
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 2, pp. 190–214. DOI:10.46586/tches.v2024.i2.190-214

High-Performance Hardware Implementation of
MPCitH and Picnic3

Guoxiao Liu1, Keting Jia1,2,3, Puwen Wei4,5,6 and Lei Ju6

1 Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing, China,
lgx22@mails.tsinghua.edu.cn, ktjia@tsinghua.edu.cn

2 BNRist, Tsinghua University, Beijing, China,
3 Zhongguancun Laboratory, Beijing, China,

4 School of Cyber Science and Technology, Shandong University, Qingdao, China,
pwei@sdu.edu.cn

5 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,
Shandong University, Qingdao, China,

6 Quan Cheng Laboratory, Jinan, China, SR-Julei@qcl.edu.cn

Abstract. Picnic is a post-quantum digital signature, the security of which relies
solely on symmetric-key primitives such as block ciphers and hash functions instead
of number theoretic assumptions. One of the main concerns of Picnic is the large
signature size. Although Katz et al.’s protocol (MPCitH-PP) significantly reduces
the size of Picnic, the involvement of more parties in MPCitH-PP leads to longer
signing/verification times and more hardware resources. This poses new challenges
for implementing high-performance Picnic on resource-constrained FPGAs. So far as
we know, current works on the hardware implementation of MPCitH-based signatures
are compatible with 3 parties only. In this work, we investigate the optimization
of the implementation of MPCitH-PP and successfully deploying MPCitH-PP with
more than three parties on resource-constrained FPGAs, e.g., Xilinx Artix-7 and
Kintex-7, for the first time. In particular, we propose a series of optimizations, which
include pipelining and parallel optimization for MPCitH-PP and the optimization
of the underlying symmetric primitives. Besides, we make a slight modification to
the computation of the offline commitment, which can further reduce the number of
computations of Keccak. These optimizations significantly improve the hardware
performance of Picnic3. Signing messages on our FPGA takes 0.047 ms for the L1
security level, outperforming Picnic1 with hardware by a factor of about 5.3, which
is the fastest implementation of post-quantum signatures as far as we know. Our
FPGA implementation for the L5 security level takes 0.146 ms beating Picnic1 by a
factor of 8.5, and outperforming Sphincs by a factor of 17.3.
Keywords: FPGA · MPCitH · Picnic · LowMC

1 Introduction
The emergence of quantum computers presents a potential threat to the security of
commonly used cryptographic schemes [Sho94, Gro96]. To address this concern, the
US National Institute of Standards and Technology (NIST) is currently undertaking
the Standardization Process for Post-Quantum Cryptography (PQC). Picnic [CDG+20],
which has been selected as one of the digital signature candidates in the third round, has
attracted significant attention among all the post-quantum candidates of NIST [Nat23].
Picnic’s security does not rely on any number theoretic assumptions but instead solely on
symmetric-key primitives, such as block cipher. This unique property is made possible by
the MPC-in-the-head (MPCitH) paradigm, a novel method for constructing zero-knowledge

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-10-15 Accepted: 2023-12-15 Published: 2024-03-12

https://doi.org/10.46586/tches.v2024.i2.190-214
mailto:lgx22@mails.tsinghua.edu.cn
mailto:ktjia@tsinghua.edu.cn
mailto:pwei@sdu.edu.cn
mailto:SR-Julei@qcl.edu.cn
http://creativecommons.org/licenses/by/4.0/


Guoxiao Liu, Keting Jia, Puwen Wei and Lei Ju 191

proofs. MPCitH allows the prover to prove the correctness of a statement without revealing
any additional information by simulating the executions of multi-party computation (MPC)
protocols. As stated in [Nat20], “NIST also sees Picnic reliance on only assumptions
about symmetric primitives as an advantage in case the need arises for an extremely
conservative signature standard in the future”.

The early version of Picnic, called Picnic1, suffers from a larger signature size
compared to other post-quantum candidates since the proof size of MPCitH is linear
with the number of non-linear operations of the underlying block cipher, i.e., LowMC.
To overcome this problem, Katz et al. [KKW18] introduced MPCitH with preprocessing
(MPCitH-PP), which reduces the size of Picnic1 dramatically by involving more parties
in the MPCitH protocol. The resulting scheme, called Picnic2, allows for a much smaller
signature size, but the involvement of more parties leads to longer signing/verification
times compared to Picnic1. Moreover, MPCitH-PP in Picnic2 poses new challenges
for implementing MPCitH-based digital signatures on hardware, particularly considering
the hardware implementation requirements of NIST [AASA+19]. So far as we know,
previous works [KRR+20, Wal19] on the hardware implementation of MPCitH-based
digital signatures have only implemented signatures with 3 parties. It is challenging
to implement high-performance Picnic2 on resource-constrained FPGAs because more
parties in Picnic2 increase the running time of signing and verification and significantly
impact hardware resources.

Recently, several optimizations [MZ17, MR18, KZ20, MGH+23] have been developed
for MPCitH-PP, particularly in the case of Picnic3 [KZ20]. These optimizations improve
the linear calculation method in the underlying circuit of MPCitH-PP, resulting in an N -
fold increase in linear calculation speed, where N represents the number of parties. While
these optimizations provide a promising avenue for implementing digital signatures based
on MPCitH-PP for more parties, there is currently a lack of hardware-level implementation
of these techniques. It is, therefore, a natural question to ask whether we can deploy
MPCitH-PP with more than three parties on a resources-constrained FPGA board, and if
so, what the resulting performance of Picnic would be, as well as any additional limitations
that may arise.

1.1 Contributions
In this work, we focus on optimizing the implementation of MPCitH-PP and successfully
deploying MPCitH-PP with more than three parties on resource-constrained FPGAs (Xilinx
Artix-7 and Kintex-7) for the first time, resulting in significantly improved performance of
Picnic3.

We first define a general gate-level circuit model for MPCitH-PP and apply the linear
swapping and optimized mask sampling proposed by Kales and Zaverucha [KZ20] to
improve the implementation of MPCitH-PP. We have analyzed and demonstrated that in
general boolean circuits, these optimizations reduce the computational complexity of the
underlying circuit in MPCitH-PP from O(2N · (CL + CN )) to O(2N · CN + 2CL), where
CN represents the number of nonlinear operations in the circuit and CL represents the
number of linear operations. This optimization is applicable to any circuit with invertible
linear operation based on the KKW protocol. In particular, we implemented LowMC from
3 parties to 16 parties, and the experimental results show that the hardware usage no
longer increases linearly with the parties.

Building on this, we propose several optimizations for the hardware implementation of
Picnic3 so that Picnic3 can better utilize the resources of the FPGA development board
to achieve high-performance implementation.

• Pipelining and parallel optimization. We performed a detailed study of the Picnic3
signature and divided it into three distinct steps. The construction of a Merkel



192 High-Performance Hardware Implementation of MPCitH and Picnic3

tree is encompassed within the first and third steps, while the second step focuses
on the repetitive instantiation of zero-knowledge proofs. To enhance efficiency, we
fragmented the second stage into multiple parts and devised a multi-level pipeline
structure, resulting in a substantial reduction in time consumption. Furthermore,
leveraging the fundamental attributes of FPGA, we orchestrated widespread parallel
computing across all three steps.

• Optimization of symmetric primitives. LowMC has a longer critical path, while
Keccak has a shorter critical path. Since the clock cycle of Keccak is larger
than that of LowMC, we investigate the clock cycle and critical path of symmetric
primitives. To design an optimized version for a high-performance implementation
of digital signatures, we reduce Keccak’s clock cycles so that its critical path does
not exceed (or slightly exceed) that of LowMC.

• Extending the pipeline construction covering the first and third steps. The Merkel
Tree needs to be stored in the BRAM. We precompute the nodes from the root to
the second-to-last layer and store them. For each instance, only the last leaf nodes
are needed to compute, which has a similar time interval to that of the pipeline in
step 2. For step 3, two independent Keccak components with optimized critical
paths are incorporated into the pipeline in step 2 to save the running time of O(M)
calls to Keccak, where M is the number of instances.

• To further reduce the number of computations of Keccak, we make a slight modifi-
cation on the computation of the final offline commitment, which does not affect the
security of the KKW protocol and Picnic3.

By combining all the above optimizations, our FPGA implementation of Picnic3 with
4 parties achieves significantly improved performance. Concretely, signing messages on
our FPGA takes 0.047 ms for the L1 security level beating Picnic3 with software by a
factor of about 110, and outperforming Picnic1 with hardware by a factor of about 5.3,
which is the fastest implementation of post-quantum signatures seen Table 10. Our FPGA
implementation for the L5 security level takes 0.146 ms beating Picnic1 by a factor of
8.5, and outperforming the NIST selected signature SPHINCS by a factor of 17.3.

1.2 Related Work
The MPCitH paradigm has seen significant advancements since Ishai et al.’s work [IKOS07].
Notably, ZKBoo [GMO16] and ZKB++ [CDG+17] have significantly advanced the practi-
cality of MPCitH, culminating in the submission of Picnic1 to Round 1 of the NIST PQC
Standardization Process. Katz et al. [KKW18] extended the paradigm to MPCitH-PP,
leading to Picnic2. Furthermore, Kales and Zaverucha [KZ20] optimized the structure
of LowMC [ARS+15] utilized in Picnic2 and reduced the time required for signature
generation and verification, resulting in the development of Picnic3.

Efficient hardware implementations have become a focal point of extensive research,
further accentuated by the NIST post-quantum standardization project [AASA+19]. On
the hardware implementations of MPCitH or Picnic algorithms, only Picnic1 is currently
available in a hardware-enable format [KRR+20]. In the case of Picnic1, the utilization
of FPGA resources is exceedingly substantial. [KRR+20] argues that Picnic2 allows for
shorter signatures, but performing the simulated MPC protocol with a larger number
of parties results in longer signing and verification times compared to Picnic1. [Wal19]
proposed an efficient VHDL implementation of Picnic2, therefore, requires at least 63
LowMC instances which would not fit on any FPGA. Implementing the MPCitH-PP digital
signature, involving more parties and requiring pre-computation, becomes challenging to
deploy on a resource-constrained FPGA. Picnic3 introduces optimizations to the LowMC



Guoxiao Liu, Keting Jia, Puwen Wei and Lei Ju 193

computation of MPCitH-PP, thereby reducing the calculation of the linear layer. To the
best of our knowledge, no prior work has investigated the hardware implementations of
MPCitH-PP and Picnic3.

