
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 2, pp. 426–450. DOI:10.46586/tches.v2024.i2.426-450

JustSTART: How to Find an RSA Authentication
Bypass on Xilinx UltraScale(+) with Fuzzing

Maik Ender1 , Felix Hahn1 , Marc Fyrbiak1 ,
Amir Moradi2 and Christof Paar1

1 Max Planck Institute for Security and Privacy, Bochum, Germany
firstname.lastname@mpi-sp.org

2 Technische Universität Darmstadt, Darmstadt, Germany
amir.moradi@tu-darmstadt.de

Abstract. Fuzzing is a well-established technique in the software domain to uncover
bugs and vulnerabilities. Yet, applications of fuzzing for security vulnerabilities
in hardware systems are scarce, as principal reasons are requirements for design
information access, i.e., HDL source code. Moreover, observation of internal hardware
state during runtime is typically an ineffective information source, as its documentation
is often not publicly available. In addition, such observation during runtime is also
inefficient due to bandwidth-limited analysis interfaces, i.e., JTAG, and minimal
introspection of hardware-internal modules.
In this work, we investigate fuzzing for Xilinx 7-Series and UltraScale(+) FPGA
configuration engines, the control plane governing the (secure) bitstream configuration
within the FPGA. Our goal is to examine the effectiveness of fuzzing to analyze
and document the opaque inner workings of FPGA configuration engines, with a
primary emphasis on identifying security vulnerabilities. Using only the publicly
available hardware chip and dispersed documentation, we first design and implement
ConFuzz, an advanced FPGA configuration engine fuzzing and rapid prototyping
framework. Based on our detailed understanding of the bitstream file format, we then
systematically define 3 novel key fuzzing strategies for Xilinx FPGA configuration
engines. Moreover, our strategies are executed through mutational structure-aware
fuzzers and incorporate various novel custom-tailored, FPGA-specific optimizations
to reduce search space. Our evaluation reveals previously undocumented behavior
within the configuration engine, including critical findings such as system crashes
leading to unresponsive states of the whole FPGA. In addition, our investigations
not only lead to the rediscovery of the recent starbleed attack but also uncover a
novel unpatchable vulnerability, denoted as JustSTART (CVE-2023-20570), capable
of circumventing RSA authentication for Xilinx UltraScale(+). Note that we also
discuss effective countermeasures by secure FPGA settings to prevent aforementioned
attacks.
Keywords: FPGA, FPGA Configuration Engine, FPGA Security, FPGA Bitstream
Protection, Hardware Fuzzing, Fuzzing Framework, Vulnerability Discovery, starbleed

1 Introduction
Field Programmable Gate Arrays (FPGAs) are a foundation in modern digital system
landscape as their field-programmable nature offers flexibility and adaptability. To realize its
flexibility, the FPGA consists of 2 parts: i) the configuration engine that handles loading of
a so-called bitstream (representing a digital gate-level design) into ii) the FPGA grid – also
called fabric – that consists of millions of reconfigurable Look-Up-Tables (LUTs) and routing

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-10-15 Accepted: 2023-12-15 Published: 2024-03-12

https://doi.org/10.46586/tches.v2024.i2.426-450
https://orcid.org/0000-0002-0685-2541
https://orcid.org/0009-0008-9260-4288
https://orcid.org/0000-0002-4266-7108
https://orcid.org/0000-0002-4032-7433
https://orcid.org/0000-0001-8681-2277
mailto:maik.ender@mpi-sp.org, felix.hahn@mpi-sp.org, christof.paar@mpi-sp.org
mailto:amir.moradi@tu-darmstadt.de
http://creativecommons.org/licenses/by/4.0/


Maik Ender, Felix Hahn, Marc Fyrbiak, Amir Moradi and Christof Paar 427

to run the digital design, among other reconfigurable hardware primitives. Since FPGAs
are commonly deployed in security-critical systems, including industrial control systems,
cloud computing systems, and even military applications, manufacturers have implemented
bitstream protection systems to ensure confidentiality, integrity, and authenticity. While
several works highlighted security vulnerabilities of the cryptographic implementation, i.e.,
via side-channel attacks [MBKP11,SMOP15,MS16], optical contactless probing [TLSB17],
or implementation attacks [SW12, EMP20, ELMP22, FS19], a system-level methodical
analysis of the configuration engine itself is – to the best of our knowledge – missing in the
open literature. However, since the configuration engine is complex (e.g., handling multiple
security modes and various commands during the initialization process) and opaque (e.g.,
little to no information about its implementation details is publicly known, i.e., a gray-box
setting), understanding its detailed architecture and security mechanisms plays an integral
role for FPGA security. Even more importantly, any vulnerability in the configuration
engine is unlikely to be patched as it is implemented in hardware and thus poses a massive
threat.

In recent years, fuzzing in the software domain has seen widespread adoption in both
academia and industry due to its effectiveness in uncovering software vulnerabilities.
In particular, feedback-driven fuzzing, i.e., generation of a random input mutation and
observing system behavior that is then feed back into the input generation, has been
shown to be effective. Even though various fuzzing methods have been proposed to
analyze hardware systems [TSC+21], they leverage design information such as Hardware
Description Language (HDL) source code to perform its analysis and thus do not work
for settings where only the manufactured chip is available with limited observable system
information.

Goals and Contributions In this paper, we focus on fuzzing for Xilinx 7-Series and
UltraScale(+) FPGA configuration engines. Inspired by the aforementioned starbleed
vulnerability in the configuration engine and capabilities of software fuzzing methods, our
goal is to answer the following research question:

To what extent can we leverage systematic fuzzing techniques to derive (security)
implementation information from the opaque configuration engine of Xilinx
7-Series and UltraScale(+) FPGAs?

In order to answer this research question, we first want to highlight that we – as a security
research community – only have a superficial understanding of implementation details
based on incomplete and dispersed publicly available limited documentation (gray-box
setting). Note that this generally challenges effectiveness of fuzzing as interpretation of
observed behavior is limited. In addition, effectiveness of fuzzing is another key challenge as
we are generally limited by the device connection, e.g., via USB/JTAG. From a high-level
point of view, our goal is to increase the public knowledge about configuration engine
implementation details with a focus on how certain security functionalities are implemented.
Therefore, our approach and contribution are as follows

• ConFuzz FPGA Configuration Engine Fuzzing Framework (Section 3) We
design and implement ConFuzz, a mutational bitstream fuzzing framework on the
basis of a rapid prototyping approach to define bitstreams in a declarative manner.
With context-specific FPGA optimization, such as structure-aware bitstream muta-
tions using a bitstream grammar and auto-generated encryption blocks, we improve
the efficacy of our approach (that is generally limited by JTAG speed). We publicly
released ConFuzz under the MIT license on GitHub [Emb23].

• Fuzzing Strategies (Section 4)We develop three main strategies to systematically
evaluate the 7-Series and UltraScale(+) series configuration engine: i) bitstream



428 JustSTART

structure, ii) inter command, and iii) intra command. While the first strategy analyzes
the general bitstream structure, the latter two concentrate on the commands.

• JustSTART (Section 5.2) Our evaluation uncovers a new unpatchable vulnera-
bility named JustSTART (CVE-2023-20570) that bypasses the RSA authentication
of Xilinx UltraScale(+) FPGAs and thus enables attackers to load trojanized or
modified bitstreams. We want to note that this attack can be mitigated when both
FPGA bitstream encryption and authentication are enabled.

• Further Security Vulnerabilities & Understanding (Section 5) In further
case studies on the 7-Series and UltraScale(+), we automatically uncover the recent
starbleed attack and various undocumented behavior, for example, crashing the
FPGA into an unresponsive state or an undocumented RSA test mode. We want to
highlight that based on our findings, we also contribute to the understanding of the
opaque configuration engine.

2 Background & Related Work
To understand the mechanics of the Xilinx UltraScale(+) FPGAs configuration process, we
now provide some fundamental FPGA background aspects. Afterward, we detail related
work focusing on hardware and embedded device fuzzing.

2.1 Xilinx UltraScale(+) FPGAs
FPGAs are a class of Integrated Circuits (ICs) containing re-programmable logic to
enable users to change a digital design even after manufacturing. To this end, FPGAs
consists of the so-called fabric, i.e., grid of reconfigurable hardware elements such as
LUTs, Digital Signal Processors (DSPs), Block RAMs (BRAMs), I/O, and reconfigurable
routing connecting all elements. From a high-level perspective, the bitstream consists
of a header to handle the configuration and the fabric configuration data containing
the proprietary encoding of the gate-level digital design description. Since we are only
interested in the configuration process, we refer the interested reader to diverse publications
and open-source frameworks [Sym17,Not08,ESW+19,DWZZ13,NR08] that deal with the
fabric configuration data. We want to note that the header (starting with a sync word
0xAA995566) consists of commands and data to read and write to the configuration engine
registers.

Configuration Process According to the user guide UG570 [Xil23], Xilinx UltraScale(+)
FPGAs are configured by loading the application-specific configuration data into the
internal memory of the fabric. This configuration is done by loading the bitstream
through the configuration engine via 1 of 5 possible configuration interfaces into the
device, i.e., SelectMAP, Internal Configuration Access Port (ICAP), Serial Peripheral
Interface (SPI), Byte Peripheral Interface (BPI), or Joint Test Action Group (JTAG).
Hence, this configuration engine manages the configuration process, which is crucial for
FPGA security. As noted before, bitstreams can be encrypted, so they may require
decryption first. Even though the configuration engine details are not publicly known in
detail, we have set up a mental model of our current understanding in Figure 1.

Configuration Packets Commands and data are organized as 32-bit words, where a
packet header indicates a read, write, or NOP to a desired register and the number of
words written to that register. The data written to that register follows after the header.
Table 1 shows the type 1 packet header format. 11 header bits are marked as reserved,
meaning they have no function and are reserved for future use. Type 2 headers extend



Maik Ender, Felix Hahn, Marc Fyrbiak, Amir Moradi and Christof Paar 429

STAT

FDRI

FDRO

FAR

CMD

WBSTAR

BOOTSTS

...

W

R

R

Configuration
Engine

R/W

R/W

R/W

R

R/W

Fabric

Decryptor

JTAG

ICAP

SPI

...

crypto
enabled?

