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Abstract. The masking countermeasure is very effective against side-channel attacks
such as differential power analysis. However, the design of masked circuits is a
challenging problem since one has to ensure security while minimizing performance
overheads. The security of masking is often studied in the t-probing model, and
multiple formal verification tools can verify this notion. However, these tools generally
cannot verify large masked computations due to computational complexity.
We introduce a new verification tool named Quantile, which performs randomized
simulations of the masked circuit in order to bound the mutual information between
the leakage and the secret variables. Our approach ensures good scalability with the
circuit size and results in proven statistical security bounds. Further, our bounds
are quantitative and, therefore, more nuanced than t-probing security claims: by
bounding the amount of information contained in the lower-order leakage, Quantile
can evaluate the security provided by masking even when they are not 1-probing
secure, i.e., when they are classically considered as insecure. As an example, we apply
Quantile to masked circuits of Prince and AES, where randomness is aggressively
reused.
Keywords: Side-channel attacks · Masking · Verification

1 Introduction
Since the rise of the Internet of Things (IoT), embedded devices have been integrated
into a wide range of everyday services, making the protection of cryptographic keys on
these devices an essential but challenging task. Physical side-channel attacks, such as
power or electromagnetic analysis, may allow attackers to extract cryptographic keys by
observing a device’s power consumption or electromagnetic emission during cryptographic
operations [KJJ99, QS01, CRR02].

One of the most prominent algorithmic countermeasures against physical side-channel
attacks is masking. In a nutshell, masking is a secret-sharing technique that splits inputs,
outputs, and intermediate values of cryptographic computations into t+ 1 random shares
such that the observation of up to t shares does not reveal any information about their
corresponding unmasked value [ISW03, GMK16, BBD+16, CS19].

Probing model. The security of masking is most often studied in the threshold
probing model [ISW03]. In this model, computations are represented as arithmetic circuits,
and an adversary may observe the value of up to t wires in the circuit. The implementation
is then considered secure if any such observation is independent of unmasked values. While
this model may seem simplistic and abstract, it has been shown that any t-probing secure
circuit is also secure in the much more realistic noisy leakage model [PR13]. Furthermore,
security in the t-probing model implies practical t-order security under some assumption
of leakage independence for each value [BDF+17]. Together, these observations lead to the
conclusion that, both in (not very tight) theoretical reductions and in practice, t-probing
security implies security for concrete physical side-channel leakage.
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Despite the simplicity of the t-probing model, it is not always easy to prove the security
of masked implementations in it, and multiple approaches have been proposed in the
literature. The first approach, which works well for small circuits that implement a simple
functionality such as a logic or arithmetic gate (named gadgets) and are well-structured,
is to write proofs by hand. In order to extend these proofs to larger implementations,
composable security definitions have been proposed that enable simple security proofs
for the composition of multiple gadgets. Examples of such definitions include Strong
Non-Interference (SNI) [BBD+16] and Probe-Isolation Non-Interference (PINI) [CS19].
The main appeals of this approach are its scalability to complex computations and the
ease of security verification (which can be automated [CGLS21, CS21]), which in turn
enables automatic masked circuit generation [BDM+20, KMMS22]. On the other hand,
composition-based approaches often lead to less efficient circuits than non-composable
constructions since they impose additional requirements on the gadgets and hinder cross-
gadget optimizations, such as randomness reuse.

Another approach is to automate security proofs for masked circuits independently of
a concrete masking scheme. Multiple formal verification tools [ANR18, BBC+19, KSM20,
GHP+21] have been introduced for this purpose, and they all have the same high-level
functionality: given a masked circuit description, verify that it is t-probing secure. Despite
numerous optimizations, the application of such tools is typically limited to the verification
of no more than a few rounds of a masked circuit and low masking orders. Some of these
tools achieve their efficiency at the expense of having false-positive verification results (i.e.,
secure circuits for which leakage is reported). The PROLEAD verification tool [MM22]
recently introduced an alternative approach to verification. Rather than formally proving
independence, it is based on Monte Carlo sampling and statistical tests of independence.
The statistical nature of the tool significantly improves its scalability towards more complex
circuits with high logic depth but admits false positives caused only by the statistical
test (the probability of false positives is therefore controllable with the parameters of the
test). However, this technique introduces the risk of false negatives (i.e., insecure circuits
wrongly reported as secure), whose probability of occurring is harder to control due to the
use of asymptotical statistical tests.

Practical security. Actual side-channel adversaries do not have access to probing
leakage from some of the variables in a circuit but rather a noisy leakage on each of the
variables. Further, such adversaries succeed if they recover a fixed amount of information
(e.g., a key) by measuring multiple traces (i.e., executions of the circuit), the security level
being the number of traces needed. This contrasts with the t-probing adversary, which
has to recover any (no matter how tiny) amount of information in one trace.

For example, let (x0, x1) be a masking of the secret x such that x0 ⊕ x1 = x and
Pr [x0 = 0|x = 0] = Pr [x0 = 0|x = 1] = 0.5. Furthermore, let (l0, l1) = (x0 + n, x1 + n′)
be corresponding physical leakage, where n and n′ are independent Gaussian noise variables.
In this case, the circuit is 1-probing secure, and therefore, an adversary observing only
l0 or l1 does not learn anything about x. However, the circuit is not 2-probing secure:
probing both x0 and x1 reveals x. With the noisy leakage (l0, l1), a second-order adversary
may estimate the covariance of l0 and l1 using multiple leakage traces, yielding a good
distinguisher for the value of x. In contrast, assume now that, for some small ε > 0,
Pr [x0 = 0|x = 0] = 0.5 + ε and Pr [x0 = 0|x = 1] = 0.5 − ε. The circuit is no longer
1-probing secure: observing x0 leaks information about the value of x. Practically, this
bias can be exploited by a first-order adversary observing only l0, but an exploit requires
many traces (on the order of 1/ε). However, for the second-order attack using (l0, l1), a
small bias does not have a significant impact. As a result, the practical first-order attack
may require more traces than the second-order attack to be successful.

The previous example shows that the probing security order is not always a good
predictor of the security level. Therefore, it might be better to adopt a metric that
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quantifies the leaked information more accurately.
Contributions. This paper presents a methodology to quantitatively assess the

security of masked circuits. The methodology relies on the noisy leakage model [PR13],
i.e., we assume that the leakage is made of independent noisy leakages of each of the
variables of the circuit. Then, we bound the mutual information between these variables
and the secret using a statistical sampling-based technique implemented in an open-source
tool named Quantile (Quantifier of Information Leakage) and available at

https://github.com/vedadux/quantile .

Compared to the state-of-the-art t-probing security verification tools, our method
scales well to large circuits and provides proven statistical bounds. Furthermore, beyond
t-probing security, our methodology is also able to evaluate the security level in the noisy
leakage model, taking into account the presence of noise in practical leakages.

Our contributions can be summarized as follows:

• We present a scalable sampling-based verification technique for masked circuits that
bounds the mutual information between sensitive values and t-probing model leakage.

• We show how to turn these bounds into a lower bound on the number of attack
traces needed for a worst-case adversary, allowing us to compare attacks at various
orders. To the best of our knowledge, our technique is the first one to use a circuit’s
description to formally quantify “benign” masking imperfections, thanks to the
notion of effective security order.

• We provide an optimized software implementation of our verification tool that exploits
vector instructions and multi-core processors.

• We show the effectiveness of our verification approach by applying it to masked
implementations of AES and Prince using different amounts of randomness reduc-
tion/reuse techniques to meet certain performance or efficiency goals in lightweight
applications.