2 Preliminaries
Notation. Let L denote an NP language. The NP relation is defined as R(x,w) = 1 if
x ∈ L and w is the corresponding witness. Let [x] denote an N -out-of-N (XOR-based)
secret sharing scheme of a bit x, i.e., x = [x]1 ⊕ · · · ⊕ [x]i ⊕ · · · ⊕ [x]N , where [x]i for
1 ≤ i ≤ N is the secret share. Let [i, j] denote the range from integers i to j.

2.1 Symmetric Primitives
The underlying symmetric primitives of Picnic3 are block cipher and hash function,
which are instantiated by LowMC and SHAKE, respectively. The security assumption
(one-way function) is LowMC. The hash function Keccak is used for random number
generation and commitment.

Linear Layer

...

...

S S S S

ki ⊕ Ci

Figure 1: One round of encryption with LowMC in Picnic3.

Block cipher. LowMC [ARS+15] is a family of lightweight SPN-based block ciphers.
One of the key advantages of LowMC is its low multiplicative complexity, e.g., small
AND gate/depth. This property makes LowMC well-suited for a range of cryptographic
applications, including multi-party computation, fully homomorphic encryption, and zero-
knowledge proofs. LowMC encryption starts with an initial whitening by XORing the
first round key to the plaintext, followed by r rounds. As depicted in Figure 1, one round
consists of four steps: (i) SboxLayer, (ii) LinearLayer, (iii) ConstantAddition and
(iv) KeyAddition, i.e., LowMCRound(i) = KeyAddition ◦ ConstantAddition ◦
LinearLayer ◦ SboxLayer(i).

Algorithm 1: LowMC encryption.
Input: plaintext p ∈ Fn2 and key mk ∈ Fk2 .
Output: ciphertext c ∈ Fn2 .

1 state← K0 ·mk + p
2 foreach i ∈ [1, r] do
3 state← SboxLayer(state)
4 state← Li · state . LinearLayer
5 state← Ci + state . ConstantAddition
6 state← Ki ·mk + state . KeyAddition
7 end
8 c← state



194 High-Performance Hardware Implementation of MPCitH and Picnic3

In the SboxLayer, m 3-bit Sboxes are typically applied to the initial 3 ·m bits of the
state. The SboxLayer does not modify the remaining bits of the state. Note that in
Picnic3, the parameter n is set to 3 ·m in order to decrease the number of rounds r. The
specific parameters are (n, k,m, r) ∈ {(129, 129, 43, 4), (192, 192, 64, 4), (255, 255, 85, 4)}
[Pic20], where k denotes the key size. Sbox is defined as S(a, b, c) = (a ⊕ b · c, a ⊕ b ⊕
a · c, a⊕ b⊕ c⊕ a · b) with three bits inputs and outputs. In LinearLayer, the state is
multiplied with a pseudorandomly generated matrix Li ∈ Fn×n2 . The matrices are chosen
pseudorandomly from the set of all invertible binary n×n matrices during the instantiation
of LowMC. During ConstantAddition the vector Ci ∈ Fn2 is XORed to the state. During
KeyAddition, the round key of the current round is XORed to the state. All round keys
are generated as a result of the multiplication of the master key with the matrix Ki ∈ Fn×k2 .
The matrices are chosen pseudorandomly from the set of all full-rank binary n×k matrices
during the instantiation of LowMC. The full description of the encryption algorithm is
given in Algorithm 1. Despite findings by [Din21a, Din21b, LMSI22, SCW23] questioning
the security claims of LowMC, this symmetric cipher still finds valuable applications
in the fields of fully homomorphic encryption and secure multi-party computation. It
was demonstrated by [Din21a] that the parameter sets for L3 and L5 are insufficient to
guarantee 192 (resp. 256) bits of security, as the attacks only require 2188 (resp. 2245)
operations with large memory requirements of 2164 (resp. 2219) bits.
Hash function. Hash functions in Picnic are used to generate randomness and commit-
ments. In Picnic2, hash functions are employed to expand a random “seed” into additional
randomness using a tree construction, and to create a Merkle Tree of the committed values.
Picnic3 uses the SHA-3 function SHAKE for all hashing, with specific parameters detailed
in Table 1. For more information of SHAKE, we refer the reader to Keccak.

Table 1: Parameters of Keccak. Block length denotes the bit number absorbed or
squeezed. Round denotes the number of repeat permutation Keccak-p.

Scheme Sec. Level Block Length Digest Length Round
SHAKE128 L1 1344 256 24
SHAKE256 L5 1088 512 24

2.2 MPC-in-the-head with Preprocessing
MPC-in-the-head proposed by Ishai et al. [IKOS07] provides a novel method to construct
zero-knowledge proof (ZKP) for any NP language L. In this paper, we consider the relation
R(x,w) as fx(w) = 1 for a function f . An MPCitH proof system (P,V) is built upon an
N -party MPC protocol that jointly computes the function f . Here, f takes x and w as
the public and private inputs, respectively, and computes fx(w) = R(x,w). In Picnic,
fx(w) := LowMC(sk, p) ?= c, where x = (p, c) represents a plaintext-ciphertext pair and
w = sk denotes the private key. In this case, the prover P proves knowledge of a private
key that generates a specific public ciphertext from the corresponding public plaintext.

At a high level, the MPCitH prover P aims to convince the verifier V that they possess
a valid witness w by demonstrating that the MPC protocol has been correctly executed “in
the head” of P using input w. To enhance compatibility with hardware implementation and
Picnic3 signatures, we utilize boolean circuits instead of arithmetic circuits for LowMC.
We now consider an MPC protocol ΠC for the corresponding circuit C defined over the field
F2, where the statement information x (e.g., the plaintext-ciphertext pair) is hard-coded
such that C(·) = fx(·). We assume that the witness can be represented as an n-dimensional
vector and C takes a set of n input wires denoted by IN. Let zα denote the value of wire α
of C(w), then w = (zα)α∈IN ∈ Fn2 be the input of C. To initiate the protocol, the prover
P first additively secret shares each input zα as zα = [zα]1 ⊕ · · · ⊕ [zα]N in F2. Each share



Guoxiao Liu, Keting Jia, Puwen Wei and Lei Ju 195

[zα]i is considered as a private input to party Pi. Then, prover P internally runs ΠC for
party P1, · · · ,PN to obtain the views V1, · · · ,VN , where view Vi consists of Pi’s private
input [zα]i, the random tape of Pi, and all incoming messages observed by Pi during the
execution of ΠC . The proof system now follows the typical “commit-challenge-response”
flow (Σ-protocol [FS87]). Using a secure commitment scheme, P sends Commit(Vi) as
the first message for all i ∈ [1, N ]. Upon receiving distinct challenges i1, · · · , it ∈ [1, N ]
from the verifier V, the prover P responds with the corresponding t views Vi1 , · · · ,Vit

and the commitment opening information. Finally, the verifier V accepts the proof if and
only if the opened views are consistent with each other and they result in an output of 1
from the protocol ΠC . The (honest verifier) zero-knowledge property is guaranteed if the
underlying MPC ΠC achieves t-privacy in the semi-honest model.
MPCitH with preprocessing (MPCitH-PP). Katz et al. [KKW18] improved the
MPCitH paradigm by using the preprocessing mode. Further improvements can be
found in subsequent works [dSGDMOS20, BN20, BdSGK+21, KZ20, MGH+23, ZWX+22,
KHS+22, AMGH+23, BBdSG+23, BFR23, ABB+23, BKPV23]. Loosely speaking, Katz
et al.’s protocol (KKW) has two phases, which are the offline phase (preprocessing phase)
and the online phase. We denote Πoff

C and Πon
C as the offline phase protocol and the

online phase protocol, respectively. The offline phase protocol Πoff
C , which is executed

independently of the witness, prepares the randomness for the online phase protocol Πon
C .

Considering the application in Picnic3, the following descriptions of the MPC protocol
and KKW protocol are based on boolean circuits.

Suppose the underlying N -party MPC protocol is ΠC , which is executed by N parties
P1, · · · , PN . The value of each input wire zα will be masked by a random bit λα, say,
ẑα = zα ⊕ λα. Each party Pi holds a share of λα, denoted by [λα]i.

• Offline phase Πoff
C . In the offline phase, the prover generates the masks for each

party Pi. More precisely, Pi is given the following values.

– [λα]i for each input wire α.
– [λγ ]i for the output wire γ of each AND gate.
– [λα,β ]i for each AND gate with input wires α and β such that λα,β = λα · λβ .

For i = 1, · · · , N − 1, [λα]i, [λγ ]i and [λα,β ]i are generated using a pseudorandom
generator (PRG) with a random seed seedi. Besides, [λα]N , [λγ ]N are generated by
PRG with a random seed seedN . Here [λα]1⊕· · ·⊕ [λα]N = λα, [λγ ]1⊕· · ·⊕ [λγ ]N =
λγ . Notice that [λα,β ]N cannot be generated using seedN due to λα,β = λα · λβ .
Actually, [λα,β ]N := λαλβ⊕[λα,β ]1⊕· · · [λα,β ]N−1, which plays the role of “correction
bits”. In order to reduce the total proof size, it is possible that seedi is given to Pi,
and seedN and auxN = [λα,β ]N are given to PN .

• Online phase Πon
C . During the online phase, each party Pi evaluates the circuit

C gate-by-gate in topological order. For each gate with input wires α and β and
output wire γ,

– For an XOR gate, Pi can locally compute ẑγ = ẑα⊕ ẑβ and [λγ ]i = [λα]i⊕ [λβ ]i,
since Pi already holds ẑα, [λα]i , ẑβ and [λβ ]i.

– For an AND gate, Pi locally computes [s]i = ẑα [λβ ]i⊕ ẑβ [λα]i⊕ [λα,β ]i⊕ [λγ ]i,
publicly reconstructs s = [s]0 ⊕ · · · ⊕ [s]N , and computes ẑγ = s⊕ ẑαẑβ which
satisfies ẑγ = zγ ⊕ λγ = zαzβ ⊕ λγ . Note that party Pi holds [λα,β ]i and [λγ ]i
in addition to ẑα, [λα]i , ẑβ and [λβ ]i for each AND gate.

KKW Protocol. We briefly recall the basic framework of KKW for one MPC instance,
which is a three-round MPCitH-PP system. In Figure 2, we provide a complete description
of the KKW proof system that utilizes multiple instances in parallel to achieve a negligible



196 High-Performance Hardware Implementation of MPCitH and Picnic3

soundness error. The parameter M describes the number of repetitions of MPCitH-PP
required to reduce the soundness error to the desired security level. The parameter τ is
the opened execution in MPCitH with preprocessing, and N is the number of parties.

