design is consid-
ered to be probing secure for one round. Although we do not make any security claim
beyond one round, our practical evaluations indicate that multiple rounds of our imple-
mentation are also secure due to the refreshing performed at two points in the design at
the end of every round. First, we add 64 bits of fresh randomness before MixColumns by
performing column-wise resharing. Second, AddRoundKey refreshes the complete 128-bit
state of the cipher with state-independent key material. The key is completely independent
of the state because of the strict separation of guards and fresh randomness for the key
schedule and plaintext. However, after two rounds, the key shares and the state cannot
be considered completely independent anymore because of the AES key schedule. More
concretely, the key bytes are initially completely independent of each other. After executing
one round of the key schedule, every key byte will at least depend on one other key byte,
the guards used in the S-box, and some randomness. Even though this might lead to a
small bias, our practical evaluations using TVLA confirm that this bias is not observable
nor exploitable in practice.

6.3 Experimental Verification
In the last section, we discuss the outcome of the formal analysis, which indicates that our
design is also second-order secure in the presence of glitches. Since formal verification is
limited to less than one round of the design, we show practical evidence for the proposed
statements for multiple rounds by porting the design to an FPGA in this section.

Evaluation setup. We perform practical evaluations using a first-, second- and third-order
t-test on the NewAE CW305 Artix-7 FPGA evaluation board connected to a PicoScope
6404C at 625 Ms/s sampling rate (1.6 ns sampling interval). The hardware design operates
at a clock frequency of 1.5625 MHz, which was chosen as a fraction of the sampling rate. To
reduce the noise level, we synchronize the clocks between the FPGA and the oscilloscope
and apply a preprocessing step to provide the equal alignment of traces. We implement
our complete AES design, including the Trivium RNG as shown in Figure 4, along with
some outer control logic used to send and receive data via the USB interface. The
implementation receives three shares for the 128-bit plaintext, three shares of the 128-bit
key, and a key-IV-pair to initialize the Trivium RNG. The Trivium RNG is initialized once
in the beginning and produces 64 bits of fresh randomness per cycle during the encryption.
In order to show whether or not a masked implementation exhibits first-order leakage,
we follow the standard method and perform Welch’s t-test following the guidelines of
Goodwill et al. [GJJR11]. The basic idea of the test is to create a random and a fixed set
of measurements, one representing the power consumption of the design when processing a
random input and one when processing a fixed (constant) input. In order to determine if
there are statistically significant differences in the mean power consumption of the two
trace sets, one can compute Welch’s t-score. The null hypothesis is that both trace sets
have equal means, which can be rejected with a confidence greater than 99.999% if the
t-score exceeds ±4.5. This implies that the trace sets can be distinguished from each other.



328 Smooth Passage with the Guards

0 5000 10000 15000 20000
Samples

Po
we

r

(a) A sample trace

0 5000 10000 15000 20000
Samples

4

2

0

2

4

t-s
ta

tis
tic

s

(b) 1st-order t-test

0 5000 10000 15000 20000
Samples

4

2

0

2

4

t-s
ta

tis
tic

s

(c) 2nd-order t-test

0 5000 10000 15000 20000
Samples

10
5
0
5

10

t-s
ta

tis
tic

s

(d) 3rd-order t-test
Figure 5: Experimental analysis of our masked AES using 100 million traces.

0 5000 10000 15000 20000
Samples

300

200

100

0

100

t-s
ta

tis
tic

s

Figure 6: 1st-order t-test with RNG off and no initial sharing (two shares of plaintext and
two shares of key are zeros) using 100 000 traces.

A first-order univariate t-test investigates distinguishably on the basis of the mean (first
statistical moment) of the trace sets, a second-order univariate t-test uses the variance
(second statistical moment) and a third-order univariate t-test uses the third statistical
moment.

Discussion. To conduct a first-order, second-order, and third-order t-test, we choose a
constant key, for which we generate a new valid sharing for every trace. For the fixed trace
set, we set the input plaintext to zero and generate a new valid sharing for every trace of
the fixed set. For the random set, we choose all three plaintext shares randomly for every
trace. The fixed and random sets are recorded in an interleaved manner, and the RNG is
enabled during our measurements. We measured the complete AES encryption, i.e., 10
rounds, as shown in a sample power trace in Figure 5a. The results of the first-order and
second-order t-test are given in Figure 5b and Figure 5c. We did not observe evidence for
first- or second-order leakage with up to 100 million traces, as the t-score never crosses the
±4.5 threshold. As shown in Figure 5d, we recorded third-order leakage as expected. The
t-score exceeded the ±4.5 threshold during the initial AddRoundKey, where the overall
noise level is expected to be very low. Since the key schedule starts one cycle before the
processing of the plaintext, during the initial AddRoundKey, the processing of the data
has not yet started, and the SubWord of the key schedule is only computing the linear
mapping. No significant other computations are performed, leading to a low noise level.

