
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 2, pp. 252–275. DOI:10.46586/tches.v2024.i2.252-275

Nibbling MAYO: Optimized Implementations for
AVX2 and Cortex-M4

Ward Beullens1, Fabio Campos2, Sof́ıa Celi3, Basil Hess1 and Matthias J.
Kannwischer4

1 IBM Research Europe, Zurich, Switzerland
2 RheinMain University of Applied Sciences, Wiesbaden, Germany

3 Brave Software, San Francisco, California
4 Quantum Safe Migration Center, Chelpis Quantum Tech, Taipei, Taiwan†

contact@pqmayo.org

Abstract. MAYO is a popular high-calorie condiment as well as an auspicious candidate
in the ongoing NIST competition for additional post-quantum signature schemes
achieving competitive signature and public key sizes. In this work, we present
high-speed implementations of MAYO using the AVX2 and Armv7E-M instruction
sets targeting recent x86 platforms and the Arm Cortex-M4. Moreover, the main
contribution of our work is showing that MAYO can be even faster when switching from
a bitsliced representation of keys to a nibble-sliced representation. While the bitsliced
representation was primarily motivated by faster arithmetic on microcontrollers, we
show that it is not necessary for achieving high performance on Cortex-M4. On
Cortex-M4, we instead propose to implement the large matrix multiplications of
MAYO using the Method of the Four Russians (M4R), which allows us to achieve
better performance than when using the bitsliced approach. This results in up to
21% faster signing. For AVX2, the change in representation allows us to implement
the arithmetic much faster using shuffle instructions. Signing takes up to 3.2× fewer
cycles and key generation and verification enjoy similar speedups. This shows that
MAYO is competitive with lattice-based signature schemes on x86 CPUs, and a factor
of 2-6 slower than lattice-based signature schemes on Cortex-M4 (which can still be
considered competitive).

Keywords: MAYO · Oil and Vinegar · Arm Cortex-M4 · AVX2 · NIST PQC

1 Introduction

Most public-key cryptographic algorithms that are deployed today are vulnerable to
efficient attacks from large-scale quantum computers. Due to this threat, it is important
to transition to quantum-safe alternatives. The US National Institute of Standards
and Technology (NIST) selected three quantum-safe digital signature algorithms for
standardization in 2022 [oST22]: Crystals-Dilithium [LDK+], FALCON [PFH+], and
SPHINCS+ [HBD+]. Additionally, NIST is running a process to standardize more quantum-
safe signature schemes. One of the most efficient schemes submitted to this process in
terms of communication size and speed is MAYO, a multivariate signature scheme.

MAYO [Beu22, BCC+23] is a variant of the Oil and Vinegar scheme (OV) [Pat95,
KPG99]. The Oil and Vinegar scheme is one of the oldest, and arguably the most studied
multivariate digital signature scheme. With small signature sizes, and fast signing and
verification, OV has withstood the test of time remarkably well since its invention in 1995.

†Part of this work was done while the author was at Academia Sinica.

Licensed under Creative Commons License CC-BY 4.0.

Received: 2023-10-15 Accepted: 2023-12-15 Published: 2024-03-12

https://doi.org/10.46586/tches.v2024.i2.252-275
mailto:contact@pqmayo.org
http://creativecommons.org/licenses/by/4.0/


Ward Beullens, Fabio Campos, Sof́ıa Celi, Basil Hess, and Matthias J. Kannwischer 253

Its major drawback is its relatively large key sizes. The MAYO variant of the scheme solves
the problem of large key sizes while preserving very good computational efficiency and
signature size, which makes it a promising candidate in the latest NIST standardization
project.

In this work, we focus on implementing the MAYO signature scheme in a high-speed
manner. We target both AVX2 and Arm platforms. We follow the specification of the
MAYO scheme as given by [BCC+23], but we propose a change to this specification that
results in significant implementation speed-ups. The results of our speed-ups can be found
in section 6, where we also compare our cycle counts with those of other NIST PQC
algorithms.

Contributions. The contribution of our work is fivefold:

• In section 4, we present the first high-speed implementations of the MAYO signature
scheme as submitted to the “on-ramp” additional call for quantum-safe signature
algorithms by NIST for standardization [NIS22]. We target the AVX2 and the
Armv7E-M instruction sets, and present speed records on Intel Skylake, Intel Icelake,
and Arm Cortex-M4.

• In section 3, we present a constant-time Gaussian elimination procedure tuned for
the MAYO signature scheme with a methodology similar to that of [CKY21], but
adapted for non-square matrices.

• In section 5, we propose a change to the current MAYO specification [BCC+23, on
01/06/2023]: While the current version of MAYO uses a bitsliced representation for
public keys, private keys, and all outputs of the PRNG, we show that this choice
is not ideal. This choice was mainly motivated by platforms that achieve the best
performance with bitsliced field arithmetic, such as the Arm Cortex-M4. Platforms
for which better arithmetic exists (such as those implementing AVX2 or Arm Neon),
suffer with this choice. We instead propose using the nibble-sliced representation1,
which is commonly found in other multivariate cryptosystems such as OV [BCH+23].

• In section 5, we propose to use the Method of the Four Russians (M4R) [ADKF70,
AH74] for costly matrix multiplications within MAYO on the Cortex-M4. This
essentially trades field multiplications for table look-ups with the latter being much
cheaper on embedded platforms. These efficiency gains motivate our usage of M4R.
Note that this method is compatible with other multivariate cryptosystems, specially
those that use a nibble-sliced representation, such as OV [BCH+23]. However,
determining if OV implementations using M4R are superior is not obvious and left to
future work. Using M4R, we achieve modest speed-ups of up to 21% over the previous
implementations that use the bitsliced representation. However, M4R can only be
efficiently implemented if matrices are in nibble-sliced representation. On-the-fly
conversion outweighs the gains achieved.

• Using the nibble-sliced representation allows us to implement the F16 arithmetic
within MAYO using AVX2 shuffle instructions, which results in much better perfor-
mance. Fundamentally, this technique is also based on M4R. Using AVX2 shuffle
instructions for field multiplication has been common practice in multivariate cryp-
tography for many years [CCC+09, DCP+20, BCH+23]. However, unlike existing
approaches, we use both the high and the low nibbles of the lookup table AVX2
register, which doubles the number of multiplications per shuffle instruction. Com-
pared to the bitsliced implementation, the resulting nibble-sliced implementations of
MAYO uses up to 3.2× fewer cycles.

1The authors of [BCC+23] have agreed to incorporate these changes in the round-2 submission of their
specification.



254 Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-M4

Source code. The source code of the implementations described in this paper is available
under an Apache 2.0 license. The reference implementation and the AVX2 implemen-
tation are available at https://github.com/PQCMayo/MAYO-C. The Arm Cortex-M4
implementation is available at https://github.com/PQCMayo/MAYO-M4. The bitsliced
and nibble-sliced variants are available in separate branches.

Related work. Most prior work [KKS+21, CKY21, Pet13, FG18] on implementations of
multivariate signature schemes targets the Rainbow [DCK+21] cryptosystem, since it was
a finalist of the NIST Post-Quantum-Cryptography (PQC) standardization process [oST].
However, many of these techniques can be adapted to other OV-based schemes including
MAYO. In [Beu22], Beullens provides a preliminary implementation of MAYO. In [BCC+23],
the authors present an updated set of parameters and, accordingly, a reference software
implementation based on bitsliced arithmetic. In [GMSS23], the authors present the first
implementation of MAYO on Arm microcontrollers. They use a modified parameter set
to speed up the signing and verification processes, which is very close but not identical
to [BCC+23]. We vastly outperform these implementations. It is worth noting that two
implementations of MAYO on FPGA were recently proposed [SMA+23, HSMR23] (we
include some numbers of the latter in Table 6).

2 Preliminaries

In this section, we recall the MAYO signature scheme (subsection 2.1)2 and the Method of
the Four Russians (subsection 2.2).

Notation. If X is a finite set, we write x
$←− X to denote that x is assigned a value

chosen from X uniformly at random. If A is an algorithm, we write x← A(y) to denote
that x is assigned the output of running A on input y. If k is an integer, we denote
by [k] the set {0, . . . , k − 1}. We denote by {xi}i∈[k] a sequence of objects x0, . . . , xk−1
indexed by elements of [k]. We denote the base-2 logarithm by log, and we denote binomial
coefficients by

(
n
k

)
, i.e.,

(
n
k

)
= n!/k!(n− k)!. We use the standard Landau notation O(·)

for asymptotics.
We denote by Fq a finite field with q elements and by Fm×nq the set of (zero-indexed)

matrices over Fq with m rows and n columns. We denote by Ia ∈ Fqa×a the identity matrix
of size a-by-a. If A ∈ Fqm×n and b ∈ Fqm, we denote by A[i, j] the entry in the i-th row
and the j-th column of A, by A[:, i] ∈ Fqm the i-th column of A, and by A[i, :] ∈ Fqn

the i-th row of A. We denote by (A b) ∈ Fqm×(n+1) the matrix whose first n columns
are the columns of A, and whose last column is b. We say a matrix A ∈ Fqn×n is upper
triangular if A[i, j] = 0 for all 0 ≤ j < i < n.