• Commit. The prover P begins by sampling a random seed for each Pi and executes
protocol Πoff

C to obtain the states of all N parties. Then, using these states and the
masked witness (ẑα)α∈IN as input, P executes protocol Πon

C to obtain all broadcast
messages observed during the online phase. P computes commitments to the states
and broadcast messages. Finally, P sends commitments to the verifier V.

• Challenge. V asks P to disclose either the offline or the online phase. In the case
of the latter, V also randomly selects a party index p?, whose view should remain
hidden.

• Response. To disclose the offline phase, P sends all random seeds used during
protocol Πoff

C . To disclose the online phase, P sends the broadcast messages from
party Pp? during protocol Πon

C , as well as all the state information of the remaining
N − 1 parties.

• Verification. To verify the offline phase, V simply uses the random seeds to execute
protocol Πoff

C as P would, resulting in the states of all N parties. Then, V checks
if these states correctly match the commitments of the offline phase. To verify the
online phase, V simulates protocol Πon

C with the broadcast messages from Pp? and
the states of the other N − 1 parties as input, obtaining the broadcast messages
from the other N − 1 parties. Finally, V checks if these broadcast messages correctly
match the commitments of the online phase.

2.3 Picnic and Its Parameters
Using the well-known Fiat-Shamir transform, KKW described above can be transformed
into a non-interactive version or a digital signature, where the message m to be signed is
hashed and incorporated into the challenge. The signature scheme Picnic is a concrete
instantiation of the non-interactive KKW, where C is instantiated with the boolean circuit
of LowMC. More precisely, the signer’s secret key sk is the witness w, and the public key
corresponds to the statement x = (p, c), which is a pair of plaintext and ciphertext. A
signature involves a proof of knowledge of sk that satisfies LowMCsk(p) = c.

The parameter sets for the algorithms submitted to the NIST competition must meet
one of five security levels. Picnic defines parameters for security levels L1, L3 and L5,
corresponding to the security of AES 128, 192 and 256, respectively. This work implements
the L1 and L5 versions of Picnic3. The corresponding parameters (n, k,m, r) for LowMC
in L1 and L5 are (129, 129, 43, 4) and (255, 255, 85, 4), respectively. Table 2 shows the
parameters of different Picnic versions. Note that Picnic3 (based on KKW) offers better
efficiency in terms of signature size compared to Picnic1 (based on ZKB++), but it has
lower runtime performance. Additionally, Table 2 shows the different key and signature
sizes for the Picnic instances. More details of parameter sets for the ZKB++ proof system,
KKW proof system, and specific parameters chosen for LowMC are shown in the Picnic
specification and NIST submission [Pic20].

2.4 Test Platform
To facilitate better comparisons with previous work [KRR+20], we utilized the Xilinx
Kintex-7 and Artix-7 as our experimental platforms. The latter is one of the optimization
platforms recommended by NIST. We use a Xilinx Kintex-7 FPGA development board1

1Our test platform is XC7K480T-3. In order to better compare with other post-quantum digital
signature FPGA implementations, we also provide test results of Artix-7 and smaller Kintex-7 in Section 5.



Guoxiao Liu, Keting Jia, Puwen Wei and Lei Ju 197

KKW protocol
The prover and verifier receive circuit C as a statement, and the prover holds a witness
w = (zα)α∈IN such that C(w) = 1. Values (M,N, τ) are parameters of the protocol. Let H
denote a hash function, which can be modeled as the random oracle.
Commit

1. The prover chooses uniform random values (seed∗1, · · · , seed∗M ). For each j ∈ [1,M ],
the prover:

(a) Use seed∗j to generate seedj,1, · · · , seedj,N . Compute auxj ∈ {0, 1}|C| by
running the offline phase of MPC Πoff

C . For i = 1, · · · , N − 1, let
statej,i := seedj,i. Let statej,N := seedj,N‖auxj .

(b) Commit to the offline phase: For i ∈ [1, N ], compute comj,i := H (statej,i).
Compute com-offj := H (comj,1, · · · , comj,N ).

(c) Simulate the online phase of MPC Πon
C using {statej,i}, beginning by computing

the masked witness {ẑj,α}, where α ∈ IN. Let msgsj,i denote the messages
broadcast by party Pi in this protocol execution.

(d) Commit to the online phase: Compute
com-onj := H

(
{ẑj,α} ,msgsj,1, · · · ,msgsj,N

)
.

2. Compute hoff = H(com-off1, · · · , com-offM ) and hon = H(com-on1, · · · , com-onM ).
Send h∗ = H(hoff, hon) to the verifier.

Challenge The verifier sends the challenge: (C,P), where C ⊂ [1,M ] is a set of size τ , and
P is a list

{
p?j

}
j∈C

with p?j ∈ [1, N ].
Response For each j ∈ [1,M ]\C, the prover seeds seed∗j , com-onj . Also, for each j ∈ C,
the prover seeds {statej,i}i6=p?

j
, comj,p?

j
, {ẑj,α}, and msgsj,p?

j
.

Verification The verifier accepts iff all the following checks succeed:
1. Check the offline phase:
(a) For every j ∈ C and i 6= p?j , the verifier uses statej,i to compute comj,i as the prover

would. Then compute com-offj = H (comj,1, · · · , comj,N ) using the received value
comj,p?

j
.

(b) For every j ∈ [1,M ]\C the verifier uses seed∗j to compute com-offj as the prover
would.

(c) The verifier computes hoff = H(com-off1, · · · , com-offM ).
2. Check the online phase:
(a) For j ∈ C the verifier simulates the online phase using {statej,i}i 6=p?

j
, masked witness

{ẑj,α}, where α ∈ IN and msgsj,i to compute {msgsj,i}i6=p?
j
. Then compute

com-onj as if the prover would do.
(b) The verifier computes hon = H(com-on1, · · · , com-onM ) using the received com-onj

for j ∈ [1,M ]\C.

3. The verifier checks that H (hoff , hon) ?= h∗.

Figure 2: KKW proof system for a boolean circuit C.



198 High-Performance Hardware Implementation of MPCitH and Picnic3

Table 2: Picnic parameters.

Scheme Parameters Sizes (byte)
M τ N pk sk σ

Picnic1-L1 219 219 3 32 16 34032
Picnic3-L1 206 66 4 34 17 19573
Picnic3-L1 252 36 16 34 17 12590
Picnic1-L5 438 438 3 64 32 132856
Picnic3-L5 401 133 4 64 32 75721
Picnic3-L5 604 68 16 64 32 53274

which has 298600 lookup-tables (LUTs), 597200 flip-flops (FFs), and 955 block RAMs
(BRAMs) available. Moreover, we make all of our code and results publicly available at
https://github.com/GuoxiaoLiu/KKW-FPGA.

3 Optimizing the Implementation of MPCitH-PP
For typical MPC protocols, communication among parties is not required to compute
the linear operations. Hence, there are lightweight nonlinear gates with expensive linear
operations for the cryptography primitive in MPC. However, in MPCitH-PP, the linear
operations may be too resource-intensive to implement on lightweight FPGA, and determin-
ing the length of the critical path can be time-consuming, as the prover needs to simulate
computations for N parties. Hence, great attention must also be paid to linear operations
in the MPCitH-PP protocol. There are already many techniques [MZ17, MR18, KZ20] to
optimize linear operations, including the software implementation of Picnic3. We describe
a circuit model for conveniently presenting the essential performance of these techniques
at the hardware level.
Circuit model. To facilitate the explanation of the hardware level performance of these
optimizations, the underlying circuit is abstracted into a structure where linear and
nonlinear layers alternate. For the sake of simplicity, the linear layer and the nonlinear
layer in Figure 3 are assumed to consist of multiple XOR and AND gates, respectively,
with the linear layer being invertible. We propose a circuit model that not only provides a
better explanation of the optimization techniques but also demonstrates that block ciphers
with invertible linear operations (e.g., not just LowMC) can benefit from the following
optimizations in the KKW protocol within MPCitH-PP.

Ai−1

Xi

Ai+1

Figure 3: 3 layers of a general circuit.

Optimize the offline phase. Let λα and λβ be two input masks of an AND gate
in a non-linear layer, and λγ is the output mask. Each party obtains λγ by sampling

https://github.com/GuoxiaoLiu/KKW-FPGA


Guoxiao Liu, Keting Jia, Puwen Wei and Lei Ju 199

for all AND gates. λα and λβ of layer Ai+1 are then calculated using the obtained
λγ of layer Ai−1 through the linear layer Xi. In the offline phase, the goal of Πoff

C is
to compute the auxiliary information aux for each AND gate, which is computed as
aux = [λαβ ]N = λα · λβ ⊕ [λαβ ]1 ⊕ · · · ⊕ [λαβ ]N−1.

For instance, the input mask λα and λβ of Ai+1 are obtained from the output mask
λγ of Ai−1 through the linear calculation of Xr, which may be too costly, such as a linear
layer of LowMC. If we compute it for each party and sum the results to obtain the input
mask of Ai+1, there are N computations of linear operations Xi (see Figure 4).

Xi

[λγ1 ]1 [λγ2 ]1 [λγ1 ]j [λγ2 ]j

· · ·

[λγ1 ]N[λγ2 ]N

· · ·

[λα]1 [λα]j [λα]N

λα = [λα]1 ⊕ · · · ⊕ [λα]N

P1 Pj PN

Figure 4: Each party uses its own Ai−1 output share [λγ1 ] and [λγ2 ] to calculate Xi to
get the input of Ai+1 share [λα], and then get the mask λα.

It is more efficient to swap the order of summing and computing linear layers. Each
party sums the output mask share [λγ ] of each AND gate of Ai−1, and then computes the
linear operation once to obtain the input mask of Ai+1. Hence, in Figure 5 there is only
to deploy one linear layer for N parties. This optimization not only improves efficiency by
avoiding per-party linear computation but also reduces hardware resource consumption.

Xi

λγ1 λγ2

λα

λγ1 = [λγ1 ]1 ⊕ · · · ⊕ [λγ1 ]N
λγ2 = [λγ2 ]1 ⊕ · · · ⊕ [λγ2 ]N

· · · · · ·

P1 Pj PN

Figure 5: Each party sum Ai−1 output share [λγ1 ] and [λγ2 ] to get λγ1 and λγ2 . Then λγ1

and λγ2 calculate Xi to get the input of Ai+1 mask λα.

