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Abstract. In this paper, we propose a new family of low-latency pseudorandom
functions (PRFs), dubbed Gleeok.
Gleeok utilizes three 128-bit branches to achieve a 256-bit key size while maintaining
low latency. The first two branches are specifically designed to defend against
statistical attacks, especially for differential attacks, while the third branch provides
resilience against algebraic attacks. This unique design enables Gleeok to offer ultra-
low latency while supporting 256-bit keys, setting it apart from existing ciphers
dedicated to low-latency requirements. In addition, we propose wide-block variants
having three 256-bit branches. We also present an application of Gleeok to short-input
authenticated encryption which is crucial for memory encryption and various real-
time communication applications. Furthermore, we present comprehensive hardware
implementation results that establish the capabilities of Gleeok and demonstrate
its competitiveness against related schemes in the literature. In particular, Gleeok
achieves a minimum latency of roughly 360 ps with the NanGate 15 nm cell library
and is thus on par with related low-latency schemes that only feature 128-bit keys
while maintaining minimal overhead when equipped in an authenticated mode of
operation.1

Keywords: Ultra-low latency · Pseudorandom function · Authenticated encryption
· Short input · Memory encryption · Beyond 5G (B5G)

1 Introduction
Need for Ultra-low Latency Encryption. In lightweight cryptography, the latency of
cryptographic primitives has received significant attention due to the increasing need
for protecting real-time communication in practical applications. This trend has led
to active research on low-latency cryptographic primitives. One prominent application

1For the sake of transparency and reproducibility, the full source code of all investigated schemes is
available in the form of a public repository at https://github.com/qantik/gleeok.
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of low-latency primitive is encryption or authentication of computer memory. Memory
encryption/authentication is a core component of various security mechanisms/applica-
tions such as Trusted Execution Environment (TEE) or Pointer authentication. TEE
is a mechanism for processors that ensures the secure execution of programs against
unauthorized entities. It often employs a memory encryption scheme as it has to access a
main memory (typically a DRAM) put outside the physically protected area. For example,
Intel SGX uses a dedicated memory encryption scheme called MEE [Gue16a, Gue16a].
A typical memory encryption scheme (as MEE) consists of MACs/hash functions and
Authenticated Encryptions (AEs) composed in a tree for providing replay protection in
addition to confidentiality and authenticity [Gue16a, HJ06, RCPS07, IMO+22]. This type
of memory encryption has been extensively studied from the system architecture viewpoint,
e.g., [YEP+06, SNR+18a, TSB18a, Ava22]. The latency of the cryptographic core inside a
memory encryption scheme directly impacts the memory read/write latency, hence it is a
critical factor in determining the overall TEE performance. Pointer authentication [Qua17]
is a security feature of processors that adds integrity to the pointers while executing a
program. ARM deployed Pointer authentication to ARMv8-A processors, called PAC
(pointer authentication code), which is essentially a set of special instructions for computing
MAC for pointers using QARMA [Ava17].

Another application of low latency encryption schemes will be in the 5G and the Beyond
5G (B5G) mobile communication network. In the latest release by 3GPP for 5G [gpp] it is
stated that:

One of the requirements of 5G/IMT-2020 is ultra-low latency communication
with only 1 ms end-to-end latency. To achieve this, it is important that the
256-bit algorithms have as low latency as possible. As the traffic is typically
encrypted and decrypted several times, the latency of the 256-bit algorithms
will be added several times to the end-to-end latency.

B5G technology is anticipated to enhance the features of 5G, focusing on ultra-low
latency and higher data rates. This is particularly important in applications where a
delay of even milliseconds can have serious consequences. This includes autonomous
vehicles, which require real-time security for vehicle-to-vehicle and vehicle-to-infrastructure
communication. Tele-medicine applications, such as remote surgery and diagnostics, depend
on low-latency encryption for precise interactions. Immersive VR and AR experiences
necessitate encryption with minimal latency to ensure seamless interactions. One may refer
to [HP22, JFZ+20, APJ+20]. One can also refer to the white paper for Beyond 5G/6G by
NICT [nic] in which they offer a comprehensive perspective on the applications of ultra-low
latency encryption in the society envisioned during the B5G era.

Need for 256-bit Key in Latency-Critical Applications. The most of existing low-latency
cryptographic primitives have at most a 128-bit key since a longer key generally implies
a larger latency. However, one can find a general trend in many real-world applications
of (symmetric-key) cryptography that favors longer, typically 256-bit keys. For example,
the 3GPP standardization organization has highlighted the significance of increasing the
security level to a 256-bit key. One of the reasons for doing so is in light of the potential
impact of quantum computing, especially Grover’s algorithm [Gro96].

This entails designing a scheme that supports a 256-bit key, which typically provides
the desired classical security level, while also ensuring a quantum security level of 128
bits, specifically in relation to Grover’s attack. Similar arguments can be found in SNOW-
V [EJMY19], ZUC-256 [Tea18] and also by Ericsson [eri]. Our (not fully substantiated) guess
is that industries generally prefer a longer-key primitive if performance is satisfactory. For
example, many encrypted storage HW/SW products, such as USB drives or cloud storage,
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adopt XTS with AES-256. Some concrete examples are Kingston Ironkey series2, WinMagic
SecureDoc3, and Microsoft Azure Storage encryption4. Since the latency requirement is
more stringent for memory encryption, most of the current memory encryption schemes
adopt a 128-bit key. However, we think the trend toward requiring longer keys will spill
over into applications where latency is critical.

Need for an Ultra-low Latency Authenticated Encryption (AE) Scheme. The focus
of the cryptographic primitives designed for low-latency, such as PRINCE [BCG+12],
QARMA [Ava17], Mantis [BJK+16] and Orthros [BIL+21], is primarily on the latency of
the primitive itself, and their potential application in designing low-latency authenticated
encryption (AE) schemes has not been deeply explored. However, the development of
ultra-low latency AE schemes holds great potential for various applications in the B5G era,
as it enables ultra-low latency communications. Exploring the application of low-latency
encryption schemes for AE is therefore of significant importance. Authenticated encryption
is not only needed for integrity protection but also to provide acceptable confidentiality.
An AE scheme with low latency characteristics can facilitate real-time communication and
support a wide range of applications in the B5G era.

Besides, as described above, common TEEs including Intel’s SGX [Gue16b] employ a
memory encryption scheme to protect main computer memory. In a memory encryption
scheme for TEE, an AE scheme typically applies to each memory unit, where its latency is
critical.

Motivation. Based on the discussion above, we believe it is evident that there is a need
for a new scheme that can simultaneously fulfill the requirements of ultra-low latency and
support 256-bit keys. To the best of our knowledge, there does not exist an encryption
scheme dedicated to providing low latency that satisfies these specific requirements. This
fact motivates us to address this need by introducing a new family of low-latency PRF
called Gleeok5. The primary objective of Gleeok is to offer ultra-low latency, while also
supporting 256-bit keys.

Existing Low-latency Primitives. To the best of our knowledge, PRINCE [BCG+12] is
the first block cipher that specifically aims for a low-latency design. It follows a similar
structure to AES but with a MixColumns-like mapping using a branch number of 4
instead of 5. The key distinction between PRINCE and other ciphers, including AES, is its
symmetric design around a linear layer in the middle. PRINCE is a 64-bit block cipher that
achieves a significant reduction in the number of rounds while maintaining a moderate
level of complexity per round. PRINCEv2 [BEK+20] refines its design to enhance security.
Following the design approach of PRINCE, Avanzi proposed QARMA [Ava17], a family of
low-latency tweakable block ciphers, which was recently redesigned to QARMAv2 [ABD+23]
to improve its security bounds and allow for longer tweaks, while keeping similar latency
and area. Mantis [BJK+16] and BipBip [BDD+23] are examples of a low-latency tweakable
block cipher and SPEEDY [LMMR21] is a family of ultra low-latency block cipher. Banik
et al. proposed Orthros [BIL+21] which is a 128-bit block pseudorandom function (PRF)
specifically designed with a primary focus on minimizing latency in fully unrolled circuits.
It utilizes a sum of two SPN-type keyed permutations, with round functions based on
Midori [BBI+15]. Orthros operates on a 128-bit key and a 128-bit block size. In terms
of hardware implementation, Orthros claims to achieve the lowest latency compared to

2https://www.kingston.com/en/usb-flash-drives/encrypted
3https://winmagic.com/en/products/full-disk-encryption-for-windows/
4https://learn.microsoft.com/en-us/azure/storage/common/storage-service-encryption
5Gleeok [GlioUk] is a dragon monster with three heads in The Legend of Zelda series.

https://www.kingston.com/en/usb-flash-drives/encrypted
https://winmagic.com/en/products/full-disk-encryption-for-windows/
https://learn.microsoft.com/en-us/azure/storage/common/storage-service-encryption
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other state-of-the-art low-latency primitives. Note that these schemes (except QARMAv2)
however do not support keys of size 256.