2.1 MAYO

Both an Oil and Vinegar [KPG99, Pat97] and a MAYO public key represents a multivariate
quadratic map P : Fnq → Fmq consisting of m homogeneous quadratic polynomials in n
variables over a small finite field Fq. The secret key represents a linear subspace O ⊂ Fnq
of dimension o, on which P vanishes, i.e. P(o) = 0 for all vectors o ∈ O. In the case of
Oil and Vinegar, o = m, and P is used directly to verify if a signature s ∈ Fnq is valid for a
message m given that public key P: the signature is valid if P(s) = H(m), where H is a
salted hash function that outputs elements in Fmq . Knowledge of the secret space O allows
the signer to sample such signatures by solving a system of m linear equations.

2For an in-depth explanation, see [BCC+23, Chapter 1 & 2]

https://github.com/PQCMayo/MAYO-C
https://github.com/PQCMayo/MAYO-M4


Ward Beullens, Fabio Campos, Sof́ıa Celi, Basil Hess, and Matthias J. Kannwischer 255

MAYO is a variant of the Oil and Vinegar scheme, where P has the same structure
with the exception that the dimension of the space O on which P evaluates to zero is “too
small”, i.e., dim(O) = o, with o less than m. Reducing the dimension of O drastically
shrinks the key sizes. However, it also means that the OV signing algorithm does not work
anymore. To solve this problem, P is not used directly in the signature and verification
procedure. Instead, the verifier “whips up” P into a k-fold larger map P? : Fknq → Fmq ,
with m polynomials in k sets of n variables (k is a parameter of the scheme). Concretely,
P? is defined as:

P?(x1, . . . , xk) :=
k∑
i=1

EiiP(xi) +
k∑
i=1

k∑
j=i+1

EijP ′(xi, xj) ,

where P ′(x, y) := P(x + y) − P(x) − P(y), and where for all i ∈ {1, . . . , k} and all
j ∈ {i + 1, . . . , k} the matrix Eij ∈ Fm×mq is fixed and public. These matrices are chosen
such that, under the correspondence between vectors in Fmq and polynomials in Fq[X]
of degree at most m, multiplication by Eij corresponds to multiplication by powers of
X modulo an irreducible polynomial f(X) ∈ Fq[X] of degree m. A MAYO signature
S = (s1, . . . , sk) ∈ Fnkq is considered valid if P?(s1, . . . , sk) = H(m).

To compute P?(S), the verifier (as seen in Algorithm 3) first computes P(si) and
P ′(si, sj) for all i ∈ {1, . . . , k} and all j ∈ {i + 1, . . . , k}, and then combines said variables
to obtain P?(s). Since the Eij matrices act as multiplication by powers of X (mod f(X)),
the verifier can multiply the polynomials corresponding to P(si) and P ′(si, sj) with the
appropriate powers of X and perform a single reduction modulo f(X). Computing the
evaluations of P and P ′ is computationally more demanding than combining the results.

Similarly, to sign a message (as seen in Algorithm 2), the signer has to partially
evaluate P and P ′ on k vectors (v1, . . . , vk) ∈ Fn−oq , and combine the results to calculate
the coefficients of a system of linear equations, Ax = y, whose solution will determine a
signature. The most computationally demanding steps of signing are the partial evaluations
of P and P ′ and the Gaussian elimination used to solve the linear system. Hence, these
should be the main focus of optimization efforts. In contrast, the task of combining the
partial evaluations into A and y, and the task of obtaining a signature s from a solution x
to the system Ax = y accounts for only a small fraction of the signing time, and, therefore,
does not need careful optimization.

Polynomial evaluation as matrix multiplication. The
(
n+1

2
)

coefficients of each of the
m polynomials (p1, . . . , pm) in the MAYO public key P are arranged in the upper-diagonal
part of n-by-n matrices Pk such that

pk(x) = xTPkx

for all 1 ≤ k ≤ m. Moreover, we have

p′k(x, y) := pi(x + y)− pi(x)− pi(y) = xTPky + yTPkx .

The matrices Pk are split in 3 parts as follows

P(k) =
(

P(1)
k P(2)

k

0 P(3)
k

)
,

where P(1)
k ∈ F(n−o)×(n−o)

q and P(3)
k ∈ Fo×oq are upper-diagonal, and P(2)

k ∈ F(n−o)×o
q . The

matrices P(1)
k and P(2)

k are expanded from a short seed using an AES-based expansion

function, while P(3)
k is stored as part of the public key.



256 Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-M4

To compute P(si) and P ′(si, sj) for all 1 ≤ i < j ≤ k, it suffices to compute STPkS
for all k ∈ [m], where S ∈ Fqn×k is the matrix whose columns are s1, . . . , sk. The value of
P(si)k can be found on the diagonal of STPkS and P ′(si, sj)k is the sum of the entries at
locations (i, j) and (j, i) in the matrix STPkS.

Matrix-matrix multiplications (with the left matrix possibly being upper-diagonal) are
used extensively as part of the signing and verification algorithms of MAYO, which means
they should be implemented and optimized carefully.

In Algorithm 1 (KeyGen), Algorithm 2 (Sign), and Algorithm 3 (Verify), we give
simplified pseudocode for the MAYO signature scheme, but for a detailed specification
we refer to [BCC+23]. In particular, we refer to the full specification for the Compute y
and Compute A functions, that respectively compute the right-hand side and the left-hand
side of the system of linear equations Ax = y. Implementing these functions is relatively
straightforward and cheap and was not the focus of the optimization effort of this paper.

Algorithm 1 KeyGen ()

Output: A key pair (pk, sk)
1: //Derive O and the P(1)

i , P(2)
i from random seedsk.

2: seedsk
$←− {0, 1}λ+64

3: (seedpk, O)← SHAKE256(seedsk) // O ∈ Fq(n−o)×o

4: {P(1)
i , P(2)

i }i∈[m] ← AES-128-CTR(seedpk) // P(1)
i ∈ Fq(n−o)×(n−o), P(2)

i ∈ Fq(n−o)×o

5: //Compute P(3)
i ∈ Fo×oq .

6: for i from 0 to m− 1 do
7: P(3)

i ← Upper(−OT(P(1)
i O−P(2)

i ))
8: return (pk = (seedpk, {P(3)

i }i∈[m]), sk = seedsk).

Note that MAYO sets the size of the finite field to be 16: F16. It also provides 4
parameter sets: MAYO1, MAYO2, MAYO3 and MAYO5. The first two parameters are for
NIST security level 1, the third for NIST security level 3, and the fourth for NIST security
level 5.

2.2 Method of the Four Russians

The Method of the Four Russians (M4R) was first presented by Arlazarov, Dinic, Kronrod,
and Faradzev [ADKF70] and received its name in [AH74, Chapter 6]. It was originally
presented for multiplying boolean matrices, but it can be straightforwardly extended for
matrix multiplication over small fields, and in particular over F16.

For matrix multiplication, the algorithm works as follows: given a small integer t, to
compute the product of a (n×m) matrix A and a (m× k) matrix B, one divides A into
m/t vertical stripes Ai, and B into m/t horizontal stripes Bi, which allows the product

AB to be computed as
∑k
i=0 AiBi. Multiplication, then, works as follows:

• For each stripe, compute all linear combinations of the rows of Bi as a look-up table
T to store 16t · k field elements.

• Use each row in Ai as an index to look up the corresponding row from T and
accumulate the product.

If t = 2, we can illustrate the method with the following example, given the following
matrix product:



Ward Beullens, Fabio Campos, Sof́ıa Celi, Basil Hess, and Matthias J. Kannwischer 257

Algorithm 2 Sign (seedsk, M)
Input: Secret key seedsk
Input: Message M
Output: Signature (S, salt)

1: //Rederive O and P(1)
i , P(2)

i from seedsk.
2: (seedpk, O)← SHAKE256(seedsk)
3: {P(1)

i , P(2)
i }i∈[m] ← AES-128-CTR(seedpk)

4: //Hash salted message.

5: salt $← {0, 1}λ+64

6: t← SHAKE256(M‖salt) // t ∈ Fqm

7: V $← Fqk×(n−o)

8: for i from 1 to m do
9: Li ← (P(1)

i + P(1)T
i ) ·O + P(2)

i // Li ∈ Fq(n−o)×o

10: Mi ← V · Li // Mi ∈ Fqk×o

11: Yi ← V ·P(1)
i ·VT // Yi ∈ Fqk×k

12: //Build linear system Ax = y.
13: A← Compute A({Mi}i∈[m])
14: y← t + Compute y({Yi}i∈[m])
15:

16: //Try to sample a random solution x to Ax = y.
17: x← SampleSolution(A, y) // x ∈ Fqko ∪ {⊥}
18: if x = ⊥ then // Retry if there are no solutions

19: go to 7

20: //Output the signature.

21: X← Matrixify(x) // X ∈ Fqk×o, s.t. x is concatenation of rows of X
22: S← (V + (OX)T, X) // S ∈ Fqk×n
23: return (S, salt).

Algorithm 3 Verify (pk, M, Sig)

Input: Public key pk = (seedpk, {P(3)
i }i∈[m])

Input: Message M
Input: Signature Sig = (S, salt)
Output: An boolean to indicate if the signature is valid.

1: //Derive P(1)
i , P(2)

i from seedpk.

2: {P(1)
i , P(2)

i }i∈[m] ← AES-128-CTR(seedpk)
3: //Hash salted message.

4: t← SHAKE256(M‖salt) // t ∈ Fqm
5: //Compute P∗(s).
6: for i from 1 to m do

7: Yi ← S
(

P(1)
i P(2)

i

0 P(3)
i

)
ST

8: y← Compute y({Yi}i∈[m]) // y = P∗(s)
9: return y == t // Accept signature if y = t.