Optimize the online phase. We use the optimized mask sampling method given by
Kales and Zaverucha [KZ20] to avoid the linear operation computation for each party. In
the online phase, for each AND gate, each party needs to compute the broadcast message
msgs, which is [s] = ẑα [λβ ]⊕ ẑβ [λα]⊕ [λα,β ]⊕ [λγ ]. However, the input shares [λα] and
[λβ ] of Ai+1 have to be calculated from the output share [λγ ] of Ai−1, so this cannot be
directly optimized like the offline phase.

Kales and Zaverucha changed the sampling position of shares. That is, sampling is
performed before AND gate calculation, rather than after AND gate. The input shares
[λα] and [λβ ] are sampled from the random tape. This means that each party does not
need to calculate the linear calculation of [λα] and [λβ ], but only needs to sample directly
from the random tape when using it. Therefore, only ẑγ is required to calculate the



200 High-Performance Hardware Implementation of MPCitH and Picnic3

ẑα and ẑβ of the latter AND gate, and at the hardware level, only 1 hardware usage
is required instead of N . After modifying the position, λγ needs to be obtained by an
invertible linear calculation of the input mask before the calculation of the latter AND
gate. In this way, however, each party still needs to calculate [λγ ], so in the case of using
optimizations in the offline phase, there are some modifications in the protocol, that is,
aux = [λα,β ]N = λα ·λβ⊕ [λαβ ]1⊕· · ·⊕ [λαβ ]N−1⊕λγ , and [s] = ẑα [λβ ]⊕ ẑβ [λα]⊕ [λα,β ] .
Because the calculation of aux has changed, the offline phase is optimized as shown
in Figure 6.

Ai−1

Xi

λγ

[λα]1 [λβ ]1

· · ·
λγ

[λα]j [λβ ]j

· · ·
λγ

[λα]N[λβ ]N

Ai+1
· · · · · ·

λα λβ

λγ

P1 Pj PN

Figure 6: Each party samples [λα] and [λβ ] of Ai+1, get λα and λβ , then compute λγ of
Ai−1.

As discussed above, we review software optimizations and reanalyze the hardware per-
formance of these optimizations. These optimizations reduce the computational complexity
of the underlying circuit in MPCitH-PP from O(2N · (CL + CN )) to O(2N · CN + 2CL),
where CN represents the number of nonlinear operations in the circuit, CL represents the
number of linear operations and the factor of 2 arises from preprocessing. As a result,
nonlinear operations need to be computed N times, while linear operations only need to
be computed once. In terms of hardware implementation, the AND gate of the circuit
requires an extension to accommodate N parties, whereas the XOR gate only requires “one
part”.These optimizations have significant implications for hardware resources, particularly
in scenarios where the underlying circuit is a symmetric primitive like LowMC, which
heavily relies on linear calculations and minimally increases hardware resources with the
number of parties. To validate our observation, we implemented the MPCitH-PP protocol
with different parties using LowMC as the underlying circuit. Table 3 demonstrates
consistent results between the experimental and theoretical observations.

A complete MPCitH-PP protocol based on LowMC (referred to as LowMC-MPC)
involves two separate calculations: the offline phase and the online phase, both requiring
a normal implementation of LowMC. To optimize this, we merged the two phases by
sharing the constant matrix between them. It is important to note that based on the
previous optimization, the linear calculation in the offline phase is an inverse operation.
Thus, we can only reuse the constant Ki mentioned in Algorithm 1, where i ∈ [1, r]. We
analyze LowMC-MPC: to complete the offline phase in r clock cycles, the state first XOR
with Ki ·mk, and then multiplies with L−1

i . This calculation leads to the critical path of
LowMC being too long, so we have to divide the calculation into 2 clock cycles to complete



Guoxiao Liu, Keting Jia, Puwen Wei and Lei Ju 201

one round, and as a result, the offline phase requires 2r clock cycles. To address this, we
propose an equivalent representation: L−1

i · (Ki ·mk⊕state) = (L−1
i ·Ki) ·mk⊕L−1

i ·state.
Essentially, we give a key scheduling matrix K ′i = L−1

i ·Ki specifically for the offline phase.
This serves as a trade-off between runtime and hardware usage. Notably, this problem
does not arise in the online phase.

Table 3: Utilization of LowMC-MPC for different parties. N denotes the number of
parties. Sec. denotes the security level. Without opt. denotes the LowMC-MPC with
2r + r clock cycles, and With opt. denotes the LowMC-MPC with 2r clock cycles

Picnic1 Utilization
Sec. N LUTs % LUTs FFs % FFs
L1 3 32224 15.81% 3061 0.75%
L5 3 98319 48.24% 5958 1.46%
Picnic3 Without opt. With opt.
Sec. N LUTs % LUTs FFs % FFs LUTs % LUTs FFs % FFs

L1

3 21450 7.18% 2530 0.42% 27186 9.10% 2484 0.42%
4 22580 7.56% 3076 0.52% 28240 9.46% 3000 0.50%
8 25924 8.68% 5044 0.84% 32353 10.83% 5035 0.84%
16 36264 12.14% 9167 1.53% 41378 13.86% 9198 1.54%

L5

3 81388 27.26% 4859 0.81% 104240 34.91% 4867 0.81%
4 84712 28.37% 5912 0.99% 104859 35.12% 5877 0.98%
8 97018 32.49% 9991 1.67% 116062 38.87% 9963 1.67%
16 128668 43.09% 18149 3.04% 148211 49.64% 18116 3.03%

In Table 3, as the number of parties increases, the growth of hardware usage is slow,
which is consistent with our analysis, which the hardware growth comes from AND gates,
not XOR gates. Therefore, we implemented LowMC-MPC with 16 parties, answered the
questions we raised in Section 1, and proved that MPCitH-PP with more than 3 parties
can be arranged on the FPGA development board. We give the FPGA implementation of
Picnic1 [KRR+20] in Table 3. In [KRR+20], an optimization was introduced that reduced
the hardware usage of LowMC-MPC from O(N · (CL + CN )) to O((N − 1) · (CL + CN )),
where our LowMC-MPC is from O(2N · (CL +CN )) to O(2CL + 2N ·CN ). Therefore, the
hardware resources required by [KRR+20]’s LowMC-MPC with 3 parties are larger than
those of our 8 parties. It is precisely because of this optimization that we can use pipeline
and other optimizations.

4 Optimizing the Implementation of Picnic3

In Section 3, we give a hardware-oriented optimization of MPCitH-PP with more than 3
parties, which makes it possible to implement a digital signature based on MPCitH-PP
with high performance. Although we have implemented LowMC-MPC on the FPGA
development board to support many parties from 3 to 16, the hardware resources usage
of the hash function Keccak in turn begins to restrict the number of parties. It is
difficult to implement efficiently for too many parties (e.g., 16 parties). We built a pipeline
architecture to implement the Picnic3 with 4 parties to maximize performance as much
as possible. Figure 7 illustrates the overall architecture, with streamlined input and output
modules. This simplification arises from the utilization of the standardized API design
[FFD+18] provided by NIST. Notably, we have chosen to adopt the design presented
in reference [Wal19, KRR+20], enhancing the versatility of our implementation. In the
following sections, we describe several optimizations proposed for Picnic3, which enable
it to fully utilize the resources of Kintex-7 for efficient implementation.



202 High-Performance Hardware Implementation of MPCitH and Picnic3

BRAM

Keccak core

LowMC-MPC core

B
R
A
M

M
A
R
B

M
A
R
B

M
A
R
B

M
A
R
B

M
A
R
B

M
A
R
B

M
A
R
B

Input
Signature

Output
Signature

Sign/Verify Module

Step 1: Merkle
tree for Seed

Step 2.A: Tapes

Step 2.B: LowMC-MPC
offline (top) and online (bottom)

Step 2.C:
Commitment of states Step 2.E: Commitment

of offline phase

Step 2.D:
Commitment of online phase

Step 3:

Step 3:
chanllenge

Figure 7: Overall architecture of Picnic3.

4.1 Multi-stage Pipeline and Parallel Implementation of Picnic3
We give a simple analysis of the implementation performance and resource usage of some
key parts of the Picnic3. Picnic3 signature algorithm applied the KKW protocol, seen
the Figure 2. In order to reduce the size of the public key, the Merkle tree construction is
used to generate the random seeds (the leaf nodes of the Merkel tree), and it is also used
in the computation of hon to reduce the signature size. A basic hardware implementation
process for N = 4 parties with M instances is given in the following:
Step 1. Picnic3 applies Keccak to generate random seeds seed∗j for M instances in
Merkle tree mode and then drive N parties’ seeds seedj,i with seed seed∗j as the root of
Merkle tree. Since there are only 4 parties, jth instance generates seedj,i simultaneously,
where i ∈ [1, 4]. Therefore, two Keccak components are required to parallelize the
computation.
Step 2. We give a pipeline implementation of instances description of the offline phase
and online phase of MPC. We divide this step into 5 parts, which are independent for easy
assembly lines. We describe each part and explain the symmetric primitive components
required for each part.

A Tapes. It executes the offline phase of MPC Πoff
C with Keccak to generate the

random tapes required for 4 parties in parallel mode. Here, 4 Keccak components
are required, which are also used to drive the random taps in the online phase of
MPC Πoff

C .

B LowMC-MPC. According to the MPCitH-PP protocol specified in Picnic, the
block cipher LowMC is used in the offline phase Πoff

C to generate the auxiliary
information auxj , and it is also used in the online phase Πon

C to simulate N parties to
compute the view msgs [s]. Since online and offline phases are performed separately,
we give a circuit calculation (LowMC) to support both phases.

C Commitment of states. It adopts Keccak to compute the commitments comj,i=
H(statej,i), where statej,i = seedj,i (i = 1, · · · , N − 1), statej,N = seedj,N‖auxj .
In this part, we need 4 Keccak components to commit to the offline phase for N = 4
parties.

D Commitment of online phase. After finishing the calculation of the view in step
B, a Keccak component is required to commit to the online phase. This is the
com-onj in Figure 2.

E Commitment of offline phase. Compute com-offj = H(comj,1, · · · , comj,N ),
which needs a components of Keccak.



Guoxiao Liu, Keting Jia, Puwen Wei and Lei Ju 203

Step 3. Utilize Keccak to generate hon and hoff separately. Subsequently, a Keccak
component is needed to hash data, including commitment, public key, salt, and message,
and compute the challenge value.

In Step 2, we analyze the executing time of 5 parts, the computation time of LowMC in
Step B is less than other parts. Hence, we carry out the LowMC in offline phase and online
phase in the serial processing. Figure 8 illustrates the 5-stage pipeline structure of the
initial 3 instances. comi,j (C1) starts after the calculation of auxiliary information (the
first B1), com-on (D1) starts after the calculation of the view (the second B1). com-off
(E1) starts after the calculation of comi,j (C1). The time t refers to the time required for
the longest-running part.