Our Contributions
We propose a family of ultra-low latency PRFs, dubbed Gleeok, providing ultra-low latency
while supporting a 256-bit key. Gleeok provides 256- and 128-bit key recovery security
against classical and Grover’s attacks, respectively. We also propose an AE scheme based
on Gleeok which aims at low latency operation for short inputs, which is important for
example, memory encryption.

In Section 2, we provide the specification of Gleeok. Section 3 describes its design
rationale. Gleeok draws inspiration from Orthros, which is a composition of multiple
branches acting as independent block ciphers. One aspect that sets Gleeok apart is that it
supports a 256-bit key (Orthros has a 128-bit key) while providing sub-nano class latency.
Gleeok is comprised of three branches, with the first two branches specifically designed
to defend against statistical attacks, especially for differential attacks, which is the most
powerful attack on low-latency ciphers [LMMR21, BDBN23, DEKM16, BJK+16]. On the
other hand, the third branch is dedicated to algebraic attacks. The key idea of Gleeok is to
synthesize these two contrasting properties of the underlying permutations. The new design
of Gleeok is realized through a fine-grained security evaluation utilizing SAT-based tools,
which offer powerful capabilities for exploring the design space and identifying optimal
parameters for the underlying components. By incorporating bit-level properties and
conducting in-depth evaluations, Gleeok achieves significant enhancements in the security
against existing attacks, especially for differential attacks, without incurring any delay
overhead.

Section 4 studies the security of Gleeok and shows that Gleeok is secure against several
classes of classical attacks. Also, since Gleeok supports 256-bit key, we can claim security
of 128-bit against Grover’s key search attack6.

Section 5 proposes a low-latency AE scheme based on Gleeok of 128-bit block size.
From the application perspective, it is dedicated to short inputs up to 512 bits, which
perfectly fits in the current memory encryption for TEEs. Following the idea of SGX’s
AE scheme [GM16, Gue16b], it uses a simple algebraic universal hash called IP64 (for
Inner Product hashing over a 64-bit field) in addition to Gleeok. It has a 128-bit tag and
achieves 128-bit security against classical attacks in terms of data complexity, assuming
the computational security of Gleeok. We call this AE Gleeok-128-IP64.

Section 6 provides a comprehensive suite of hardware implementation results that
establish the B5G capabilities of Gleeok-128 and Gleeok-256, Gleeok-128-IP64 as well as
Gleeok-128-GCM (GCM using Gleeok as its cryptographic core) and demonstrate their
competitiveness against related schemes in the literature. Several noteworthy observations
can be made from the analysis in this section. Gleeok-128 in its full-round version is on
a par with other low latency schemes while the reduced-round variant for size-restricted
inputs exhibits a considerable advantage and can be considered the most latency-efficient
PRF to date.

We also leverage the payoffs of Gleeok-128 as the core module of Gleeok-128-IP64,
paving the way for a low latency Encrypt-then-MAC algorithm that especially in the
decryption setting achieves a low latency overhead that results in throughput rates beyond 1
Tbits/s. The versatility of Gleeok-128 is further extended to general-purpose authenticated
encryption where we devise an efficient low-latency GCM-based AEAD circuit termed
Gleeok-128-GCM that eclipses AES-based equivalents by more than twofold. An abridged
synthesis comparison is given in Table 1. We conclude in Section 7.

6Bonnetain et al. [BSS22] showed a possibility of beyond quadratic speedup using a quantum computer,
hence faster than Grover, however, this requires specific structure for the target and it is not known how
this result could be extended/generalized to other designs.
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Table 1: Latency (ps) and throughput (Gbits/s) comparison between the Gleeok-based
schemes and related schemes from the literature for the NanGate 15 nm cell library. The
† symbol denotes round-reduced variants.

PRF AE (IP64) AE (GCM)
Scheme Key Latency Scheme Latency Max TP Scheme Latency Max TP
Gleeok-128 256 358.52 Encryption Encryption
Gleeok-128† 256 298.46 Gleeok-128 647.21 791.09 Gleeok-128 456.91 140.07
Gleeok-256 256 521.43 AES-128 1169.66 437.73 AES-128 953.92 67.09
Gleeok-256† 256 438.44 AES-256 1393.28 367.48 AES-256 1224.13 52.28
Orthros 128 351.55 Decryption Decryption
QARMA-128 128 640.00 Gleeok-128 395.22 1295.48 Gleeok-128 449.61 284.69
Midori 128 603.78 AES-128 936.81 546.54 AES-128 950.42 134.68
PRINCE 128 371.62 AES-256 1211.07 422.76 AES-256 1215.91 105.27

2 Specification
Gleeok includes two variants of pseudorandom function (PRF) called Gleeok-128 and Gleeok-
256, both of which are based on three SPN-based keyed permutations as illustrated in
Figure 1. Both Gleeok-128 and Gleeok-256 have a 256-bit key and a block size being 128 and
256 bits, respectively. In both variants, a 128/256-bit plaintext M is first copied into three
internal states X1, X2, and X3, each of which is given as the input to each 128/256-bit
keyed permutations Branch1, Branch2, and Branch3, respectively. A 128/256-bit ciphertext
C is generated by XORing all outputs of Branch1, Branch2, and Branch3. We give a more
detailed specification of Gleeok-128 and Gleeok-256 in the following sections.

M

C

Branch1 Branch2 Branch3

128/256

Figure 1: Overview of Gleeok.

2.1 Underlying Keyed Permutations
The underlying keyed permutations are based on a substitution-permutation network
with a block size of 128 bits and 256 bits in Gleeok-128 and Gleeok-256, respectively. We
give two variants of Gleeok-128 and Gleeok-256 depending on the security claim: Gleeok-
128-r and Gleeok-256-r where r denotes the number of rounds for the underlying keyed
permutation. For Gleeok-128 and Gleeok-256, we have Gleeok-128-(12,10) and Gleeok-256-
(16,12), respectively. The whitening key is applied before the first round, and the linear
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layer in the last round is removed. Note that the permutation πinit is applied to the
internal state before the first round only in Branch2 in Gleeok-256.

In the following explanations of the detailed round function, we denote each operation
and the internal states with indexes i ∈ {1, 2, 3} and {s, l} to identify the branch number and
variants of Gleeok where s and l denote operations in Gleeok-128 and Gleeok-256, respectively.
The internal state X{(s,l),i} can be expressed in bit level such as X{s,i} = (xi0||xi1|| . . . ||xi127)
and X{l,i} = (xi0||xi1|| . . . ||xi255).

2.1.1 Round Functions

The round function of each branch consists of a parallel application of S-boxes S, a
permutation π, a 3 XOR operation θ, a key addition RKxor, and a constant addition
RCxor as follows:

R = RCxor ◦RKxor ◦ π ◦ θ ◦ S,

where R denotes the round function of each branch. Figure 2 shows the overview of the
round function.

S

θ

π

RKxor

RCxor

x
i
0
x
i
1

x
i
127,255

x
i
2

x
i
2

Figure 2: Overview of the round function.

S-box (S). In Branch1 and Branch2, the 3-bit S-box S3 and the 5-bit S-box S5 are
alternately applied to 128/256-bit internal state, namely, the internal state is updated as
follows:

X{s,i} ←(S3(xi0||xi1||xi2)||S5(xi3||xi4||xi5||xi6||xi7)||S3(xi8||xi9||xi10)||
. . . ||S3(xi120||xi121||xi122)||S5(xi123||xi124||xi125||xi126||xi127)),

X{l,i} ←(S3(xi0||xi1||xi2)||S5(xi3||xi4||xi5||xi6||xi7)||S3(xi8||xi9||xi10)||
. . . ||S3(xi248||xi249||xi250)||S5(xi251||xi252||xi253||xi254||xi255)).

In Branch 3, the 4-bit S-box is applied to the 128/256-bit internal state, namely, the
internal state is updated as follows:

X{s,i} ←(S4(xi0||xi1||xi2||xi3)||S4(xi4||xi5||xi6||xi7)|| . . . ||S4(xi124||xi125||xi126||xi127)),
X{l,i} ←(S4(xi0||xi1||xi2||xi3)||S4(xi4||xi5||xi6||xi7)|| . . . ||S4(xi252||xi253||xi254||xi256)).

We show S3, S4, and S5 in Tables 2a, 2b, and 2c, respectively.

3 XOR (θ). Each output bit of θ can be obtained by xi ← x
i+t{(s,l),j}

0
+ x

i+t{(s,l),j}
1

+
x
i+t{(s,l),j}

2
where j denotes the branch number. We shows the parameters of t0, t1, and t2

in Table 3.
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Table 2: S-boxes used in Branch1, Branch2, Branch3. All S-boxes are given in hexadecimal.