258 Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-M4

AB =


a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3

...
...

...
...

an−1,0 an−1,1 an−1,2 an−1,3




b0,0 b0,1
b1,0 b1,1
b2,0 b2,1
b3,0 b3,1


To compute this product using M4R (with t = 2), we split the matrices into stripes:

AB =


a0,0 a0,1
a1,0 a1,1

...
...

an−1,0 an−1,1


[
b0,0 b0,1
b1,0 b1,1

]
+


a0,2 a0,3
a1,2 a1,3

...
...

an−1,2 an−1,3


[
b2,0 b2,1
b3,0 b3,1

]

For each stripe of B, we now compute a 256-entry look-up table T with each entry
containing k = 2 field elements. Then, we go through the stripes of A and use (ai,j , ai,j+1)
as index to the look-up table T .

Using M4R in cryptography. As the method uses look-up tables, one has to be careful to
not leak secret data through the addresses used for look-ups. It is, hence, essential to either
only use this trick when the matrix used for indexing is public or make use of constant-time
table look-ups. Luckily, the former is the case for all major matrix multiplications in
MAYO and the latter can be used in AVX2.

3 System-solving using Gaussian elimination.

In this section, we describe how the system of linear equations is solved during signing in
our MAYO implementations, which is independent of the proposed change in representation
(independent of both bitsliced and nibble-based representations taking into account the
considerations presented in the following paragraphs).

In the MAYO signing algorithm, the signer samples a uniformly random solution (if
it exists) to a system of linear equations Ax = y for a rectangular matrix A ∈ Fqm×ko
and y ∈ Fqm. Our implementations use constant-time Gaussian elimination to solve this

problem. To randomize the solving procedure, we sample a random vector r ∈ Fqko and
set y′ = y + Ar. Then, we solve the system Ax′ = y′ for x′ using Gaussian elimination on
the augmented matrix

(
A y′

)
, and output x = x′ − r. Note that x is a solution because

Ax = Ax′−Ar = y+Ar−Ar, and one can check that if r is chosen uniformly at random,
then x is a uniformly random solution to Ax = y. While it is possible to sample a random
solution directly, this method was chosen in [BCC+23] because it is simple to implement
in constant time.

This constant-time Gaussian elimination procedure consists of ko iterations: one for
each column of A. Initially, we start with R = 0 and maintain the invariant that the top
R rows of A form a full-rank matrix in row echelon form with leading ones (i.e. the first
non-zero entry of each row is equal to 1 and it is strictly left of the non-zero entries in the
rows below it). At iteration i:

• if there are no non-zero entries in column i in rows below R, nothing is done,

• otherwise, we perform elementary row operations on the bottom m−R rows to force
a 1 on position (R + 1, i) and zeros on all the entries below it. We set R := R + 1.

Care needs to be taken to avoid leaking the value R throughout the Gaussian elimination
process, e.g., we cannot use R as an index to directly read and write from A. We follow a
methodology similar to that of [CKY21], adapted for non-square matrices. To create row



Ward Beullens, Fabio Campos, Sof́ıa Celi, Basil Hess, and Matthias J. Kannwischer 259

R + 1, we move through r from 1 to m, and, conditionally (but in constant time), add row
r of A into a buffer row b, if r > R and if the pivot in the buffer is zero. Then, we multiply
the buffered row by bq−2

i (which is equal to the inverse of bi if bi 6= 0). This procedure
ensures that either b = 0, if there was no pivot available in column i; or, otherwise, b
is a linear combination of rows below R with a 1 in location i. Subsequently, we scan
through the rows of A and conditionally write b to row r if r = R + 1 and if bi is nonzero.
We conditionally add −ar,ib to row r of A if r > R + 1. This constant-time version of
Gaussian elimination is slower than the usual variable-time version, but both versions have
an asymptotic complexity of O(m2ko).

Platform-specific considerations. Our AVX2 implementation stores rows of the aug-
mented matrix in the low nibbles of 256-bit vectors. This allows for efficient elementary
row operations using vpxor and vpshufb instructions because the vpshufb instruction
does table lookups using the low nibbles as indices. On the Cortex-M4 platform, we keep
the rows of the augmented matrix in bitsliced representation throughout the Gaussian
elimination. We bitslice them in the beginning and un-bitslice at the end. [CKY21] states
that bitslicing is undesirable as individual elements have to be accessed as pivots requiring
to un-do the bitslicing. We work around this by extracting only the pivot elements from the
bitsliced representation which we achieve in 14 instructions (excluding memory operations).
While this is costly, it is still a performance improvement over previous implementations.

4 Bitsliced MAYO implementation

In this section, we present our implementation using the bitsliced representation for MAYO
keys and PRNG output. This implementation is compatible with the MAYO round-1
specification as submitted to NIST PQC process. We present both our AVX2 and Arm
Cortex-M4 implementations with this representation. Details on the AVX2 instruction set
can be found in [int] and for the Cortex-M4 instruction set in [arm]. Both the bitsliced and
the improved nibble-sliced implementation don’t perform any secret dependent branching
and table lookups: we validate that property in the AVX2 implementations using Valgrind
and the ctgrind [Lan10] method as part of our test harness.

4.1 AVX2

Bitsliced arithmetic in AVX2. In our bitsliced AVX2 implementation, we fit 64 elements
of F16 in an AVX2 register in a bit-interleaved fashion: the least significant bits of the 64
elements go to the first 64 bits of the AVX registers, the 2nd bits of the elements go to
bits 65 to 128 in the AVX2 register, and so on. Adding two vectors of 64 field elements,
then simply corresponds to XORing the corresponding AVX2 registers. Moreover, we can
multiply the 64 field elements with a scalar b ∈ F16 by using 17 AVX2 instructions (8
vpand, 4 vpcmpeqq, 3 vpxor, 2 vpshufd, 1 vpbroadcastb, 1 vpermpd, and 1 vpshufb), as
shown in Figure 1.

Note that because of bitslicing, each 64-bit block of the output is an F2-linear combina-
tion of the four 64-bit blocks in the input register, where the linear combination depends on
the scalar b. For example, if b = x+1, then multiplication by b maps a0 +a1x+a2x2 +a3x3

to (a0 + a3) + (a0 + a1 + a3)x + (a1 + a2)x2 + (a2 + a3)x3, so, if the 64-bit blocks in the
input register are A0, A1, A2, A3, respectively, then the first 64-bit block of the output
should be A0 ⊕A3, and the next 64-bit block should be A0 ⊕A1 ⊕A3, etc.

Our method for doing the scalar multiplication on 64 bitsliced field element first uses
two vpshufd instructions and one vpermpd instruction, to shuffle around the 64-bit blocks
of the input. This gives us four 256-bit vectors, such that each 64-bit block of the input
appears at locations 1-64, 65-128, 129-192, and 193-256 in one of the four vectors. Therefore,



260 Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-M4

static

inline void bitsliced_64_vec_mul(const __m256i *in, unsigned char b, __m256i *out){

// prepare constants

const __m256i lut_b = _mm256_setr_epi8(

0x00, 0x13, 0x26, 0x35, 0x4c, 0x5f, 0x6a, 0x79,

0x98, 0x8b, 0xbe, 0xad, 0xd4, 0xc7, 0xf2, 0xe1,

0x00, 0x13, 0x26, 0x35, 0x4c, 0x5f, 0x6a, 0x79,

0x98, 0x8b, 0xbe, 0xad, 0xd4, 0xc7, 0xf2, 0xe1);

const __m256i mask1 = _mm256_set_epi64x(16, 16, 16, 1 );

const __m256i mask2 = _mm256_set_epi64x(32, 8, 32, 128);

const __m256i mask3 = _mm256_set_epi64x(64, 64, 4, 64 );

const __m256i mask4 = _mm256_set_epi64x(128, 32, 8, 32 );

// permute quadwords

__m256i in_1234 = *in;

__m256i in_3412 = _mm256_permute4x64_epi64(in_1234, 0b01001110);

__m256i in_2143 = _mm256_shuffle_epi32(in_1234, 0b01001110);

__m256i in_4321 = _mm256_shuffle_epi32(in_3412, 0b01001110);

// mask and combine

__m256i lookup = _mm256_shuffle_epi8(lut_b, _mm256_set1_epi8(b));

*out = in_1234 & _mm256_cmpeq_epi64(lookup & mask1, mask1);

^ in_2143 & _mm256_cmpeq_epi64(lookup & mask2, mask2);

^ in_3412 & _mm256_cmpeq_epi64(lookup & mask3, mask3);

^ in_4321 & _mm256_cmpeq_epi64(lookup & mask4, mask4);

}

Figure 1: C code with Intel intrinsics for multiplying 64 bitsliced field elements by the
element b ∈ F16.

the result of the scalar multiplication can be formed by masking out 64-bit blocks of these
4 vectors and XORing the results together (4 vpand and 4 vpxor instructions). The
masks are created from b using one vpbroadcastb, one vpshufb, 4 vpands, 4 vpcmpeqq

instructions, and five pre-loaded 256-bit vectors.

For the MAYO1 and MAYO2 parameter sets, we require scalar multiplication of vectors
of length 64, which perfectly fits into one AVX2 register as described above. The MAYO3
and MAYO5 parameter sets require scalar multiplication of vectors of length 96 and 128,
respectively. We use an analogous strategy: for MAYO3 we use three 128-bit SSE2 vectors
to store the vector, and for MAYO5 we use two 256-bit AVX2 vectors.