A1 A2 A3

B1 B1 B2 B2 B3 B3

C1 C2 C3

D1 D2

t 2t 3t 4t 5t

A
B
C
D D3

time

part

0

E1 E2 E3E

Figure 8: Pipeline of the Step 2 of Picnic3.

Table 4 provides the count of symmetric primitive components utilized in each part,
offering a clear representation of the level of parallelism in each step. To maximize speed,
the quantity of Keccak instances is directly related to the number of parties. Despite the
low hardware utilization of an individual Keccak instance, the substantial number makes
it challenging to accommodate them in L5 level Picnic3 with over 4 parties. For the basic
pipeline construction, we give more optimation to speed up the implementation of Picnic3,
including the optimation of symmetry primitive, extending the pipeline construction with
Step 1 and Step 3, and the construction of signature as well.

Table 4: symmetric components used by different parts.
Step Design Part Symmetric Primitive Number
Step 1 Merkel Tree for seeds Keccak 2

Step 2

Tapes Keccak 4
LowMC-MPC LowMC-MPC 1

Commitment of states Keccak 4
Commitment of online phase Keccak 1
Commitment of offline phase Keccak 1

Step 3
Merkel Tree for hon Keccak 1

hoff Keccak 1
Challenge Keccak 1

4.2 Optimization of Symmetric Primitives
The value of t in Figure 8 depends on the longest-running design part. In our initial
implementation, the offline phase of LowMC-MPC consists of r or 2r cycles, while the
online phase consists of r clock cycles. Here, r represents the number of rounds in LowMC-
MPC, which is 4. Additionally, Keccak has 24 rounds, each requiring a cycle. This is
significantly more than LowMC’s cycles. According to Table 1, Keccak’s absorption or
squeezing capacity is limited. Hence, certain parts can be computed with one execution
of Keccak, such as the generation of random seed. Conversely, some parts require



204 High-Performance Hardware Implementation of MPCitH and Picnic3

multiple executions of Keccak. For instance, Tapes in the L5 security level require
two executions to generate the 255 × 2 × r = 2040-bit random number, Commitment
of online phase com-onj in L5 security level requires four executions to hash the views
with 255 + 255× r ×N = 4335-bit, and in L1 security level, two executions are necessary.
Therefore, we conduct an analysis of symmetric primitives as our initial step. Compared to
the round function of Keccak, LowMC requires a significant amount of computation and
has a longer critical path. Modifying the clock cycles of Keccak allows for consistency
across all pipeline modules. For example, we reduce the clock cycles of Keccak to
12 clock cycles during the Commitment of the online phase and perform the execution
twice, resulting in total clock cycles equivalent to that of Commitment of state. Although
hardware utilization has increased, pipeline performance has been effectively optimized.

Table 5 present the critical paths and hardware utilization of the Keccak and LowMC
on the Kintex-7 platform. Moreover, as the critical path decreases, the hardware utilization
gradually increases, which puts a limit on the efficient implementation of Picnic3 on the
FPGA platform.

Table 5: Hardware utilization and critical path of symmetric primitives. LowMC-MPC-o
denotes optimization of LowMC-MPC in Subsection 4.1.

Design Part LUTs % FFs % Clock Cycles Critical Path
Keccak-1 3467 1.16% 1606 0.27% 24 2.392 ns
Keccak-2 6964 2.33% 1624 0.27% 12 3.956 ns
Keccak-3 11041 3.70% 1619 0.27% 8 4.897 ns
Keccak-4 13638 4.57% 1617 0.27% 6 6.475 ns
Keccak-6 20525 6.87% 1618 0.27% 4 9.018 ns

LowMC-MPC-L1 22580 7.56% 3076 0.52% 12 5.021 ns
LowMC-MPC-o-L1 28240 9.46% 3000 0.50% 8 5.422 ns
LowMC-MPC-L5 84712 28.37% 5912 0.99% 12 5.889 ns

In Section 3, we discuss the trade-off between hardware utilization and runtime for
LowMC-MPC, which is also observed in the implementation of Keccak. Furthermore,
besides the mentioned pipeline optimization in Figure 8, Step 1 and Step 3 can also be
optimized in a similar manner. Additionally, as the number of cycles in LowMC-MPC is
fewer than that of Keccak, the pipeline’s implementation of Keccak can also be reduced
to match the cycle count of LowMC-MPC. However, achieving this requires a carefully
chosen trade-off, and we provide optimized versions of Picnic-L1 in Section 5.

4.3 Extension of Multi-stage Pipeline
In Subsection 4.1, the pipeline construction only includes the operations in Step 2. We
can extend the pipeline construction to be compatible with the computation of Step 1 and
Step 3.

In Step 1 of Subsection 4.1, two independent Keccak components are used to drive
all the seeds, which are stored in BRAM. We first generate M instance seeds in Merkle tree
mode and then generate N parties’ seeds for all instances in the Merkel tree as well, which
is regarded as a big Merkel tree. We first generate all non-leaf nodes in the Merkle tree and
store them in BRAM, which is named Step 1′. For every instance, the second-to-last level
of the Merkle tree is obtained and used to produce the 4 parties’ seeds with one execution
of Keccak by 2 Keccak components. The parties’ seed generation of an instance is
added to the beginning of the pipeline of Step 2 in Figure 8.

In Step 3, the generation of the challenge requires the calculation of hoff and hon.
Because the computation of hoff and hon use two independent Keccak components. We
propose incorporating the calculation of hoff and hon from Step 3 into the pipeline of
Step 2 to reduce the running time. For hoff, we start the calculation of hoff after the



Guoxiao Liu, Keting Jia, Puwen Wei and Lei Ju 205

calculation of com-offj in pipeline, so there is no extra hoff computation time in Step
3. As for hon, since we have already computed the leaf nodes of the Merkel tree in Step
2, we can directly calculate the parent nodes of the Merkel tree leaf nodes during the
pipeline. Based on the structure of the binary tree, this optimization can approximately
halve the computation time required for hon. This optimization significantly reduces the
time required for generating challenges. It can be seen that the time complexity of hoff
is O(M) in Step 3 of the pipeline (see Subsection 4.1), where M represents the number
of instances. Once this step is incorporated into the pipeline of Step 2, the extra O(M)
computation time will be saved. We use Step 3′ to represent these optimized parts.

4.4 Optimization of Constructing Signature
We present an optimization for challenge generation. Reviewing the KKW protocol
Figure 2, we analyze the computation of hoff in more detail. By the computation in step
(b) in Commit, we know a commitment com-offj = H(comj,0, . . . , comj,i, . . . , comj,N ).
Since the commitment hoff is generated for all instances of com-offj , i.e.,

hoff = H(com-off0, . . . , com-offj , . . . , com-offN ).
In the meantime, it has been observed that com-offj are not sent to the verifier and

are instead calculated by the verifier. Hence, we propose an improved computation to
compute the hoff directly using comj,i as following,

hoff = H(com0,0, . . . , com0,N , . . . , comj,0, . . . , comj,N , . . . , comM,0, . . . , comM,N ). (1)

Lemma 1. For the KKW protocol, the computation of commitment hoff is instead with
Equation 1, which has the same security as the original computation in the KKW protocol
in Figure 2.

Here, we use the optimization implementation that can reduce O(M) executions of
the hash function Keccak, which is applicable to reduce the running time for software
implementation and hardware implementation.

5 Implementation
In this section, we present an FPGA implementation of Picnic3 on the Kintex-7 by
combining the optimizations discussed in Section 3 and Section 4. We first list the specific
components used by each module of Picnic3, and then we give the analysis of their
hardware usage and clock cycles.

5.1 Implementation of Picnic3
Initially, we develop a basic implementation of Picnic3 for security levels L1 and L5,
and subsequently design and realize two optimized versions. The primary focus of these
optimized versions lies in accelerating the operational speed of Keccak, utilizing additional
hardware resources to significantly enhance the computational performance of Picnic3.
Within this process, a delicate balance must be struck between boosting hardware operation
speed and optimizing the utilization of limited hardware resources, thereby guiding the
selection of the most appropriate optimization strategy.

For the L1 security level, we devise and implement three different hardware versions of
Picnic3. Among these, version 1 employs a Keccak operational cycle of 24 clock cycles;
version 2 reduces this to a Keccak operational cycle of 12 clock cycles; and for version
3, we further reduce the Keccak operation cycle to a mere 8 clock cycles. Due to the



206 High-Performance Hardware Implementation of MPCitH and Picnic3

Keccak used in version 3 having a cycle count of 8, we use the 8-cycle LowMC-MPC-o
to fully maximize the performance of the pipeline. Additionally, it is important to note
that both version 2 and version 3 utilize two Keccak in the commitment of the online
phase. This is because the use of K-4 and K-6 results in longer critical paths (see Table 5),
consequently reducing the performance of the entire hardware implementation.

For the L5 security level, we first implemented one hardware version of Picnic3,
namely version 1, which also incorporates a Keccak operational cycle of 24 clock cycles.
In Table 6, Tapes we use 3 K-2 and one K-1, because the N -th participant only needs to
generate λα instead of λα,β . Commitment of state requires 3 K-1 and one K-2, because
the Nth party needs to make a commitment to the additional λα,β . Commitment of online
phase should use K-4, but since the critical path of K-4 is longer than LowMC-MPC (see
Table 5), thus we use two K-2. The L5 security level is difficult to design versions 2 and
3 like L1, because the critical path of Keccak with a clock cycle number less than 8 is
longer than that of LowMC-MPC. In Table 8, Step 1′ has more clock cycles than Step 2,
so we set version 2, using K-2 in Merkel Tree for seeds & Seeds (see Table 6).

Table 6: Symmetric primitive components in Picnic3. K-1 denotes Keccak-1, K-2
denotes Keccak-2, and K-3 denotes Keccak-3. LowMC-MPC-o denotes optimization of
LowMC-MPC.