FPGA

Figure 1: Our mental model of the configuration engine.

type 1 headers and lack the register address to maximize the bits used for the word count
field.

Table 1: Type 1 packet header: bits marked with R have no functionality and are reserved
for future use (based on [Xil23]).

Header Type Opcode Register Address Reserved Word Count
[31:29] [28:27] [26:13] [12:11] [10:0]

001 xx RRRRRRRRRxxxxx RR xxxxxxxxxxx

Configuration Registers The configuration engine uses the configuration registers to
manage its internal state and configuration. The only way to communicate with the
configuration engine is to read and write to these registers. For example, the FDRI register
is used to write configuration data to the fabric of the FPGA, and the STAT register contains
information about the current status of the configuration engine. 5 bits address the registers
as shown in Table 1. Hence, 32 registers are addressable at most. According to the publicly
available documentation, there are only 20 registers, leaving 12 undocumented registers.
In anticipation of our framework ConFuzz in Section 3, we analyze these undocumented
registers since there are indications that a subset of registers have actual use. Note that
we refer to them as unknown registers throughout the work at hand. While most registers
consume 32-bit data, they are of individual length, e.g., the GCM-IV register consumes 4
words (= 128-bit) of a Galois/Counter Mode (GCM) Initialization Vector (IV). Many
registers allow read access to aid debugging. Moreover, readback of the fabric data is also
possible if allowed by the security configuration.

FPGA Bitstream Security As noted before, FPGA bitstream protection schemes enable
the security goals confidentiality and authenticity. To ensure hardware design confidentiality,
the bitstream fabric data can be encrypted and readback disallowed. The bitstream
authenticity ensures that the bitstream is not manipulated and no malicious design is
executed on the FPGA. Note that this hinders the integration of hardware Trojans and
other bitstream-level attacks.

For the UltraScale(+) FPGAs, Xilinx implemented an Rivest–Shamir–Adleman (RSA)
authentication and Advanced Encryption Standard (AES) encryption mechanisms, which
can be used solely or combined to ensure the aforementioned security goals. The AES
used in either the GCM or Counter (CTR) mode ensures bitstream confidentiality. If
the AES is used solely, it is used in the GCM mode to implement bitstream authenticity.
Also, a proprietary Galois field-based checksum X-GHASH is implemented to ensure
the authenticity of blocks of 8 words within the bitstream [ELMP22]. Besides, an RSA
authentication mechanism can be utilized to ensure authenticity. It can be used with a



430 JustSTART

plaintext bitstream or an AES-encrypted bitstream. For the latter, the AES is operated in
the CTR mode without the GCM and X-GHASH authentication. The AES keys can be
stored in a battery-backed RAM (BBRAM) or burned to fuses. Similarly, an Secure Hash
Algorithm 3 (SHA-3) hash of the RSA public key is stored in fuses. Two other fuses enforce
that only encrypted and/or RSA-authenticated bitstreams can be loaded. In summary,
three different combinations of security measures can be used to ensure the authentication
and integrity of the FPGA bitstream: AES-GCM, AES-RSA, or plain-RSA.

2.2 Related Work
We now provide a brief overview of existing literature encompassing FPGA security.

FPGA Attacks Since FPGAs are a foundation for many systems, they are a commonly
targeted device. Attacks against the configuration engine can be divided into 3 main areas:
i) side-channel attacks [HLF+20,MBKP11,SMOP15,MS16] leverage information leaked
through power consumption or electromagnetic radiation, ii) probing attacks [TLSB17,
LTK+18] recover internal states or the key, and lastly iii) implementation attacks [EMP20,
ELMP22,SW12,FS19] exploit vulnerabilities in the configuration engine implementation.

Hardware Fuzzing Hardware fuzzing is a subgroup of the fuzzing landscape. Analogous
to software fuzzing approaches, hardware fuzzing [TSC+21,CRD+23,LGBD19,MRBC21,
DCSSK21,PA22,HYJ+17,XQZ+21,EMS+22,QSD+21,EFI21,MSK+18] leverages the HDL
source code to observe the hardware behavior via simulation. For example, in recent work,
Canakci et al. [CRD+23] analyze an embedded processor implementation by monitoring
the transitions in its control and status registers during simulation. Similar to our work,
they rely on registers of the target device to provide feedback and guide the fuzzing process.
However, in our approach, we do not have the HDL source code of the configuration engine
and cannot leverage any of the aforementioned hardware fuzzing approaches. Methods for
black-box or gray-box fuzzing on the hardware are scarce in the open literature. In 2010,
Koscher et al. [KCR+10] analyzed embedded devices leveraging fuzzing, focusing the CAN
bus in automotive vehicles. Since then, several works targeted embedded devices fuzzing
with limited observable behavior [LCC+15,BHT14,KL13,AVR14,CFH+22]. Additionally,
fuzzers targeting the Instruction Set Architecture (ISA) of processors have been proposed,
for example [Dom17] uncovers hidden instructions, glitches, and vulnerabilities in x86 ISA,
also aiming to understand the hardware better.

While such approaches have certain similar characteristics to our approach, e.g., no
source code available and limited system behavior observation, key differences are the
context in which fuzzing is carried out as the fuzzing methods are context-dependent and
have to be adjusted for each scenario. Note that no prior work is dealing with fuzzing the
FPGA configuration engine.

In the recent work by Easdon et al. [ESSG22], a rapid prototyping framework is
leveraged to develop attacks and identify vulnerabilities. Similarly, we have adopted such
rapid prototyping approach to extend our investigation and contribute to the general
understanding of the configuration engine’s inner workings and find vulnerabilities.

3 ConFuzz Framework
We now introduce the design and implementation of our FPGA configuration engine fuzzing
framework ConFuzz. First, we describe several key challenges for FPGA configuration
engine fuzzing, then we present the system architecture, workflow and fundamental compo-
nents of ConFuzz (Section 3.1), and finally provide implementation details (Section 3.2).



Maik Ender, Felix Hahn, Marc Fyrbiak, Amir Moradi and Christof Paar 431

JTAG

ConFuzz

2

3

4

5

Structure-Aware
Mutator

Evaluation

HAL

UI

FPGA

1

Security Engineer

Fuzzer Strategy 
& Definition

Figure 2: ConFuzz: Architecture and Workflow.

Key Challenges Since fuzzing of FPGA configuration engines has the speed limitation of
its underlying hardware, a key challenge is test cycle performance, i.e., bitstream generation
and communication with the FPGA for programming and subsequent information retrieval.
A critical aspect of this challenge lies in generation of useful, i.e., syntactically and
semantically valid, test bitstreams to facilitate effective information retrieval within our
gray-box setting. Note that without such structure-aware test generation, numerous test
bitstreams may be generated that do not yield any useful (security) information as these
are likely invalid (e.g., missing checksum values, invalid header commands, . . . ).

3.1 System Architecture
ConFuzz is designed with high modularity and extensibility in mind. To this end, we
structured ConFuzz upon several fundamental components, each characterized by a logically
coherent feature set. In the following, we outline the workflow, providing more detail on
the components, see Figure 2.

Workflow The user selects a fuzzing strategy and a target FPGA to implement a concrete
fuzzer 1 . The implemented fuzzer uses a structure-aware mutator 2 to generate modified
test bitstreams automatically. Then, each modified bitstream is handled by the Hardware
Abstraction Layer (HAL) 3 in order to program the FPGA and obtain information
of the hardware state after configuration. Finally, the state is post-processed in an
evaluator 4 , i.e., analyzed for crashes or deviated behavior, and optionally displayed in a
user interface 5 for manual inspection.

To guide the reader, we now detail the components of ConFuzz in a bottom-up fashion,
starting from the hardware to the user interface, as the higher-level components require
context of the lower-level components. Moreover, note that we designed ConFuzz with the
aforementioned challenges in mind.

Hardware Abstraction Layer (HAL) 3 In order to instrument FPGA device(s), we
designed a hardware abstraction layer. Key parts are communication using JTAG or
Universal Asynchronous Receiver / Transmitter (UART) and managing the FPGA con-
figuration engine state. In particular, state management is vital to infer information for
fuzzing feedback (e.g., hardware-internal register values, or whether the FPGA responds at



432 JustSTART

all, . . . ). Note that we are in a gray-box setting and cannot inspect all hardware internals
during configuration, so our goal is to infer as much direct and indirect information as
possible: the Xilinx FPGA configuration engine only communicates via its configuration
registers, see Section 2.1, thus we opted to read-back of all configuration registers.

Structure-Aware Mutator 2 As identified before, a key challenge is the generation
of useful bitstreams, i.e., the generation of syntactic and semantic valid bitstreams. We
have implemented a grammar-based fuzzing approach within the structure-aware mutator,
which relies on a custom-tailored FPGA bitstream format grammar. This grammar is
based on the bitstream file format, incorporating all bitstream functions, ranging from
simple headers and data value fields to automated generated checksums. Key components
are automated encryption and authentication primitives to ensure correct handling of a
bitstream block to encrypt and/or authenticate them. Within these bitstream primitives,
fuzzing masks can be defined to automatically generate variants of the defined bitstream.
For example, one can define a fuzzing mask to test 3 bits written to a register, then 23

bitstream would be generated testing all possible bit combinations for that field, while
checksums, encryption, etc. are handled automatically.

State Evaluation 4 Fuzzing intends to find unexpected crashed states. Therefore,
upon the automated bitstream generation, transmission to the FPGA, and subsequent
retrieval of its state after programming, the state is evaluate with careful analysis for
unexpected states. Inspired by software fuzzing practices, we integrated the concept of
a crash into our evaluation utilizing a range of crash settings. These settings encompass
various criteria such as presence or absence of expected values within designated registers,
and deviations from default states. For example, one approach is to probe the initial
clean state immediately following device restart, then after transmitting a bitstream, any
deviations to the state are flagged as a crashes. Note that the definition of a crash is
user-defined, contingent upon the specific intentions during evaluation.

Fuzzer Strategy & Definition 1 Utilizing the previously mentioned bitstream grammar
and crash settings, the security engineer implements a fuzzer strategy. Note that in our
comprehensive case studies, we implemented 71 fuzzers, each adhering to the three principal
strategies outlined in Chapter 4 and 5.