The rest of the paper has the following structure. Section 2 covers the necessary
preliminaries for our masking verification technique. In Section 3, we develop a method
for bounding the number of attack traces needed to carry out a side-channel attack.
This method is based on bounding the mutual information between a secret and physical
leakage. Section 4 explains how approximations of the mutual information can be computed
efficiently and what the overall workflow of Quantile looks like. In Section 5 we apply
Quantile to masked implementations of AES and Prince using different randomness
reduction/reuse techniques. Section 6 discusses related work, and finally, we conclude the
paper in Section 7. Important proofs for our methodology are given in Appendix A and
Appendix B.

2 Preliminaries
In the following, we briefly introduce the side-channel setting modeled through information
channels and give an overview of entropy, mutual information, and basic estimators.

Notation. Throughout this work, we denote random variables with uppercase letters
(X), their values with lowercase letters (x), and sets with calligraphic letters (X ). We
use bold uppercase letters (X) for vectors of random variables. We write X ∼ UX when
the random variable X follows a uniform distribution over the set X . Similarly, we write
X ∼ N

(
µ, σ2) for a random variable X that follows the normal distribution with mean µ

and variance σ2.

https://github.com/vedadux/quantile
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2.1 Side-Channel Leakage
We first formalize side-channel leakage of a cryptographic computation from an information-
theoretic point of view. A cryptographic computation takes as input a secret S (e.g., a
cryptographic key) and known data D (e.g., the plaintext) from the respective domains
S and D. In general, we assume that the computation is also masked, meaning it takes
additional uniformly random inputs M ∼ UM (e.g., masks), ultimately randomizing the
computation even when the same secret and data are provided. We write X to denote a
tuple of intermediate values of the computation.

A computation is said to be t-probing secure if all tuples X of size t are independent of S.
Here, we assume that S is provided to the computation in an already masked representation
and cannot be probed directly [ISW03]. Furthermore, we say that a t-probing secure
computation has the security order t.

However, in reality, a side-channel attacker cannot observe X directly. Instead they
observe physical leakage, which we model as the tuple L, where each element is the result
of applying an independent noisy function [PR13] to the corresponding element of X.

In a side-channel attack, the secret is chosen uniformly at random, i.e., S ∼ US . The
adversary then performs nAdv computations with the same secret S but changing data
D = (Di)nAdv

i=1 and fresh (independent) masks M = (Mi)nAdv
i=1 with Mi ∼ UM. In the rest of

this work, we additionally assume that each Di is chosen independently and uniformly at
random, i.e., Di ∼ UD. Each of the computations produces noisy leakage Li, thus giving
the adversary access to L = (Li)nAdv

i=1 . Finally, the adversary outputs a guess S′ for the
secret S. The success rate rAdv of the attack is defined as rAdv = Pr [S = S′], while the
attack order is the number of elements in L. The following Markov chain summarizes the
attack process:

(S,D,M)→ (X,D)→ (L,D)→ S′ (1)

In this work, we will use the the Hamming weight of the probed variable with additive
Gaussian noise as an example for the noisy leakage function in L. For such function, we
can define the signal-to-noise ratio (SNR) as the variance of the deterministic part (the
Hamming weight) divided by the variance of the noise [Man04].

2.2 Entropy Estimation
For a random variable X, its (Shannon) entropy represents the uncertainty in its outcome,
represented as bits. For a discrete variable X, e.g., occurring in a digital computation,
entropy H (X) is defined as

H (X) = −
∑
x∈X ,

Pr[X=x] 6=0

Pr [X = x] log2 (Pr [X = x]) . (2)

The above definition extends to the entropy H (X|Y = y) of X|Y = y, and the conditional
entropy, as

H (X|Y ) =
∑
y∈Y

Pr [Y = y] H (X|Y = y) . (3)

Because of its frequent occurrence, we define the function Hbin : (0, 1)→ (0, 1) as

Hbin (p) = −p log2 (p)− (1− p) log2 (1− p) .

Hbin is often referred to as the binary entropy function because it represents the the entropy
of a variable X with domain X = {x0, x1} and probability p = Pr [X = x0].

The mutual information between random variables X and Y is defined as I (X;Y ) =
H (X)−H (X|Y ), whereas the mutual information conditioned on Z is defined similarly as
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I (X;Y |Z) = H (X|Z)−H (X|Y,Z). The bounds for the mutual information presented in
this paper rely on a very simple estimator for the entropy of a distribution. The so-called
plug-in estimator first estimates the distribution of a random variable X through samples
and computes (2) using this new distribution.

Definition 1 (Plug-in entropy estimator). Given a vector Xn = (Xi)ni=1 of indepen-
dent and identically distributed random variables Xi, let X̂n be a new random variable
distributed according to

Pr
[
X̂n = x

]
=

n∑
i=1

1
n
1{x}(Xi),

where 1A(x) is an indicator function with value 1 if and only if x ∈ A, and 0 otherwise.
The plug-in entropy estimator Ĥn (X) is defined as the entropy H

(
X̂n

)
shown in (2).

This estimator is negatively biased everywhere, as shown by Paninski [Pan03].

Proposition 1 (Bias of the plug-in entropy estimator [Pan03, Prop. 1]). For a discrete
random variable X with support X , the bias of the entropy estimator Ĥn (X) satisfies

− log2

(
1 + |X | − 1

n

)
≤ E

[
Ĥn (X)

]
−H (X) ≤ 0.

3 Bounding the Mutual Information
In this section, we develop a method for bounding the number of attack traces needed for a
side-channel attack. This method is based on bounding the mutual information I (L;S|D).
As a first step, we bound the noiseless mutual information I (X;S|D) in Section 3.1.
Afterward, in Section 3.2, we show how such a bound can be integrated with knowledge
of the noisy leakage function (e.g., knowledge of the SNR) to get a bound on I (L;S|D).
Finally, we show how the latter can be mapped to an attack’s success rate.

3.1 Information Leakage from an Intermediate Variable
In general, estimating the mutual information between two random variables is a difficult
problem for continuous variables or discrete variables with a large domain size. Moreover,
deriving good bounds is also difficult, since the estimators for mutual information can be
biased either positively or negatively, depending on the distribution. In our case, even
though S has a large domain, we know that it is uniform (and similarly for D), and X is
a discrete variable with a relatively small domain. We exploit this knowledge to derive
practically-relevant bounds on I (X;S|D). More precisely, we design a method to derive
the bounds

ILB (X;S|D) ≤ I (X;S|D) ≤ IUB (X;S|D)
such that each inequality holds with probability at least 1 − δ, where δ is a confidence
level, that is, the probability that the bound is incorrect. Informally, the core idea of the
method is to use the equality I (X;S|D) = H (X|D)−H (X|S,D), and approximate both
H (X|D) and H (X|S,D) independently. Here, we perform the approximations by summing
only over nD many values for D, respectively (S,D) in equation (3), and estimating both
H (X|D = d) and H (X|S = s,D = d) using the plug-in entropy estimator with nX samples
of X|D = d, respectively X|S = s,D = d. This procedure gives us an estimator Î (X;S|D)
for the conditional mutual information I (X;S|D), and we can then analyze its bias and
its variance to get the bounds ILB (X;S|D) and IUB (X;S|D).

The bias of this estimator comes from the bias of the plug-in estimators for the entropy
(which are bounded in [Pan03]). Regarding the deviation, the asymptotic trend follows
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the central limit theorem. We derive nonasymptotic bounds in Appendix A, giving the
following result as a corollary.