Matrix multiplications. The matrix multiplications that need to be performed inside
KeyGen, Sign, and Verify comes in batches of size m ∈ {64, 96, 128}. For example, during key

generation, the m matrices P(1)
1 , . . . , P(1)

m are all multiplied by O from the right (see line 7
of Algorithm 1). We represent and sample a batch of m matrices M(1), . . . , M(m) ∈ Fqn×m
in a doubly interleaved format, such that for each location (i, j), all m field elements

M(1)
i,j , . . . , M(m)

i,j sit contiguously in memory using the bitsliced representation previously
described. Multiplying a batch of m matrices by a single matrix can then be done in
parallel using vector additions and vector scalar multiplications.

4.2 Arm Cortex-M4

Matrix multiplications. We borrow the bitsliced arithmetic from [CKY21], which is
straightforwardly extended to all matrix multiplications required in MAYO. Due to the
bitsliced representation of the public key and the sampled matrices, no additional bitslicing
operation is required: this dramatically improves performance.



Ward Beullens, Fabio Campos, Sof́ıa Celi, Basil Hess, and Matthias J. Kannwischer 261

Input: Accumulators a1, . . . , a15
Output: a1 + a2 · x + · · ·+ a15 · (x3 + x2 + x + 1)
Algorithm 4 Method 1

1: r = a1 + a2 · (x)
2: r += a3 · (x + 1)
3: r += a4 · (x2)
4: r += a5 · (x2 + 1)
5: r += a6 · (x2 + x)
6: r += a7 · (x2 + x + 1)
7: r += a8 · (x3)
8: r += a9 · (x3 + 1)
9: r += a10 · (x3 + x)

10: r += a11 · (x3 + x + 1)
11: r += a12 · (x3 + x2)
12: r += a13 · (x3 + x2 + 1)
13: r += a14 · (x3 + x2 + x)
14: r += a15 · (x3 + x2 + x + 1)
15: return r

Algorithm 5 Method 2

1: a12 += a15; a3 += a15
2: a8 += a14; a6 += a14
3: a10 += a13; a7 += a13
4: a8 += a12; a4 += a12
5: a9 += a11; a2 += a11
6: a8 += a10; a2 += a10
7: a8 += a9; a1 += a9
8: a4 += a7; a3 += a7
9: a4 += a6; a2 += a6

10: a4 += a5; a1 += a5
11: a2 += a3; a1 += a3
12: r = a4 + a8 · x
13: r = a2 + r · x
14: r = a1 + r · x
15: return r

Algorithm 6 Method 3

1: a10 += a5 · x−1

2: a12 += a11 · x
3: a7 += a10 · x−1

4: a6 += a12 · x
5: a14 += a7 · x−1

6: a3 += a6 · x
7: a15 += a14 · x−1

8: a8 += a3 · x
9: a13 += a15 · x−1

10: a4 += a8 · x
11: a9 += a13 · x−1

12: a2 += a4 · x
13: a1 += a9 · x−1

14: a1 += a2 · x
15: return a1

Figure 2: Different methods for obtaining the final accumulated result in the evaluation
of multivariate polynomials after using the trick from [CKY21].

Verification. We make use of the method for computing STPkS presented in [CKY21].
However, as S is a matrix for MAYO (rather than a vector as in Rainbow and OV), we
cannot efficiently compute STPkS in a single pass. We instead, first compute both PkS
and STPkS with the method of using 16 (for F16) accumulators to minimize the number
of field multiplications. There is one notable difference: when computing the public map
in a single pass, one can omit a large portion of the computation for each variable that
is zero. Implementations of OV [BCH+23] and Rainbow [CKY21] explicitly check for
zero variables in the outer loop and skip ahead. This also allows working with only 15
accumulators instead of 16. However, said trick does not help when computing the two
products separately and results in a slowdown. We, hence, do not check for zero variables
and use 16 accumulators instead.

While the remaining multiplications to compute the final result in OV and Rainbow
are negligible, the number of remaining multiplications in MAYO is significantly higher
making up a large portion of the total runtime. It is, hence, important to consider the
best strategy for performing those multiplications. We consider 3 different methods for
performing the multiplications, which we describe in Figure 2. [CKY21] and [BCH+23]
use Method 1 as the number of multiplications is negligible. This method uses 14 multiply-
accumulate operations. Method 2 is described in [CKY21], but not implemented. It
uses the minimum number of multiplications (3 multiply-accumulate operations, and 22
addition operations). Method 3 uses 14 multiply-accumulate operations but only uses
multiplications by x and x−1 which can be implemented much more efficiently than general-
purpose multiplications. Choosing between Method 2 and Method 3 depends on the cost
ratio between multiplications and additions. For the bitsliced variant, Method 3 is faster
as multiplication by x or x−1 can be implemented in just 5 eor instructions (operating on
32 field elements in parallel).

5 Improving the MAYO implementation

In this section, we describe the proposed change of the representation of MAYO’s keys and
PRNG output to a nibble-sliced representation. This implementation of this method is
not compatible with round-1 MAYO as submitted to the NIST PQC process3. We also

3The authors of [BCC+23] have agreed to incorporate these changes in the round-2 submission of their
specification.



262 Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-M4

examine how we use M4R, and propose the changes to both the AVX2 and Arm Cortex-M4
implementations.

Proposed specification change. Our proposed change concerns the representation and

sampling of the matrices P(1)
i , P(2)

i , P(3)
i , and Li. In the round-1 submission, MAYO uses

a bitsliced representation for the batch of matrices A0, . . . , Am−1. The representation
encodes elements of the vectors (A0[i, j], . . . , Am−1[i, j]) in a bitsliced fashion meaning
the least significant bits occupy the first m bits. The bitsliced vectors are then stored
in a column-major form. We propose to discard the bitslicing and, instead, store two
field elements packed into one byte with the first element in the least significant four bits.
The order of the element batches remains the same. This corresponds to the common
column-major Macaulay matrix representation in lexicographic order. Note that this
change modifies both the sampling process and the public key format. It also modifies the
format of the expanded secret key.

5.1 AVX2

M4R in MAYO on AVX2. We implement M4R on AVX2 to perform the various matrix
multiplications performed inside MAYO. We take advantage of vpshufb instructions instead
of traditional table lookups to speed up our implementation. A single vpshufb instruction
corresponds to 32 lookups in a table with 16 bytes. Since the size of the table is limited,
we are forced to use M4R with t = 1, i.e., we use single 4-bit field elements as indices
for the table and the result of the lookup is a single byte that corresponds to the result
of two multiplications. Doing 32 of these lookups in parallel means we can do 64 field
multiplications per vpshufb instruction. Our strategy is similar to the shuffle-based
implementation of [BCH+23], with the difference that we lookup two multiplications
instead of just one, which doubles the number of multiplications per vpshufb instruction.

The vpshufb instruction expects the 32 indices in the low nibbles of an AVX2 register,
so, to multiply a vector of nibble-packed elements, we perform a lookup with the odd
elements by masking out the high nibbles, and a lookup with the even elements after
masking out the low nibbles and shifting down by four bits. The lookups result in a register
that holds the products involving the odd nibbles, and another holding the products with
even nibbles. Rather than interleaving them immediately, it is more efficient to accumulate
the odd products and the even products separately and interleave the accumulated results
only once at the end.

For setting up the multiplication tables, we use the fast method described in [BCH+23].
Since we do two multiplications per lookup, we use their method twice, and interleave the
tables. In Verify we use a faster, variable-time method that avoids on-the-fly computation
and uses index-dependent table lookups of precomputed tables instead.

The Intel Skylake architecture processes one vpshufb per cycle and the Ice Lake
architecture two vpshufb instructions per cycle, both with one cycle latency. The products
are accumulated using vpxor which has a throughput of three instructions per cycle. On
Skylake, assuming everything can be pipelined perfectly, we expect to be bottlenecked only
by the vpshufb instructions and an upper limit of 64 multiply-and-accumulate operations
per cycle. On Ice Lake, three ports can handle vpxor and vpshufb instructions. Every
64 multiplications generate two micro-operations (one vpxor and one vphufb), and we
can handle three of these micro-operations per cycle, so we expect an upper limit of
64 · 3/2 = 96 multiply-and-accumulate operations per cycle. Our experimental results are
close to these theoretical upper limits.

Vectorization for the parameter sets. MAYO allows very natural vectorization since
most arithmetic in F16 occurs m times independently. In MAYO1 and MAYO2 with m = 64,



Ward Beullens, Fabio Campos, Sof́ıa Celi, Basil Hess, and Matthias J. Kannwischer 263

the parallel operations fit in one AVX2 vector. In MAYO3 with m = 96 and MAYO5 with
m = 128, they occupy two AVX2 vectors. In the case of MAYO3, we overlap two vectors,
which duplicates 32 operations and allows to easily extend the method to values of m that
are not a multiple of 64.

MAYO matrix multiplications with AVX2. We consider groups of matrix multiplications
as they occur in KeyGen, Sign, and Verify.

• KeyGen: Computing −OT(P(1)
i O − P(2)

i ) consists of two matrix multiplications:

P(1)
i O with upper triangular P(1)

i followed by OT multiplied by the resulting product.
Only the multiplication tables of O are needed for the multiplications. The code

for P(1)
i O is shown in Figure 3. The computation consists of applying shuffle and

xor operations v2o
2 times in interleaved form, and de-interleaving the results at

the end of each linear combination. For this, we use in total v2o
2 vpshufb and

vpxor instructions for multiply-and-accumulate, for de-interleaving 5vo vpxor, vo
vpand/vpsrlw/vpsllw instructions, and v2 vpsrlw and 2v2 vpand instructions for

extracting the nibbles of P(1)
i .