UI/Viewer for Inspection 5 In the final phase, the security engineer inspects generated
crashes to derive insights from the fuzzing process, aiming to pinpoint potential bugs and
vulnerabilities while enhancing understanding of the configuration engine. Results from the
fuzzing process are accessible through a web interface, facilitating efficient manual analysis.
This interface displays the current fuzzing process and shows information about every
logged test case. It provides details such as the transmitted bitstream, current register
values, and the meaning of individual register bits if publicly documented. Additionally,
the interface highlights the executed crash evaluation, i.e., it shows any test case and
corresponding registers and their values involved in a crash.

3.2 Implementation
We implemented key components such as the FPGA bitstream grammar and fuzzing
strategies of ConFuzz using Python, in particular, to enable rapid prototyping during
experiments and manual inspection. For FPGA bitstream response state management,
we used the boofuzz SQLite database. As a fuzzing harness and viewer, we leveraged
boofuzz [Per] and for communication with the FPGA, we used OpenOCD [Rat].



Maik Ender, Felix Hahn, Marc Fyrbiak, Amir Moradi and Christof Paar 433

On Rapid Prototyping Natural language in the FPGA user guides and documentation
provided by the vendors has the implicit drawback of ambiguity and misinterpretation
by the reader. Thus, a key aspect during our design and implementation of ConFuzz
was a horizontal rapid prototyping approach in order to rapidly verify or falsify certain
assumptions about our mental model of the FPGA configuration engine implementation
details based on the documentation. In particular, such rapid prototyping capability is
advantageous for sense-making of certain behaviors, i.e., device crashes. Note that an
observed state after configuration does not explain its implementation details. Typically,
this is a manual sense-making task to link the documentation and observed outcome to a
mental model of the presumed implementation, as, for example, [WAMP13] states:

The configuration data 314 is also encrypted if the DEC bit in the plaintext
header is set. In an example implementation, if a TEST_MODE bit is asserted in
the DLC, the configuration control circuit will expect 24 frames of configuration
data. If the TEST_MODE bit is not asserted, then the configuration control circuit
will write configuration data to the configuration memory until there is an
indication that the end of the device has been reached. [WAMP13]

Based on this public Xilinx patent description, we then leveraged the rapid prototyping
capability of ConFuzz to explore the TEST_MODE bit. As the high-bits of the Decryption
Length Counter (DLC) are typically 0 for standard lengths, we assume that the higher bits
are used for the TEST_MODE. We then create a bitstream with the highest bit set to ’1’ and
send 24 frames of configuration data. The bitstream was successfully programmed and thus
revealed the presence of the TEST_MODE bit in commercial-of-the-shelf Xilinx UltraScale(+)
FPGAs. Note that we leverage the TEST_MODE for optimization in our second case study
(Section 5.2) as programming of whole fabric configuration data requires typically ∼ 20s
for UltraScale(+) FPGAs while bitstreams with just 24 frames of configuration data are
programmed in ∼ 2s, thus achieving a performance speed-up of ∼ 10×.

4 On Bitstream Fuzzing Strategies
It is crucial to acknowledge that our endeavor has its limitations. The speed constraints
imposed by the use of hardware, i.e., the JTAG interface, prevent us from exhaustively
fuzzing every possible configuration parameter. So we have to take a strategic guided
approach to reduce the fuzzing test cases and test only promising ones. The available
documentation at hand gives us a superficial understanding of the configuration engine
such that we can build a first mental model of the configuration engine and bitstream
grammar (cf. Section 2.1). Based on this information, we define three main strategies:
i) bitstream structure, ii) inter command, and iii) intra command. While the first strategy
challenges the general bitstream structure, the latter two concentrate on the commands
themselves. Here, the inter-command strategy tests explicitly the behavior of each single
command, while the intra-command strategy examines the interaction between them.

Note that the purpose of this work is to better understand the undocumented part of
the configuration engine and thus find potential vulnerabilities. The first two strategies
are primarily designed to uncover undocumented parts within the bitstream and enhance
our mental model of the configuration engine, while the third strategy is also intended for
detecting security vulnerabilities by especially targeting the interaction with the bitstream
protection schemes. In the following, we discuss these strategies in detail, followed by the
general implementation procedure of a fuzzer.

Fuzzer Strategy 1: Bitstream Structure Xilinx documents the bitstream structure, as
discussed in the background in Section 2.1. The configuration engine is generally organized



434 JustSTART

in registers while the bitstream reads and writes to them. The bitstream is structured
in header commands followed by the data and commands to be written in the specified
registers (cf. Table 1).

Within this first fuzzer strategy, we target this bitstream structure in order to uncover
undocumented bits and unused bit combinations. For example, the first three header bits
determine the header type, e.g., 8 possible types could exist, while only two types are
documented. Similarly, one unused opcode (11) exists, and eleven reserved bits.

Fuzzer Strategy 2: Intra Command The next layer of abstraction is configuration
engine registers. The FPGA configuration engine has (most likely 1) a total of 32 registers;
however, only 20 of these registers have been documented in public resources, while several
bits are still marked as reserved even when bitstreams generated by Vivado contain them.

Within the second fuzzer strategy (intra-command), we specifically target one of each
register at a time to uncover undocumented registers, document the bit usage, and test
their influence on the FPGA state. For example, we created a default intra-register fuzzer
for the several completely undocumented registers. This fuzzer writes a single 32-bit data
word to the fuzzed register, as the typical registers are of 32-bit size. We provide a detailed
discussion of a fuzzer that implements the intra-command strategy in our latest case study
presented in Section 5.3.

Fuzzer Strategy 3: Inter Command Moving beyond the analysis of the bitstream
structure and individual commands, we explore the interactions between multiple commands
and their potential ramifications within our last fuzzing strategy. One particular aspect
of our inter-command fuzzing strategy involves investigating the bitstream protection
features. For example, commands are placed around the new RSA authentication mode of
UltraScale(+) devices. We provide a detailed discussion of a fuzzer that implements the
inter-command strategy in our second case study presented in Section 5.2.

General Fuzzer Implementation Procedure A hallmark of our approach is the systematic
procedure we can follow for the implementation of each fuzzer, regardless of the chosen
strategy. The general workflow comprises the following steps:

1. Selection of Target/Strategy: First, target FPGA and board are selected, as well
as one of the main fuzzing strategies. Based on public documentation, we can make
assumptions regarding the configuration engine to pick a specific target within the
configuration engine aligned with the chosen strategy. This enables systematically
covering all areas of the configuration engine within a specific strategy.

2. Fuzzer Construction: With the selected fuzzing strategy and target in mind, a
specific fuzzer is implemented.

3. Fuzzer Execution & Crash Logging: The fuzzer is then executed, automatically
generating bitstreams, sending them to an FPGA, and probing the FPGA state.
Only abnormal states are logged as a crash depending on user-defined crash settings.

4. Interpretation and Refinement: Identified crashes are then analyzed to discern
their underlying causes and extend our mental model of the bitstream configuration
engine. This process of interpretation informs the iterative refinement of the fuzzer
and its parameters. In certain scenarios, we even employ secondary fuzzers designed
to explore specific bit positions, configuration parameters, and crash settings or
utilize the rapid prototyping feature of ConFuzz.

1Table 1 shows that 9 of 14 address bits are marked as reserved. With the help of a strategy 1 fuzzer,
we could not find any register influencing the FPGA state, which is addressed via these 9 reserved address
register bits. This concludes that only the 5 lower bits are used to address registers, hence a maximum of
32 addressable registers.



Maik Ender, Felix Hahn, Marc Fyrbiak, Amir Moradi and Christof Paar 435

5 Case Studies
With the fuzzing strategies from Section 4 in mind, we implemented 71 fuzzers on Xilinx
7-Series and UltraScale(+) FPGAs. As we cannot discuss every finding in detail in the
scope of this work, we provide an excerpt of the most interesting and impactful findings in
Table 2; a complete list of all findings is available at [Emb23]. Three findings are discussed
in this chapter, showcasing the implementation and investigation procedure.

With the 71 implemented fuzzers, we executed about 83 million test cases, which took
approximately 2 weeks. For UltraScale(+) fuzzers, we used a single board and a small
cluster of 15 FPGAs for the Xilinx 7-Series. In our experiments, we tested up to 221

on UltraScale(+) and on our 7-Series cluster 225 bitstreams per day, depending on the
fuzzer configuration. We found 1677 crashes during evaluation. Overall, our approach
facilitated an improved understanding of the bitstream file format and implementation of
the configuration engine, including errors and crashes, see Table 2.

Table 2: Excerpt of our fuzzers and findings (7S: 7-Series, US+: UltraScale(+)).

Name FPGA
Family

Type Findings

header types US+ structure Header type 010 always and header type 001
with opcode 11 does lead to a crash of the
device (all registers are zero)

register 23 7S, US+ intra Bit 23 (& 25) crashes the device (power cycle
needed)

register 29 7S, US+ intra Value matches FUSE_CNTL register (docu-
mented JTAG only)

starbleed 7S, US+ inter Re-discovers Starbleed attack [ELMP22]
JustSTART US+ inter Discovers novel JustSTART attack

Development Boards For our experiments, we examined the following Xilinx FPGAs
development boards: Basys 3 (Artix-7 XC7A35T), KCU116 (UltraScale+ Kintex XCKU5P),
and OpalKelly XEM8320 (UltraScale+ Artix XCAU25P), while we also support the
KCU105 (UltraScale Kintex XCKU040). All boards offer JTAG-over-USB for FPGA
programming. Further, the jumpers are set to JTAG boot mode to prevent the FPGAs
from being configured from any other bitstream source until a JTAG programming occurs.

5.1 Fuzzing Encrypted Bitstreams: How to Find Starbleed
The recent starbleed attack [EMP20,ELMP22] is a time-of-check-to-time-of-use vulner-
ability where bitstream commands can be executed before verifying their authenticity.
Ender et al. discovered the attack “by a detailed study of the Xilinx official documents
together with experiments” which is a manual laborious task. We employed an automated
fuzzer, as outlined in this case study, to automate the process, leading to the rediscovery
of the attack. Moreover, we found 3 additional registers vulnerable to the attack. Note
that this case study focuses on UltraScale(+) devices. The fuzzer for the 7-Series works
analogously, and results are available in our GitHub repository [Emb23]. We further
assume that no RSA authentication is enforced by the security fuses, as it would prevent
the attack.