(a) S-box S3.

x 0 1 2 3 4 5 6 7

S3(x) 0 5 3 2 6 1 4 7

(b) S-box S4.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S4(x) 1 0 2 4 3 8 6 d 9 a b e f c 7 5

(c) S-box S5.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S5(x) 0 5 a b 14 11 16 17 9 c 3 2 d 8 f e

x 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

S5(x) 12 15 18 1b 6 1 4 7 1a 1d 10 13 1e 19 1c 1f

Table 3: The parameters of θ.
Gleeok-128 t

{s,j}
0 t

{s,j}
1 t

{s,j}
2 Gleeok-256 t

{l,j}
0 t

{l,j}
1 t

{l,j}
2

Branch1 12 31 86 Branch1 5 93 172
Branch2 4 23 78 Branch2 2 90 179
Branch3 7 15 23 Branch3 0 4 8

Permutation (π). The permutation π is a bit-wise permutation as can be given by
xi ← x

p
(s,l)
j
·i mod (128,256) where j denotes the branch number. We show the parameters of

each branch in Table 4.

Table 4: The Parameters of π.
Gleeok-128 psj Gleeok-256 plj

Branch1 117 Branch1 85
Branch2 117 Branch2 85
Branch3 11 Branch3 39

Key Addition (RKxor). The r-th round internal states in Branch1, Branch2, and Branch3
are xored with the corresponding round key RK{(s,l),i}r where i ∈ {1, 2, 3}.

Constant Addition (RCxor). The r-th round internal states in Branch1, Branch2, and
Branch3 are xored with the corresponding round constant RC{(s,l),i}r where i ∈ {1, 2, 3}.
The round constants are given as follows:

RC{s,i}r = MSB128((π − 3) ≪ (r × 128) + (i× 12× 128)),
RC{s,i}r = MSB128((π − 3) ≪ (r × 256) + (i× 16× 256) + (3× 12× 128)),

where MSB128 extracts the most significant 128 bits. For example, since the fraction part of
π is expressed as 0x243f6a8885a308d313198a2e03707344 a4093822299f31d0082efa98. . . ,
RC
{s,1}
1 and RC{s,1}2 are 0x243f6a8885a308d313198a2e03707344 and

0xa4093822299f31d0082efa98ec4e6c89, respectively.

Detailed Procedure of Each Branch. Algorithm 1 shows the detailed procedure of each
branch for in Gleeok-128 and Gleeok-256.
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Algorithm 1 Procedure of each branch. R depends on the variant of Gleeok-128 and
Gleeok-256.

1: function Branchi(K,X{s,i}) in Gleeok-128
2: (RKi

0, RK
i
1, · · · , RK

i
R)← KSFis(K)

3: X{s,i} ← X{s,i} ⊕ RKi
0

4: for r = 1 to R− 1 do
5: X{s,i} ← S(X{s,i})
6: X{s,i} ← θ(X{s,i})
7: X{s,i} ← X{s,i} ⊕ RKi

r

8: X{s,i} ← X{s,i} ⊕ RCi
r

9: end for
10: X{s,i} ← S(X{s,i})
11: X{s,i} ← X{s,i} ⊕ RKi

R

12: X{s,i} ← X{s,i} ⊕ RCi
R

13: return X{l,i}

14: end function

1: function Branchi(K,X{l,i}) in Gleeok-256
2: if i = 2 then
3: (x∗0 ||x

∗
1 || . . . ||x

∗
256)← X{l,2}

4: for j = 0 to 255 do
5: x2

j ← x∗41·j mod 256
6: end for
7: end if
8: (RKi

0, RK
i
2, · · · , RK

i
R)← KSFis(K)

9: X{l,i} ← X{l,i} ⊕ RKi
0

10: for r = 1 to R− 1 do
11: X{l,i} ← S(X{l,i})
12: X{l,i} ← θ(X{l,i})
13: X{l,i} ← X{l,i} ⊕ RKi

r

14: X{l,i} ← X{l,i} ⊕ RCi
r

15: end for
16: X{l,i} ← S(X{l,i})
17: X{l,i} ← X{l,i} ⊕ RKi

R

18: X{l,i} ← X{l,i} ⊕ RCi
R

19: return X{l,i}

20: end function

2.2 Key Scheduling
2.2.1 Key Loading

Gleeok-128. The 256-bit key K is divided into two 128-bit keys in different ways for
each branch. For Branch1, K is divided into two 128-bit keys as, i.e., K = K0||K1 where
K0 = (k0||k1|| · · · ||k127) and K1 = (k128||k129|| · · · ||k255). Note that ki denotes a key
bit. For Branch2 and Branch3, K0 and K1 are set as {K0 = (k128||k129|| · · · ||k255), K1 =
(k0||k1|| · · · ||k127)} and {K0 = (k64||k65|| · · · ||k191), K1 = (k0||k1|| · · · ||k63||k192||k193|| · · · ||k255)},
respectively. Both K0 and K1 are used to generate the round keys for Branch1, Branch2,
and Branch3 with the key scheduling function KSF1s, KSF2s, and KSF3s, respectively. The
details of the key scheduling function will be described later.

Gleeok-256. The 256-bit key K is loaded into the input of key scheduling function
KSF1l, KSF2l, and KSF3l to generate the round keys for Branch1, Branch2, and Branch3,
respectively.

2.2.2 Key Scheduling Function

We adopt the permutation-based key scheduling function for both Gleeok-128 and Gleeok-
256, i.e., the round keys are updated by a permutation. In the key scheduling functions of
Gleeok-128, the divided 128-bit keys K1 and K2 are alternately applied to the permutations
and generate the round keys, while the 256-bit key K in the key scheduling function of
Gleeok-256 is applied to the permutations in each round and generate the round keys. The
permutations used in the key scheduling function can be expressed with the same formula
as π, i.e., ki ← k

pk
(s,l)
j
·i mod (128,256) where j denotes the branch number. Table 5 and

Algorithm 2 show the parameters of permutations and the detailed procedure of KSFi(s,l)
where i ∈ {1, 2, 3}, respectively.

Table 5: The permutations used in the key scheduling functions.
Gleeok-128 pksi Gleeok-256 pkli

Branch1 29 Branch1 57
Branch2 51 Branch2 177
Branch3 107 Branch3 239
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Algorithm 2 Procedure of KSFi(s,l). R depends on the variant of Gleeok-128 and Gleeok-
256.

1: function KSFis(K)
2: (K0||K1)← K
3: for r = 0 to R do
4: (k0||k1|| · · · ||k127)← Kr mod 2
5: for j = 0 to 127 do
6: k∗j ← kpks

i
·j mod 128

7: end for
8: Kr mod 2 ← (k∗0 ||k

∗
1 || · · · ||k

∗
127)

9: RKi
r ← Kr mod 2

10: end for
11: return (RKi

0, RK
i
1, · · · , RK

i
R)

12: end function

1: function KSFil(K)
2: for r = 0 to R do
3: (k0||k1|| · · · ||k255)← K
4: for j = 0 to 255 do
5: k∗j ← kpks

i
·j mod 256

6: end for
7: K ← (k∗0 ||k

∗
1 || · · · ||k

∗
255)

8: RKi
r ← K

9: end for
10: return (RKi

0, RK
i
1, · · · , RK

i
R)

11: end function

2.3 Data Processing
The 128/256-bit ciphertext is generated by an XOR of the output of Branch1, Branch2,
and Branch3. Algorithm 3 shows the entire algorithm of Gleeok-128, and Gleeok-256.

Algorithm 3 Processing algorithm of Gleeok, which is same in Gleeok-128 and Gleeok-256.
1: function Gleeok(K,M)
2: for i = 1 to 3 do
3: X{(s,l),i} ←M
4: Y

(s,l)
i ← Branchi(K,X{(s,l),i})

5: end for
6: C ← Y

(s,l)
1 ⊕ Y (s,l)

2 ⊕ Y (s,l)
3

7: return C
8: end function

Security Claim.
Gleeok-128-12 and Gleeok-256-16 claims 256-bit security in the single-key setting. We also
propose the reduced-round variants, Gleeok-128-10 and Gleeok-256-12, claiming 256-bit
security for key recovery, when available data is limited to 264 and 2128, respectively. All
variants of Gleeok-128 and Gleeok-256 do not claim any security in the related-key and
known/chosen-key settings.