Corollary 1. Let X, D and S be discrete random variables with domains X , D and S, and
let D and S be distributed uniformly. Let nD and nX be positive integers and δ > 0 be a real
number. Let D = (Di)nDi=1, D′ = (D′i)

nD
i=1, S = (Si)nDi=1 be vectors of independent random

variables distributed identically to D and S respectively. Furthermore, let Xi = (Xi,j)nXj=1
and X ′i =

(
X ′i,j

)nX
j=1 be vectors of independent random variables distributed identically to

X|D = Di and X|S = Si, D = D′i respectively. Finally, let

Ĥ (X|D) = 1
nD

nD∑
i=1

ĤnX (X|D = Di) , Ĥ (X|S,D) = 1
nD

nD∑
i=1

ĤnX (X|S = Si, D = D′i)

be estimates for H (X|D) and H (X|D,S), with Î (X;S|D) = Ĥ (X|D)− Ĥ (X|S,D) con-
sequently being an estimate for I (X;S|D). Then ILB (X;S|D) = Î (X;S|D) − ε and
IUB (X;S|D) = Î (X;S|D) + ε, with

ε = log2

(
1 + |X | − 1

nX

)
+
√

log (δ−1)n−1
D

(
log2

2 |X |+ nXHbin (nX−1)2
)

satisfy

Pr [ILB (X;S|D) < I (X;S|D)] > 1− δ and Pr [IUB (X;S|D) > I (X;S|D)] > 1− δ.

Here, Corollary 1 gives bounds for I (X;S|D) of a single intermediate variable X
with confidence 1 − δ. While it is tempting to then find the point Xmax with maximal
Î (Xmax;S|D) throughout the whole computation and claim that for all other intermediate
computations X the mutual information is less than IUB (Xmax;S|D), this ignores the
fact that given long enough computations there is a good chance that some intermediate
values violate their upper bounds. To account for this, we can apply a union-bound over
all intermediate values, essentially dividing δ by the length of the computation. Both the
derivation and proof are given in Appendix A.

3.2 From Probing to Noisy Leakage
Let us now assume that instead of observing directly the leaking variable X, we observe
as leakage L = f(X) for some noisy function f : X → L [DDF19]. We are therefore
interested in bounding I (L;S), which then gives us a bound on the number of traces nAdv
an adversary needs to measure, in order to recover the value of S with some probability.

For 0 ≤ p ≤ 1, we denote idp : X → X ∪ {⊥} the randomized function that on input
x ∈ X outputs x with probability p and ⊥ otherwise. If there exists a (randomized) function
f⊥ : X ∪ {⊥} → L such that for all x ∈ X such that f(x) has the same distribution as
f⊥ (idp (x)), then, by the data processing inequality,

I (L;S|D) = I
(
f⊥ (idp (X)) ;S|D

)
≤ I (idp (X) ;S|D) = p I (X;S|D) . (4)

The reduction of noisy leakage functions f to random probing functions f⊥(idp(·)) has
been extensively studied in the literature [DDF19, PGMP19], and its discussion is out of
the scope of this work.

Example 1. As an illustration, let us consider the case of single-bit leak X with X = F2,
that is added with Gaussian noise to obtain L, i.e., L = f(X) = 1{0}(X)− 1{1}(X) + Z

with Z ∼ N
(
0, σ2). The portion of the distribution of L where we cannot distinguish

X = 0 from X = 1 corresponds to the portion of idp that maps to ⊥, i.e., 1 - p. The two
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parts of the probability distribution of L “meet” at Pr [L = 0|X = 0] = Pr [L = 0|X = 1].
Using cdfP (·) as the cumulative distribution function of distribution P and erf (·) for the
error function, we have

1− p = Pr [L > 0|X = 1] + Pr [L < 0|X = 0]

= 2cdfN (0,σ2) (−1) = 1 + erf
(
−1
σ
√

2

)
.

Therefore, usign the first term of the Taylor series for erf(·), we have

p = −erf
(
−1
σ
√

2

)
= erf

(
1

σ
√

2

)
≤ σ−1

√
2
π
. (5)

The simple leakage function L = f(X) is later used in Section 5.2 to contextualize the
experimental results in terms of noisy leakage.

3.3 Number of Attack Traces
The number of traces needed to mount an attack is the most common side-channel security
metric. In this section, we show how to bound the number of traces nAdv required to mount
a secret-recovery attack with success rate rAdv, using the mutual information I (L;S|D)
between the observed leakage L and the secret S.

Lemma 1. Let nAdv ≥ 0 be an integer, S be a random variable with domain S and
D = (Di)nAdv

i=1 be a vector of random variables independent of S with the same domain
D. Furthermore, let f : S × D → L be a randomized function modelling a memoryless
channel, and let L = (Li)nAdv

i=1 be a vector of random variables with Li = f(S,Di). Let
Adv : DnAdv ×LnAdv → S be a (potentially randomized) function attempting to recover the
value of S as S′ = Adv (D,L) and let rAdv = Pr [S′ = S]. Then, assuming I (L;S|D) 6= 0,

nAdv ≥
H (S)− (1− rAdv) log2 (|S| − 1)−Hbin (rAdv)

I (L;S|D) . (6)

This result is a version of [dCGRP19, Theorem 1], and the proof given in Appendix B
is very similar to the original proof. The major difference is that we are giving a statement
in the context of I (L;S|D), while they use I (X;L|D).1

Example 2. We illustrate Lemma 1 for a side-channel attack on ciher with an 128-bit
key, e.g., AES [DR98] or Prince [BCG+12]. Assuming that the key is chosen uniformly at
random, an adversary that wants a sucess rate of at least rAdv = 50% would need

nAdv >
128rAdv −Hbin (rAdv)

I (L;S|D) = 63
I (L;S|D) .

traces. This shows that the number of traces is inversely proportional to the mutual
information, with a proportionality factor that is relatively small. This factor depends
on the size and distribution of the key and the success rate, but it is anyway bounded
by the entropy of the key. In Section 5.2, we use this lemma and a bound on the mutual
information in order to get a lower bound on the number of attack traces nAdv, i.e., on the
security level.

1Further, they assume uniform D, which is not done in Lemma 1 (although we generally assume uniform
D in this work).
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4 Computing the Approximation and Bounds
Approximating and bounding the mutual information I (S;X|D), as outlined in Section 3.1,
requires a significant amount of samples for the involved random variables. In this
section, we first present the critical insights for highly efficient sampling and introduce our
simulation framework and its workflow.

4.1 Efficient Sampling
In order to get samples for the intermediate values X, it is necessary to execute the design
of the cryptographic primitive. There are many state-of-the-art hardware simulators, and it
might be tempting to just pick one of them and use them to simulate the designs and obtain
the samples. However, these tools are intended for testing, debugging, and accurate timing
estimation and are not meant for running a large number of simulations and aggregating
them into histograms. Quantile’s extremely efficient aggregating simulator is based on
two key insights.

Code generation from symbolic simulation. The first critical insight is that
many of the values in hardware design’s execution do not change across simulations. This
includes control signals and everything else that is independent of the data the hardware
processes, i.e., public data, secrets, and masks. In a sense, such intermediate values
are constants and can be optimized away by unrolling the hardware circuit across the
clock cycles of its execution. Here, the hardware circuit starts out with its data inputs
being the only unknown values that must be treated symbolically. Furthermore, any time
such symbolic signals are fed as inputs to a hardware cell, the cell output is computed
symbolically as well. For example, an AND cell, with input symbols a and b, would produce
output symbol a ∧ b. However, if the second input is constant 0 (respectively 1), it would
produce output constant a ∧ 0 = 0 (respectively symbol a ∧ 1 = a). For clock cycle
transitions, the symbolic register output signals in the current clock cycle are defined
to be equal to the register input signal from the previous clock cycle. As a result, the
number of clock cycles to simulate can is known beforehand since the end of the execution
is triggered by a non-symbolic finish signal. After symbolically simulating a hardware
circuit, we have effectively generated a straight-line symbolic trace of its execution, where
all constants have been eliminated, and only the important computations are left. This
trace can be turned into a very efficient statically compiled simulator.