To verify the soundness of our setup and to demonstrate that our countermeasure is
effective, we show the t-test results of the design without supplying fresh randomness in
Figure 6. This means we disable the RNG and the initial sharing of plaintext and key,
i.e., two shares of the plaintext and two shares of the key are all zeros. As expected, after
100 000 traces, the design clearly showed first-order leakage.



Barbara Gigerl , Franz Klug , Stefan Mangard , Florian Mendel and Robert Primas 329

7 Conclusion
In this work, we presented a second-order masked hardware design of the AES with an
improved latency-randomness tradeoff. The resulting round-based (parallel) DOM-masked
AES design works with three shares, has a latency of 5 cycles per round, and requires 3 200
random bits per encryption, which can smoothly be delivered by an RNG producing 64
bits of fresh randomness per cycle. The core of our AES design is a masked 5-cycle S-box
which requires 78 bits of fresh randomness. We show how randomness can be reused across
S-box instances using the COTG technique. We give formal security proofs, conduct an
empirical evaluation using TVLA on an FPGA, and compare the implementation cost in
terms of area consumption.

Acknowledgments
This work was supported by the FWF SFB project SpyCoDe F8504, and the TU Graz
LEAD project "Dependable Internet of Things in Adverse Environments". We thank our
shepherd and anonymous reviewers for their valuable comments in strengthening this work.
The authors would like to thank Gaëtan Cassiers for helpful discussions.

References
[ADN+22] Amund Askeland, Siemen Dhooghe, Svetla Nikova, Vincent Rijmen, and

Zhenda Zhang. Guarding the first order: The rise of AES maskings. In Ileana
Buhan and Tobias Schneider, editors, Smart Card Research and Advanced
Applications - 21st International Conference, CARDIS 2022, Birmingham,
UK, November 7-9, 2022, Revised Selected Papers, volume 13820 of Lecture
Notes in Computer Science, pages 103–122. Springer, 2022.

[ANR19] Victor Arribas, Svetla Nikova, and Vincent Rijmen. Guards in action: First-
order SCA secure implementations of KETJE without additional randomness.
Microprocess. Microsystems, 71, 2019.

[BBP+17] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Private multiplication over finite
fields. In Advances in Cryptology - CRYPTO 2017 - 37th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017,
Proceedings, Part III, volume 10403 of Lecture Notes in Computer Science,
pages 397–426. Springer, 2017.

[BDF+17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. Parallel implementations of
masking schemes and the bounded moment leakage model. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, Advances in Cryptology - EURO-
CRYPT 2017 - 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Paris, France, April 30 - May 4,
2017, Proceedings, Part I, volume 10210 of Lecture Notes in Computer Science,
pages 535–566, 2017.

[BDRS21] Tim Beyne, Siemen Dhooghe, Adrián Ranea, and Danilo Sijacic. A low-
randomness second-order masked AES. In Riham AlTawy and Andreas Hülsing,
editors, Selected Areas in Cryptography - 28th International Conference, SAC
2021, Virtual Event, September 29 - October 1, 2021, Revised Selected Papers,
volume 13203 of Lecture Notes in Computer Science, pages 87–110. Springer,
2021.



330 Smooth Passage with the Guards

[BDZ20] Tim Beyne, Siemen Dhooghe, and Zhenda Zhang. Cryptanalysis of masked
ciphers: A not so random idea. In Shiho Moriai and Huaxiong Wang, editors,
Advances in Cryptology - ASIACRYPT 2020 - 26th International Conference on
the Theory and Application of Cryptology and Information Security, Daejeon,
South Korea, December 7-11, 2020, Proceedings, Part I, volume 12491 of
Lecture Notes in Computer Science, pages 817–850. Springer, 2020.

[BFFH20] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger.
CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the SAT
Competition 2020. In Tomas Balyo, Nils Froleyks, Marijn Heule, Markus
Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of SAT Competition
2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department of
Computer Science Report Series B, pages 51–53. University of Helsinki, 2020.

[BGI+18] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan
Mangard, and Johannes Winter. Formal verification of masked hardware
implementations in the presence of glitches. In Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May
3, 2018 Proceedings, Part II, volume 10821 of Lecture Notes in Computer
Science, pages 321–353. Springer, 2018.