3 Design Rationale
3.1 General Construction
Gleeok is inspired by the concept of Orthros [BIL+21], namely the sum of multiple branches
that behave as independent block ciphers. Orthros employs two branches, enabling parallel
implementation and reducing latency. Additionally, this multi-branch structure makes it
challenging to apply known attack methods against block ciphers. As demonstrated by
Orthros’s analysis, this approach can achieve a sufficient level of security with a smaller
number of rounds compared to designing a stand-alone block cipher.

Three Branches for Supporting 256-bit Key. Gleeok further pushes this approach by
employing three branches to increase the key size to 256 bits while keeping lower latency.
The three-branch structure increases the difficulty of performing backward computation
from the output by requiring the guessing of at least two outputs of the permutations.
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This makes it more challenging to mount a key recovery phase in the last rounds, as it
would necessitate guessing a 256-bit value.

Moreover, the three-branch structure exhibits significantly improved differential/linear
characteristics with fewer rounds compared to the two-branch structure, even when
considering clustering effects [TISI23]. Additionally, constructing distinguishers for three
different branches simultaneously poses a significant challenge for the adversary, leading us
to believe that the pseudo-random functions (PRFs) are secure even in a relatively small
number of rounds.

Enhancing Multi-User Security. Moreover, Gleeok-128 could be interpreted as an instan-
tiation of SoP3-2 proposed by Wonseok, Hwigyeom, Jooyoung and Yeongmin at Asiacrypt
2022 [CKLL22]. To our knowledge, our Gleeok-128 is the first such instantiation with
dedicated branches. The original SoP3-2 takes an independent key for each branch, instead,
we use a single key with three different algorithms. If we view each Branch in Gleeok-128 as
a tweakable block cipher (TBC) taking a tweak, where each branch takes one of the three
possible values, a hybrid argument shows quite strong multi-user security bound (see Table
1 of [CKLL22]). In particular, it has a multi-user bound stronger than that of 2-branch
designs – namely the sum of two permutations (SoP2) [DHT17, CKLL22]. In terms of the
number of users (µ) and the number of maximum queries to one user (qmax), SoP2 has the
bound √µqmax/2n , while SoP3-2 has √µq2

max/22.5n [CKLL22], where n denotes the block
size in bits.

More concretely, let E : K×{0, 1}n → {0, 1}n be an n-bit block keyed function with key
K ∈ K. Let Advmu-prf

E (µ, qmax, t) denote the maximal multi-user pseudorandom function
(mu-prf) advantage for adversaries with µ users and time complexity t, where each user is
queried at most qmax times. Here, each user takes an independent and random key over K
and the adversary tries to distinguish so-called the real world from the ideal world. Each
query consists of user index i ∈ {1, . . . , µ} and the input X ∈ {0, 1}n, and the response in
the real world is EKi(X) for independent and random key Ki, whereas, in the ideal world,
the response is Ri(X) for n-bit uniform random function7 Ri which is independent for
each i. The output of Gleeok-128 with key K ∈ K = {0, 1}256 and input X ∈ {0, 1}128 is
Gleeok-128(K,X) = Branch1(K,X)⊕ Branch2(K,X)⊕ Branch3(K,X). We interpret the
three branches as a TBC Branch : K × {1, 2, 3} × {0, 1}n → {0, 1}n, namely the second
argument is the tweak which specifies the branch we use. Let P : {1, 2, 3}×{0, 1}n → {0, 1}n
be the ideal n-bit block TBC of tweak space {1, 2, 3} and let f [P] be the random function
defined as f [P](X) = P(1, X) ⊕ P(2, X) ⊕ P(3, X). Note that f [Branch] is equivalent to
Gleeok-128. We have

Advmu-prf
Gleeok-128(µ, qmax, t) ≤ Advmu-tprp

Branch (µ, 3qmax, t
′) + Advmu-prf

f [P] (µ, qmax) (1)

≤ Advmu-tprp
Branch (µ, 3qmax, t

′) +
√
µq2

max
22.5n (2)

for t′ = t+O(µqmax), where the first term of the right-hand side of Eq. (1) denotes the
multi-user distinguishing advantage of Branch from the ideal TBC and the second term
denotes the multi-user distinguishing advantage of f [P] from the n-bit uniform random
function. We evaluate the latter without restricting time complexity, so we drop the time
complexity from the argument. The first inequality follows from the basic hybrid argument.
The second one follows the fact that f [P] is equivalent to SoP3-2 (as ideal TBC implements
an independent random permutation for each tweak) and the mu-prf bound of SoP3-2
from [CKLL22].

The bound of Eq. (2) tells that Gleeok-128 has 128-bit multi-user security with 128-bit
7An n-bit uniform random function is a random function that is sampled uniformly random overall

functions of n-bit domain and range.
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query complexity per user. This is much stronger than Orthros which has 128-bit single-user
security with 64-bit multi-user security coming from the trivial collision between keys.

We remark that the above analysis relies on the computational assumption that each
branch behaves as an independent and secure block cipher. Our security analysis supports
that there is no distinguisher in each branch. However, this does not directly indicate the
assumption we used here. Note that an analysis based on a similar assumption has been
done for Orthros [BIL+21, Section 3.1]. We have not found anything that invalidates the
assumption for Gleeok-128 and leave further analysis open.

Wideblock Variant. Gleeok-256 is a scaled-up version of Gleeok-128 in terms of input/out-
put sizes. The extended input size helps build various modes with 128-bit security in an
efficient manner, at the cost of increased latency. For Gleeok-256, the bound of SoP3-2 is
vacuous (as its key length is equal to the block size), however, Gleeok-256 simply holds
128-bit multi-user security via a proof based on the key collision.

3.2 Two Types of Keyed Permutations

Gleeok is comprised of three branches, each serving a specific purpose. The first two
branches specifically are designed to secure against statistical attacks, especially for
differential attacks, while the third branch is dedicated to addressing algebraic attacks.

Permutation with Strong Resistance against Differential Attacks. Low-latency prim-
itives often have a limited number of rounds, which can result in insufficient growth in
differential probability. Notably, several primitives such as Mantis [DEKM16, BJK+16]
and SPEEDY [LMMR21, BDBN23] have been broken by differential cryptanalysis. More-
over, the best-known attack to the first low-latency primitive PRINCE [BCG+12] is also
differential cryptanalysis [CFG+14]. Therefore, it is essential to ensure sufficient security
against differential cryptanalysis while minimizing the delay in low-latency primitives.

To address this issue, we leverage two strategies: adopting a 3-branch-based construction
and designing an underlying keyed permutation with strong resistance against differential
cryptanalysis by bit-level optimization. By employing these strategies, we aim to achieve
sufficient security against differential cryptanalysis with a small number of rounds in
underlying permutations.

Permutation with Strong Resistance against Algebraic Attacks. On the other hand,
XORing the outputs of multiple keyed permutations does not enhance the security against
algebraic-degree-based cryptanalysis because the degree of a multiple-branch-based con-
struction is determined by the highest degree among the underlying keyed permutations.
Therefore, it is important to ensure resistance against algebraic-degree-based cryptanalysis
in addition to differential cryptanalysis when designing low-latency primitives with a
minimal number of rounds.

Combined Design. As the algebraic degree of a 3-branch-based construction is determined
by the highest algebraic degree among the three underlying keyed permutations, it is
reasonable to include one keyed permutation with strong resistance against algebraic-
degree-based cryptanalysis and two keyed permutations with strong resistance against
differential cryptanalysis in a 3-branch-based construction. This combination allows us
to achieve a balanced approach, addressing both algebraic-degree-based and differential
cryptanalysis threats effectively within the construction.
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3.3 Design of Keyed Permutations
In order to minimize the latency of an entire construction, the underlying keyed permuta-
tions also should have a small delay. Considering that Feistel-based constructions only
encrypt half of the block in each round, it is more suitable for low-latency design to employ
an SPN-based construction such as PRINCE, QARMA, and SPEEDY. Hence, we employ
SPN-based keyed permutations as underlying components of Gleeok. In this section, we
explain how to design round functions that have strong resistance against differential and
algebraic cryptanalysis while maintaining a small delay.

3.3.1 Design in a Nutshell

A common approach to designing an SPN-based primitive is to first choose a suitable
S-box and then adjust a linear layer, generally including a matrix and a permutation, with
focus on implementation and security.

Limitation of Design by Active S-boxes Estimation. To guarantee security against dif-
ferential and linear attacks, it is conventionally important to obtain the lower bounds
for the number of active S-boxes. Specifically, we first find ns-bit wise truncated differ-
ential/linear characteristics attaining the minimum number of active S-boxes, then the
differential/linear probability is bounded by product of the number of active S-boxes and
maximum differential/linear probability of S-box, where ns is the size of S-box.