Parallel simulations through bitslicing. The second critical insight is that the
netlist, and therefore the execution trace, exclusively manipulates single-bit variables. We
can therefore use the bitslicing technique to store values belonging to separate simulations
inside a single architectural register. Moreover, many modern x86_64 machines support the
SSE2, AVX2, and AVX512F extensions that provide 128-, 256-, and 512-bit wide registers and
vectorized instructions for all common bitwise logic operations. The only missing operation
commonly used in netlists is a multiplexer, which can be simulated as MUX(s, i0, i1) =
(¬s∧i0)⊕(s∧i1). Furthermore, the bit-level parallelism of bitsliced executions additionally
enables the quick computation of 1-bit histograms by counting the number of bits set to 1
inside a register with the popcntq inctruction. This can be exploited because currently,
Quantile is tailored to univariate leakage analysis. For support of multivariate leakage,
the histogram computation needs to be adapted, either to do bit-manipulations and still
use popcntq, or to unslice the parallel executions and count the element frequencies in a
more traditional manner.

4.2 Framework Overview
We now briefly present the workflow of Quantile shown in Figure 1, with the main steps
described below.
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Figure 1: Workflow of the information leakage quantification framework.

Step 1 (Synthesis). The user provides a hardware design written in either Verilog,
VHDL, or a mix of both, which is compiled into a JSON netlist using Yosys (with the
GHDL plugin). The generated netlist is implemented using Yosys’ generic gate library, for
which we have written a custom symbolic simulation library.

Step 2 (Simulation). The user writes a testbench in C++ using the provided
simulation library, setting the values of input signals and registers to constants or declaring
them as secret, data, or masks. The simulation library handles the symbolic representation
and simplification of intermediate values throughout the testbench execution.

Step 3 (Code Generation). The testbench symbolically unrolls the execution of the
netlist unsing the provided constants, secrets, data and masks, generating a straight-line
C++ program representing an execution of the netlist under the control of the testbench.
The generated code is able to perform a bitsliced execution of the design, and chooses the
optimal width for bitslicing, depending on whether SSE2, AVX2 or AVX512F are available
on the given machine.

Step 4 (Estimation). Finally, the generated code is used to sample S, D and X.
After choosing the target confidence δ, the user either chooses the sampling quantities nD
and nX directly, or lets the framework pick its best guess for some target error ε. The
framework instantiates multiple simulation workers and pools their results to continuously
update its mutual information estimate and report it to the user.

5 Analysis of Masked Ciphers
In this section, we apply our method to derive bounds for the information leakage of
several cryptographic implementations. We show that Quantile can compute reasonable
bounds for complete executions of cryptographic primitives, look at the consequences of
randomness reuse, and investigate the security of low-randomness masking techniques.
Then, we illustrate the bounds on the noisy leakage and number of attack traces. We
discuss these results, showing why quantitative security bounds are more useful than
simply evaluating the security order.

5.1 Bounds for Intermediate Variables
5.1.1 Securely Masked Ciphers

In the following, we give a brief overview of well-known masked hardware designs we have
evaluated using our framework. Afterward, we discuss the results of our analysis shown in
Table 1.

AES DOM [GMK16] implements a protected AES [DR98] using the domain oriented
masking (DOM) scheme with two shares, where each share is assigned a domain and
only cross-domain operations are re-shared using on-the-fly randomness. Since the DOM
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Table 1: Summary of Quantile results for δ = 10−3 when designs use fresh masks
(ø), reuse masks after n rounds (¡n) or do not use fresh masks (9), with R indicating
ILB (Xmax;S|D) > 0.

Design Masks Simulations Error (ε) Î (Xmax;S|D)

AES DOM [GMK16]
ø 5.24× 1012 ±3.00× 10−4 6×10−6

¡1 6×10−6

9 7.94× 105 ±10−1 0.99 R

Prince TI [BKN22]

ø
5.24× 1012 ±3.00× 10−4

5×10−6

¡1 3.70×10−4 R
¡2 5×10−6

9 7.94× 105 ±10−1 0.99 R

Prince Nullfresh [SM21] 9 5.24× 1012 ±3.00× 10−4 3× 10−6

AES 2-bit masking [GMKM18] 9 3× 10−9

scheme requires a register stage inside every AND gadget, the computation of a single
S-Box requires 5 pipeline stages. The implementation uses one S-Box instance and serially
applies it to all 16 bytes of the state. A round of AES therefore takes 20 clock cycles.

Prince TI [BKN22] implements a protected Prince [BCG+12] block cipher using CMS
construction [RBN+15] with two shares, where re-sharing is only necessary at the end of a
non-linear operation before the results are compressed back into two shares. This allows
the implementation to implement an S-Box with only two stages. Since the S-Box is rather
small, the design uses 16 S-Box instances applied to all 4-bit nibbles in parallel. Overall,
one round of Prince only takes two clock cycles.

Results. For AES DOM and Prince TI with fresh masks, the approximated mutual
information was very low (≤ 10−5), and significantly smaller2 than the error bounds of
Corollary 1 (3× 10−4). This leads to the conclusion that the implementations’ first-order
leakage is small or nonexistent. As a sanity check, we also run the analysis on AES DOM
and Prince TI without masks, i.e., setting all masks to have value 0. Unsurprisingly, our
analysis immediately determines mutual information of about 0.99 at many points in the
computation, proving them insecure with a moderate error bound of 0.1.

5.1.2 Reusing Masks

Protecting an implementation with masking inevitably increases the size of a circuit,
increases the latency due to synchronisation and (usually) requires a lot of fresh randomness.
Generating enough randomness at each clock cycle generally requires bulky RNG modules
that increase the overall design size. An alluring but dangerous idea for reducing the
randomness requirements is to simply reuse masks. Done naively, this has the potential of
undermining the probing security of the design, rendering the masking useless. However,
there might be ways to cleverly reuse masks and retain practical security, if not even
perfect probing security.

Results. As a simple preliminary experiment, we analyzed what happens to the
security of AES DOM and Prince TI when randomness is reused across different rounds
of the cipher. AES DOM did not show any signs of increased information leakage when
reusing the same randomness is used for all the rounds of the cipher, yielding the same
approximated mutual information. We suspect that this is due to the diffusion properties

2The non-tightness of the bound is expected, due to Corollary 1 relying on theorems that are not
always fully tight, and due to the worst-case assumptions in the proof. In particular, Corollary 1 tolerates
large discrepancies between H (X|D = d) for different values of d while, in our examples, H (X|D = d) is
the same for all values of d since the plaintext is XORed to the key as the first step in the cipher.
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Table 2: Bounds for effective security order transitions: above SNRt, the effective security
order is 2. The corresponding mutual information (which is a bound for the first-order
attack the exact value for the second-order attack) and number of attack traces are given.

Design Masks SNRt IUB (Lmax;S|D) nAdv (LB)

AES DOM [GMK16] ø 4.89× 10−3 1.71× 10−5 3.70× 106
¡1

Prince TI [BKN22]
ø 4.87× 10−3 1.70× 10−5 3.71× 106

¡1 8.27× 10−3 4.86× 10−5 1.30× 106

¡2 4.87× 10−3 1.70× 10−5 3.71× 106

Prince Nullfresh [SM21] 9 4.85× 10−3 1.68× 10−5 3.74× 106

AES 2-bit masking [GMKM18] 9 4.82× 10−3 1.66× 10−5 3.79× 106

of AES, as well as the large number of masks needed for the computation of each cipher
round. In contrast, Prince TI becomes less secure when the same randomness is used in
each round of the cipher, with approximated mutual information of 3.70× 10−4. According
to Corollary 1, it is very likely (99.9%) that I (X;S|D) > 7.0× 10−5 and therefore that
Prince TI is not probing secure when masks are reused in each round. We ran another
experiment where randomness gets reused every two rounds, and got the same leakage
estimate as for Prince TI with fresh masks.