• Sign: The three matrix multiplications for V ·P(1)
i ·VT and V · Li can be grouped

using only the multiplication tables for the upper triangular V ∈ Fv×kq .

• Verify: The five matrix multiplications involved in S
(

P(1)
i P(2)

i

0 P(3)
i

)
ST are computed

using only the multiplication tables of triangular S ∈ Fn×kq . The two matrix

multiplications in S(1)P(1)
i + S(2)P(2)

i are combined in a single function which allows
to do the de-interleaving only once.

5.2 Arm Cortex-M4

M4R for MAYO on Cortex-M4. We consider the use for of M4R the three largest matrix

multiplications in MAYO: (P(1)
i + P(1)T

i )O and P(1)
i VT in Sign, and P(1)

i O in KeyGen.

Since P(1)
i are public matrices, we can use M4R without any timing side-channel concerns.

We compute (P(1)
i + P(1)T

i )O as P(1)
i O + P(1)T

i O in order to not have to expand to a full
square matrix. However, we do both operations at same time to avoid recomputing the
linear combinations of the stripes of O. Since two F16 elements are packed into one byte, it
appears natural to use t = 2. This results in look-up tables of 256 · k bytes (15 to 32 KB),
which we consider acceptable. Using t = 3 seems infeasible as it would require multiple
hundred KB of look-up tables.

We have to overcome three obstacles to apply M4R (as presented in subsection 2.2) to
these multiplications:

1. P(1)
i is an upper-triangular matrix, which means we require M4R algorithm for both

upper (P(1)
i ) and lower (P(1)T

i ) triangular matrices. In the tail (head) of each stripe
of the upper (lower) triangular matrix, one has to pad with a zero accordingly. We
do this on-the-fly.

2. P(1)
i is stored as a column-major Macaulay matrix, which means that the elements

of the rows of each stripe of the matrix are not stored consecutively. We considered
changing the order of the elements (in the specification). There are, however, three
reasons against doing so: (1) There appears to be no representation that works well

for reading from P(1)
i and P(1)T

i at the same time; (2) A different representation



264 Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-M4

Algorithm 7 Matrix multiplication using M4R and illustrated for the P(1)
i O batched

matrix multiplication. A[r, c] refers to the element in row r in column c. Note the different

representations of inputs and outputs. P(1)
i is in column-major Macaulay form, i.e., using

(row, column, batch) indexing with two elements stored in one byte. POi is using (row,
batch, column) indexing with 8 elements stored in one uint32_t. If o is not divisible by 8,
we pad with zeros accordingly.

Input P(1)
i : m upper triangular matrices of dimension v × v

Input O: matrix of dimension v × o
Input/Output POi: m upper triangular matrices of dimension v × o

1: ou32 ←
⌈
o
8
⌉

2: uint32_t table[ou32 · 256]
3: uint32_t rows[ou32 · 8]
4: for col← 0 to v by 2 do
5: table← 0
6: rows← 0
7: for i← 0 to o do // Pack first and second row of stripe

8: rows[i/8] = rows[i/8]⊕ (O[col, i])� (4 · (i%8))
9: rows[ou32 · 4 + (i/8)] = rows[ou32 · 4 + (i/8)]⊕ (O[col + 1, i])� (4 · (i%8))

10: for i← 0 to ou32 do // Multiply each element of rows by x, x2, x3

11: rows[ou32 + i] = rows[i] · x
12: rows[2 · ou32 + i] = rows[ou32 + i] · x
13: rows[3 · ou32 + i] = rows[2 · ou32 + i] · x
14: rows[5 · ou32 + i] = rows[4 · ou32 + i] · x
15: rows[6 · ou32 + i] = rows[5 · ou32 + i] · x
16: rows[7 · ou32 + i] = rows[6 · ou32 + i] · x
17: for t← 0 to 7 do // Compute all linear combinations of rows

18: for i← 0 to (1� t) do
19: for j ← 0 to ou32 do
20: table[(i + (1� t)) · ou32 + j] = table[i · ou32 + j]⊕ rows[t · ou32 + j]
21: for row← 0 to col do // Process pairs of element

22: for k ← 0 to m do
23: byte = P(1)

k [row, col] + P(1)
k [row, col+1]� 4

24: for j ← 0 to ou32 do
25: POk[row, j] = POk[row, j]⊕ table[ou32 · byte + j]
26: for k ← 0 to m by 2 do // Tail of stripe: pad with zero

27: byte = P(1)
i [col+1, col+1]� 4

28: for j ← 0 to ou32 do
29: POk[col+1, j] = POk[col+1, j]⊕ table[ou32 · byte + j]



Ward Beullens, Fabio Campos, Sof́ıa Celi, Basil Hess, and Matthias J. Kannwischer 265

static inline

void mayo_12_P1_times_O_avx2(const __m256i *P1, __m256i *O_multabs, __m256i *acc){

const __m256i low_nibble_mask = _mm256_set1_epi8(0x0f);

for (size_t r = 0; r < V_PARAM; r++) {

// do multiplications for one row and accumulate results in temporary format

__m256i temp[O_PARAM] = {0};

for (size_t c = r; c < V_PARAM; c++) {

__m256i in_odd = _mm256_loadu_si256(P1++);

__m256i in_even = _mm256_srli_epi16(in_odd, 4) & low_nibble_mask;

in_odd &= low_nibble_mask;

for (size_t k = 0; k < O_PARAM; k+=2) {

temp[k] ^= _mm256_shuffle_epi8(O_multabs[O_PARAM/2*c + k/2], in_odd);

temp[k + 1] ^= _mm256_shuffle_epi8(O_multabs[O_PARAM/2*c + k/2], in_even);

}

}

// convert to normal format and add to accumulator

for (size_t k = 0; k < O_PARAM; k+=2) {

__m256i t = (temp[k + 1] ^ _mm256_srli_epi16(temp[k],4)) & low_nibble_mask;

acc[(r*O_PARAM) + k] ^= temp[k] ^ _mm256_slli_epi16(t,4);

acc[(r*O_PARAM) + k + 1] ^= temp[k+1] ^ t;

}

}

}

Figure 3: C code with compiler intrinsics for computing P(1)
i O in KeyGen for MAYO1 and

MAYO2.

would drastically slow down implementations using different multiplication methods
(such as our AVX2 implementations); (3) Changing it to a stripe-wise representation
would likely force many platforms to use M4R with the parameterization chosen in
this paper, which we deem undesirable. We, hence, decided to stick with the more
standard column-major Macaulay matrix and perform the address computations and
assembly of the row of the stripe on-the-fly.

3. The table look-ups result in rows that have to be accumulated to the resulting
matrix: those elements are not stored consecutively in the canonical representation.
Converting the representation on-the-fly results in very poor performance. We instead
store the results as they are stored in the look-up table and merge the transformation
of the representation into the addition following each of the multiplications. This
results in competitive performance.

The process for P(1)
i O for t = 2 is outlined in Algorithm 7 and works analogously for

other matrix multiplications.

Further matrix multiplications. There are three matrix multiplications (OT ·◦ in KeyGen,

V · Li and V ·P(1)
i V) for which we cannot use M4R due to timing side-channel concerns.

In these cases, we make use of the bitsliced arithmetic and bitslice the inputs on-the-fly.
This does come with some performance penalty (1.7 vs. 0.8 arithmetic instructions/field
multiplication). However, the affected matrix multiplication generally involve matrices of
relatively small dimension and, hence, this slow-down is outweighed by the performance
gains of using M4R.



266 Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-M4

Verification. One could consider implementing verification using M4R as presented above.
However, the trick presented in [CKY21] vastly outperforms the former idea. Hence, our
verification stays almost the same as for the bitsliced variant. The only part that requires
changes are the final multiplications and we can choose between the methods presented
before (Figure 2). For the nibble-sliced representation, a multiplication by x requires 10
instructions (operating on 8 packed field elements), and, hence, Method 2 from Figure 2
performs better than Method 3. Note that from counting arithmetic instructions, it seems
that the bitsliced variant performs much better than the nibble-sliced variant which suggests
our proposed representation change would result in a significant slow-down compared
to the bitsliced representation. This is, however, not the case: both variants (bitsliced
representation using Method 3, nibble-sliced representation using Method 2) use around
the same number of cycles for verification. This happens due to register pressure: when
working on bitsliced field elements, one always has to work with 32 elements packed in 4
registers, while in the nibble-sliced variant, we can simply work on 8 elements in parallel.
This allows for Method 2 to not require any spills to memory at all, which results in code
competitive with the previous implementation.

6 Results

6.1 AVX2 Performance

We benchmarked the AVX2-optimized bitsliced and nibble-sliced (M4R) implementation
on two Intel architectures: Skylake (Intel Xeon X3-1245 v5) and the more modern Ice
Lake (Intel Xeon Gold 6338). The C code, using AVX2 compiler intrinsics, was compiled
using clang-14 on Ubuntu 22.04.3 LTS. Turbo Boost was deactivated to achieve consistent
timings. Our AES-CTR implementation is derived from libOQS [SM16] and achieves
0.63 cpb (Skylake), which comes close to the theoretical encryption-only limit of 0.625 cpb.
On Ice Lake, the same implementation benefits from the double AES-NI throughput and
achieves 0.32 cpb. Since SHAKE256 performance has only a marginal impact in MAYO,
we use a plain non-optimized C implementation derived from PQClean [KSSW22].