In this approach, the selection of the linear layer is made independently without directly
considering the bit-level properties of the S-box, such as the Difference Distribution Table
(DDT) and Linear Approximation Table (LAT). Instead, the focus is on only the maximum
differential/linear probability of the S-boxes. This approach simplifies the design process
and allows for efficient security evaluation against differential and linear attacks within a
practical time. However, it may not fully leverage the specific characteristics of the S-boxes
and may not overlook the potential for optimizing the combination of S-boxes and linear
layers in terms of both security and performance for specific cryptographic purposes.

Bit-level Optimization for Differential/Linear Attacks. Our design approach is based
on the hypothesis that there is an unexplored design space that can be leveraged by
considering the bit-level properties of the S-boxes when selecting the linear layers. It
should be mentioned that the recent development of SAT-based automatic tools, as proposed
by Sun et al. [SWW21], can provide us with the capability to perform bit-level evaluations
for differential and linear attacks. In particular, these tools allow us to determine the
tightest security bounds by identifying the optimal differential characteristics.

Thus, by utilizing these tools, we can leverage the bit-level characteristics of the S-boxes
when selecting linear layers, enabling us to perform further bit-level optimization of the
round function design to enhance security against differential and linear attacks while
maintaining low-latency performance. In the following sections, we first provide a detailed
rationale for the design of the linear and non-linear layers independently, and then we
present the best combination of the linear and non-linear layers based on the optimal
differential characteristics.

Difference from Existing Approaches. In the design of PRESENT and GIFT [BKL+07,
BPP+17], the selection of the linear layer is based on the bit-level properties of the S-
boxes, specifically by considering the local behaviors around a set of S-boxes, known as
the BOGI strategy. However, these designs employ linear layers that consist only of bit
permutations, which is not the best choice from a low-latency perspective. Incorporating
XOR operations in linear layers to achieve low latency while considering the heuristic
properties becomes complex and challenging. To address this issue, our evaluation focuses
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on the differential/linear characteristic probability of the entire function by SAT-aided
tool, rather than examining local behaviors. By analyzing these probabilities of the
entire function, we are able to examine the optimality of the choices of nolinear and
linear layers for the entire round functions, rather than the local optimality. Indeed, a
similar approach identified variants of GIFT achieving better resistance against differential
attack [SPWW22]. Furthermore, we explore various combinations of S-boxes during the
design process to find the most suitable configuration for our desired properties.

3.3.2 Linear Layer

We employ Subterranean-based linear layer [DMMR20], consisting of the θ operation (3-
input XOR) and the π operation (a bit permutation). Since the θ operation is performed by
almost the same delay as that of the almost MDS matrix used in Midori and Orthros during
encryption, Subterranean-based linear layer can be expected to realize almost the same
delay as that of Midori and Orthros whose linear layers consist of an almost MDS matrix
and a permutation. On the other hand, the advantage of employing Subterranean-based
linear layer compared to that of Midori and Orthros, is the increased flexibility in choosing
the parameters of the θ operation, along with the π operation, to consider the bit-level
properties of the S-boxes and enhance security against specific attack vectors. More
specifically, we explore the parameters of the θ and π operations as follows:

θ : xi ← xi+t0 + xi+t1 + xi+t3 ,

π : xi ← xp·i mod (128,256),

where i ∈ {0, 1, 2, · · · , 127(or 255)}. Note that the π operation must be a bit permutation,
i.e., the parameter i must be chosen among the values whose greatest common divisor
(gcd) with 128/256 is 1. Therefore, we have 64/128 and

(128
3
)
/
(256

3
)
candidates for the

128-/256-bit variants of the π and θ operations, respectively.
In many designs of symmetric cryptography, the parameters in a linear layer are chosen

by a manner of some security properties, such as diffusion property. As with other designs,
we also use diffusion property as a criterion of a good linear layer. Since the diffusion
property is dependent on not only a linear layer but also an S-box, we will give the specific
parameters of a linear layer with a combination of an S-box in Sect. 3.4.

3.3.3 S-Box

We carefully select the S-box based on its delay and security properties. In terms of
security, we aim for S-boxes that satisfy both the maximal differential probability and the
squared maximum absolute correlation being 2−2. To estimate the path delay of S-boxes,
we utilize a metric called depth [BBI+15].

Definition 1. Depth: The depth is defined as the sum of the sequential path delays of
basic operations, namely AND, OR, NAND, NOR, and NOT.

Following assumption in [BBI+15], we assume the depth of XOR, AND/OR, NAND/NOR,
and NOT being 2, 1.5, 1, and 0.5, respectively.

4-bit Low-latency Sbox. Banik et al. already gave a 4-bit S-box with the smallest gate
Equivalents (GE) and depth as a non-linear layer of Orthros [BIL+21], whose GE and
depth are 20 and 3.5, respectively. Hence, we reuse Orthros’s S-box as one of the candidates
in the nonlinear layer of Gleeok.
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3- and 5-bit Low-latency Sbox. In addition, we focus on the χ function used in Subter-
ranean since it is the well-known-analyzed function in numerous works and its depth is
also 3.5, which can be expressed as follows:

χ : xi ← si + (si+1 + 1)si+2.

Considering the balance of security property and depth, we employ the 3- and 5-bit variants
of the χ operations, both of which can be viewed as a 3- and 5-bit S-box shown in Table 2a
and 2c, respectively. Note that both the 3- and 5-bit variants of the χ operation have
the maximal differential probability and the squared maximum absolute correlation of
2−2 and 2−2, respectively. A security and hardware comparison of the Gleeok S-box to
related variants from the literature is given in Table 6. For the specific construction of the
non-linear layer, it will be given in Sect. 3.4.

Remarks. Applying a large S-box, such as a 6-bit S-box [LMMR21, BDD+23], emerges
as one potential strategy in designing low-latency ciphers. BipBip/Speedy S-boxes instead
of S3/S5 for branches 1 and 2 could potentially lead to a reduction of the number of rounds.
However, obtaining tight security bounds against differential attacks for 128/256-bit block
ciphers having such large S-boxes is still a computationally demanding task. On the other
hand, for our S-boxes up to 5 bits, we can derive tight bounds for differential characteristics
across a wide class of candidates within a practical time. In addition, delays and area
of our 3 to 5-bit S-boxes are significantly smaller than those of 6-bit S-box [BDD+23] as
shown in Table 6. Taking advantage of these facts, we focus on smaller S-boxes for our
purpose of designing a permutation with strong resistance against differential attacks8.

3.4 Exploring the Best Combination of the Linear Layer and S-box
Our objective for the underlying keyed permutation is to minimize the number of rounds
in order to achieve a small delay. However, achieving strong resistance against differential
cryptanalysis while keeping the number of rounds low is a challenging task, as demon-
strated by several cryptanalysis results on low-latency primitives [BCG+12, Ava17, BIL+21,
LMMR21]. As mentioned in Sect. 3.3.1, we take into consideration the properties of the
S-boxes when determining the parameters of the linear layer including XOR operations to
achieve this challenging goal.

3.4.1 Approach to Identify Best Combinations

To efficiently identify the best combinations of the linear layer in Sect. 3.3.2 and the
S-boxes in Sect. 3.3.3 in terms of delay and security, we employ a two-step evaluation
process. First, we evaluate the diffusion property to identify the candidates with the best
diffusion property. Then we evaluate the security of the remaining candidates against
differential cryptanalysis to determine the best combinations. The detailed procedure for
the evaluation of the diffusion property and security against differential cryptanalysis will
be given later in this section.

For a non-linear layer, we need to consider not only the specification of an S-box
but also the way in which they are applied in parallel. Taking into account the security
property of each S-box and our initial evaluations for several combinations of S-boxes, it
appears favorable to construct the non-linear layer by (1) only S4, (2) (3) two types of
combination of S3 and S5. Thus, we set the non-linear layer in the following three options
in the 128-bit variant of keyed permutations:

φ0 ← (S0
4 ||S1

4 ||S2
4 || · · · ||S30

4 ||S31
4 ),

8We used a LUT-based synthesis approach to derive the numbers in Table 6 which is described in
more detail in Section 6. Note that additional micro-architectural optimisations may further increase the
efficiency of the investigated S-box circuits.
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Table 6: Hardware and cryptanalytic characteristics of the S-boxes of Gleeok and related
schemes. A and L denote area-optimised and delay-optimised circuits respectively, see
Section 6. Note that Gleeok S4 and Orthros S4 refer to the same S-box.
Scheme S-Box Width Area (GE) Delay (ps) DP C2 Degree Full

A L A L Diffusion
NanGate 15 nm

Gleeok S3 3 11.25 21.75 12.78 6.61 2−2 2−2 2 -
S4 4 16.50 30.50 8.85 5.18 2−2 2−2 3 X
S5 5 18.50 46.00 11.82 6.61 2−2 2−2 2 -