The Starbleed Attack The root cause of starbleed is that manipulations of the ciphertext
are detected after decryption and execution of commands. A manipulation can be inserted



436 JustSTART

0 1 2 3

0xAA995566
SYNC Word β0

0x20000000
NOP β1

. . . 0x30016004
write GCM IV β3

GCM IV 96 bit
β4 – β6

enc length
β7

60 * NOPs (0x20000000)



un
en

cr
yp

te
d

co
nfi

gu
ra
tio

n
he

ad
er

0x244A2E44
checksum γ0

0x30018001
write IDCODE β8

0x03822093
IDCODE value β9

0x30002001
write FAR β10

0x00000000
frame address β11

0x30008001
write CMD β12

0x00000001
WCFG command β13

0x30004000
write FDRI (type 1)

β14

0x0BB5E100
checksum γ1

0x50000171
write FDRI (type 2)

β15

0xF00DF00D
fabric data β16

0xF00DF00D
fabric data β17

0xF6012B13
checksum γ2

fabric data fabric data . . .

. . .



en
cr
yp

te
d
pa

rt
sh
ow

n
in

pl
ai
nt
ex
t

Figure 3: The encrypted bitstream utilized to be fuzzed by the starbleed fuzzer.

by flipping bits in an encrypted ciphertext undermining the used GCM mode and the
underlying CTR mode malleability. An attacker can manipulate the bitstream to divert
secret fabric content to the WBSTAR register instead. Then, when the FPGA finally detects
the manipulation, the FPGA resets but does not clear said register. So it can be read
out afterward. This behavior can be exploited to read out all confidential data within
the bitstream via the WBSTAR register. For example, Figure 3 shows parts of an encrypted
bitstream. β8 is the first encrypted bitstream command. Manipulating this word would
divert the following data words.

The Starbleed Fuzzers Idea In the following, we assume a scenario where the analyst
has no prior knowledge about the starbleed attack but has a basic understanding of the
bitstream structure from the available documentation. To detect undefined behavior, the
analyst starts fuzzing an encrypted bitstream like an unencrypted one by starting with
a strategy 1 fuzzer. This strategy tests the bitstream structure, e.g., the header words
of the bitstream are fuzzed. We designed the fuzzer to cover all 21 active bits in the
header (see Table 1), i.e., we omitted the reserved ones. We exclude the reserved bits
in this particular fuzzer as the mutation space is too large, and we have already tested
these bits with an unencrypted structural fuzzer, which revealed that they likely have no
functionality.

In order to mimic an attacker capability who can only flip encrypted bits instead of
generating correctly encrypted bitstreams, we directly mutated an encrypted bitstream
rather than mutate and then encrypt the bitstream. Note that this manipulates only one
word at a time, e.g., β8 in Figure 3; no other words are changed, especially checksums
and authentication tags. We created a short encrypted bitstream writing 3 frames to
the fabric to reduce the fuzzed bitstream size and improve the fuzzer performance. The
implementation of the starbleed fuzzer is displayed in Listing 1.



Maik Ender, Felix Hahn, Marc Fyrbiak, Amir Moradi and Christof Paar 437

Fuzzer Execution & Analysis On a single OpalKelly XEM8320 Ultrascale+ board, the
starbleed fuzzer stops execution after recording 128 crashes by default, having executed
20, 119, 674 test cases in roughly 8 days. All crashes occur while mutating β15 and directly
reveal the starbleed vulnerability, as one can see decrypted fabric data in configuration
registers. While we tried to keep the fuzzer configuration as simple as possible, resulting
in an extended runtime of the fuzzer, it is plausible that a knowledgeable attacker could
refine the fuzzer strategy to find the vulnerability more quickly, e.g., by modifying the
starting position of the first fuzzed word or relaxing the crash settings to match other
decrypted data.

On the 7-series cluster, using 15 boards in parallel, some boards fuzzed a test case
range where no crashes occurred, while other boards exited early after recording 128
crashes. This results in a runtime of about 46 hours with 43, 189, 976 test cases and 1156
crashes. Most crashes are similar to each other, as, for example, the same manipulations
are carried out at different words in the bitstream. Again, most of them directly revealed
the starbleed vulnerability, while some are not linked to starbleed, as data words are
manipulated and not header words. Note that the results of the UltraScale+ starbleed
fuzzer and the starbleed fuzzer on the 7-series cluster are not directly comparable due to
subtle implementation differences.

With these results, the analyst would have discovered the starbleed vulnerability, i.e.,
manipulating an encrypted (non-RSA-authenticated) bitstream is possible as the bitstream
commands are executed before the next cryptographic checksum is validated. However,
the X-GHASH checksum is still an issue within the practicability of that attack because
this checksum (γi) hinders leakage of bitstream content as it is evaluated every 8th word.
Nevertheless, the underlying attack foundation is found at this stage.

New Discoveries Through our fuzzing attempts, we have discovered that in addition to
the WBSTAR register, the TIMER, UNKNOWN_20, and BSPI registers are also susceptible to the
starbleed attack. To the best of our knowledge, this was not publicly known yet.

Accordingly, on the Virtex-6, the starbleed attack might become usable again as the
WBSTAR register lacks the two most significant bits, i.e., the WBSTAR register is only 30 bits
long. Unfortunately, we could not test this yet due to the lack of a legacy Virtex-6 board.

5.2 JustSTART: RSA Authentication Bypass
As of now, no vulnerability to the RSA bitstream authentication of Xilinx UltraScale(+)
FPGAs was publicly known. Unfortunately, we discovered a flaw in said RSA authentication
mechanism of Xilinx UltraScale(+) FPGAs. With the JustSTART vulnerability, the RSA
bitstream is loaded to the FPGA as usual, but instead of running the RSA authentication
mechanism, commands to just start the FPGA are inserted into the bitstream, and the
device boots successfully. We discovered this flaw using our fuzzing framework ConFuzz.
With this vulnerability, the RSA authentication of all Xilinx UltraScale(+) FPGAs can be
bypassed, even if RSA is enforced by the security fuses. Currently, the only countermeasure
to this attack is to enforce the bitstream encryption by the AES only fuse since the device
does not decrypt the attacking bitstream. In the following, we describe the attack in detail
and its consequences, followed by a description of finding it with ConFuzz.

5.2.1 RSA Authentication for UltraScale(+)

Figure 4 describes the structure of an RSA-authenticated bitstream [Xil23,Pet21,WAMP13].
The bitstream starts with an unauthenticated plaintext header followed by a write to the
RSA_DATA_IN register. The data written to this register includes the RSA public key, SHA-3
padding, and RSA signature, calculated over the following written data, the encryption IV,
decryption length counter, header commands, fabric data, and footer commands. Note here



438 JustSTART

that the RSA bitstream structure is very rigid, as the length of each written block is fixed.
Even the word count for the write to the RSA_DATA_IN is fixed depending on the FPGA
fabric size. The following bitstream data, which is not authenticated and not written
to the RSA_DATA_IN register, is the RDW_GO and other commands at the bitstream footer.
Note that we discovered a test mode to break out of this rigid structure (see Section 3.2).

Plaintext Header
(Sync Word, BPI/SPI, Clock Rate, ...)

Type 2 Write to RSA_DATA_IN Register

Public Key [2047:0] + SHA-3 Padding

Signature [2047:0]

AES-GCM IV [95:0]
Decryption Length Counter (DLC)

Header Commands

Fabric Data

Footer CommandsO
pt
io
na

lE
nc

ry
pt
ed


SHA-3 Padding


R
SA

-a
ut
he

nt
ic
at
ed

Subsequent Commands
RDW_GO Command

Figure 4: RSA Bitstream Structure based on [Pet21]. Gray-shaded words are written to
the RSA_DATA_IN Register.

When using an RSA-authenticated bitstream, its authenticity is verified before acti-
vating the decryption core and decrypting it. This prevents time-of-check-to-time-of-use
attacks and side-channel attacks to recover the decryption key. For this reason, the
authenticated bitstream data must be buffered on the device. While the header and
footer commands have a designated buffer, the fabric data is buffered in the FPGA fabric,
as it would consume too much space otherwise. Hence, the write to the RSA_DATA_IN
are writes to the header/footer buffers, as well as, the FPGA fabric. No commands are
executed while writing to these buffers. The first executed bitstream commands after
buffering are the subsequent unauthenticated footer commands. Then, the RDW_GO (Read-
decrypt-write_GO) command initiates the authentication and decryption of the previously
buffered data. At first, the authenticity of the bitstream is checked. If the authenticity is
confirmed and the bitstream is not encrypted, the RSA header and footer are executed,
starting the FPGA design. If the bitstream is encrypted, the RSA header is decrypted
and executed. Afterward, the fabric is decrypted frame by frame, i.e., read from the fabric,
decrypted, and written back to its place in the fabric. Finally, the RSA footer is decrypted
and executed. This footer contains the commands to boot the device and run the design
previously written to the fabric. In order to complete these complex tasks of authenticating
and decrypting the buffered bitstream, the RDW_GO command needs many ticks on the
configuration clock [Xil23].



Maik Ender, Felix Hahn, Marc Fyrbiak, Amir Moradi and Christof Paar 439

5.2.2 Attack Idea

The idea of JustSTART is simple: replace the RDW_GO command at the end of the bitstream
with the usual start-up command sequence. As a result, the authentication process is not
started, and the design already present in the fabric is executed.

The attack works because the fabric is used as a buffer for the design, and the end of
the bitstream, including RDW_GO command, is not authenticated. In the case of plaintext
RSA bitstreams, the design is already present in the fabric, waiting to be authenticated
by the RDW_GO command. If an encrypted bitstream was loaded, replacing the RDW_GO
command prevents the activation of the decryption engine, leaving fabric data encrypted.
Therefore, the attack only works if the attacker bitstream is unencrypted.

5.2.3 Attacker Model

The presented attack allows an attacker to circumvent the RSA authentication of Xilinx
UltraScale(+) FPGAs. By bypassing the authentication step and just starting the device
after the bitstream has been written to the FPGA fabric, an attacker can configure the
device with arbitrary plaintext RSA bitstreams. Hence, our attacker model is the following:

• Bitstream Manipulation The attacker needs to manipulate and load the bitstream
to the attacked device by manipulating the non-volatile memory, storing the bitstream,
or loading it via some configuration port.