[BGN+14] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. A more efficient AES threshold implementation. In David Pointcheval
and Damien Vergnaud, editors, Progress in Cryptology - AFRICACRYPT 2014
- 7th International Conference on Cryptology in Africa, Marrakesh, Morocco,
May 28-30, 2014. Proceedings, volume 8469 of Lecture Notes in Computer
Science, pages 267–284. Springer, 2014.

[BGN+15] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. Trade-offs for threshold implementations illustrated on AES. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst., 34(7):1188–1200, 2015.

[Can05] David Canright. A very compact s-box for AES. In Josyula R. Rao and
Berk Sunar, editors, Cryptographic Hardware and Embedded Systems - CHES
2005, 7th International Workshop, Edinburgh, UK, August 29 - September 1,
2005, Proceedings, volume 3659 of Lecture Notes in Computer Science, pages
441–455. Springer, 2005.

[Can06] Christophe De Cannière. Trivium: A stream cipher construction inspired by
block cipher design principles. In Sokratis K. Katsikas, Javier López, Michael
Backes, Stefanos Gritzalis, and Bart Preneel, editors, Information Security,
9th International Conference, ISC 2006, Samos Island, Greece, August 30 -
September 2, 2006, Proceedings, volume 4176 of Lecture Notes in Computer
Science, pages 171–186. Springer, 2006.

[CBR+15] Thomas De Cnudde, Begül Bilgin, Oscar Reparaz, Ventzislav Nikov, and Svetla
Nikova. Higher-order threshold implementation of the AES s-box. In Naofumi
Homma and Marcel Medwed, editors, Smart Card Research and Advanced Ap-
plications - 14th International Conference, CARDIS 2015, Bochum, Germany,
November 4-6, 2015. Revised Selected Papers, volume 9514 of Lecture Notes in
Computer Science, pages 259–272. Springer, 2015.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Michael J. Wiener,



Barbara Gigerl , Franz Klug , Stefan Mangard , Florian Mendel and Robert Primas 331

editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999,
Proceedings, volume 1666 of Lecture Notes in Computer Science, pages 398–412.
Springer, 1999.

[CMM+23] Gaëtan Cassiers, Loïc Masure, Charles Momin, Thorben Moos, Amir Moradi,
and François-Xavier Standaert. Randomness generation for secure hardware
masking - unrolled trivium to the rescue. IACR Cryptol. ePrint Arch., page
1134, 2023.

[CRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Masking AES with d+1 shares in hardware. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware
and Embedded Systems - CHES 2016 - 18th International Conference, Santa
Barbara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture
Notes in Computer Science, pages 194–212. Springer, 2016.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE Trans.
Inf. Forensics Secur., 15:2542–2555, 2020.

[Dae17] Joan Daemen. Changing of the guards: A simple and efficient method for
achieving uniformity in threshold sharing. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings, volume 10529 of Lecture Notes in Computer Science, pages 137–
153. Springer, 2017.

[DEMS21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. Ascon. submission as a finalist to the nist lightweight
cryptostandardization process, 2ß21. https://csrc.nist.gov/Projects/
lightweight-cryptography/finalists. Retrieved on July 12th, 2023.

[DSM22] Siemen Dhooghe, Aein Rezaei Shahmirzadi, and Amir Moradi. Second-order
low-randomness d + 1 hardware sharing of the AES. In Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi, editors, Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2022,
Los Angeles, CA, USA, November 7-11, 2022, pages 815–828. ACM, 2022.

[GHP+21] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Roderick
Bloem. Coco: Co-design and co-verification of masked software implemen-
tations on CPUs. In Michael Bailey and Rachel Greenstadt, editors, 30th
USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021,
pages 1469–1468. USENIX Association, 2021.

[GIB18] Hannes Groß, Rinat Iusupov, and Roderick Bloem. Generic low-latency
masking in hardware. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):1–
21, 2018.

[GJJR11] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A testing
methodology for side-channel resistance validation. In NIST Non-Invasive
Attack Testing Workshop, 2011.

[GM17] Hannes Groß and Stefan Mangard. Reconciling d+1 masking in hardware
and software. In Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,

https://csrc.nist.gov/Projects/lightweight-cryptography/finalists
https://csrc.nist.gov/Projects/lightweight-cryptography/finalists


332 Smooth Passage with the Guards

Proceedings, volume 10529 of Lecture Notes in Computer Science, pages 115–
136. Springer, 2017.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order.
In Proceedings of the ACM Workshop on Theory of Implementation Security,
TIS@CCS 2016 Vienna, Austria, October, 2016, page 3. ACM, 2016.