BipBip S 6 53.75 91.75 20.34 13.70 2−4 2−4 2 -
SPEEDY S 6 41.49 76.25 17.45 7.43 2−3 2−2.83 5 X

Orthros S4 4 16.50 30.50 8.85 5.18 2−2 2−2 3 X

Midori Sb1 4 16.25 30.50 9.85 7.37 2−2 2−2 3 X

QARMA σ0 4 15.25 48.75 11.19 5.68 2−2 2−2 3 -
σ1 4 18.00 24.25 15.07 9.66 2−2 2−2 3 X
σ2 4 22.00 53.00 18.69 6.75 2−2 2−2 3 X

PRINCE S 4 16.75 30.25 14.00 6.05 2−2 2−2 3 X

TSMC 28 nm
Gleeok S3 3 10.33 52.33 52.57 24.80 2−2 2−2 2 -

S4 4 13.00 55.33 48.13 20.98 2−2 2−2 3 X
S5 5 17.67 90.67 52.57 24.80 2−2 2−2 2 -

BipBip S 6 50.00 230.33 112.09 49.78 2−4 2−4 2 -
SPEEDY S 6 34.66 191.33 106.31 29.10 2−3 2−2.83 5 X

Orthros S4 4 13.00 55.33 48.13 20.98 2−2 2−2 3 X

Midori Sb1 4 14.33 61.67 62.38 29.32 2−2 2−2 3 X

QARMA σ0 4 13.00 76.33 83.57 21.03 2−2 2−2 3 -
σ1 4 15.33 56.33 78.45 35.41 2−2 2−2 3 X
σ2 4 21.00 106.00 81.45 26.48 2−2 2−2 3 X

PRINCE S 4 16.00 86.33 90.35 25.05 2−2 2−2 3 X

φ1 ← (S0
3 ||S1

3 ||S2
3 || · · · ||S40

3 ||S41
5 ),

φ2 ← (S0
3 ||S1

5 ||S2
3 || · · · ||S30

3 ||S31
5 ).

In the 256-bit variant, the non-linear layer is applied to the S-boxes in the same manner
as in the 128-bit variant.

For φ0, our aim is to enhance security against algebraic-degree-based attacks, taking
advantage of the fact that S4 has the highest degree among all our S-boxes (See Table 6).
For φ1 and φ2, we expect to enhance the security against differential cryptanalysis by
leveraging a good property of the χ operation. With this in mind, we proceed to explore
the best parameters in the linear layers in combination with the above non-linear layer φ0,
φ1, and φ2. Hereafter, we elaborate on the detailed procedure of each evaluation to find
the best combination of the linear and non-linear layers.

3.4.2 Screening by Diffusion Property

We start the evaluation by screening the candidates based on the number of rounds required
to achieve full diffusion, where each input bit can influence all output bits. We examine
the diffusion property of each layer, analyzing the number of rounds needed for the full
diffusion. For example, we denote 2.5-round full diffusion if each input bit can influence
all output bits after 2 rounds and the non-linear layer. Table 7 shows the upper bound for
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the number of bits that each input bit can influence, as well as the number of candidates
that achieve full diffusion within the corresponding number of rounds, as determined by
our evaluation.

Table 7: The number of candidates that achieve full diffusion in corresponding rounds
and the upper bound for the number of bits that each input bit can influence after each
operation.

Upper bounds for the number of influenced bits Our results

Rounds Operation 128 bits 256 bits 128 bits 256 bits
φ0 φ1 φ2 φ0 φ1 φ2 φ0 φ1 φ2 φ0 φ1 φ2

0 input 1 1 1 1 1 1 - - - - - -
1 S-box 4 3 3 4 3 3 - - - - - -
1.5 θ and π 12 9 9 12 9 9 - - - - - -
2 S-box 48 27 27 48 27 27 - - - - - -
2.5 θ and π 128 81 81 144 81 81 4352 - - - - -
3 S-box 128 128 128 256 243 192 15296512 398 352 13685504 - -
3.5 θ and π 128 128 128 256 256 256 19451328 6032870 7681408 252385280 39801 25856

As can be seen in Table 7, there are still a large number of candidates remaining after
the screening based on the minimum number of rounds required for full diffusion for several
S-boxes. To further narrow down candidates, we also look at the minimum number of bits
influenced by each input bit before 0.5 or 1 round of the full-diffusion round in several
S-boxes. For example, if the 0-th to 126-th input bits can influence 81 bits and the 127-th
input bit can influence 74 bits at 0.5 rounds before the full-diffusion round, the minimum
number of bits that each input bit can influence is estimated as 74. Among the remaining
candidates, we focus on the ones with the most powerful diffusion property, meaning the
candidates that have the highest minimum number of bits influenced by each input bit
before 0.5 or 1 round of full diffusion, as explained in the following,

128-bit Variant.

φ0: We evaluate the minimum number of influenced bits at 0.5 rounds before the full-
diffusion round for the 4352 candidates. Based on this evaluation, we identified 4096
candidates that passed this screening.

φ1: We evaluate the minimum number of influenced bits at 1 round before the full-diffusion
round for the 398 candidates. From this evaluation, we identified 16 candidates that
passed this screening.

φ2: We perform the same evaluation for φ2 as we did for φ0 and identify 16 candidates that
pass the screening. However, these 16 candidates are considered too weak against
differential cryptanalysis according to the screening process for differential attacks.
To obtain additional candidates, we conducted the same evaluation for 7681408
candidates that achieved full diffusion after 3.5 rounds. From this evaluation, we
identified 1408 candidates that passed the screening.

256-bit Variant.

φ0, φ1: We perform the same evaluation for φ0 and φ1 as we did for φ0 in the 128-bit
variant. From this evaluation, we identify 438986 candidates for φ0 and 21580
candidates for φ1 that pass the screening.

φ2: We evaluate them using the same approach as φ0 in the 128-bit variant, resulting in
1664 candidates. However, we find that all of these candidates are too weak against
differential cryptanalysis according to the screening process for differential attacks.
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Therefore, we proceed to evaluate all 25,856 candidates that achieve full diffusion
after 3.5 rounds in the next screening step.

As a result, we eventually obtained 4096/16/16(1408) and 438986/21580/1664(25856)
candidates for the 128-bit and 256-bit variants, respectively. These candidates will proceed
to the evaluation of security against differential cryptanalysis.

3.4.3 Screening by Security against Differential Cryptanalysis

After evaluating the diffusion property of the candidates, we proceed to select the round
function in each branch based on their security against differential cryptanalysis. It is
worth noting that our evaluation aims to find the optimal differential characteristics rather
than determining the lower bound for the number of active S-boxes. As this process is
computationally expensive compared to the active-S-box-based evaluation, to efficiently
identify promising candidates, we iteratively narrow down candidates round by round in
each of the non-linear layers φ0, φ1, and φ2. We summarize our evaluation as follows:

128-bit Variant.

φ0: We evaluate the 3-round optimal differential characteristics for all 4096 candidates.
As a result, we identified 512 out of 4096 candidates with the optimal differential
characteristic of weight 20, which are the highest ones.

φ1: We evaluate the 4-round optimal differential characteristics for all 16 candidates. As a
result, we identify the 4-round optimal differential characteristic of weight 42, which
are the highest ones.

φ2: We first evaluate the 4-round optimal differential characteristics for 16 candidates.
However, all of them have too weak resistance against differential cryptanalysis,
having the optimal differential characteristics with the weight being less than 16 at 4
rounds. Therefore, we then evaluate the 4-round optimal differential characteristics
for 1408 candidates described in the explanation of the diffusion property. As a result,
we identify 16 out of 1408 candidates with the optimal differential characteristic of
weight 50, which are the highest ones.

256-bit Variant.

φ0 Since it is impossible to evaluate security against differential cryptanalysis for 438986
remaining candidates, we randomly choose 1 candidate and evaluate the optimal
differential characteristics in each round. We would like to emphasize that φ0
mainly aims at obtaining strong resistance against not differential cryptanalysis but
algebraic-degree-based attacks.

φ1 We evaluate the 3-round optimal differential characteristics for all 21580 candidates.
As a result, we identify 7184 candidates with the optimal differential characteristic of
weight 26 which are the highest ones. Then, we attempt to find the 4-round optimal
differential characteristic with a weight of more than 57 for these candidates. However,
we cannot find any candidate with a 4-round optimal differential characteristic of
weight greater than 57.

φ2 We first evaluate 1,664 candidates that achieve full diffusion after 3.5 rounds and have
the maximum number of influenced bits after 3 rounds. However, we only find the
optimal differential characteristic with a weight of 20 as the best one. Therefore,
we proceed to evaluate the 3-round optimal differential characteristics for 25,856
candidates that achieve full diffusion after 3.5 rounds. As a result, we identified 1,728
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candidates with the 3-round optimal differential characteristics of weight 26. Next,
we evaluate the 4-round optimal differential characteristics for these 1,728 candidates
in search of a candidate with a weight greater than 57.