Matrix multiplication. The results of the matrix multiplications that dominate the MAYO
runtime are summarized in Table 3. The multiplication performance for the nibble-sliced
implementation ranges between 45.6 - 56.5 mul/cycle (Skylake) and 65.0 - 78.8 mul/cycle
(Ice Lake). The improvement on Ice Lake is due to the increased vpshufd throughput of
0.5 cpi compared to 1 cpi on Skylake. The multiplication throughput of MAYO3 is about
one fourth less than these numbers. Setting up the multiplication tables takes 5.2 cycles and
7.8 cycles per nibble on Ice Lake and Skylake, respectively. Setting up the multiplication
tables in variable-time as used in verification takes only 1.1 cycles and 1.3 cycles per
nibble on Ice Lake and Skylake, respectively. Our implementation reuses the multiplication
tables for several matrix multiplications. Compared to the bitsliced implementation, the
nibble-sliced matrix multiplications (including calculating multiplication tables) achieve a
speedup of a factor between 3.6× and 5.9×.

Overall performance. The overall results are shown in Table 1. The nibble-sliced imple-
mentation using M4R leads to speedups between 2.0× and 3.6× compared to the bitsliced
implementation. As AES-NI and vpshufd instructions are instrumental for the nibble-sliced
performance, their increased throughput on Ice Lake leads to further speedups compared to
the older Skylake architecture of up to 75% (KeyGen), 40% (Sign) and 79% (Verify). The
fastest variant MAYO1 on a single Ice Lake core at 2.0 GHz computes 45 924 KeyGen/sec,
9 162 signatures/sec and 37 272 verifications/sec. When reusing the expanded keys, signing



Ward Beullens, Fabio Campos, Sof́ıa Celi, Basil Hess, and Matthias J. Kannwischer 267

Table 1: Performance of MAYO in CPU cycles on Intel Xeon E3-1245 v5 (Skylake) and
Xeon Gold 6338 (Ice Lake) using the bitsliced representation (round 1 specification) and
the modified nibble representation.

Bitsliced Representation

Scheme KeyGen ExpandSK ExpandPK
ExpandSK ExpandPK

+ Sign + Verify

Skylake

MAYO1 159 186 212 208 44 058 589 202 213 716
MAYO2 424 894 437 778 59 288 690 878 135 820
MAYO3 835 694 1 380 698 147 912 2 816 584 908 390
MAYO5 1 806 558 3 204 710 355 200 5 755 844 1 483 332

Ice Lake

MAYO1 110 338 162 064 22 380 459 614 148 250
MAYO2 310 166 342 212 30 256 540 018 94 876
MAYO3 511 526 629 052 74 988 1 676 162 612 806
MAYO5 1 209 482 1 995 956 180 692 3 978 970 1 158 326

Nibble Representation (M4R)

Scheme KeyGen ExpandSK ExpandPK
ExpandSK ExpandPK

+ Sign + Verify

Skylake

MAYO1 73 668 82 820 43 970 283 126 83 846
MAYO2 144 508 154 002 59 178 324 402 84 974
MAYO3 295 606 358 416 147 758 920 944 344 994
MAYO5 642 690 889 100 355 238 1 737 426 706 316

Ice Lake

MAYO1 43 550 53 710 22 432 218 300 53 660
MAYO2 86 014 98 402 30 244 239 852 47 360
MAYO3 169 258 237 450 74 992 718 586 205 938
MAYO5 369 898 517 660 180 568 1 244 038 401 310

and verification can even perform 12 151 signatures/sec and 64 045 verifications/sec. All
reported results are the median of 10 000 iterations.

Comparison with other schemes. A comparison of our MAYO implementation with
other schemes, benchmarked on the same system, is shown in Table 2. The first candidate
for comparison is OV [BCH+23]. When using compact keys, MAYO greatly outperforms
OV by factors of 27× to 95× for KeyGen, factors of 6.5× to 15.1× for Sign, and factors
of 3.1× to 4.3× for Verify. In cases that allow to store or re-use expanded keys, OV
signing is 1.6× to 2.1× faster than MAYO. However, MAYO’s Verify is 1.5× to 3.4×
faster than OV at the same security level, and MAYO’s expanded keys are much more
compact than those of OV (e.g., 70 KB for MAYO and 278 KB for OV at SL I). Our
MAYO implementation is competitive with the fastest lattice-based signature schemes. It
outperforms Dilithium’s KeyGen and Verify at security level 1, Sign is on par when using
compact keys, and outperforms Dilithium when using pre-expanded keys. At security levels
3 and 5, Dilithium has a performance advantage especially in KeyGen and Sign. Overall,
our MAYO implementation has balanced performance characteristics without big trade-offs
between KeyGen, Sign, and Verify. Compared to OV, it has only moderate performance
trade-offs when using compact keys.

6.2 Cortex-M4 Performance

This section presents the performance of our two implementations on an Arm Cortex-
M4 microcontroller and compares the results to implementations of other post-quantum
signature schemes. We target the ST NUCLEO-L4R5ZI development board with 640 KiB
of RAM and 2 MiB of flash memory. We use the pqm4 [KPR+] library for benchmarking.



268 Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-M4

Table 2: MAYO performance in CPU cycles using AVX2 optimizations in comparison
with other post-quantum signature schemes running on Intel Ice Lake (Xeon Gold 6330).
Dilithium, Falcon and SPHINCS+ benchmarks use libOQS v0.9.0-rc1 with AVX2 optimized
code.

Type Sec. Lvl. Key Gen. Sign Verify

MAYO [BCC+23] (default/pre-expanded)
MAYO1 1 44k/44k 218k/165k 54k/31k
MAYO2 1 86k/86k 240k/142k 47k/17k
MAYO3 3 169k/169k 719k/481k 206k/131k
MAYO5 5 370k/370k 1 244k/726k 401k/221k

Oil and Vinegar [BCH+23] (pkc+skc/classic)
ovIp 1 2 316k/2 341k 1 548k/79k 168k/58k
ovIs 1 3 715k/3 734k 2 063k/83k 203k/46k
ovIII 3 13 168k/12 832k 8 293k/243k 679k/197k
ovV 5 34 989k/35 792k 18 802k/462k 1 514k/364k

TUOV [DGG+] (pkc+skc/classic)
tuov-Ip 1 3 262k/5 916k 3 639k/134k 241k/56k
tuov-Is 1 11 797k/29 323k 19 607k/130k 273k/43k
tuov-III 3 16 237k/29 815k 18 020k/354k 1 107k/191k
tuov-V 5 38 122k/68 089k 40 046k/637k 2 947k/359k

Dilithium [LDK+20]
dilithium2 2 81k 219k 79k
dilithium3 3 137k 355k 129k
dilithium5 5 212k 420k 204k

Falcon [PFH+20]
falcon-512 1 20 672k 705k 135k
falcon-1024 5 59 019k 1 427k 262k

SPHINCS+ [HBD+20]
sha256-128f-simple 1 618k 14 716k 1 269k
sha256-128s-simple 1 39 554k 298 746k 517k
sha256-192f-simple 3 924k 25 329k 2 129k
sha256-192s-simple 3 58 492k 563 717k 983k
sha256-256f-simple 5 2 412k 50 912k 2 240k
sha256-256s-simple 5 38 076k 507 125k 1 295k

For AES, we use the t-table implementation by Stoffelen and Schwabe [SS16] (as it is only
used for expanding the public matrix). For SHAKE, we use the Armv7-M implementation
in the XKCP [DHP+] by the Keccak team. Both implementations are also included in
pqm4. We compile our code using the Arm GNU toolchain4 Version 12.3Rel1.

Our implementation requires to store the expanded secret key on the stack. For MAYO5,
this alone occupies 563 KB of memory leaving not enough space for other variables needed.
Therefore, we focus on MAYO1, MAYO2, and MAYO3 here as those fit the 640 KiB easily.
Studying memory-optimized implementations of MAYO is promising future work, e.g., one

could generate the coefficients of P(1)
i and P(2)

i on the fly to avoid the memory cost of
storing them.

Matrix multiplications. We first present results for the three matrix multiplications
that are dominating the run-time of MAYO. Table 4 compares the performance of the 3

4https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads

https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads


Ward Beullens, Fabio Campos, Sof́ıa Celi, Basil Hess, and Matthias J. Kannwischer 269

Table 3: AVX2 performance in CPU cycles of core arithmetic involving the public key
that can benefit from the method of the four Russians (M4R). Multiplication tables are
reused among the group of matrix multiplications.