• Non-Encrypted Attacker Bitstream The bitstream loaded to the FPGA by
the attacker must not be encrypted as the RDW_GO command, which triggers the
decryption, is replaced.

• Fuses Setting the AES only fuse, allowing only encrypted bitstreams, prevents
the attack. However, enabling the RSA only fuse, which solely permits RSA-
authenticated bitstreams, does not prevent the attack.

5.2.4 Discovering the Attack by Fuzzing

We found this attack 3 times during our fuzzing experiments by applying different fuzzers.
We describe the most straightforward one in the following, shown in Listing 2. With this
fuzzer, we inserted 3 writes to the command register at the unauthenticated end of a
plaintext RSA bitstream. We chose said register as these commands directly influence the
FPGA state and play an immersive part in the startup sequence. The fuzzer is configured
to use a different RSA public key than written to the fuses, resulting in an invalid RSA
signature in the bitstream. Hence, if the RSA only fuse is set, the device should not be able
to start. Due to the impact of the command register, often influencing the device state,
we narrowed down the crash settings. To this end, we focused on identifying instances
where the configuration engine does not report any errors or indicates a successful device
startup in the STAT or BOOTSTS register.

Fuzzer Results The fuzzer processed 32, 768 test cases in 17 hours. As stated previously,
for valid RSA bitstreams to start, JTAG needs to execute a large number of cycles to
process the RDW_GO command, increasing the runtime of this fuzzer. Note that we ran the
tests on a KCU116 board with the RSA only fuse enabled.

Only 2 test cases are logged as crashed, where the device does not show any error, and
the done pin is high, indicating a successful start. In both test cases, the sent bitstreams
are mostly the same, except for 2 commands that have been rearranged. Investigating
these commands reveals that they are part of a regular startup sequence to boot up the
device. Usually, such a startup sequence is present in the bitstream footer. In order



440 JustSTART

to verify the attack, we modified a valid design by invalidating the RSA signature and
replacing the RDW_GO command with a valid startup sequence.

5.2.5 Extending the Attack

We also tried to extend this attack to break confidentiality, i.e., the encryption. While
we tried several fuzzing and rapid prototyping ideas to enable the decryptor, extending
the attack remains unsuccessful. Our main idea to extend the attack is to load an ICAP
controller with the JustSTART attack, then decrypt a short bitstream and read the
decrypted content back via ICAP. The ICAP interface is an internal configuration port
considered trusted and thus lacks most security features. Reading back any fabric content
via ICAP is allowed even when encrypted bitstreams are loaded.

While it is possible to load such an ICAP controller with our attack, we remain
unsuccessful in decrypting a previously encrypted bitstream. The issue is two-fold. First,
with fuzzing, we tried to activate the decryption bit in the CTL0 register, i.e., enable the
decryptor after a plaintext RSA bitstream is loaded, which seems impossible. Second, if the
decryption bit is enabled, running a decryption using a non-RSA-authenticated encrypted
bitstream is impossible, as we confirmed by rapid prototyping. Already the documentation
states [Pet21] that if RSA-authenticated bitstreams are used, partial reconfiguration is
only allowed via ICAP with unencrypted and unauthenticated bitstreams.

5.3 Investigating Unknown Register 23
In this case study, we investigate the unknown register 23. For that, we used our default
intra-register fuzzer and further investigated the crashes by means of rapid prototyping.
We uncovered some bits leading to an unresponsive state of the FPGA, which can only be
resolved by a power cycle. These experiments were carried out on the UltraScale(+) with
an AES key programmed to the BBRAM. 7-Series FPGAs are also sensitive to different
bit combinations’ nuances.

Intra Register Fuzzer To investigate an unknown register, we choose the intra-register
strategy (cf. Section 4) with a broad fuzzing mask by default. This ensures that we get as
much information as possible about the unknown register. Since register 23 is unknown,
e.g., it is not documented, and there are no bitstreams we could generate containing a
write to the register, no individual bits or bit pattern are known. This said we wanted to
test most of all possible values the register could hold while respecting the speed limitation
of fuzzing hardware. Therefore, we split the 32-bit register into two 18-bit fuzzing masks
to test. The two masks overlap in 2 bits, e.g., bit patterns in that region are likely to be
caught while reducing the fuzzing time. Hence, this default intra-register fuzzer generates
and tests 219 bitstreams.

Investigating the Crashes When executing this default intra-register fuzzer for the
unknown register 23 without defining register-specific crash settings, every test case is
logged as crashed, and the fuzzer exits after 128 crashed test cases by default. It would
not make sense to keep the fuzzer running because if every test case crashes, all test cases
need to be analyzed manually, which is unpractical and defeats the purpose of fuzzing.
The crashes are rooted in the fact that the fuzzer does not expect any value returned to
the register, but in the case of register 23, it returns the written value. Fortunately, this
provides the strongest evidence for the presence of that specific register. An additional
indication for the existence of a register is if other registers – which are always probed
– change. Hence, for the unknown register 23, it is necessary to define crash settings to
expect the written value in the register. This starts the process of investigating the crashes,



Maik Ender, Felix Hahn, Marc Fyrbiak, Amir Moradi and Christof Paar 441

i.e., iteratively refining the crash settings and continuously learning more about the register
and the functionality of the register bits.

Manual Analysis and Testing Hypothesis This iterative analysis includes inspecting the
results and comparing the values written to the unknown register 23. Also, we wrote a
helper script that searches for identical bits in all transmitted values to identify bits that
cause certain types of crashes.

Once we have observed specific bits influencing the state and formed a working hy-
pothesis. We then used the following method to test it. The identified bit is fixated in the
fuzzing mask such that only the remaining bits are fuzzed. The crash settings are defined
to reflect the presumed hypothesis. Then, if no crash occurs, the working assumption has
been confirmed: that the fixed bit has the expected influence on the FPGA state.

Also, we can continue using ConFuzz as a rapid prototyping tool to manually investigate
found crash cases by setting different static bits and changing the fuzzing masks accordingly.
Again, after gaining such information, it is possible to exclude a bit (or bits) from the
default fuzzing process to continue fuzzing as initially. Separately, the excluded bit or
bit groups can be further investigated manually or with specific fuzzers. Note that it is
also possible to use the rapid prototyping feature of ConFuzz to encrypt the bitstream
or insert additional commands, e.g., writes to the fabric, before or after the write to the
investigated register, and observe if this changes the behavior of the target device.

Bit 24 With this method, we first revealed that the FPGA soft crashes if bit 24 is set, e.g.,
all registers return zero, but the FPGA can be reset by the JPROGRAM JTAG command.

Bit 16 and 17 After this new information gain, we removed bit 24 from our fuzzing
masks and investigated the remaining bits. Analyzing the newly found crashes reveals
an influence of bits 16 and 17 on the data read from the FDRO register, which is used to
read back the fabric data, i.e., the FPGA design. As per the documentation, it is advised
to read an additional frame when accessing the FDRO register, along with 10 words (in
UltraScale) or 25 words (in UltraScale+) to consider pipelining [Xil23]. If bit 16 is set,
single bits are set in the pipeline frame, and if bit 17 is set, the sync word can be seen in
the pipeline words. Unfortunately, we cannot comprehensively explain the results, which
we will address in future work.

Bit 23, 25, and the Influence of a Programmed BBRAM Key We noticed by coinci-
dence that some of the tested values in register 23 flag the BBRAM key for deletion after a
power cycle. In other words, the BBRAM is cleared after testing the unknown register 23
and a power cycle. Running the fuzzer again if no BBRAM key is programmed reveals that
the FPGA hard crashes if bit 23 and bit 25 are set. Hence, no communication is possible
with the FPGA, i.e., it is unresponsive. Only manually power cycling the device resets
the FPGA, an error state we only encountered during the investigation of the unknown
register 23. Further investigating this hard crash reveals that before the FPGA goes into
the unresponsive state, it returns 156 bytes of seemingly random data. Re-executing this
crashed test case and comparing the data shows similarities in that data. For example,
bits at certain positions are always identical. We assume the returned data are kind of a
crash dump in response to the value written to the unknown register 23 before the device
locks in an error state.
For a more extensive list of our fuzzing results related to the unknown register 23 (and
other registers), we refer to our GitHub repository [Emb23].



442 JustSTART

6 Discussion & Future Work
The unpatchable nature of FPGA configuration engines underscores the critical importance
of proactive security measures during hardware systems design and development. In this
work, we highlight the effectiveness and efficiency of hardware fuzzing by automated
identification of critical vulnerabilities among other safety and reliability-threatening
states, as well as contributing to the general understanding of the configuration engine,
thus addressing our research question.

Security Implications With the unpatchable JustSTART attack, we circumvent the RSA
bitstream authentication. This vulnerability enables attackers to load non-encrypted
bitstreams containing hardware Trojans or manipulate a plaintext RSA-authenticated
bitstream, resulting in the leakage of sensitive data during runtime. We want to highlight
that this attack can be mitigated by enforcing AES encryption using security fuses, as our
attack does not bypass the decryption process. So, JustSTART only breaks authentication,
but it does not break confidentiality. In contrast, the starbleed attack targets bitstream
confidentiality and is mitigated in case the bitstream is authenticated. Thus, mitigating
both attacks simultaneously is only possible by enforcing both authentication and
confidentiality using the security fuses, as already highlighted in [ELMP22].

FPGA Bitstream Authentication vs. Encryption FPGA bitstream protection schemes
typically offer both authenticity and confidentiality as security properties. In various
scenarios, authentication-only is a valid security goal as FPGA design confidentiality
is not required, e.g., open-source FPGA designs where the HDL is openly available
anyways, or when confidentiality is not a functional (user) requirement. For instance, the
patchable bitstream encryption engine [UJH+19] requires only authentication for not being
manipulated. As another example, the recent DoD report [Age22] thoroughly analyzes
potential threats and countermeasures for FPGA assurance. For instance, to prevent
adversaries from swapping the bitstream (cf. TD 6), they only recommend authentication.
Generally, the report specifically excludes scenarios where confidentiality is required, which
are addressed in other reports. We also want to highlight that FPGA security configuration
errors by hardware designers may lead to authentication-only bitstream protection due to
dispersed and inconsistent official documentation, cf. [AEM+23]. Xilinx does not clearly
recommend using authentication and encryption, i.e., XAPP1098 [Pet21] discusses the use
of authentication of unencrypted bitstreams. Based on our research, Xilinx will update its
public documentation as part of the vulnerability disclosure process.