3.4.4 Identifying Best Combinations

After the above evaluation, we decide the candidates of φ0 and φ2 as the round function of
each branch. More specifically, for Gleeok-128, we randomly choose 2 out of 16 candidates
in φ2 as the round functions of Branch1 and Branch2, aiming at enhancing security against
differential cryptanalysis. As the round function in Branch3, we choose the candidate of φ0
with the 8-round optimal differential characteristic of the weight 64 for enhancing security
against algebraic-degree-based attacks. Notably, Branch3 is capable of achieving strong
resistance against integral cryptanalysis, which contributes to the overall security of the
construction (as discussed in Sect. 4.3). For Gleeok-256, we choose 2 out of 1728 candidates
as the round function of Branch1 and Branch2, specifically choosing those with 4-round
optimal differential characteristics of weight more than 65 and 64. As the round function
in Branch 3, we choose the candidate of φ0 with 8-round optimal differential characteristics
of the weight 2−88 for the same reason as Branch3 in the 128-bit variant.

As an interesting observation, for the 128-bit variant, φ2 outperforms φ1 in terms of
the weight of the optimal differential characteristics at the same number of rounds, despite
having fewer S-boxes compared to φ1. This highlights the importance of considering the
combination of the linear layer and the non-linear layer in the design process.

Low-Latency Round Function with Strong Resistance against Differential Attack. We
show the comparison of the weight of the optimal differential characteristics for the other
low-latency primitives with Branch1 and Branch2 in Table 8. The round functions of Gleeok
demonstrate significantly stronger resistance against differential cryptanalysis compared to
other primitives while minimizing delay. This accomplishment aligns with our primary
design objective.

Table 8: Weight of the optimal differential characteristics and critical path delay of the
round functions for the NanGate 15 nm cell and TSMC 28 nm cell libraries.

Cipher Rounds Delay (ps)
1 2 3 4 5 NanGate 15 nm TSMC 28 nm

Gleeok-128 B1 2 8 24 50 ≥ 67 18.95 82.01
Gleeok-128 B2 2 8 24 50 ≥ 66 18.86 81.52
Gleeok-256 B1 2 8 26 ≥ 66 - 21.71 83.14
Gleeok-256 B2 2 8 26 ≥ 65 - 21.30 88.19

Orthros B1 2 8 14 19 29 20.21 82.13
Orthros B2 2 8 13 19 26 19.97 82.31
Midori-128 2 8 14 32 49 23.31 85.07
QARMA-64 - - - 32 40 21.70 89.37
QARMA-128 - - - 32 43 21.76 88.38

PRINCE - - - 32 39 20.71 83.88
BipBip - - 20 32 36 26.39 108.28
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3.4.5 Other Design Choices

Applying πinit for Branch 2 in Gleeok-256. From our initial analysis, we discovered
that Gleeok-256 could easily have a clustering effect due to the large state size and the
same parameter of π operation in Branch1 and Branch2. In order to mitigate this potential
problem, we apply πinit to Branch2 in Gleeok-256, which can contribute to reducing the
similarity between Branch1 and Branch2. Note that applying a bit permutation does not
influence the delay.

Decision for the Number of Rounds on the Round-Reduced Variants of Gleeok. We
choose the number of rounds for the round-reduced variants of Gleeok, namely Gleeok-128-10
and Gleeok-256-12, based on the security analysis against differential/linear cryptanalysis.
According to Table 9 in Sect. 4.1, the required number of rounds with the probabilities
less than 2−64 and 2−128 for Gleeok-128 and Gleeok-256 is 3 and 4 rounds, respectively.
These are fewer by 2 and 4 rounds compared to those required for 2−128 and 2−256 for
Gleeok-128 and Gleeok-256, respectively. Hence, we decide on 10 and 12 rounds for the
round-reduced variants of Gleeok-128 and Gleeok-256, respectively.

4 Security Evaluation
4.1 Differential and Linear Cryptanalysis
One of the most popular ways to show the resistance against differential [BS91] or linear
cryptanalysis [MY93] is to evaluate the lower bound for the number of active S-boxes.
In our evaluation, we conduct a more in-depth evaluation, i.e., exploring the optimal
differential/linear characteristics that can reveal a more detailed resistance against differ-
ential/linear cryptanalysis than an active S-box-based evaluation. To find the optimal
characteristics on as long rounds as possible, we employ an SAT-based automatic search
method integrated with Matsui’s bounding conditions proposed by Sun et al. [SWW21]
that is the state-of-the-art method.

Table 9 shows the probability of the optimal differential/linear characteristics for
each branch in Gleeok-128 and Gleeok-256. Gleeok-128 and Gleeok-256 have the optimal
differential/linear characteristics with the probability of less than 2−64/2−128 and 2128/2256

over 3/5 and 4/8 rounds. Therefore, we expect that all variants of Gleeok-128 and Gleeok-
256 have a resistance against differential/linear cryptanalysis.

Clustering Effect. As reported by Taka et al. [TISI23], the multi-branch-based construc-
tion can be more susceptible to the differential clustering effect compared to single-branch-
based constructions. Given the increased degree of freedom in differential transitions with
the addition of branches, it is important to examine the clustering effect in Gleeok.

In our evaluation, we specifically investigate the clustering effect on the best-found
differential characteristics. For Gleeok-128, we initially evaluate the clustering effect on the
4-round differential characteristic with weight 125. However, no significant clustering effect
was observed on this characteristic. It was only when we examined the 4-round differential
characteristic with weight 155 that we finally observed a clustering effect, resulting in a
reduction in probability from 2−155 to 2−139.96. This weak clustering effect could come
from the evaluation of the small number of rounds, making it difficult to achieve the same
output difference from the same input difference with different internal transitions.

This phenomenon can be also observed on Gleeok-256. We evaluate the clustering effect
on the 4-round differential characteristic with weight 138 but cannot observe the clustering
effect at all. It might be possible that a stronger clustering effect may be observed with a
larger number of rounds, however an underlying characteristic will have enough weight to
render the consideration of the clustering effect negligible.
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Table 9: The probability of optimal differential/linear characteristics. DP and C denote
the differential probability and the absolute correlation, respectively. The upper bound
of DP/C2 by the product of the DP/C2 in multiple rounds is written in gray.

Variant Branch DP/C2 Rounds
1 2 3 4 5 6 7 8

Gleeok-128

Branch1 DP 2−2 2−8 2−24 2−50 ≤ 2−67 2−69 2−75 2−100

C2 2−2 2−8 2−22 2−44 ≤ 2−64 2−66 2−72 2−88

Branch2 DP 2−2 2−8 2−24 2−50 ≤ 2−66 2−68 2−74 2−100

C2 2−2 2−8 2−22 2−44 ≤ 2−64 2−66 2−72 2−88

Branch3 DP 2−2 2−8 2−20 2−32 2−36 2−48 2−52 2−64

C2 2−2 2−8 2−20 2−30 2−36 2−48 2−52 2−64

Gleeok-128 DP 2−6 2−24 2−70 ≤ 2−126 2−132 2−148 2−196 2−252

C2 2−6 2−24 2−66 ≤ 2−124 2−130 2−148 2−190 2−248

Gleeok-256

Branch1 DP 2−2 2−8 2−26 ≤ 2−66 2−68 2−74 2−92 2−132

C2 2−2 2−8 2−26 ≤ 2−66 2−68 2−74 2−92 2−132

Branch2 DP 2−2 2−8 2−26 ≤ 2−65 2−67 2−73 2−91 2−130

C2 2−2 2−8 2−26 2−64 ≤ 2−78 2−80 2−90 2−128

Branch3 DP 2−2 2−8 2−20 2−39 2−61 ≤ 2−72 2−74 2−81

C2 2−2 2−8 2−18 2−38 2−52 2−64 2−76 2−88

Gleeok-256 DP 2−6 2−24 2−76 ≤ 2−139 2−145 2−173 2−215 2−278

C2 2−6 2−24 2−72 ≤ 2−136 2−142 2−160 2−208 2−272

4.2 Impossible Differential Cryptanalysis
Since the SAT model to evaluate the optimal differential characteristics in Sect. 4.1 captures
only valid characteristics, it can be also applied to the evaluation for finding the longest
impossible differences with some modifications. To find the longest impossible differences,
what we need to change is to remove the objective function from the SAT model, namely,
clauses to restrict the total weight in a model will be removed. Instead of these clauses, we
add the clauses to fix the input and output differences. A similar technique is often used
in the evaluation by an MILP [ST17]. In the evaluation by an MILP, it is computationally
infeasible to check the existence of impossible differences in all pairs of input and output
differences. Therefore, only the pairs having one active bit in both input and output
differences will be evaluated to estimate the existence of the impossible differences in each
round. We follow this strategy to find the longest impossible differences. As a result, we
find that the longest impossible differences of Branch1/Branch2/Branch3 in Gleeok-128 and
Gleeok-256 are the 3/3/3- and 4/4/4-round ones, respectively. Additionally, the longest
impossible differences in the entire Gleeok-128 and Gleeok-256 are found on 2 and 2 rounds.
Since there are 2 and 2 rounds left as a security margin for Gleeok-128 and Gleeok-256,
respectively, we believe that all variants of Gleeok-128 and Gleeok-128 have a resistance
against impossible differential cryptanalysis.