−OT(P(1)
i O−P(2)

i ) V ·P(1)
i ·VT

S
(

P(1)
i

P(2)
i

0 P(3)
i

)
ST

V · Li

KeyGen Sign Verify
Skylake

MAYO1 bitsliced 107 107 162 638 158 138
M4R 22 494 (4.76 ×) 32 800 (4.96 ×) 31 478 (5.02 ×)

MAYO2 bitsliced 352 497 84 338 64 556
M4R 75 072 (4.70 ×) 22 524 (3.74 ×) 17 928 (3.60 ×)

MAYO3 bitsliced 684 302 957 721 735 788
M4R 133 855 (5.11 ×) 188 289 (5.09 ×) 181 499 (4.05 ×)

MAYO5 bitsliced 1 412 844 1 657 854 1 095 647
M4R 278 519 (5.07 ×) 333 199 (4.98 ×) 331 529 (3.30 ×)

Ice Lake
MAYO1 bitsliced 83 336 122 832 122 849

M4R 17 237 (4.83 ×) 25 265 (4.86 ×) 23 117 (5.31 ×)

MAYO2 bitsliced 268 767 65 373 60 830
M4R 47 943 (5.61 ×) 12 265 (5.33 ×) 12 100 (5.03 ×)

MAYO3 bitsliced 426 969 615 090 511 093
M4R 86 050 (4.96 ×) 119 493 (5.15 ×) 118 403 (4.32 ×)

MAYO5 bitsliced 1 022 887 1 200 700 904 729
M4R 177 396 (5.77 ×) 205 161 (5.85 ×) 203 966 (4.44 ×)



270 Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-M4

Table 4: Cortex-M4 Performance of core arithmetic involving the public key that can
benefit from the method of the four Russians (M4R).

(P(1)
i + P(1)T

i )O P(1)
i VT P(1)

i O
Sign Sign KeyGen

MAYO1 bitsliced 2 165 337 1 323 797 1 177 752

M4R 1 244 009 (1.74 ×) 1 119 136 (1.18 ×) 714 332 (1.65 ×)

MAYO2 bitsliced 5 199 607 629 400 2 830 681

M4R 2 906 460 (1.79 ×) 681 081 (0.92 ×) 1 683 616 (1.68 ×)

MAYO3 bitsliced 9 535 835 5 635 495 5 126 000

M4R 6 576 258 (1.45 ×) 3 452 417 (1.63 ×) 3 525 668 (1.45 ×)

Table 5: Performance of MAYO on the Arm Cortex-M4 using the bitsliced representation
(round 1 specification) and the modified nibble representation. Cycles presented are the
average of 1000 executions.

Bitsliced Representation

Scheme KeyGen ExpandSK ExpandPK
ExpandSK ExpandPK

+ Sign + Verify

MAYO1 5 245 602 5 293 828 3 098 810 9 181 163 4 887 097

MAYO2 11 925 123 9 418 744 4 149 233 12 042 353 5 103 785

MAYO3 18 306 278 20 052 487 10 458 654 32 008 516 15 587 746

Nibble Representation (M4R)

Scheme KeyGen ExpandSK ExpandPK
ExpandSK ExpandPK

+ Sign + Verify

MAYO1 4 410 207 4 381 417 3 098 817 8 269 909 4 807 561

MAYO2 8 846 960 7 154 898 4 149 239 9 915 805 5 101 410

MAYO3 15 971 829 17 196 207 10 471 338 27 400 909 15 573 359

operations for each of the MAYO parameter sets. We see that the bitsliced implementation
is significantly outperformed by M4R implementations except for one case, but in that case
the gains for the first matrix multiplication outweigh the performance loss for the second.

MAYO performance. Table 5 contains the results for all algorithms MAYO signature
scheme on the Cortex-M4. The change of representation and use of M4R result in speed-ups
for KeyGen, ExpandSK, and Sign. For verification, the performance is almost the same for
both representations as described in section 5.2.

Comparison to other PQC signatures. Table 6 compares the performance of our MAYO
implementation on the Arm Cortex-M4 with the MAYO implementation5 from [GMSS23],
an FPGA implementation from [HSMR23], and implementations of other PQC schemes.
Compared to the existing MAYO implementation from [GMSS23] (with very similar, but not
identical parameters), our implementation outperforms signing by 12.9× and verification
by 4.3×. There is an important difference between the two implementations: [GMSS23]
does not correctly implement the linear equation solving. They instead use the approach

5We report the numbers obtained on the Arm Cortex-M4 as reported in https://github.com/

mayo-pqm4/mayo-pqm4. These cycle counts are higher than those reported in the paper for the Cortex-M7.

https://github.com/mayo-pqm4/mayo-pqm4
https://github.com/mayo-pqm4/mayo-pqm4


Ward Beullens, Fabio Campos, Sof́ıa Celi, Basil Hess, and Matthias J. Kannwischer 271

Table 6: MAYO performance on Cortex-M4 in comparison to other post-quantum signature
schemes optimized for different platforms. MAYO pre variants refer to pre-expanded public
and secret keys in a similar fashion as classic OV. The implementation from [GMSS23]
uses slightly different parameters (n = 66, m = 64, o = 7, k = 10) than MAYO1– we call it
MAYO1 (*) in the table. The results presented from [HSMR23] are based on an FPGA
implementation on a Xilinx Kintex-7 KC705 board clocked at 100 MHz.

Type Sec. Level Plat. Key Gen. Sign Open

MAYO [BCC+23]

MAYO1 1 M4 4 410k 8 270k 4 808k

MAYO1-pre 1 M4 4 410k 3 888k 1 709k

MAYO2 1 M4 8 847k 9 916k 5 102k

MAYO2-pre 1 M4 8 847k 2 761k 952k

MAYO3 3 M4 15 972k 27 401k 15 573k

MAYO3-pre 3 M4 15 972k 10 204k 5 102k

MAYO1 (*) [GMSS23] 1 M4 — 50 183k 7 371k

MAYO1 [HSMR23] 1 KC705 12 182 49 926 12 722

MAYO3 [HSMR23] 3 KC705 38 325 137 358 39 740

Oil and Vinegar [BCH+23]

ovIp (classic) 1 M4 138 833k 2 482k 995k

ovIp (pkc+skc) 1 M4 175 021k 88 757k 11 551k

ovIs (classic) 1 M4 195 744k 2 374k 616k

ovIs (pkc+skc) 1 M4 296 161k 113 446k 16 045k

Dilithium [AHKS22]

dilithium2 2 M4 1 598k 4 093k 1 572k

dilithium3 3 M4 2 827k 6 623k 2 692k

Falcon [Por19]

falcon-512 1 M4 163 994k 39 014k 473k

SPHINCS+ [KPR+]

sha256-128f-simple 1 M4 15 388k 382 534k 21 151k

sha256-128s-simple 1 M4 985 367k 7 495 604k 7 166k

sha256-192f-simple 3 M4 22 646k 639 322k 32 940k

sha256-192s-simple 3 M4 1 450 073k 13 764 197k 11 764k



272 Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-M4

described in [CKY21] trying to achieve an upper triangular matrix with ones on the
diagonal. However, in MAYO there are more variables than equations, and hence, we have
to select one solution at random as described in section 3. The approach of [GMSS23] has
two problems: (1) It does not select a solution uniformly at random. Instead, it selects
solutions that have a higher-than-average number of zeros. This breaks the security proof
of MAYO and can potentially lead to an attack; (2) While their approach is easier to
implement and results in slightly better performance for a single iteration, it has a much
higher failure probability of 1/15.

MAYO (as Oil-and-Vinegar) can benefit from pre-expanded public and secret keys. We
report such variants in Table 6 (denoted by pre) to allow a fair comparison with the classic
variant of Oil-and-Vinegar. We see that MAYO outperforms OV when using compressed
public and secret keys, and comes very close to its performance when using pre-expanded
keys. Due to the large cost of key expansion due to the high cost of AES, the performance
of MAYO on the Cortex-M4 is not competitive with lattice-based signatures. When using
pre-expanded keys, this difference vanishes. AES hardware acceleration or round-reduced
AES (as proposed in [BCH+23]) would have a similar effect.

Acknowledgments

Matthias J. Kannwischer was supported by the Taiwan Ministry of Science and Technology
through grant 109-2221-E-001-009-MY3, Academia Sinica Investigator Award AS-IA-109-
M01, and the Executive Yuan Data Safety and Talent Cultivation Project (AS-KPQ-109-
DSTCP).

References

[ADKF70] Vladimir L’vovich Arlazarov, Yefim A Dinitz, MA Kronrod, and Igor Alek-
sandrovich Faradzhev. On economical construction of the transitive closure
of an oriented graph. In Doklady Akademii Nauk, volume 194, pages 487–488.
Russian Academy of Sciences, 1970.

[AH74] Alfred V Aho and John E Hopcroft. The design and analysis of computer
algorithms. Pearson Education, 1974.

[AHKS22] Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Amber
Sprenkels. Faster kyber and dilithium on the cortex-M4. In Giuseppe Ateniese
and Daniele Venturi, editors, ACNS 22, volume 13269 of LNCS, pages 853–871.
Springer, Heidelberg, June 2022.

[arm] Cortex-M4 Technical Reference Manual r0p0. Available at https://developer.
arm.com/documentation/ddi0439/b/CHDDIGAC. Accessed Jan, 2024.

[BCC+23] Ward Beullens, Fabio Campos, Sof́ıa Celi, Basil Hess, and Matthias Kannwis-
cher. Mayo. MAYO specification, 2023. https://pqmayo.org/assets/specs/
mayo.pdf.

[BCH+23] Ward Beullens, Ming-Shing Chen, Shih-Hao Hung, Matthias J. Kannwischer,
Bo-Yuan Peng, Cheng-Jhih Shih, and Bo-Yin Yang. Oil and vinegar: Mod-
ern parameters and implementations. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2023(3):321–365, Jun. 2023.