[GP99] Louis Goubin and Jacques Patarin. DES and differential power analysis
(the "duplication" method). In Çetin Kaya Koç and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems, First International Workshop,
CHES’99, Worcester, MA, USA, August 12-13, 1999, Proceedings, volume
1717 of Lecture Notes in Computer Science, pages 158–172. Springer, 1999.

[GPM23] Barbara Gigerl, Robert Primas, and Stefan Mangard. Formal verification of
arithmetic masking in hardware and software. ACNS 2023, 2023.

[HB21] Vedad Hadzic and Roderick Bloem. COCOALMA: A versatile masking verifier.
In Formal Methods in Computer Aided Design, FMCAD 2021, New Haven,
CT, USA, October 19-22, 2021, pages 1–10. IEEE, 2021.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In Advances in Cryptology - CRYPTO 2003,
23rd Annual International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in
Computer Science, pages 463–481. Springer, 2003.

[JPS18] Bernhard Jungk, Richard Petri, and Marc Stöttinger. Efficient side-channel
protections of ARX ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2018(3):627–653, 2018.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages 388–397.
Springer, 1999.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - statistical
independence and leakage verification. In Shiho Moriai and Huaxiong Wang,
editors, Advances in Cryptology - ASIACRYPT 2020 - 26th International
Conference on the Theory and Application of Cryptology and Information
Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part I,
volume 12491 of Lecture Notes in Computer Science, pages 787–816. Springer,
2020.

[low19] lowRISC contributors. Open titan, 2019. https://opentitan.org/. Retrieved
on March 23th, 2023.

[low23] lowRISC contributors. Open titan - aes - theory of opera-
tion, 2023. https://opentitan.org/book/hw/ip/aes/doc/theory_of_
operation.html#theory-of-operation. Retrieved on April 12th, 2023.

[MMM21] Nicolai Müller, Thorben Moos, and Amir Moradi. Low-latency hardware
masking of PRINCE. In Shivam Bhasin and Fabrizio De Santis, editors,
Constructive Side-Channel Analysis and Secure Design - 12th International
Workshop, COSADE 2021, Lugano, Switzerland, October 25-27, 2021, Pro-
ceedings, volume 12910 of Lecture Notes in Computer Science, pages 148–167.
Springer, 2021.

https://opentitan.org/
https://opentitan.org/book/hw/ip/aes/doc/theory_of_operation.html#theory-of-operation
https://opentitan.org/book/hw/ip/aes/doc/theory_of_operation.html#theory-of-operation


Barbara Gigerl , Franz Klug , Stefan Mangard , Florian Mendel and Robert Primas 333

[MMSS19] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Standaert.
Glitch-resistant masking revisited or why proofs in the robust probing model
are needed. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):256–292,
2019.

[MPG05] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-channel leakage
of masked CMOS gates. In Alfred Menezes, editor, Topics in Cryptology
- CT-RSA 2005, The Cryptographers’ Track at the RSA Conference 2005,
San Francisco, CA, USA, February 14-18, 2005, Proceedings, volume 3376 of
Lecture Notes in Computer Science, pages 351–365. Springer, 2005.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the limits: A very compact and a threshold implementation of AES.
In Kenneth G. Paterson, editor, Advances in Cryptology - EUROCRYPT 2011
- 30th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings,
volume 6632 of Lecture Notes in Computer Science, pages 69–88. Springer,
2011.

[MPO05] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully
attacking masked AES hardware implementations. In Josyula R. Rao and
Berk Sunar, editors, Cryptographic Hardware and Embedded Systems - CHES
2005, 7th International Workshop, Edinburgh, UK, August 29 - September 1,
2005, Proceedings, volume 3659 of Lecture Notes in Computer Science, pages
157–171. Springer, 2005.

[MRB18] Lauren De Meyer, Oscar Reparaz, and Begül Bilgin. Multiplicative masking for
AES in hardware. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):431–
468, 2018.

[Nat01] National Institute of Standards and Technology (NIST). FIPS-197: Advanced
Encryption Standard, 2001.

[NGPM22] Rishub Nagpal, Barbara Gigerl, Robert Primas, and Stefan Mangard. Riding
the waves towards generic single-cycle masking in hardware. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2022(4):693–717, 2022.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold im-
plementations against side-channel attacks and glitches. In Information and
Communications Security, 8th International Conference, ICICS 2006, Raleigh,
NC, USA, December 4-7, 2006, Proceedings, volume 4307 of Lecture Notes in
Computer Science, pages 529–545. Springer, 2006.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press,
2014.