ConFuzz Framework Our primary motivation for ConFuzz was providing a fuzzing frame-
work with rapid prototyping capability to evaluate – security-related – configuration
engine hypotheses with an automated workflow. Note that Ender et al. [EMP20,ELMP22]
identified the starbleed attack by investigating the documentation and manual bitstream
generation. The results discussed in Section 5 show that we automatically rediscover
starbleed (even working with other registers than the original attack), and we identified
the novel JustSTART attack, resulting in a loss of authentication. Moreover, we want to
emphasize that besides the identification of vulnerabilities, a key motivation is to improve
the understanding of the configuration engine since the official documentation is incomplete
and dispersed. We refer interested readers to [Emb23] for comprehensive evaluation results.

A key advantage of ConFuzz is that defining bitstreams in code is considerably less
error-prone than manual construction using a hex editor. Note that this drastically reduces
required time to construct mutated bitstreams and accelerates hypothesis evaluation.

For example, we leveraged this rapid prototype approach to quickly identify an un-
documented RSA test mode mentioned in a Xilinx patent [WAMP13]. We also want to



Maik Ender, Felix Hahn, Marc Fyrbiak, Amir Moradi and Christof Paar 443

highlight that the underlying boofuzz framework [Per] provides valuable features and
enables fast implementation of necessary extensions to communicate with target devices
and craft custom-tailored optimizations.

Systematic Fuzzing Strategies Our investigation into the FPGA configuration engine
was guided by a systematic and iterative approach (Section 4), i.e., i) select and ii) im-
plement a fuzzer with the help of our three main strategies, iii) gather, and iv) evaluate
FPGA state information to then adjust fuzzer mutation accordingly. Throughout this
approach, we were able to establish an improved understanding of the internal workings of
the configuration engine, uncovering vulnerabilities and shedding light on various aspects
of its functionality. However, we also want to highlight the limitations of such an iterative
approach.

i) The approach depends on natural language interpretation of public documentation
and patents, often lacking essential technical details such as clear concepts and imple-
mentation details. This highlights the critical need for comprehensive documentation
in facilitating effective security analysis.

ii) Since this process typically requires guidance by a security engineer, complex fuzzing
sequences are not created automatically so far. As of now, this limits our evaluation
and mostly sheds light on single registers rather than complex combinations and
interactions of them (c.f. next paragraph).

iii) Most of our evaluation assists in understanding the configuration engine’s inner
workings to a limited extent, i.e., uncovering the behavior vs. purpose. The fuzzing
reveals certain inner working effects (i.e., the behavior of the configuration engine).
However, it does not help to explain them due to the limited internal status infor-
mation (i.e., what is the purpose of a particular bit-field?). Therefore, we believe
running the current setup for a prolonged period may yield new crashes, but the
absence of a comprehensive way to interpret results limits potential for novel insights.

In future work, we plan to address these issues with feedback-based and coverage fuzzing
strategies by incorporating FPGA state information as feedback into mutation generation.
Such a fuzzer should ideally automatically create new mutations based on feedback and
coverage of bit patterns within the bitstream structure. During our evaluation, we observed
that adjusting crash settings rather than using a new bitstream mutation strategy yielded
more useful crash results. Note that this may be due to the fact that we have focused
on single configuration register observations so far rather than complex register state
interactions. To also address the third limitation, future work should focus on automatic
generation of a (detailed) configuration engine state-machine model to enable an improved
understanding of its inner workings.

Vulnerability Discovery We now highlight our vulnerability discovery process using our
framework ConFuzz. Based on rapid prototyping design strategies, we built automated
fuzzers to i) run randomized structure-aware fuzzers and ii) validate attack hypotheses by
definition of explicit crash settings.
In case of (structure-aware) intra-command and structural fuzzers, we formulated the crash
settings as deviating from default initialized values and then let the fuzzer run for a certain
time until crashes occurred. In case of the JustSTART vulnerability, we formulated the
attack goal that the FPGA boots an authenticated but manipulated bitstream. We then
defined this objective as a crash setting (cf. Listing 2) in our fuzzing context and then
fuzzed the configuration engine until a crash, i.e., an unauthorized boot-up occurred. Note
that in each crash report, ConFuzz automatically includes the corresponding bitstream



444 JustSTART

responsible for said crash. Similarly, we discussed extending JustSTART with (un-)setting
the DEC bit in Section 5.2.5, where we narrowed the crash setting only to catch a set or
reset of said bit.

From a high-level perspective, we observed that random fuzzing might yield vulnerabil-
ities such as denial of service. However, concrete crash formulation based on a guided idea
yielded more effective attacks, as demonstrated in this work.

On HDL Fuzzing While HDL fuzzing may appear more effective and efficient at first
glance, confirmation of vulnerabilities (and their absence) post-silicon remains essential
even if HDL source code is at hand, particularly considering the difference between high-
level HDL and an optimized fabricated chip. To this end, our framework ConFuzz can be
integrated into a typical CI/CD pipeline. Further, there are gray-box settings – as our
current one – where only documentation and a chip without the HDL code are available.

Performance Another limitation is the test-case performance rooted in the connection
to devices under test. The utilized JTAG interface uses a single-bit interface, clocked at 66
MHz only. In our experiments, we could test up to 221 bitstreams per day on UltraScale(+)
and on our 7-Series cluster 225. Reasonable enough to run fuzzers discovering undefined
behavior and said attacks. However, we are practically limited to fuzzing a complete 32-bit
register or sequences of several commands consisting of fewer bits. Note that the test-case
performance depends on fuzzer configurations like bitstream length and crash settings.

For future research, one may evaluate an UltraScale(+) FPGA device cluster or use
the SelectMAP interface that employs a 32-bit bus and higher speed, theoretically being
up to 66 times faster than JTAG. Furthermore, our work can be extended to analyze the
JTAG controller itself, as it is used for programming the BBRAM key and security fuses.

Vendors We want to emphasize that our work is centered around Xilinx FPGAs, which
share a basic architecture, particularly the configuration process and configuration pack-
ets. Using ConFuzz, we demonstrated the possibility of rapidly generating and fuzzing
bitstreams to discover vulnerabilities. We are confident this concept can be transferred to
FPGAs from other vendors, so we plan to expand our work in this regard in the future.
However, keep in mind that processor-based systems such as Xilinx Zynq devices have
to be handled with a different approach, i.e., processor-based fuzzer approaches such as
sandsifter [Dom17].

7 Conclusions
In this work, we demonstrated the effectiveness and efficacy of hardware fuzzing for the
Xilinx 7-Series and UltraScale(+) configuration engine with only the chip and limited
documentation at hand. We designed and implemented ConFuzz, a framework designed
to facilitate the creation of structure-aware mutational fuzzers. Additionally, its rapid
prototyping capabilities empower analysts to delve deeper into the fuzzing results and
swiftly validate assumptions. We formulated three primary fuzzing strategies to establish
a systematic approach to fuzz Xilinx FPGA configuration engines. Besides rediscovering
the starbleed [EMP20,ELMP22] attack, we identified a new unpatchable vulnerability
named JustSTART (CVE-2023-20570) that bypasses RSA authentication of all Xilinx
UltraScale(+) FPGAs. Moreover, we revealed various undocumented and unexpected
behavior, e.g., an RSA test mode or a bit pattern crashing the FPGAs into an unresponsive
state.

Since we believe that our work raises awareness for hardware security designers and
analysts, we released our fuzzing and rapid prototyping framework ConFuzz under the
MIT license [Emb23].



Maik Ender, Felix Hahn, Marc Fyrbiak, Amir Moradi and Christof Paar 445

Acknowledgments
This work was partly supported by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy (EXC 2092 CASA 390781972).
We also thank our reviewers for their helpful feedback and Xilinx for their excellent
responsible disclosure process, which started on February 27th, 2023, and was acknowledged
a day later.

References
[AEM+23] Nils Albartus, Maik Ender, Jan-Niklas Möller, Marc Fyrbiak, Christof Paar,

and Russell Tessier. On the Malicious Potential of Xilinx’ Internal Configu-
ration Access Port (ICAP). ACM Trans. Reconfigurable Technol. Syst., nov
2023. Just Accepted.

[Age22] National Security Agency. DoD Microelectronics: Field mam-
able Gate Array Level of Assurance 1 Best Practices, December
2022. https://media.defense.gov/2022/Dec/08/2003127936/-1/-1/0/
CTR_DOD_MICROELECTRONICS-FPGA_LOA1_BEST_PRACTICES.PDF.

[AVR14] Vincent Alimi, Sylvain Vernois, and Christophe Rosenberger. Analysis of
embedded applications by evolutionary fuzzing. In International Conference
on High Performance Computing & Simulation, HPCS 2014, Bologna, Italy,
21-25 July, 2014, pages 551–557. IEEE, 2014.

[BHT14] Fabian van den Broek, Brinio Hond, and Arturo Cedillo Torres. Security
Testing of GSM Implementations. In Jan Jürjens, Frank Piessens, and Nataliia
Bielova, editors, Engineering Secure Software and Systems - 6th International
Symposium, ESSoS 2014, Munich, Germany, February 26-28, 2014, Pro-
ceedings, volume 8364 of Lecture Notes in Computer Science, pages 179–195.
Springer, 2014.

[CFH+22] Yixuan Cheng, Wenqing Fan, Wei Huang, Gaoqing Yu, Yu Han, Hang Dong,
and Wen Liu. PDFuzzerGen: Policy-Driven Black-Box Fuzzer Generation for
Smart Devices. Security and Communication Networks, 2022:e9788219, 2022.
Publisher: Hindawi.

[CRD+23] S. Canakci, C. Rajapaksha, L. Delshadtehrani, A. Nataraja, M. Taylor,
M. Egele, and A. Joshi. ProcessorFuzz: Processor Fuzzing with Control
and Status Registers Guidance. In 2023 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pages 1–12, Los Alamitos,
CA, USA, may 2023. IEEE Computer Society.