[Beu22] Ward Beullens. MAYO: Practical post-quantum signatures from oil-and-vinegar
maps. In Riham AlTawy and Andreas Hülsing, editors, SAC 2021, volume

https://developer.arm.com/documentation/ddi0439/b/CHDDIGAC
https://developer.arm.com/documentation/ddi0439/b/CHDDIGAC
https://pqmayo.org/assets/specs/mayo.pdf
https://pqmayo.org/assets/specs/mayo.pdf


Ward Beullens, Fabio Campos, Sof́ıa Celi, Basil Hess, and Matthias J. Kannwischer 273

13203 of LNCS, pages 355–376. Springer, Heidelberg, September / October
2022.

[CCC+09] Anna Inn-Tung Chen, Ming-Shing Chen, Tien-Ren Chen, Chen-Mou Cheng,
Jintai Ding, Eric Li-Hsiang Kuo, Frost Yu-Shuang Lee, and Bo-Yin Yang. SSE
implementation of multivariate PKCs on modern x86 CPUs. In Christophe
Clavier and Kris Gaj, editors, CHES 2009, volume 5747 of LNCS, pages 33–48.
Springer, Heidelberg, September 2009.

[CKY21] Tung Chou, Matthias J. Kannwischer, and Bo-Yin Yang. Rainbow on cortex-
M4. IACR TCHES, 2021(4):650–675, 2021. https://tches.iacr.org/index.
php/TCHES/article/view/9078.

[DCK+21] Jintai Ding, Ming-Shing Chen, Matthias Kannwischer, Jacques
Patarin, Albrecht Petzoldt, Dieter Schmidt, and Bo-Yin
Yang. Rainbow. NIST PQC Standardization Process, 2021.
https://csrc.nist.gov/Projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.

[DCP+20] Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt, Bo-Yin
Yang, Matthias J. Kannwischer, and Jacques Patarin. Rainbow. Techni-
cal report, National Institute of Standards and Technology, 2020. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.

[DGG+] Jintai Ding, Boru Gong, Hao Guo, Xiaoou He, Yi Jin, Yuansheng
Pan, Dieter Schmidt, Chengdong Tao, Danli Xie, Bo-Yin Yang, and
Ziyu Zhao. TUOV. Technical report, National Institute of Standards
and Technology, 2022. https://csrc.nist.gov/Projects/pqc-dig-sig/

round-1-additional-signatures.

[DHP+] Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, and Ronny Van
Keer. eXtended Keccak Code Package. https://github.com/XKCP/XKCP.

[FG18] Ahmed Ferozpuri and Kris Gaj. High-speed FPGA implementation of the NIST
round 1 rainbow signature scheme. In David Andrews, René Cumplido, Claudia
Feregrino, and Dirk Stroobandt, editors, 2018 International Conference on
ReConFigurable Computing and FPGAs, ReConFig 2018, Cancun, Mexico,
December 3-5, 2018, pages 1–8. IEEE, 2018.

[GMSS23] Arianna Gringiani, Alessio Meneghetti, Edoardo Signorini, and Ruggero Susella.
Mayo: Optimized implementation with revised parameters for armv7-m. Cryp-
tology ePrint Archive, Paper 2023/540, 2023. https://eprint.iacr.org/

2023/540.

[HBD+] Andreas Hulsing, Daniel J. Bernstein, Christoph Dobraunig, Maria
Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Ste-
fan Kolbl, Tanja Lange, Martin M Lauridsen, Florian Mendel, Ruben
Niederhagen, Christian Rechberger, Joost Rijneveld, Peter Schwabe, Jean-
Philippe Aumasson, Bas Westerbaan, and Ward Beullens. Sphincs+.
Technical report, National Institute of Standards and Technology,
2019. https://csrc.nist.gov/Projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.

[HBD+20] Andreas Hülsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder,
Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kölbl,

https://tches.iacr.org/index.php/TCHES/article/view/9078
https://tches.iacr.org/index.php/TCHES/article/view/9078
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://github.com/XKCP/XKCP
https://eprint.iacr.org/2023/540
https://eprint.iacr.org/2023/540
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions


274 Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-M4

Tanja Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederha-
gen, Christian Rechberger, Joost Rijneveld, Peter Schwabe, Jean-Philippe
Aumasson, Bas Westerbaan, and Ward Beullens. SPHINCS+. Techni-
cal report, National Institute of Standards and Technology, 2020. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.

[HSMR23] Florian Hirner, Michael Streibl, Ahmet Can Mert, and Sujoy Sinha Roy. A
hardware implementation of MAYO signature scheme. IACR Cryptol. ePrint
Arch., page 1267, 2023.

[int] Intel Instruction Set Architecture. Available at https://www.intel.com/

content/www/us/en/developer/tools/isa-extensions/overview.html.
Accessed Jan, 2024.

[KKS+21] Hyeokdong Kwon, Hyunjun Kim, Minjoo Sim, Wai-Kong Lee, and Hwajeong
Seo. Look-up the rainbow: Efficient table-based parallel implementation of
rainbow signature on 64-bit armv8 processors. IACR Cryptol. ePrint Arch.,
page 1015, 2021.

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil and Vinegar
signature schemes. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of
LNCS, pages 206–222. Springer, Heidelberg, May 1999.

[KPR+] Matthias J. Kannwischer, Richard Petri, Joost Rijneveld, Peter Schwabe, and
Ko Stoffelen. PQM4: Post-quantum crypto library for the ARM Cortex-M4.
https://github.com/mupq/pqm4.

[KSSW22] Matthias J. Kannwischer, Peter Schwabe, Douglas Stebila, and Thom Wiggers.
Improving software quality in cryptography standardization projects. In IEEE
European Symposium on Security and Privacy, EuroS&P 2022 - Workshops,
Genoa, Italy, June 6-10, 2022, pages 19–30, Los Alamitos, CA, USA, 2022.
IEEE Computer Society.

[Lan10] Adam Langley. ctgrind, 2010. Available at https://github.com/agl/ctgrind.
Accessed Jan, 2024.

[LDK+] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancréde Lepoint, Pe-
ter Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai. Crystals-
dilithium. Technical report, National Institute of Standards and Technology,
2019. https://csrc.nist.gov/Projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.

[LDK+20] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Tech-
nical report, National Institute of Standards and Technology, 2020. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.

[NIS22] NIST Computer Security Division. Post-Quantum Cryptography: Digital
Signature Schemes, 2022. https://csrc.nist.gov/projects/pqc-dig-sig.

[oST] National Institute of Standards and Technology. Post-quantum cryptography.
NIST PQC Standardization Process. https://csrc.nist.gov/projects/

post-quantum-cryptography.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://www.intel.com/content/www/us/en/developer/tools/isa-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/isa-extensions/overview.html
https://github.com/mupq/pqm4
https://github.com/agl/ctgrind
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography


Ward Beullens, Fabio Campos, Sof́ıa Celi, Basil Hess, and Matthias J. Kannwischer 275

[oST22] National Institute of Standards and Technology. Selected algorithms 2022. NIST
PQC Standardization Process, 2022. https://csrc.nist.gov/projects/

post-quantum-cryptography/selected-algorithms-2022.

[Pat95] Jacques Patarin. Cryptanalysis of the Matsumoto and Imai public key scheme
of eurocrypt’88. In Don Coppersmith, editor, CRYPTO’95, volume 963 of
LNCS, pages 248–261. Springer, Heidelberg, August 1995.

[Pat97] Jacques Patarin. The Oil and Vinegar signature scheme. Dagstuhl Workshop
on Cryptography, 1997.

[Pet13] Albrecht Petzoldt. Hybrid approach for the fast verification for improved
versions of the UOV and rainbow signature schemes. IACR Cryptol. ePrint
Arch., page 315, 2013.

[PFH+] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirch-
ner, Vadim Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gre-
gor Seiler, William Whyte, and Zhenfei Zhang. Falcon. Techni-
cal report, National Institute of Standards and Technology, 2019.
https://csrc.nist.gov/Projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.

[PFH+20] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirch-
ner, Vadim Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor
Seiler, William Whyte, and Zhenfei Zhang. FALCON. Technical re-
port, National Institute of Standards and Technology, 2020. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.

[Por19] Thomas Pornin. New efficient, constant-time implementations of Falcon. Cryp-
tology ePrint Archive, Report 2019/893, 2019. https://eprint.iacr.org/

2019/893.

[SM16] Douglas Stebila and Michele Mosca. Post-quantum key exchange for the internet
and the open quantum safe project. In Roberto Avanzi and Howard M. Heys,
editors, SAC 2016, volume 10532 of LNCS, pages 14–37. Springer, Heidelberg,
August 2016.

[SMA+23] Oussama Sayari, Soundes Marzougui, Thomas Aulbach, Juliane Krämer, and
Jean-Pierre Seifert. Hamayo: A reconfigurable hardware implementation of the
post-quantum signature scheme MAYO. IACR Cryptol. ePrint Arch., page
1135, 2023.

[SS16] Peter Schwabe and Ko Stoffelen. All the AES you need on Cortex-M3 and M4.
In Roberto Avanzi and Howard M. Heys, editors, SAC 2016, volume 10532 of
LNCS, pages 180–194. Springer, Heidelberg, August 2016.

https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://eprint.iacr.org/2019/893
https://eprint.iacr.org/2019/893

	Introduction
	Preliminaries
	MAYO
	Method of the Four Russians

	System-solving using Gaussian elimination.
	Bitsliced MAYO implementation
	AVX2
	Arm Cortex-M4

	Improving the MAYO implementation
	AVX2
	Arm Cortex-M4

	Results
	AVX2 Performance
	Cortex-M4 Performance