Design Part Symmetric Primitive
Version 1 Version 2 Version 3

L1

Merkel Tree for seeds & Seeds 2×K-1 2×K-2 2×K-3
Tapes 4×K-1 4×K-2 4×K-3

LowMC-MPC LowMC-MPC LowMC-MPC LowMC-MPC-o
Commitment of state 4×K-1 4×K-2 4×K-3

Commitment of online phase K-2 2×K-2 2×K-3
Commitment of offline phase K-1 K-2 K-3

Merkel Tree for hon K-1 K-2 K-3
hoff K-1 K-2 K-3

Challenge K-1 K-1 K-1

L5

Merkel Tree for seeds & Seeds 2×K-1 2×K-2 -
Tapes 3×K-2 + K-1 3×K-2 + K-1 -

LowMC-MPC LowMC-MPC LowMC-MPC -
Commitment of state 3×K-1 + K-2 3×K-1 + K-2 -

Commitment of online phase 2×K-2 2×K-2 -
Commitment of offline phase K-2 K-2 -

Merkel Tree for hon K-2 K-2 -
hoff K-2 K-2 -

Challenge K-1 K-1 -

Hardware Utilization. Table 7 displays the resource utilization of our implemented
Picnic3. Version 2 and version 3 of Picnic3-L1 require 1.67 times and 2.41 times more
resources compared to version 1, respectively. The resource occupancy rate of version 1 of
Picnic3-L5 is already approaching 70%. Consequently, it is challenging to optimize the L5
security level by reducing the Keccak cycle. We emphasize that Picnic3-L1 of version 1
can be deployed on Artix. Artix’s hardware volume is 1344600 LUTs and 269200 FFs.
Clock Cycle. Table 8 presents the number of clock cycles necessary for each part within
our Picnic3 implementation. Except for LowMC-MPC, the clock cycles of the other parts
depend on the Keccak function it invokes. Our implementation of Keccak requires
24 clock cycles, while the optimized L1 version takes 8 cycles. The Pipeline in the table
refers to the time required for the pipeline to calculate an instance. In Table 4, Step 1′ is
the construction of the Merkel Tree of the seed, Step 2 is the time for the pipeline of all
instances, and Step 3′ is the total cycle of calculating hoff, hon and challenge generation.
It is evident that Step 2 in Table 8 exceeds 24×M . This is due to the additional control



Guoxiao Liu, Keting Jia, Puwen Wei and Lei Ju 207

Table 7: Implementation of each version of Picnic3 under different security levels.
Scheme Version LUTs % FFs % BRAMs %

XC7K480T
Picnic3-L1-Sign 1 82789 27.74% 38554 6.46% 65.5 6.86%
Picnic3-L1-Sign 2 134964 45.18% 42556 7.13% 65.5 6.86%
Picnic3-L1-Sign 3 183012 61.29% 42783 7.17% 65.5 6.86%
Picnic3-L1-Verify 1 97199 32.53% 40369 6.76% 65.5 6.86%
Picnic3-L5-Sign 1 190469 63.79% 65551 11.32% 159.5 16.70%
Picnic3-L5-Sign 2 198186 66.37% 65594 10.98% 159.5 16.70%
Picnic3-L5-Verify 1 201441 67.48% 59348 9.93% 159.5 16.70%

XC7K325T
Picnic3-L1-Sign 3 183012 89.80% 42783 10.50% 65.5 14.72%
Picnic3-L5-Sign 2 198186 97.25% 65594 16.09% 159.5 35.84%

XC7A200T
Picnic3-L1-Sign 1 82826 61.53% 38554 14.82% 65.5 17.95%
Picnic3-L1-Sign 2 135001 100.30% 42556 16.36% 65.5 17.95%

cycles required by Keccak, as well as the need for additional cycles to complete the data
storage. It is noted that our cycle analysis does not account for data transmission time.
For signing batches of messages, we could build a pipeline with Step 1′ to 3′, in which
the clock cycle of the throughput is the clock cycle of Step 2. However, as the Keccaks
of Step 1′ and Step 3′ also run during Step 2, the addition of extra Keccaks becomes
necessary to fulfill this objective. Additionally, in order to sign batch messages, extra
BRAM is required, as the data stored in BRAM, such as the seed, needs to be signed after
the challenge selection is completed.

Table 8: Clock cycles analysis of Picnic3.

Design part Picnic3-L1 Picnic3-L1 Picnic3-L1 Picnic3-L5 Picnic3-L5
Version 1 Version 2 Version 3 Version 1 Version 2

LowMC 12 12 8 12 12
Pipeline 24 12 8 24 24
Step 1′ 6293 3497 2798 12418 6898
Step 2 5664 3370 2836 10943 10557
Step 3′ 3872 2556 2649 7363 7337

Picnic3 utilizes two Merkle Trees. In the verification process, generating the Seeds from
the root node or constructing hoff from the leaf nodes is unnecessary. Consequently, the
verification requires less time compared to the signing process. Given the non-deterministic
tree construction and associated challenges, only the signature timing is provided here.
Table 9 illustrates the running time of Picnic3 for signing on software and hardware. The
table showcases the running time comparison between software and FPGA implementations
for different versions of Picnic3 at various security levels.

Higher versions of Picnic3 generally involve fewer clock cycles. The AVX2 software
implementation has a running time of 5.17 ms for Picnic3-L1. On the other hand,
the FPGA implementation achieves a remarkable speedup, completing the task in only
0.079 ms. This corresponds to a significant performance increase, with version 1 being
nearly 65 times faster, version 2 being nearly 110 times faster and version 3 being 112
times faster. The time difference between version 2 and version 3 is very small, but the
hardware of version 2 has obvious advantages. Version 3 has less optimization because
the storage data and the control logic of LowMC-MPC cannot reach 8 cycles at this time.
We present three scheme versions with varying speed and hardware requirements. This
trade-off in implementation offers flexibility for different purposes. As another example,



208 High-Performance Hardware Implementation of MPCitH and Picnic3

for the Picnic3-L5 scheme, the software implementation takes 18.15 ms, while the FPGA
implementation completes the task in 0.181 and 0.146 ms, making it approximately 100 and
124 times faster. We compare the performance of the software implementation in Table 9,
which utilizes AVX2 instruction set acceleration. We observed a significant improvement
in the performance of our implemented Picnic3 with 4 parties compared to Picnic2.
However, it is important to note that implementing 4 parties in Picnic3 results in an
increase in the signature size (see Table 2).

These results underscore the advantages of FPGA over software implementation,
particularly the significantly improved execution time and performance. FPGA provides a
highly parallelized hardware architecture, enabling efficient execution of complex algorithms
with reduced latency.

Table 9: Running time of software (used AVX2 from [KZ20]) and FPGA. This table shows
the best performing implementation, the performance of other FPGAs is in Table 10.

Scheme N Version Clock Cycle Frequency Platform Sign time
ns ms

Picnic3-L1 16 - - - AVX2 5.17
Picnic3-L1 4 1 15829 5.030 XC7K480T-3 0.079
Picnic3-L1 4 2 9423 5.019 XC7K480T-3 0.047
Picnic3-L1 4 3 8283 5.580 XC7K480T-3 0.046
Picnic3-L5 16 - - - AVX2 18.15
Picnic3-L5 4 1 30724 5.893 XC7K480T-3 0.181
Picnic3-L5 4 2 24792 5.893 XC7K480T-3 0.146

5.2 Comparison to FPGA Implementations of Other Schemes
This section compares our work with other existing FPGA implementations of signature
schemes, specifically focusing on the Sphincs and Picnic1 schemes. It is important to
note that Sphincs is based on hash functions, while Picnic1 is based on block ciphers.
Both of these schemes rely on symmetric primitives. In contrast, our work aligns with
the security assumptions of symmetric primitives and is considerably faster than other
schemes.

Table 10 provides a comparison of our work with these existing implementations. The
table includes various parameters such as maximum frequency, number of LUTs, FFs,
DSPs, BRAMs, cycles, and execution time. For a more complete comparison, we provide
area-time (AT) product, and we also provide results of Artix-7 and different Kintex-7.
Our implementation excels, especially at the L1 security level, demonstrating superior
performance. It not only achieves fast signing speed but also boasts the smallest AT.
Furthermore, our implementation surpasses Picnic1 and Sphincs in terms of speed at both
security levels, with smaller AT values. Specifically, at the L1 level, our implementation is
21 times faster than Sphincs and 5 times faster than Picnic1. At the L5 level, it is 17
times faster than Sphincs and 8 times faster than Picnic1.

6 Conclusion and Future Work
In this paper, we study the FPGA implementation of the MPCitH-PP protocol, along with
its related signature schemes. Our findings indicate that it is indeed viable to deploy the
MPCitH-PP protocol, involving more than 3 parties (e.g., LowMC-MPC for 16 parties),
on resource-constrained FPGAs. Expanding on this discovery, we have developed a 4-
party implementation of the Picnic3 digital signature scheme, utilizing various hardware
optimizations. As a result, the FPGA implementation of Picnic3 offers significantly
improved performance compared to previous works.



Guoxiao Liu, Keting Jia, Puwen Wei and Lei Ju 209

Ta
bl

e
10

:
C
om

pa
ris

on
to

FP
G
A

im
pl
em

en
ta
tio

ns
of

ot
he

r
sig

na
tu
re

sc
he

m
es

(m
od

ifi
ed

fr
om

[B
N
G
22
]).

AT
de

no
te
s
ar
ea
-t
im

e
pr
od

uc
t,

w
he

re
AT

=
(D

SP
×

10
0

+
BR

A
M
×

19
6

+
LU

T
/4

)×
Si

gn
(s

)[N
K
eS

K
+
22
,X

il1
6]
.
A
t
ea
ch

se
cu
rit

y
le
ve
l,
th
e
di
gi
ta
ls

ig
na

tu
re
s
ab

ov
e
th
e
do

tt
ed

lin
e
ar
e

ba
se
d
on

la
tt
ic
e,

an
d
th
e
di
gi
ta
ls

ig
na

tu
re
s
be

lo
w

th
e
do

tt
ed

lin
e
ar
e
no

t
ba

se
d
on

la
tt
ic
e.

D
es

ig
n

A
lg

or
it

hm
pk

+
si

g.
M

ax
Fr

eq
.

L
U

T
s

F
Fs

D
SP

s
B

R
A

M
s

Si
gn

A
T

Fa
m

ily
(K

B
)

(M
H

z)
cy

cl
es

µ
s

Se
cu

ri
ty

L
ev

el
1

[B
N

G
22

]
FA

LC
O

N
-5

12
1.

5
14

2
14

50
0

72
87

4
2

-
-

-
A

7
[B

N
G

22
]

FA
LC

O
N

-5
12

1.
5

31
4

14
32

7
73

14
4

2
-

-
-

V
U

S+
[A

LC
Z2

0]
Sp

hi
nc

s+
-1

28
s-

si
m

pl
e

7.
9

25
0

&
50

0
48

23
1

72
51

4
0

11
.5

-
12

40
0

17
7.

5
A

7
[A

LC
Z2

0]
Sp

hi
nc

s+
-1

28
s-

ro
bu

st
7.