[DCSSK21] Mukta Debnath, Animesh Basak Chowdhury, Debasri Saha, and Susmita
Sur-Kolay. FuCE: Fuzzing+Concolic Execution guided Trojan Detection
in Synthesizable Hardware Designs. CoRR, abs/2111.00805, 2021. arXiv:
2111.00805.

[Dom17] Christopher Domas. Breaking the x86 ISA. Black Hat, 2017. https://github.
com/xoreaxeaxeax/sandsifter/.

[DWZZ13] Zheng Ding, Qiang Wu, Yizhong Zhang, and Linjie Zhu. Deriving an NCD
file from an FPGA bitstream: Methodology, architecture and evaluation.
Microprocessors and Microsystems - Embedded Hardware Design, 37(3):299–
312, 2013.

https://media.defense.gov/2022/Dec/08/2003127936/-1/-1/0/CTR_DOD_MICROELECTRONICS-FPGA_LOA1_BEST_PRACTICES.PDF
https://media.defense.gov/2022/Dec/08/2003127936/-1/-1/0/CTR_DOD_MICROELECTRONICS-FPGA_LOA1_BEST_PRACTICES.PDF
https://github.com/xoreaxeaxeax/sandsifter/
https://github.com/xoreaxeaxeax/sandsifter/


446 JustSTART

[EFI21] Maialen Eceiza, Jose Luis Flores, and Mikel Iturbe. Fuzzing the Internet of
Things: A Review on the Techniques and Challenges for Efficient Vulnerability
Discovery in Embedded Systems. IEEE Internet Things J., 8(13):10390–10411,
2021.

[ELMP22] Maik Ender, Gregor Leander, Amir Moradi, and Christof Paar. A Cau-
tionary Note on Protecting Xilinx’ UltraScale(+) Bitstream Encryption and
Authentication Engine. In 30th IEEE Annual International Symposium on
Field-Programmable Custom Computing Machines, FCCM 2022, New York
City, NY, USA, May 15-18, 2022, pages 1–9. IEEE, 2022.

[Emb23] Embedded Security Group. ConFuzz - GitHub. https://github.com/emsec/
ConFuzz, 2023.

[EMP20] Maik Ender, Amir Moradi, and Christof Paar. The Unpatchable Silicon: A Full
Break of the Bitstream Encryption of Xilinx 7-Series FPGAs. In Srdjan Capkun
and Franziska Roesner, editors, 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020, pages 1803–1819. USENIX Association,
2020.

[EMS+22] Max Eisele, Marcello Maugeri, Rachna Shriwas, Christopher Huth, and Gi-
ampaolo Bella. Embedded fuzzing: a review of challenges, tools, and solutions.
Cybersecur., 5(1):18, 2022.

[ESSG22] Catherine Easdon, Michael Schwarz, Martin Schwarzl, and Daniel Gruss.
Rapid Prototyping for Microarchitectural Attacks. In Kevin R. B. Butler and
Kurt Thomas, editors, 31st USENIX Security Symposium, USENIX Security
2022, Boston, MA, USA, August 10-12, 2022, pages 3861–3877. USENIX
Association, 2022.

[ESW+19] Maik Ender, Pawel Swierczynski, Sebastian Wallat, Matthias Wilhelm,
Paul Martin Knopp, and Christof Paar. Insights into the Mind of a Tro-
jan Designer: The Challenge to Integrate a Trojan into the Bitstream. In
Toshiyuki Shibuya, editor, Proceedings of the 24th Asia and South Pacific
Design Automation Conference, ASPDAC 2019, Tokyo, Japan, January 21-24,
2019, pages 112–119. ACM, 2019.

[FS19] F-Secure. CVE-2019-5478. https://github.com/
f-secure-foundry/advisories/blob/master/Security_Advisory-Ref_
FSC-HWSEC-VR2019-0001-Xilinx_ZU+-Encrypt_Only_Secure_Boot_
bypass.txt, 2019.

[HLF+20] Benjamin Hettwer, Sebastien Leger, Daniel Fennes, Stefan Gehrer, and Tim
Güneysu. Side-Channel Analysis of the Xilinx Zynq UltraScale+ Encryp-
tion Engine. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2021(1):279–304, Dec. 2020.

[HYJ+17] Andrew Henderson, Heng Yin, Guang Jin, Hao Han, and Hongmei Deng.
VDF: Targeted Evolutionary Fuzz Testing of Virtual Devices. In Marc Dacier,
Michael Bailey, Michalis Polychronakis, and Manos Antonakakis, editors,
Research in Attacks, Intrusions, and Defenses - 20th International Symposium,
RAID 2017, Atlanta, GA, USA, September 18-20, 2017, Proceedings, volume
10453 of Lecture Notes in Computer Science, pages 3–25. Springer, 2017.

[KCR+10] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak N. Patel, Tadayoshi
Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,

https://github.com/emsec/ConFuzz
https://github.com/emsec/ConFuzz
https://github.com/f-secure-foundry/advisories/blob/master/Security_Advisory-Ref_FSC-HWSEC-VR2019-0001-Xilinx_ZU+-Encrypt_Only_Secure_Boot_bypass.txt 
https://github.com/f-secure-foundry/advisories/blob/master/Security_Advisory-Ref_FSC-HWSEC-VR2019-0001-Xilinx_ZU+-Encrypt_Only_Secure_Boot_bypass.txt 
https://github.com/f-secure-foundry/advisories/blob/master/Security_Advisory-Ref_FSC-HWSEC-VR2019-0001-Xilinx_ZU+-Encrypt_Only_Secure_Boot_bypass.txt 
https://github.com/f-secure-foundry/advisories/blob/master/Security_Advisory-Ref_FSC-HWSEC-VR2019-0001-Xilinx_ZU+-Encrypt_Only_Secure_Boot_bypass.txt 


Maik Ender, Felix Hahn, Marc Fyrbiak, Amir Moradi and Christof Paar 447

Hovav Shacham, and Stefan Savage. Experimental Security Analysis of a
Modern Automobile. In 31st IEEE Symposium on Security and Privacy, S&P
2010, 16-19 May 2010, Berleley/Oakland, California, USA, pages 447–462.
IEEE Computer Society, 2010.

[KL13] Nassima Kamel and Jean-Louis Lanet. Analysis of HTTP Protocol Imple-
mentation in Smart Card Embedded Web Server. International Journal of
Information and Network Security (IJINS), 2, 2013.

[LCC+15] Hyeryun Lee, Kyunghee Choi, Kihyun Chung, Jaein Kim, and Kangbin
Yim. Fuzzing CAN Packets into Automobiles. In Leonard Barolli, Makoto
Takizawa, Fatos Xhafa, Tomoya Enokido, and Jong Hyuk Park, editors, 29th
IEEE International Conference on Advanced Information Networking and
Applications, AINA 2015, Gwangju, South Korea, March 24-27, 2015, pages
817–821. IEEE Computer Society, 2015.

[LGBD19] Hoang M. Le, Daniel Große, Niklas Bruns, and Rolf Drechsler. Detection
of Hardware Trojans in SystemC HLS Designs via Coverage-guided Fuzzing.
In Jürgen Teich and Franco Fummi, editors, Design, Automation & Test in
Europe Conference & Exhibition, DATE 2019, Florence, Italy, March 25-29,
2019, pages 602–605. IEEE, 2019.

[LTK+18] Heiko Lohrke, Shahin Tajik, Thilo Krachenfels, Christian Boit, and Jean-
Pierre Seifert. Key Extraction Using Thermal Laser Stimulation A Case Study
on Xilinx Ultrascale FPGAs. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2018(3):573–595, 2018.

[MBKP11] Amir Moradi, Alessandro Barenghi, Timo Kasper, and Christof Paar. On the
vulnerability of FPGA bitstream encryption against power analysis attacks:
extracting keys from xilinx virtex-ii fpgas. In Yan Chen, George Danezis,
and Vitaly Shmatikov, editors, Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS 2011, Chicago, Illinois, USA,
October 17-21, 2011, pages 111–124. ACM, 2011.

[MRBC21] Damiano Melotti, Maxime Rossi-Bellom, and Andrea Continella. Reversing
and Fuzzing the Google Titan M Chip. In Reversing and Offensive-oriented
Trends Symposium, pages 1–10. ACM, 2021.

[MS16] Amir Moradi and Tobias Schneider. Improved Side-Channel Analysis Attacks
on Xilinx Bitstream Encryption of 5, 6, and 7 Series. In François-Xavier Stan-
daert and Elisabeth Oswald, editors, Constructive Side-Channel Analysis and
Secure Design - 7th International Workshop, COSADE 2016, Graz, Austria,
April 14-15, 2016, Revised Selected Papers, volume 9689 of Lecture Notes in
Computer Science, pages 71–87. Springer, 2016.

[MSK+18] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and Davide
Balzarotti. What You Corrupt Is Not What You Crash: Challenges in Fuzzing
Embedded Devices. In 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018.
The Internet Society, 2018.

[Not08] Jean-Baptiste Note. debit. https://github.com/djn3m0/debit/tree/
master/altera, January 2008.

[NR08] Jean-Baptiste Note and Éric Rannaud. From the bitstream to the netlist. In
Mike Hutton and Paul Chow, editors, Proceedings of the ACM/SIGDA 16th

https://github.com/djn3m0/debit/tree/master/altera
https://github.com/djn3m0/debit/tree/master/altera


448 JustSTART

International Symposium on Field Programmable Gate Arrays, FPGA 2008,
Monterey, California, USA, February 24-26, 2008, page 264. ACM, 2008.

[PA22] Andrea Pferscher and Bernhard K. Aichernig. Stateful Black-Box Fuzzing of
Bluetooth Devices Using Automata Learning. In Jyotirmoy V. Deshmukh,
Klaus Havelund, and Ivan Perez, editors, NASA Formal Methods - 14th
International Symposium, NFM 2022, Pasadena, CA, USA, May 24-27, 2022,
Proceedings, volume 13260 of Lecture Notes in Computer Science, pages 373–
392. Springer, 2022.

[Per] Joshua Pereyda. boofuzz: Network Protocol Fuzzing for Humans — boofuzz
0.4.1 documentation. https://boofuzz.readthedocs.io/en/stable/.