5.1.3 Low-randomness Designs

In this section, we analyze recent low-randomness masking schemes that rely exclusively
on the randomness coming from the initial input sharings.

Nullfresh [SM21] removes randomness from first-order masked computations. The
Nullfresh method achieves this by noticing that the three-input computation (a ∧ b)⊕ c
does not require fresh randomness for a secure first-order sharing, assuming that c is
uniformly distributed. Because the computation of an AND gate can be represented as
a ∧ b = (¬a ∧ b) ⊕ b, it is also possible to create a secure first-order sharing of a ∧ b
analogously. Similarly, most quadratic and cubic 3- and 4-input S-boxes can be shared in
a similar manner, eliminating the need for fresh randomness in ciphers that use them.

2-bit Masking [GMKM18] is a slightly older technique for achieving low-randomness
implementations. The authors notice that it is possible to construct a first-order masked
AND gate where the bulk of the computation happens in the first share of the output,
and the second share is inherited from one of the inputs. This leads them to a technique
where, given careful sharing choices, every input and intermediate value a in the original
computation is shared as (a⊕m,m), where m ∈ {m0,m1,m0 ⊕m1} and m0 and m1 are
the only uniformly random values necessary for the security of the computation.

Results. We have analyzed a Nullfresh implementation of Prince and a 2-bit masking
implementation of AES, and present the results in Table 1. Both of these implementations
achieve stunningly low estimated conditional mutual information (≤ 10−5), with the 2-bit
masked AES achieving the lowest estimate 3× 10−9 in our experiments. We suspect that
this happens because only two masks are used overall, compared Nullfresh Prince which
uses 192 masks for the initial sharing, leading to extremely low variance for the estimator
ĤnX (X|S = s,D = d), due to there only being four different possibile values for the masks.

5.2 Noisy Leakage and Number of Traces
We now move on to the more realistic noisy leakage model, where we assume that the
value of every intermediate bit in the computation leaks with additive Gaussian noise.
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Figure 2: Noisy leakage mutual information I (L;S|D) of the most leaking signal in the
Prince TI circuit for first- and second-order leakage, where each bit leaks independently
with additive Gaussian noise according to SNR. The right-hand side axis shows the number
of traces nAdv needed for an attack with rAdv = 50% based on (6). The first-order leakage
bounds are based on (4), with p taken from (5), and I (X;S|D) bounds taken from Table 1
(these upper and lower bounds give the interval shown in the plot).

Considering the presence of noise allows us to quantitatively compare the leakage at
different orders in the bit-leakage with Gaussian noise model (i.e., each intermediate bit
leaks independently with additive Gaussian noise).

For first-order leakage, we combine the bound IUB (Xmax;S|D) from Quantile (Ta-
ble 1) with Equation 4 and Lemma 1. For second-order leakage, we assume the observation
of noisy leakage of a pair of uniform shares representing a secret bit (or a bit in bijection
with a key bit, given the plaintext). The mutual information I (X;S|D) is then easily
computed with numerical integration, and the number of traces is derived with Lemma 1.

In Figure 2, we show these results for the Prince TI circuit, as a function of the SNR.
Prince TI (9) shows that not using randomness, strongly degrades the security, making
a first-order attack with few traces possible. For the Prince TI (¡1), the second-order
leakage is larger than the first-order leakage when the SNR > 8.27× 10−3. That is, for
relatively high SNR values, a second-order attack requires fewer traces than a first-order
attack. Consequently, the security of implementations with such SNR is dictated by the
second-order attack, and reused randomness does not lower the security level in such cases.

This discussion relates to the notion of “effective security order” [DDF19, Sta20], which
is the the order of the optimal attack (i.e., the one that requires the lowest number of
traces). This order can be larger than the “true” security order in the probing model
where observations are noiseless. By contrast, the effective security order refers to concrete
SNR values. For SNR > 8.27× 10−3, Prince TI (¡1) has an effective security order of 2,
while for SNR ≤ 8.27× 10−3, its effective security order is 1.

Finally, Table 2 shows the coordinates of the points where the first- and the second-order
attacks intersect, i.e., the SNR above which the effective security order is 2. Below that
point, the effective security order might be 1 (as in the Prince TI with randomness re-use
at every round), but might also be 2 (this is due to the overapproximation of the mutual
information cf. Table 1). This table shows that for adversaries with less than 1 million
attack traces, the second-order attack performs better, and therefore the first-order leakage
is not an issue. Let us also note that the transition values of SNRt are fairly low. Therefore,
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Table 3: Single-core simulation performance of Verilator, PROLEAD and Quantile,
applied to first-order protected designs AES DOM and Prince TI.

Design Cells Cycles Simulations per second
Verilator PROLEAD Quantile

AES DOM [GMK16] 2510 219 5.92× 103 4.57× 103 4.02× 105

Prince TI [BKN22] 6474 28 5.78× 103 1.45× 104 2.54× 106

first-order leakage of these designs is only an issue in implementations with already high
noise levels or a very low signal levels, e.g., due to dual-rail logic [LMW14].

5.3 Evaluation of Quantile’s Simulator
We have evaluated the performace of Quantile’s efficient sampling method against both
Verilator and PROLEAD on AES DOM and Prince TI. The comparison only considers how
quickly the simulators are able to generate full simulation traces of the given designs, and
no additional statistics are gathered. The Verilator-based sampler uses a custom-written
C++ testbench for the designs that iteratively runs simulations with random secrets,
masks and data. As for PROLEAD, we have removed all of its analysis capabilities, probe
gathering, statistics computation, and only ran the circuit simulation component. The
evaluation was done on a machine equipped with an eight-core Intel Core i7-8550U CPU
running at 1.8 GHz, 16 GiB of memory, and a 64-bit Linux system. The results are shown
in Table 3 and indicate that our simulation technique is about two orders of magnitude
faster than both Verilator and PROLEAD.

A good simulation performance is important due to the large number of executions
needed for tight approximation bounds. For example, the Prince TI experiments in Table 1
need 5.24× 1012 simulations of the full cipher. Each of these experiments ran for about
54.31 h on a server machine with an 44-core Intel Xeon E5-2699 CPU, clocked at 2.20 GHz,
that supports AVX2 instructions3. As the workload is highly parallelizable, parts of the
experiments can also be run on multiple machines and then merged for analysis.

6 Related Work

6.1 Formal Verification Tools
So-called formal verification tools automate the proof of t-probing security (and related
notions) independently of a concrete masking scheme. In essence, these tools enumerate
all possible sets of t probes in the circuit and, for each of these sets, check whether the
distribution of its values depends on the secret inputs. A common limitation of this family
of tools is that they are limited in the circuit size and security order they can handle due
to computational cost because the number of probe sets increases quickly with t and with
the circuit size. Moreover, checking a single set can be a difficult problem when the circuit
has a high logical depth.

Exact tools. The simplest but least efficient of the formal tools is VerMI [ANR18],
which verifies the independence by enumerating all the randomness values to compute the
exact distribution of the probes. The SILVER tool [KSM20] performs this independence
verification using binary decision diagrams, which results in a more efficient algorithm
overall. These two tools are exact, meaning they always correctly report whether a circuit
is t-probing secure or not.

3We ran Quantile with only 29 worker threads, as more workers incurred cache contention penalties.
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Coco [GHP+21, HB21] improves upon the performance of exact tools by introducing
two optimizations. First, instead of computing the distributions of wires, it computes
correlation sets. Using an implicit representation of these sets encoded in a SAT solver, this
technique typically avoids the exponential scaling of the complete distribution computation
but over-approximates the leakage (leading to false positives). Second, the list of probe
sets to explore can be encoded in the SAT solver, leading to optimization opportunities
within the solver, compared to performing explicit checks for every set of probes.