[OMPR05] Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent Rijmen.
A side-channel analysis resistant description of the AES s-box. In Henri Gilbert
and Helena Handschuh, editors, Fast Software Encryption: 12th International
Workshop, FSE 2005, Paris, France, February 21-23, 2005, Revised Selected
Papers, volume 3557 of Lecture Notes in Computer Science, pages 413–423.
Springer, 2005.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Advances in Cryptology
- CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA,



334 Smooth Passage with the Guards

USA, August 16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes
in Computer Science, pages 764–783. Springer, 2015.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of AES. In Cryptographic Hardware and Embedded Systems, CHES 2010,
12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010.
Proceedings, volume 6225 of Lecture Notes in Computer Science, pages 413–427.
Springer, 2010.

[SBB+22] Mateus Simoes, Lilian Bossuet, Nicolas Bruneau, Vincent Grosso, Patrick
Haddad, and Thomas Sarno. Self-timed masking: Implementing masked s-
boxes without registers. In Ileana Buhan and Tobias Schneider, editors, Smart
Card Research and Advanced Applications - 21st International Conference,
CARDIS 2022, Birmingham, UK, November 7-9, 2022, Revised Selected Papers,
volume 13820 of Lecture Notes in Computer Science, pages 146–164. Springer,
2022.

[SBHM20] Pascal Sasdrich, Begül Bilgin, Michael Hutter, and Mark E. Marson. Low-
latency hardware masking with application to AES. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2020(2):300–326, 2020.

[SBM21] Aein Rezaei Shahmirzadi, Dusan Bozilov, and Amir Moradi. New first-order
secure AES performance records. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2021(2):304–327, 2021.

[SD17] Niels Samwel and Joan Daemen. DPA on hardware implementations of ascon
and keyak. In Proceedings of the Computing Frontiers Conference, CF’17,
Siena, Italy, May 15-17, 2017, pages 415–424. ACM, 2017.

[SM21] Aein Rezaei Shahmirzadi and Amir Moradi. Re-consolidating first-order
masking schemes nullifying fresh randomness. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2021(1):305–342, 2021.

[SP06] Kai Schramm and Christof Paar. Higher order masking of the AES. In David
Pointcheval, editor, Topics in Cryptology - CT-RSA 2006, The Cryptographers’
Track at the RSA Conference 2006, San Jose, CA, USA, February 13-17, 2006,
Proceedings, volume 3860 of Lecture Notes in Computer Science, pages 208–225.
Springer, 2006.

[Sug19] Takeshi Sugawara. 3-share threshold implementation of AES s-box without
fresh randomness. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(1):123–
145, 2019.

[UMHA16] Rei Ueno, Sumio Morioka, Naofumi Homma, and Takafumi Aoki. A high
throughput/gate AES hardware architecture by compressing encryption and
decryption datapaths - toward efficient cbc-mode implementation. In Benedikt
Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2016 - 18th International Conference, Santa Barbara,
CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture Notes in
Computer Science, pages 538–558. Springer, 2016.

[WM18] Felix Wegener and Amir Moradi. A first-order SCA resistant AES without fresh
randomness. In Junfeng Fan and Benedikt Gierlichs, editors, Constructive Side-
Channel Analysis and Secure Design - 9th International Workshop, COSADE
2018, Singapore, April 23-24, 2018, Proceedings, volume 10815 of Lecture
Notes in Computer Science, pages 245–262. Springer, 2018.



Barbara Gigerl , Franz Klug , Stefan Mangard , Florian Mendel and Robert Primas 335

[Wol16] Claire Wolf. Yosys open synthesis suite, 2016. http://www.clifford.at/
yosys/. Retrieved on February 2nd, 2021.

http://www.clifford.at/yosys/
http://www.clifford.at/yosys/

	Introduction
	Contributions

	Preliminaries
	Notation
	Masking
	Security Verification of Masking
	Changing of the Guards (COTG)

	Efficiently Masking the AES S-box
	DOM-based Masking of the AES S-box
	Fixing the second-order DOM-dep multiplier
	Optimized second-order DOM S-box
	Discussion

	COTG-based Design of AES
	Overview
	COTG for SubBytes of Plaintext
	COTG for SubWord of Key Schedule

	Architecture
	Implementation and Comparison
	Application to other use-cases

	Security Evaluation
	Formal verification setup
	Formal security of the design
	Experimental Verification

	Conclusion