[Pet21] Xilinx Ed Peterson. XAPP1098: Developing Tamper-Resistant Designs with
UltraScale and UltraScale+ FPGAs, March 2021. v1.4.

[QSD+21] Abdullah Qasem, Paria Shirani, Mourad Debbabi, Lingyu Wang, Bernard
Lebel, and Basile L. Agba. Automatic Vulnerability Detection in Embedded
Devices and Firmware: Survey and Layered Taxonomies. ACM Comput. Surv.,
54(2):25:1–25:42, 2021.

[Rat] Dominic Rath. Open On-Chip Debugger. https://openocd.org/.

[SMOP15] Pawel Swierczynski, Amir Moradi, David Oswald, and Christof Paar. Physical
Security Evaluation of the Bitstream Encryption Mechanism of Altera Stratix
II and Stratix III FPGAs. TRETS, 7(4):34:1–34:23, 2015.

[SW12] Sergei Skorobogatov and Christopher Woods. Breakthrough Silicon Scanning
Discovers Backdoor in Military Chip. In Emmanuel Prouff and Patrick
Schaumont, editors, Cryptographic Hardware and Embedded Systems - CHES
2012 - 14th International Workshop, Leuven, Belgium, September 9-12, 2012.
Proceedings, volume 7428 of Lecture Notes in Computer Science, pages 23–40.
Springer, 2012.

[Sym17] SymbiFlow. Project x-ray. https://github.com/SymbiFlow/prjxray, 2017.

[TLSB17] Shahin Tajik, Heiko Lohrke, Jean-Pierre Seifert, and Christian Boit. On
the Power of Optical Contactless Probing: Attacking Bitstream Encryption
of FPGAs. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pages 1661–1674. ACM, 2017.

[TSC+21] Timothy Trippel, Kang G. Shin, Alex Chernyakhovsky, Garret Kelly, Do-
minic Rizzo, and Matthew Hicks. Fuzzing Hardware Like Software. CoRR,
abs/2102.02308, 2021. arXiv: 2102.02308.

[UJH+19] Florian Unterstein, Nisha Jacob, Neil Hanley, Chongyan Gu, and Johann
Heyszl. SCA Secure and Updatable Crypto Engines for FPGA SoC Bitstream
Decryption. In Chip-Hong Chang, Ulrich Rührmair, Daniel E. Holcomb, and
Patrick Schaumont, editors, Proceedings of the 3rd ACM Workshop on Attacks
and Solutions in Hardware Security Workshop, ASHES@CCS 2019, London,
UK, November 15, 2019, pages 43–53. ACM, 2019.

[WAMP13] James D. Wesselkamper, James B. Anderson, Jason J. Moore, and Edward S.
Peterson. Programmable integrated circuit with DPA-resistant decryption,
2013.

https://boofuzz.readthedocs.io/en/stable/
https://openocd.org/
https://github.com/SymbiFlow/prjxray


Maik Ender, Felix Hahn, Marc Fyrbiak, Amir Moradi and Christof Paar 449

[Xil23] Xilinx. UG570 UltraScale Architecture Configuration, April 2023. v1.17.

[XQZ+21] Hang Xu, Ganyu Qin, Junhu Zhu, Zimian Liu, and Zhiqiang Liu. Framework
for State-Aware Virtual Hardware Fuzzing. Wirel. Commun. Mob. Comput.,
2021:6698311:1–6698311:14, 2021.

A Fuzzer Listings

1 custom_register_settings = {
2 "DEFAULT": {
3 "crash_if_differs_from_default": "no",
4 "crash_if_equal_to": "F0 0D F0 0D, BE EF BE EF, DE AD C0 DE",
5 },
6 "register0": {
7 # Overwrite the default crash setting from the default_register_settings.ini.
8 "crash_if_equal_to": "F0 0D F0 0D, BE EF BE EF, DE AD C0 DE",
9 },

10 "register3": {
11 # The FDRO register should only return zeros because encryption is enabled.
12 "crash_if_differs_from_default": "yes",
13 "crash_if_equal_to": "",
14 },
15 "register5": {
16 # Overwrite the default crash setting from the default_register_settings.ini.
17 "crash_if_not_equal_to": "",
18 },
19 }
20
21 starbleed_request = Request(
22 name="starbleed_request",
23 children=(
24 FuzzedBitstream(
25 name="starbleed_bitstream",
26 file_name="write_fdri_bbram_test_key.bit",
27 fuzzing_mask=0xF803E7FF,
28 fuzzing_position=FuzzPosition(index_start=284, word_count=40),
29 )
30 ),
31 )

Listing 1: Excerpt of the source code of the starbleed fuzzer.

1 custom_register_settings = {
2 "DEFAULT": {"probe": "no"},
3 "register7": {
4 "probe": "yes",
5 "crash_if_differs_from_default": "no",
6 # Only crash if BIT13_DONE_INTERNAL_SIGNAL_STATUS or BIT14_DONE_PIN is set.
7 "crash_if_some_bits_in_mask_set": "00 00 C0 00",
8 },
9 "register22": {

10 "probe": "yes",
11 "crash_if_differs_from_default": "no",
12 # Only crash if just BIT00_STATUS_VALID_0 is set.
13 "crash_if_equal_to": "00 00 00 01",
14 },
15 }
16
17 plaintext_rsa_bitstream_request = Request(
18 name="plaintext_rsa_bitstream_request",
19 children=(
20 # Disable ConfigFallback in the CTL0 register.
21 Type1WritePacket(name="write_to_mask", register_address=6),
22 Static(name="mask_value", default_value=b"\x00\x00\x05\x01"),
23 Type1WritePacket(name="write_to_ctl0", register_address=5),
24 Static(name="ctl0_value", default_value=b"\x00\x00\x05\x01"),
25 NOP(3),
26 PlaintextRSABlockUltraScale(
27 name="plaintext_rsa_block",
28 children=(



450 JustSTART

29 # Original RSA header, except ConfigFallback is disabled in the CTL0 register.
30 NOP(),
31 Type1WritePacket(name="write_to_mask_1", register_address=6),
32 Static(name="mask_value_1", default_value=b"\xFF\xFF\xFF\xFF"),
33 Type1WritePacket(name="write_to_ctl0_1", register_address=5),
34 Static(name="ctl0_value_1", default_value=b"\x00\x00\x05\x01"),
35 Type1WritePacket(name="write_to_mask_2", register_address=6),
36 Static(name="mask_value_2", default_value=b"\xFF\xF3\xFF\xFF"),
37 Type1WritePacket(name="write_to_ctl1", register_address=24),
38 Static(name="ctl1_value", default_value=b"\x00\x00\x00\x00"),
39 NOP(8),
40 Type1WritePacket(name="write_to_far_1", register_address=1),
41 Static(name="far_value_1", default_value=b"\x00\x00\x00\x00"),
42 Type1WritePacket(name="write_to_cmd_1", register_address=4),
43 Static(name="wcfg_code", default_value=b"\x00\x00\x00\x01"),
44 NOP(11),
45 # 25 or 26 frames of fabric data for plaintext test mode RSA bitstreams.
46 Static(
47 name="fabric_data",
48 default_value=b"\xDE\xAD\xC0\xDE" * CONSTANTS.BOARD_CONSTANTS.FRAME_LENGTH * 25,
49 ),
50 # Original RSA footer, except ConfigFallback is disabled in the CTL0 register.
51 NOP(2),
52 Type1WritePacket(name="write_to_cmd_2", register_address=4),
53 Static(name="grestore_code", default_value=b"\x00\x00\x00\x0A"),
54 NOP(2),
55 Type1WritePacket(name="write_to_cmd_3", register_address=4),
56 Static(name="dghigh_code", default_value=b"\x00\x00\x00\x03"),
57 NOP(20),
58 Type1WritePacket(name="write_to_cmd_4", register_address=4),
59 Static(name="start_code", default_value=b"\x00\x00\x00\x05"),
60 NOP(),
61 Type1WritePacket(name="write_to_far_2", register_address=1),
62 Static(name="far_value_2", default_value=b"\x07\xFC\x00\x00"),
63 Type1WritePacket(name="write_to_mask_3", register_address=6),
64 Static(name="mask_value_3", default_value=b"\x00\x00\x05\x01"),
65 Type1WritePacket(name="write_to_ctl0_2", register_address=5),
66 Static(name="ctl0_value_2", default_value=b"\x00\x00\x05\x01"),
67 NOP(2),
68 Type1WritePacket(name="write_to_cmd_5", register_address=4),
69 Static(name="desync_code", default_value=b"\x00\x00\x00\x0D"),
70 NOP(119),
71 ),
72 children_contain_header_and_footer=True,
73 key_file_name="test_key_rsa.nky",
74 rsa_private_key_file_name="privateKey_wrong.pem",
75 test_mode=True,
76 rdw_go=False,
77 ),
78 Type1WritePacket(name="write_to_cmd_1", register_address=4),
79 BitstreamWord(
80 name="fuzzed_cmd_value_1", static_bits=0x00000000, fuzzing_mask=0x0000001F,
81 ),
82 NOP(3),
83 Type1WritePacket(name="write_to_cmd_2", register_address=4),
84 BitstreamWord(
85 name="fuzzed_cmd_value_2", static_bits=0x00000000, fuzzing_mask=0x0000001F,
86 ),
87 NOP(3),
88 Type1WritePacket(name="write_to_cmd_3", register_address=4),
89 BitstreamWord(
90 name="fuzzed_cmd_value_3", static_bits=0x00000000, fuzzing_mask=0x0000001F,
91 ),
92 NOP(3),
93 Type1WritePacket(name="write_to_cmd", register_address=4),
94 Static(name="rdw_go_code", default_value=b"\x00\x00\x00\x16"),
95 NOP(3),
96 ),
97 )

Listing 2: Excerpt of the source code of the JustSTART fuzzer.


	Introduction
	Background & Related Work
	Xilinx UltraScale(+) FPGAs
	Related Work

	ConFuzz Framework
	System Architecture
	Implementation

	On Bitstream Fuzzing Strategies
	Case Studies
	Fuzzing Encrypted Bitstreams: How to Find Starbleed
	JustSTART: RSA Authentication Bypass
	Investigating Unknown Register 23

	Discussion & Future Work
	Conclusions
	Fuzzer Listings