MaskVerif [BBC+19] is another over-approximating formal tool that uses the following
property: if e is an expression in which a random bit r does not appear, then replacing
every instance of r in a computation by r ⊕ e does not change the distribution of the
computed values. This property enables it to simplify the algebraic expressions of the
probed wires in a similar way to Gaussian elimination until secrets no longer appear in
the expressions. Otherwise, the verification fails. This restricted simplification technique
and its heuristics lead to a highly efficient algorithm at the cost of false positives. Further
enhancing the performance, maskVerif opportunistically verifies the security of sets of more
than t probes, which allows it to reduce the total number of sets to verify.

Comparison to Quantile. In general, VerMI and SILVER can usually only be
applied to components of a single cipher round like S-Boxes. The over-approximating
tools Coco and maskVerif can verify a few rounds of a masked cipher, with maskVerif
being considered more efficient overall, especially at higher masking orders. We have tried
replicating our results from Table 1 with maskVerif by translating the code Quantile
generates for the runner (cf. Figure 1) into maskVerif’s input language. When looking
at complete executions from Table 1, maskVerif goes out of memory on a machine with
120 GiB of RAM. When given round-reduced versions, it verified at most one round of
AES DOM, and at most five forward rounds of Prince TI within 8.97 h. In any case, these
tools are focused on t-probing security and cannot verify imperfect masking.

6.2 PROLEAD
PROLEAD [MM22], similarly to Quantile, is based on simulating the target circuit and
collecting statistics about the values of all the wires. Its main difference to Quantile is
that it uses a statistical test (a G-test) whose null hypothesis is the independence between
the observed values X and the input secrets S. Furthermore, for the value of S, it performs
a fixed-vs-random test: the simulations are grouped in two classes: one where S is fixed to
all-zeros, while the other one uses uniformly and freshly sampled S. From the test statistic,
PROLEAD can derive a p-value.

Compared to formal verification techniques, PROLEAD shares its main advantage with
Quantile: linear scalability with the circuit size. Its false positive rate is also controlled
with a p-value, which can be reduced by increasing the number of samples in the test. In
contrast, the false positives produced by Coco and maskVerif are deterministic and cannot
be worked around with increased computational resources.

Whereas the false positives of PROLEAD are easily controlled with its p-value (with
precautions considering the number of different tests performed, as explained in Section 3.1),
the false negatives are more problematic. Such false negatives have two root causes: a
G-test’s intrinsic false negative rate and the use of a fixed-vs-random test.

First, controlling the probability of false negatives of the G-test is more challenging
than controlling false positives since their occurrence depends not only on the parameters
of the statistical test (such as the number of samples and the significance threshold) but
also on the effect size, i.e., on how much the distribution of the set of probes changes when
the native values vary. PROLEAD computes a false negative rate for its result by assuming
a “small effect” size of φ = 0.1, following [Coh88] (we refer to [Coh88, MM22] for the
definition of the effect size φ). If the effect size is smaller than φ = 0.1, the false negative
rate will be higher than the one computed by PROLEAD. It is crucial to meaningfully
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define the effect size threshold such that an effect below the threshold can be neglected
considering the application domain, as explained in [Coh88] (where PROLEAD’s “small”
φ = 0.1 threshold is taken from): “The terms “small”, “medium”, and “large” are relative,
not only to each other, but to the area of behavioral science [...]”. Since side-channel
analysis techniques are designed to detect tiny key-dependent variations in the leakage, it
is not unreasonable to assume that a negligible effect size for side-channel analysis is much
smaller than one for behavioral science. A better way to select the effect size threshold
would be to ensure that leakage from a wire whose key dependence matches that effect size
is benign, i.e., that the number of traces needed to mount a successful attack exploiting
that leakage is above a targeted security level.

Second, by running its fixed-vs-random test, PROLEAD checks whether the wire
distributions are the same when (i) the native secret inputs are zero and (ii) the native
secret inputs are uniformly distributed. These distributions may be equal (or very close,
as discussed in the previous paragraph), while there is a dependence: other (i.e., some
nonzero) fixed native secret values may violate the equality. In such a case, PROLEAD
will wrongly report the absence of leakage even when requesting a very low false negative
probability. This problem can be solved by iterating the test multiple times while changing
the fixed input values or performing a G-test with more rows in the contingency table.
Both of these solutions will lead to worse performance (due to requiring more samples)
and make the definition of effect size more complicated.

6.3 Mutual information estimation and bounds
The problem of estimating mutual information has attracted attention for many years.
However, perhaps surprisingly, the particular problem we are interested in (confidence
interval for the mutual information between discrete variables with a large domain and
unknown distribution) has not received attention.

A discussion of the properties of simple estimators can be found in [Pan03], and some
more detailed discussion also appears in [MCHS23]. A few recent works designed improved
estimators (we focus on the discrete case) [APP13, SSK15, HS19], but they do not provide
a theoretical convergence analysis for their estimators.

A different line of work considers bounds on the mutual information, assuming that
some of the properties of the joint distribution are known (e.g., minimum and maximum
values of some marginals or conditionals) [DG97, PDSS16]. Besides the issue of computing
such values for our problem, these bounds introduce a fixed gap (due to exploiting a few
characteristics of the distributions) that does not shrink with the number of samples.

7 Conclusion and Future Work
In this paper, we introduced Quantile. Using a nonasymptotic statistical theory, Quan-
tile computes statistical bounds on the mutual information between the secrets and the
value of a wire in a circuit or between the secret and noisy leakage of this wire. Quantile
enabled us to evaluate the effective security order of a masked implementation concretely.
The verification method implemented in Quantile scales efficiently to large circuits.

We now discuss future work opportunities. First, although the theory of Section 3
works with any leakage domain, the implementation of Quantile is currently limited
to univariate bit leakage. Although efficiently extending it to multivariate leakage is a
challenging engineering problem, it would enable the analysis of higher-order masked
circuits or analysis within the robust probing model [FGP+18] (i.e., take glitches and
transitions into account). Such extensions to Quantile would also enable it to give
security bounds against soft analytical side-channel attacks (SASCA) [VGS14], which
exploit information from multiple sharings in a single attack.
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Next, we observed that our bounds are not very tight, mainly due to worst-case
assumptions on the statistical distributions when computing the confidence intervals.
Replacing such assumptions with the observed distributions in the samples (while preserving
the provable bounds) would enable tighter bounds, i.e., improved security bounds at a
lower sampling cost.

Finally, the randomness reuse case studies we performed are fairly simple and non-
optimized. We believe that Quantile can be used to design efficient masked circuits with
smaller imperfections than our examples, e.g., by shuffling the random bits between the
rounds.
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A Proof of Corollary 1
A.1 Sub-Gaussian Random Variables
Because of their instrumental importance throughout proofs in this paper, we briefly recall
tail bounds of the normal distribution and the so-called sub-Gaussian random variables.

Proposition 2 (Gaussian tail bounds). Let X ∼ N
(
µ, σ2) be a normally distributed

variable with expected value µ and variance σ2. Its tail bounds satisfy

Pr [X ≥ µ+ ε] ≤ e
−ε2

2σ2 , and Pr [X ≤ µ− ε] ≤ e
−ε2

2σ2 . (7)

Proof. See [Rig15, Example 2.1] or [VH14, Example 3.4] for the derivation.