9
25

0
&

50
0

49
14

6
73

06
9

0
15

.5
-

21
10

0
32

3.
3

A
7

[A
LC

Z2
0]

Sp
hi

nc
s+

-1
28

f-s
im

pl
e

17
.1

25
0

&
50

0
47

99
1

72
50

5
1

11
.5

-
10

10
14

.5
A

7
[A

LC
Z2

0]
Sp

hi
nc

s+
-1

28
f-r

ob
us

t
17

.1
25

0
&

50
0

48
93

0
72

50
5

0
15

.5
-

16
40

25
.0

A
7

[K
R

R
+

20
]

P
ic

ni
c1

-L
1-

F
S

34
12

5
90

53
5

23
51

6
0

52
.5

31
30

0
25

0
8.

2
K

7
th

is
pa

p
er

P
ic

ni
c3

-L
1

19
.1

19
9

82
78

9
38

55
4

0
65

.5
15

82
9

80
2.

7
X

C
7K

48
0T

-3
th

is
pa

p
er

P
ic

ni
c3

-L
1

19
.1

19
9

13
49

64
42

55
6

0
65

.5
94

23
47

2.
2

X
C

7K
48

0T
-3

th
is

pa
p

er
P

ic
ni

c3
-L

1
19

.1
17

9
18

30
12

42
78

3
0

65
.5

82
83

46
2.

7
X

C
7K

48
0T

-3
th

is
pa

p
er

P
ic

ni
c3

-L
1

19
.1

17
8/

16
8

82
78

9
38

55
4

0
65

.5
15

82
9

88
/9

3
3.

0/
3.

1
X

C
7K

32
5T

-3
/2

th
is

pa
p

er
P

ic
ni

c3
-L

1
19

.1
17

8/
16

5
13

49
64

42
55

6
0

65
.5

94
23

52
/5

7
2.

4/
2.

7
X

C
7K

32
5T

-3
/2

th
is

pa
p

er
P

ic
ni

c3
-L

1
19

.1
15

3/
14

4
18

30
12

42
78

3
0

65
.5

82
83

53
/5

7
3.

2/
3.

3
X

C
7K

32
5T

-3
/2

th
is

pa
p

er
P

ic
ni

c3
-L

1
19

.1
13

6
82

82
6

37
74

1
0

65
.5

30
72

4
11

7
3.

9
X

C
7A

20
0T

-3
Se

cu
ri

ty
L

ev
el

5
[B

N
G

22
]

FA
LC

O
N

-1
02

4
3.

1
14

2
13

95
6

67
37

1
2

-
-

-
A

7
[B

N
G

22
]

FA
LC

O
N

-1
02

4
3.

1
31

4
13

72
9

67
71

4
2

-
-

-
V

U
S+

[B
N

G
22

]
D

ili
th

iu
m

-V
7.

2
11

6
53

18
7

28
31

8
16

29
24

35
8/

55
07

0
21

0/
47

5
4.

3/
9.

8
A

7
[L

SG
21

]
D

ili
th

iu
m

-V
7.

2
14

0
44

65
3

13
81

4
45

31
70

37
6/

14
59

12
50

3/
10

42
10

.9
/2

2.
7

A
7

[B
N

G
22

]
D

ili
th

iu
m

-V
7.

2
17

3
54

46
8

28
63

9
16

29
24

35
8/

55
07

0
14

1/
31

8
2.

9/
6.

6
K

7
[B

N
G

22
]

D
ili

th
iu

m
-V

7.
2

25
6

53
90

7
28

43
5

16
29

24
35

8/
55

07
0

95
/2

15
2.

0/
4.

5
V

U
S+

[A
M

J+
21

]
D

ili
th

iu
m

-V
7.

2
20

0
19

10
0

93
00

4
24

68
50

0/
-

34
2/

-
3.

4/
-

ZU
S+

[A
LC

Z2
0]

Sp
hi

nc
s+

-2
56

s-
si

m
pl

e
29

.8
25

0
&

50
0

51
13

0
74

57
6

1
22

.5
-

19
,3

00
33

3.
7

A
7

[A
LC

Z2
0]

Sp
hi

nc
s+

-2
56

s-
ro

bu
st

29
.8

25
0

&
50

0
50

00
75

73
8

1
30

-
36

,1
00

26
1.

0
A

7
[A

LC
Z2

0]
Sp

hi
nc

s+
-2

56
f-s

im
pl

e
49

.9
25

0
&

50
0

51
00

9
74

53
9

1
22

.5
-

2,
52

0
43

.5
A

7
[A

LC
Z2

0]
Sp

hi
nc

s+
-2

56
f-r

ob
us

t
49

.9
25

0
&

50
0

50
34

1
75

66
4

1
30

-
4,

68
0

86
.9

A
7

[K
R

R
+

20
]

P
ic

ni
c1

-L
5-

F
S

13
3

12
5

16
75

30
33

16
4

0
99

15
45

00
12

36
75

.8
K

7
th

is
pa

p
er

P
ic

ni
c3

-L
5

73
.9

17
0

19
04

69
65

55
1

0
15

9.
5

30
72

4
18

1
14

.3
X

C
7K

48
0T

-3
th

is
pa

p
er

P
ic

ni
c3

-L
5

73
.9

17
0

19
81

86
65

59
4

0
15

9.
5

24
79

2
14

6
11

.8
X

C
7K

48
0T

-3
th

is
pa

p
er

P
ic

ni
c3

-L
5

73
.9

15
7/

14
7

19
04

69
65

55
1

0
15

9.
5

30
72

4
19

6/
20

9
15

.5
/1

6.
5

X
C

7K
32

5T
-3

/2
th

is
pa

p
er

P
ic

ni
c3

-L
5

73
.9

15
7/

14
7

19
81

86
65

59
4

0
15

9.
5

24
79

2
15

8/
16

8
12

.8
/1

3.
6

X
C

7K
32

5T
-3

/2



210 High-Performance Hardware Implementation of MPCitH and Picnic3

In Section 3, we discussed the performance of MPCitH-PP on Boolean circuits with
some optimization to reduce the hardware area of the block cipher by O(2N ·CN+2CL) unit.
The description of Section 3 is based on a general circuit, not LowMC. This optimization
is suitable for the block cipher with invertible linear operation in the KKW protocol.
However, the optimization for the hardware resources of the linear layer, which depends on
specific proof strategies2, is more subtle and cannot be applied directly to other MPCitH
proofs.

The signature [KZ20, dSGDMOS20, BdSGK+21, MGH+23, AMGH+23, KHS+22]
structures based on MPCitH are similar, where the corresponding seeds are first generated
through Merkel tree, and then random tapes are generated using the seeds. Moreover,
commitments need to be made for the views of MPCitH. The optimizations constructed
in Section 4 and Section 5 are fully applicable to these structures, so our implementation
has some inspiration for this type of algorithm.

Although Picnic did not eventually become a standard, our work provides the possibility
for FPGA implementation of the more parties MPCitH protocol. In the campaign for the
new additional round at NIST [Nat23], there are 40 submitted signatures, 9 of which are
based on MPCitH (or its variants) [AMGH+23, KHS+22, BBdSG+23, BFR23, ABB+23,
BKPV23]. In order to further promote this research, future work may focus on the
implementation of the most advanced MPCitH protocols at present. This paper primarily
focuses on the high-performance implementation of the MPCitH protocol. Therefore, it does
not address the side-channel protection [SBWE20, ABE+21] of the protocol. However,
it is important to note that future work involves implementing a side-channel FPGA
implementation for the MPCitH protocol.

Acknowledgements
The authors sincerely thank the anonymous reviewers of CHES 2024 for providing valuable
comments to help us improve the overall quality of the paper. The authors would like to
thank Weijia Wang for their helpful comments.

This work is supported by the National Key Research and Development Program
of China (Grant No. 2018YFA0704701 and Grant No. 2022YFB2701700), the National
Natural Science Foundation of China (Nos. 62072270 and 62372272), Department of Science
& Technology of Shandong Province (Grant No. SYS202201), Quan Cheng Laboratory
(Grant No. QCLZD202302), and Taishan Scholars Program.

References
[AASA+19] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David A. Cooper,

Quynh Dang, Yi-Kai Liu, Carl A. Miller, Dustin Moody, René Peralta,
Ray A. Perlner, Angela Robinson, and Daniel Smith-Tone. Status report
on the first round of the NIST post-quantum cryptography standardization
process. 2019.

[ABB+23] Gora Adj, Stefano Barbero, Emanuele Bellini, Andre Esser, Luis Rivera-
Zamarripa, Carlo Sanna, Javier A. Verbel, and Floyd Zweydinger. Mirith:
Efficient post-quantum signatures from minrank in the head. IACR Cryptol.
ePrint Arch., page 1666, 2023.

[ABE+21] Diego F. Aranha, Sebastian Berndt, Thomas Eisenbarth, Okan Seker,
Akira Takahashi, Luca Wilke, and Greg Zaverucha. Side-Channel Protec-

2Currently, some MPCitH-PP is no longer based on the KKW protocol, but on the BN++ proto-
col [MGH+23, KHS+22, AMGH+23].



Guoxiao Liu, Keting Jia, Puwen Wei and Lei Ju 211

tions for Picnic Signatures. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2021(4):239–282, 2021.

[ALCZ20] Dorian Amiet, Lukas Leuenberger, Andreas Curiger, and Paul Zbinden.
Fpga-based sphincs+ implementations: Mind the glitch. In 2020 23rd
Euromicro Conference on Digital System Design (DSD), pages 229–237,
2020.

[AMGH+23] Carlos Aguilar-Melchor, Nicolas Gama, James Howe, Andreas Hülsing,
David Joseph, and Dongze Yue. The Return of the SDitH. In Carmit
Hazay and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT
2023, pages 564–596, Cham, 2023. Springer Nature Switzerland.

[AMJ+21] Aikata Aikata, Ahmet Can Mert, David Jacquemin, Amitabh Das, Donald
Matthews, Santosh Ghosh, and Sujoy Sinha Roy. A unified cryptoprocessor
for lattice-based signature and key-exchange. Cryptology ePrint Archive,
Paper 2021/1461, 2021. https://eprint.iacr.org/2021/1461.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. In Elisabeth Os-
wald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT
2015, pages 430–454, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[BBdSG+23] Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael
Klooß, Emmanuela Orsini, Lawrence Roy, and Peter Scholl. Publicly
verifiable zero-knowledge and post-quantum signatures from vole-in-the-
head. In Helena Handschuh and Anna Lysyanskaya, editors, Advances
in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology
Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24,
2023, Proceedings, Part V, volume 14085 of Lecture Notes in Computer
Science, pages 581–615. Springer, 2023.