Definition 2 (Sub-Gaussian random variable). A random variable X with finite expecta-
tion µ = E [X] is said to be sub-Gaussian if there is a positive number σ2 such that for all
λ ∈ R it satisfies

E
[
eλ(X−µ)

]
≤ eσ

2λ2
2 . (8)

We denote this with X . N
(
µ, σ2) and call σ2 the variance proxy.

Showing that a random variable is sub-Gaussian is desirable because they obey the
same Gaussian tail bounds from Proposition 2. In fact, other useful properties of normally
distributed random variables also apply. For example, scaling a sub-Gaussian X . N (µ, σ)
by a ∈ R, yields another sub-Gaussian random variable aX . N

(
aµ, a2σ2). Similarly,

adding independent sub-Gaussian random variables X1 . N
(
µ1, σ

2
1
)
and X2 . N

(
µ2, σ

2
2
)

produces a new sub-Gaussian X1 +X2 . N
(
µ1 + µ2, σ

2
1 + σ2

2
)
[Rig15].

Finally, we recall a method for showing that a functions of random variables, where
the influence of any one random variable cannot be arbitrarily large, are sub-Gaussian.



452 Quantile: Quantifying Information Leakage

Proposition 3 (McDiarmid’s inequality). Let X1, . . . , Xn be independent random variables
with respective domains X1, . . . ,Xn, and f : X1 × . . .×Xn → R be a function. If there are
constants c1, . . . , cn such that for all x1 ∈ X1, . . . , xn ∈ Xn, we have

sup
x′
i
∈Xi
|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x

′
i, . . . , xn)| ≤ ci , (9)

then Y = f(X1, . . . , Xn) . N
(
µ, σ2) with µ = E [Y ] and σ2 = 1

4
∑n
i=1 c

2
i .

Proof. See [VH14, Theorem 3.11] for the derivation.

A.2 Deviation of The Plug-in Entropy Estimator
Lemma 2 (The plug-in entropy estimator is sub-Gaussian). For a discrete random
variable X, the plug-in entropy estimator Ĥn (X) from Definition 1 is sub-Gaussian, i.e.,
Ĥn (X) . N

(
µ, σ2), with µ = E

[
Ĥn (X)

]
and σ2 = n

4 Hbin
(
n−1)2.

Proof. Ĥn (X) is a function of the random variables Xn = (Xi)ni=1, which are all indepen-
dent and distributed identically to X. Therefore, if we are able to show that changes in the
outcome of Xi have a limited influence on Ĥn (X), we can apply McDiarmid’s inequality
from Proposition 3 to prove the sub-Gaussianity of Ĥn (X).

In the following, we analyze what happens to Ĥn when one of the random variable,
without loss of generality we choose the i-th one, has a different outcome. Let function
h : p 7→ −p log2 (p) represent entropy summands. Furthermore, let (xi)ni=1 be the outcomes
of sampling Xn, and let x′i be a different outcome of the i-th random variable. The greatest
change in Ĥn is given by

sup
x′
i
∈X

∣∣∣Ĥn (x1, . . . , xi, . . . , xn)− Ĥn (x1, . . . , x
′
i, . . . , xn)

∣∣∣ =

sup
x′
i
∈X

∣∣∣∣∣∣
∑
x∈X

h

 n∑
j=1

1{x}(xj)
n

−∑
x∈X

h

i−1∑
j=1

1{x}(xj)
n

+
1{x}(x′i)

n
+

n∑
j=i+1

1{x}(xj)
n

∣∣∣∣∣∣ .
For all values x ∈ X \ {xi, x′i}, the term h

(∑n
j=1

1{x}(xj)
n

)
appears both positively

and negatively inside the absolute value, canceling them. As for xi (and x′i), the argument
to the negative terms decreases (increases) by 1

n . Let ci =
∑n
j=1 1{xi}(xj) and let

c′i =
∑n
j=1 1{x′i}(xj). The above supremum simplifies to

sup
x′
i
∈X

∣∣∣∣h(cin )+ h

(
c′i
n

)
− h

(
ci − 1
n

)
− h

(
c′i + 1
n

)∣∣∣∣ . (10)

We now analyze the parts of the absolute value depending on ci and c′i separately. We
see that h

(
ci
n

)
− h

(
ci−1
n

)
is monotonically decreasing because it has the strictly negative

derivative 1
n

(
log2

(
ci−1
n

)
− log2

(
ci
n

))
. Therefore h

(
ci
n

)
− h

(
ci−1
n

)
has its supremum and

infimum at the interval ends ci = 1, respectively ci = n, i.e.,

−h
(
n− 1
n

)
≤ h

(ci
n

)
− h

(
ci − 1
n

)
≤ h

(
1
n

)
.

Doing a similar analysis for parts of the absolute value depending on c′i shows that

−h
(

1
n

)
≤ h

(
c′i
n

)
− h

(
c′i + 1
n

)
≤ h

(
n− 1
n

)
.
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The absolute value in (10) reaches its largest value when either both the ci and c′i-dependent
parts reach their supremum or both reach their infimum. Therefore, finally

sup
x′
i
∈X

∣∣∣Ĥn (x1, . . . , xi, . . . , xn)− Ĥn (x1, . . . , x
′
i, . . . , xn)

∣∣∣ ≤ h( 1
n

)
+h
(
n− 1
n

)
= Hbin

(
1
n

)
.

Since the bound is independent of the Xi whose value changes, we can apply McDiarmid’s
inequality from Proposition 3 to get Ĥn (X) . N

(
E
[
Ĥn (X)

]
, n4 Hbin

(
n−1)2

)
.

A.3 Deviation of Conditional Entropy
Lemma 3 (Conditional entropy is sub-Gaussian). For discrete random variables X and
Y taking values in domains X and Y respectively, the entropy f(y) = H (X|Y = y) is a
sub-Gaussian random variable, with f(Y ) . N

(
H (X|Y ) , 1

4 log2
2 |X |

)
.

Proof. Function f is a bounded, with 0 ≤ f(y) because entropy is non-negative and f(y) ≤
H (X) ≤ log2 |X |. Since supy′∈Y |f(y)− f(y′)| ≤ log2 |X |, we can apply McDiarmid’s
inequality to show f(Y ) is sub-Gaussian with mean µ = E [H (X|Y = y)] = H (X|Y ) and
variance proxy σ2 = 1

4 log2
2 |X |.

A.4 Proof of Mutual Information Bounds
Theorem 1. Let X, D and S be discrete random variables with domains X , D and S, and
let D and S be distributed uniformly. Let nD, nX|D, nS,D, and nX|S,D be positive integers
and δ > 0 be a real number. Let D = (Di)nDi=1, D′ = (D′i)

nS,D
i=1 , S = (Si)nS,Di=1 be vectors of

independent random variables distributed identically to D and S respectively. Furthermore,
let Xi = (Xi,j)

nX|D
j=1 and X ′i =

(
X ′i,j

)nX|S,D
j=1 be vectors of independent random variables

distributed identically to X|D = Di and X|S = Si, D = D′i respectively. Finally, let

ĤnD,nX|D (X|D) = 1
nD

nD∑
i=1

ĤnX|D (X|D = Di) ,

ĤnS,D,nX|S,D (X|S,D) = 1
nS,D

nS,D∑
i=1

ĤnX|S,D (X|S = Si, D = D′i)

Î (X;S|D) = ĤnD,nX|D (X|D)− ĤnS,D,nX|S,D (X|S,D)

be estimates for H (X|D), H (X|D,S), and I (X;S|D) respectively. Then

ILB (X;S|D) = Î (X;S|D)− log2

(
1 + |X | − 1

nX|S,D

)
− σ

√
2 log (δ−1) and

IUB (X;S|D) = Î (X;S|D) + log2

(
1 + |X | − 1

nX|D

)
+ σ

√
2 log (δ−1), with

σ2 = log2
2 |X |

4nD
+
nX|D

4nD
Hbin

(
nX|D

−1)2 + log2
2 |X |

4nS,D
+
nX|S,D

4nS,D
Hbin

(
nX|S,D

−1)2
, satisfy

Pr [ILB (X;S|D) < I (X;S|D)] > 1− δ and Pr [IUB (X;S|D) > I (X;S|D)] > 1− δ.
(11)