[BdSGK+21] Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales, Em-
manuela Orsini, Peter Scholl, and Greg Zaverucha. Banquet: Short and
fast signatures from aes. In Juan A. Garay, editor, Public-Key Cryptog-
raphy – PKC 2021, pages 266–297, Cham, 2021. Springer International
Publishing.

[BFR23] Ryad Benadjila, Thibauld Feneuil, and Matthieu Rivain. Mq on my
mind: Post-quantum signatures from the non-structured multivariate
quadratic problem. Cryptology ePrint Archive, Paper 2023/1719, 2023.
https://eprint.iacr.org/2023/1719.

[BKPV23] Luk Bettale, Delaram Kahrobaei, Ludovic Perret, and Javier Verbel.
Biscuit: New mpcith signature scheme from structured multivariate poly-
nomials. Cryptology ePrint Archive, Paper 2023/1760, 2023. https:
//eprint.iacr.org/2023/1760.

[BN20] Carsten Baum and Ariel Nof. Concretely-Efficient Zero-Knowledge Ar-
guments for Arithmetic Circuits and Their Application to Lattice-Based
Cryptography. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden,
and Vassilis Zikas, editors, Public-Key Cryptography – PKC 2020, pages
495–526, Cham, 2020. Springer International Publishing.

[BNG22] Luke Beckwith, Duc Tri Nguyen, and Kris Gaj. High-Performance Hard-
ware Implementation of Lattice-Based Digital Signatures. IACR Cryptol.
ePrint Arch., page 217, 2022.

https://eprint.iacr.org/2021/1461
https://eprint.iacr.org/2023/1719
https://eprint.iacr.org/2023/1760
https://eprint.iacr.org/2023/1760


212 High-Performance Hardware Implementation of MPCitH and Picnic3

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha.
Post-quantum zero-knowledge and signatures from symmetric-key primi-
tives. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’17, page 1825–1842, New York, NY,
USA, 2017. Association for Computing Machinery.

[CDG+20] Melissa Chase, David Derler, Steven Goldfeder, Daniel Kales, Jonathan
Katz, Vladimir Kolesnikov, Claudio Orlandi, Sebastian Ramacher, Chris-
tian Rechberger, Daniel Slamanig, Xiao Wang, and Greg Zaverucha. Picnic:
A Family of Post-Quantum Secure Digital Signature Algorithms, 2020.
https://microsoft.github.io/Picnic/.

[Din21a] Itai Dinur. Cryptanalytic Applications of the Polynomial Method for
Solving Multivariate Equation Systems over GF(2). In Anne Canteaut
and François-Xavier Standaert, editors, Advances in Cryptology - EURO-
CRYPT 2021 - 40th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21,
2021, Proceedings, Part I, volume 12696 of Lecture Notes in Computer
Science, pages 374–403. Springer, 2021.

[Din21b] Itai Dinur. Improved Algorithms for Solving Polynomial Systems over
GF(2) by Multiple Parity-Counting. In Dániel Marx, editor, Proceedings
of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021,
Virtual Conference, January 10 - 13, 2021, pages 2550–2564. SIAM, 2021.

[dSGDMOS20] Cyprien Delpech de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini,
and Nigel P. Smart. BBQ: Using AES in Picnic Signatures. In Kenneth G.
Paterson and Douglas Stebila, editors, Selected Areas in Cryptography –
SAC 2019, pages 669–692, Cham, 2020. Springer International Publishing.

[FFD+18] Ahmed Ferozpuri, Farnoud Farahmand, Viet Ba Dang, M. Sharif, Jens-
Peter Kaps, and Kris Gaj. Hardware API for Post-Quantum Public Key
Cryptosystems. 2018.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Proceedings on Advances
in Cryptology—CRYPTO ’86, page 186–194, Berlin, Heidelberg, 1987.
Springer-Verlag.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster
Zero-Knowledge for boolean circuits. In 25th USENIX Security Sympo-
sium (USENIX Security 16), pages 1069–1083, Austin, TX, August 2016.
USENIX Association.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing, STOC ’96, page 212–219, New York, NY, USA, 1996.
Association for Computing Machinery.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
Knowledge from Secure Multiparty Computation. In Proceedings of the
Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC
’07, page 21–30, New York, NY, USA, 2007. Association for Computing
Machinery.

https://microsoft.github.io/Picnic/


Guoxiao Liu, Keting Jia, Puwen Wei and Lei Ju 213

[KHS+22] Seongkwang Kim, Jincheol Ha, Mincheol Son, ByeongHak Lee, Dukjae
Moon, Joohee Lee, Sangyup Lee, Jihoon Kwon, Jihoon Cho, Hyojin Yoon,
and Jooyoung Lee. AIM: Symmetric Primitive for Shorter Signatures with
Stronger Security. IACR Cryptol. ePrint Arch., page 1387, 2022.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved Non-
Interactive Zero Knowledge with Applications to Post-Quantum Signatures.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, page 525–537, New York, NY, USA,
2018. Association for Computing Machinery.

[KRR+20] Daniel Kales, Sebastian Ramacher, Christian Rechberger, Roman Walch,
and Mario Werner. Efficient FPGA Implementations of LowMC and Picnic.
In Stanislaw Jarecki, editor, Topics in Cryptology – CT-RSA 2020, pages
417–441, Cham, 2020. Springer International Publishing.

[KZ20] Daniel Kales and Greg Zaverucha. Improving the Performance of the
Picnic Signature Scheme. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2020(4):154–188, Aug. 2020.

[LMSI22] Fukang Liu, Willi Meier, Santanu Sarkar, and Takanori Isobe. New low-
memory algebraic attacks on lowmc in the picnic setting. IACR Trans.
Symmetric Cryptol., 2022(3):102–122, 2022.

[LSG21] Georg Land, Pascal Sasdrich, and Tim Güneysu. A hard crystal - imple-
menting dilithium on reconfigurable hardware. Cryptology ePrint Archive,
Paper 2021/355, 2021. https://eprint.iacr.org/2021/355.

[MGH+23] Carlos Aguilar Melchor, Nicolas Gama, James Howe, Andreas Hülsing,
David Joseph, and Dongze Yue. The return of the sdith. In Carmit Hazay
and Martijn Stam, editors, Advances in Cryptology - EUROCRYPT 2023
- 42nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings,
Part V, volume 14008 of Lecture Notes in Computer Science, pages 564–596.
Springer, 2023.

[MR18] Payman Mohassel and Peter Rindal. ABY3: A Mixed Protocol Framework
for Machine Learning. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’18, page 35–52, New
York, NY, USA, 2018. Association for Computing Machinery.

[MZ17] Payman Mohassel and Yupeng Zhang. SecureML: A System for Scalable
Privacy-Preserving Machine Learning. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 19–38, 2017.

[Nat20] National Institute of Standards and Technology. Status Report on the
Second Round of the NIST Post-Quantum Cryptography Standardization
Process, 2020. https://doi.org/10.6028/NIST.IR.8309.

[Nat23] National Institute of Standards and Technology. Post-Quantum Cryp-
tography: Digital Signature Schemes, 2023. https://csrc.nist.gov/
projects/pqc-dig-sig.

[NKeSK+22] Ziying Ni, Ayesha Khalid, Dur e Shahwar Kundi, Máire O’Neill, and
Weiqiang Liu. HPKA: A High-Performance CRYSTALS-Kyber Acceler-
ator Exploring Efficient Pipelining. Cryptology ePrint Archive, Paper
2022/1093, 2022. https://eprint.iacr.org/2022/1093.

https://eprint.iacr.org/2021/355
https://doi.org/10.6028/NIST.IR.8309
https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/projects/pqc-dig-sig
https://eprint.iacr.org/2022/1093


214 High-Performance Hardware Implementation of MPCitH and Picnic3

[Pic20] Picnic Design Team. An implementation of the LowMC block cipher
family, 2020. https://github.com/microsoft/Picnic/blob/master/
spec/spec-v3.0.pdf.

[SBWE20] Okan Seker, Sebastian Berndt, Luca Wilke, and Thomas Eisenbarth. Sni-
in-the-head: Protecting mpc-in-the-head protocols against side-channel
analysis. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, CCS ’20: 2020 ACM SIGSAC Conference on Computer
and Communications Security, Virtual Event, USA, November 9-13, 2020,
pages 1033–1049. ACM, 2020.

[SCW23] Yimeng Sun, Jiamin Cui, and Meiqin Wang. Improved attacks on lowmc
with algebraic techniques. Cryptology ePrint Archive, Paper 2023/1718,
2023. https://eprint.iacr.org/2023/1718.

[Sho94] P. W. Shor. Algorithms for Quantum Computation: Discrete Logarithms
and Factoring. In Proceedings of the 35th Annual Symposium on Foun-
dations of Computer Science, SFCS ’94, page 124–134, USA, 1994. IEEE
Computer Society.

[Wal19] Roman Walch. Design and Implementation of a Picnic Coprocessor. Mas-
ter’s thesis, Graz University of Technology, 2019.

[Xil16] Xilinx. 7 series FPGAs configurable logic block: User guide, 2016.

[ZWX+22] Handong Zhang, Puwen Wei, Haiyang Xue, Yi Deng, Jinsong Li, Wei Wang,
and Guoxiao Liu. Resumable Zero-Knowledge for Circuits from Symmetric
Key Primitives. In Khoa Nguyen, Guomin Yang, Fuchun Guo, and Willy
Susilo, editors, Information Security and Privacy - 27th Australasian
Conference, ACISP 2022, Wollongong, NSW, Australia, November 28-30,
2022, Proceedings, volume 13494 of Lecture Notes in Computer Science,
pages 375–398. Springer, 2022.

https://github.com/microsoft/Picnic/blob/master/spec/spec-v3.0.pdf
https://github.com/microsoft/Picnic/blob/master/spec/spec-v3.0.pdf
https://eprint.iacr.org/2023/1718

	Introduction
	Contributions
	Related Work

	Preliminaries
	Symmetric Primitives
	MPC-in-the-head with Preprocessing
	Picnic and Its Parameters
	Test Platform

	Optimizing the Implementation of MPCitH-PP
	Optimizing the Implementation of Picnic3
	Multi-stage Pipeline and Parallel Implementation of Picnic3
	Optimization of Symmetric Primitives
	Extension of Multi-stage Pipeline
	Optimization of Constructing Signature

	Implementation
	Implementation of Picnic3
	Comparison to FPGA Implementations of Other Schemes

	Conclusion and Future Work