Proof. We break down the difference between the estimate and real mutual information as

Î (X;S|D)− I (X;S|D) = P +Q+R− U − V −W, (12)



454 Quantile: Quantifying Information Leakage

where

P = 1
nD

nD∑
i=1

p(Di), Q = 1
nD

nD∑
i=1

q(Di), R = 1
nD

nD∑
i=1

r(Di),

U = 1
nS,D

nS,D∑
i=1

u(Si, D′i), V = 1
nS,D

nS,D∑
i=1

v(Si, D′i), W = 1
nS,D

nS,D∑
i=1

w(Si, D′i),

p(d) = ĤnX|D (X|D = d)−E
[
ĤnX|D (X|D = d)

]
,

q(d) = E
[
ĤnX|D (X|D = d)

]
−H (X|D = d) ,

r(d) = H (X|D = d)−H (X|D) ,

u(s, d) = ĤnX|S,D (X|S = s,D = d)−E
[
ĤnX|S,D (X|S = s,D = d)

]
,

v(s, d) = E
[
ĤnX|S,D (X|S = s,D = d)

]
−H (X|S = s,D = d) ,

w(s, d) = H (X|S = s,D = d)−H (X|S,D) .

Applying Lemma 2 to p(Di) and u(Si, D′i), and Lemma 3 to r(Di) and w(Si, D′i), we get

p(Di) . N
(

0,
nX|D

4 Hbin
(
nX|D

−1)2
)
, r(Di) . N

(
0, log2

2 |X |
4

)
,

u(Si, D′i) . N
(

0,
nX|S,D

4 Hbin
(
nX|S,D

−1)2
)
, w(Si, D′i) . N

(
0, log2

2 |X |
4

)
.

Crutially, Proposition 1 bounds the bias q(Di) to the range
[
− log2

(
1 + |X |−1

nX|D

)
, 0
]
and

−v(Si, D′i) to the range
[
0, log2

(
1 + |X |−1

nX|S,D

)]
. Rearranging (12) and applying linearity

properties of sub-Gaussians, we get

Î (X;S|D)− I (X;S|D)−Q+ V = P +R− U −W . N
(
0, σ2) .

Setting δ as the tail bound probability in (7), thus ε = σ
√

2 log (δ−1), we get

Pr [ILB (X;S|D) ≥ I (X;S|D)] ≤ Pr
[̂
I (X;S|D)−H (X|D)−Q+ V ≥ ε

]
≤ δ and

Pr [IUB (X;S|D) ≤ I (X;S|D)] ≤ Pr
[̂
I (X;S|D)−H (X|D)−Q+ V ≤ −ε

]
≤ δ.

Inverting these probabilities gives the statements in (11), concluding the proof.

Remark 1. The total number of samples, which is proportional to the computational cost,
is nDnX|D + nS,DnX|S,D. To get symmetric upper and lower bounds, one should take
nD = nS,D and nX = nX|D = nX|S,D, giving Corollary 1.
Remark 2. We expect that our bounds that use Lemma 3 are not be very tight in practice,
given that we use worst-case interval bounds, while we expect the entropies to have low
(or even no) variance with data D or secret S. If a bound on these variances is available,
then using Bernstein’s inequality will lead to improved bounds.

A.5 Upper Bound Over a Full Computation
Lemma 4. Let D and S be uniformly distributed discrete random variables with domains
D and S, and let D and S be distributed uniformly. Furthermore, let (Xk)ncomp

k=1 be (possibly
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dependent) random variables whose mutual information I (Xk;S|D) is bounded as in
Theorem 1 with confidence 1− δ/ncomp > 0. Then

Pr
[
sup
k

I (Xk;S|D) < sup
k

IUB (Xk;S|D)
]
> 1− δ. (13)

Proof. We prove this by looking at the inverse probability, removing the supremum of
I (Xk;S|D) by representing the inequality as an union of events, relaxing said events and
applying an union bound for the probabilities.

Pr
[
sup
k

I (Xk;S|D) ≥ sup
k

IUB (Xk;S|D)
]

= Pr
[
ncomp⋃
l=1

{
I (Xl;S|D) ≥ sup

k
IUB (Xk;S|D)

}]

≤Pr
[
ncomp⋃
l=1
{I (Xl;S|D) ≥ IUB (Xl;S|D)}

]

≤
ncomp∑
k=1

Pr [I (Xl;S|D) ≥ IUB (Xl;S|D)] ≤ ncomp ·
δ

ncomp
= δ.

Invering the probabilities again gives (13) concluding the proof.

B Proof of Lemma 1
We first recall an instrumental result which bounds the conditional entropy of processed
random variables.

Proposition 4 (Fano’s inequality). Let X, Y and X ′ be random variables with domains
X , Y and X that obey the Markov chain X → Y → X ′, with p = Pr [X 6= X ′]. Then

H (X|Y ) ≤ H (X|X ′) ≤ Hbin (p) + p log2 |X | .

Proof. See [CT06, Theorem 2.10.1] for the derivation.

Proposition 5. Let X = (Xi)ni=1 and Y = (Yi)ni=1 be two vectors of random variables.
Then I (X; Y ) ≤ n I (X;Y ).

Proof. See [dCGRP19, Lemma 3] for the derivation.

Lemma 1. Let nAdv ≥ 0 be an integer, S be a random variable with domain S and
D = (Di)nAdv

i=1 be a vector of random variables independent of S with the same domain
D. Furthermore, let f : S × D → L be a randomized function modelling a memoryless
channel, and let L = (Li)nAdv

i=1 be a vector of random variables with Li = f(S,Di). Let
Adv : DnAdv ×LnAdv → S be a (potentially randomized) function attempting to recover the
value of S as S′ = Adv (D,L) and let rAdv = Pr [S′ = S]. Then, assuming I (L;S|D) 6= 0,

nAdv ≥
H (S)− (1− rAdv) log2 (|S| − 1)−Hbin (rAdv)

I (L;S|D) . (6)

Proof. Since S and D are independent, we have

I ((S,D) ; (L,D)) = H (S,D)−H (S,D|L,D)
= H (S) + H (D)−H (S|L,D) .

(14)
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The random variables S, (L,D) and S′ rescribe a Markov chain, i.e., (L,D) conditionally
depends on S because L conditionally depends on S, whereas S′ conditionally depends on
(L,D) but not S. Therefore, Fano’s inequality from Proposition 4 applies, giving

H (S|L,D) ≤ H (S|S′) ≤ Hbin (rAdv) + (1− rAdv) log2 |S| . (15)

Alternatively, the mutual information I ((S,D) ; (L,D)) can be broken down as

I ((S,D) ; (L,D)) = H (L,D)−H (L,D|S,D) = H (L,D)−H (L|S,D)
= H (D) + H (L|D)−H (L|S,D) = H (D) + I (L;S|D) .

(16)

Combining equations (14) and (16), and subsequently applying inequality (15) gives

I (L;S|D) = H (S)−H (S|L, D)
≥ H (S)−Hbin (rAdv)− (1− rAdv) log2 |S| .

(17)

Finally, since f models a memoryless channel, we can apply Proposition 5 to (S, . . . , S)
and L (conditionning everything on D), finding that I (L;S|D) ≤ nAdv I (L;S|D). Com-
bining this with (17) gives (6) which concludes the proof.
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