4.3 Integral Cryptanalysis
We employ division property [Tod15] to find the longest integral distinguishers. One of
the popular ways to explore division property is to make use of solver-aided automatic
search tools, such as an MILP-based tool proposed by Xiang et al. [XZBL16]. Since Xiang
et al.’s method can be naturally converted to an SAT-based method, we search for the
longest integral distinguishers by Xiang et al.’s method with an SAT. As the number of
rounds for Gleeok-128 and Gleeok-256 depends on a data complexity that the attacker can
exploit, we attempt to find the longest integral distinguisher with a data complexity of
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264/2127 and 2128/2255 for Gleeok-128 and Gleeok-256, respectively. In the evaluation of
integral distinguishers with a data complexity of 264 and 2128, we assign 64 and 128 active
bits to the input and evaluate some patterns of these inputs because it is impossible to
explore all input patterns.

Table 10 shows the results of our evaluation. In Table 10, Branch1/Branch2/Branch3 in
Gleeok-128 and Gleeok-256 have integral dinstinguishers up to 6/6/5 and 6/6/5 rounds,
respectively. As described in Sect. 3.2, the highest degree of the entire Gleeok-128 and
Gleeok-256 depends on a branch with the strongest resistance against degree-based attack.
Therefore, the maximum number of rounds having the integral distinguishers for Gleeok-128
and Gleeok-256 are bounded by Branch3. In fact, the entire Gleeok-128 and Gleeok-256 have
the integral distinguisher up to 5 and 5 rounds, respectively, which is the same number of
rounds for that of Branch3. Hence, we expect that all variants of Gleeok-128 and Gleeok-256
can resist integral cryptanalysis since there are still enough security margins.

Table 10: The integral distinguishers in each round for each branch in Gleeok-128 and
Gleeok-256.

Variant Branch

Data complexity
264/2128 2127/2255

Rounds Rounds
4 5 6 7 8 9 5 6 7 8 9 10 11 12 13 14

Gleeok-128

Branch1 X X ? ? × × X X ? ? ? ? ? ? ? ×
Branch2 X X ? ? × × X X ? ? ? ? ? ? ? ×
Branch3 X × × × × × X ? ? × × × × × × ×

Gleeok-128 X × × × × × X ? ? × × × × × × ×

Gleeok-256

Branch1 X X ? ? ? × X X ? ? ? ? ? × × ×
Branch2 X X ? ? ? × X X ? ? ? ? ? × × ×
Branch3 X X × × × × X ? ? ? × × × × × ×

Gleeok-256 X X × × × × X ? ? ? × × × × × ×
X:There exist the integral distinguishers
×:There do not exist integral distinguishers
?: Evaluation does not finish in practical time.

4.4 Truncated Differential Attack
Truncated differential cryptanalysis, originally introduced by Knudsen in [Knu94], offers
a different perspective on analyzing cryptographic primitives. Instead of focusing on
the precise values of inputs and outputs, this approach considers patterns of differences,
whether they are zero or non-zero. By studying these difference patterns, the vulnerabilities
of the primitives can be analyzed.

Consider the output differences with respect to the input difference 110 in the difference
distribution table (DDT) of the 3-bit S-box. It can be observed that the first two bits of the
output difference are always complementary to each other. This primarily stems from the
dependency between the AND operations with a common input in the χ function [BVAPD11].
This particular property can be exploited to construct distinguishers for the underlying
permutations. Consider an input difference for Branch1 in Gleeok-128 whose only first two
bits are active (110· · · 0). In the S-box output, the first two bits should be either (0,1) or
(1,0) (the remaining bits should be zero) with probability 1

2 . This truncation property can
be further extended for one more round and two disjoint sets, A and B can be formed as
shown in Table 11.

After two rounds, it is expected that all the bit differences corresponding to the positions
in one of these sets should be zero with probability 1

2 . After three rounds, such sets do
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not exist due to the internal round operations. These properties can be extended by
prepending a differential that satisfies the input difference of the truncated differential.
For Branch1, such differentials exist for 2 rounds with probability 2−92. Hence, it seems
that a 4-round distinguisher can be constructed with probability 2−93. Note that, as the
size of the two sets is small, the success probability of this distinguisher will be too low
(to distinguish it from a random permutation). Thus, we believe this distinguisher will
be effective for at most three rounds for Branch1. Branch2 also exhibits a similar kind of
resistance to such truncated differential attacks. In Branch3, this property extends for one
more round which makes at most 4 rounds vulnerable to such attacks. The underlying
permutations of Gleeok-256 also exhibits similar resistance against these types of truncated
differential attacks.

Table 11: Sets corresponding to truncated differential

A = {2, 7, 9, 11, 14, 16, 19, 21, 30, 32, 37, 42, 44, 46, 49, 51, 55, 56, 60, 65, 67, 72, 77, 79,
81, 86, 90, 91, 95, 100, 102, 104, 107, 109, 112, 114, 116, 121, 125}

B = {0, 1, 5, 10, 12, 17, 22, 26, 31, 35, 36, 40, 45, 47, 52, 57, 61, 66, 70, 75, 80, 82, 87, 92,
94, 103, 105, 110, 115, 117, 119, 122, 124}

4.5 Boomerang/Rectangle Attacks
The boomerang attack [Wag99] is a variant of the differential attack that was introduced
by Wagner. It involves subdividing a cipher, denoted as E, into two parts: E1 and E0.
This subdivision allows for the penetration of a larger number of rounds, which would
otherwise not be vulnerable to differential attacks. Initially, two independent differential
trails for E0 and E1 are combined to construct the boomerang trail. But later on, several
incompatibilities regarding the independence of the two trails are identified [Mur11] and
subsequently several frameworks are proposed considering a Em layer in between the two
layers [BK09, DKS10, DKS14]. Introduction of the boomerang connectivity table (BCT)
marks a significant advancement in this regard that combines E0 and E1 with an one
round Em [CHP+18].

Here, also we have employed a SAT-based analysis tool to automatically search for
optimal boomerang characteristics with BCT-effect. It is important to note that our focus
here is on analyzing the security of the underlying pseudorandom permutations (PRP),
i.e., Branch1/Branch2/Branch3 in Gleeok-128 and Gleeok-256, rather than the PRF as a
whole. This is due to the fact that the PRF lacks a decryption oracle, making it impossible
to launch a boomerang attack directly on the PRF itself. The boomerang characteristics
for Branch1 and Branch2 is quite similar for both Gleeok-128 and Gleeok-256. Table 12
and Table 13 list the boomerang characteristics for Gleeok-128 and Gleeok-256 respectively
considering a varied numbers of rounds for E0 and E1. In the tables, rE0 and rE1 denotes
the total number of rounds in E0 and E1 trail respectively. As one round Em is considered,
thus the total number of rounds of the boomerang distinguisher is (rE0 + rE1 − 1). Note
that, ’?’ denotes that the solver has not stopped.

The Rectangle attack, introduced in [BDK01, KKS00], modifies the setting of the
boomerang attack from adaptive chosen plaintext/ciphertext to chosen plaintext, albeit
with a reduced probability of finding quartets. The attack’s notion is quite similar to that
of the boomerang attack, where two shorter trails are combined to form a longer trail over
a larger number of rounds. In general, boomerang distinguisher with probability p for a
n-bit primitive can be converted to rectangle one if √p ≥ 2−n+1

2 , which guarantees a much
lower likelihood of finding a quartet compared to the boomerang attack. Thus only some
of the boomerang distinguishers in Table 12 and Table 13 can be modified to rectangle



R. Anand et. al. 567

Table 12: Maximum probability of boomerang characteristics for the underlying PRPs in
Gleeok-128. The entry x in the table corresponds to the probability 2−x.

(a) Probability for
Branch1/Branch2

rE1

rE0 2 3 4

2 9 25 58
3 21 39 73?
4 53 71 100?

(b) Probability for Branch3

rE1

rE0 2 3 4

2 8 20 44
3 20 32 56
4 44 56 80

Table 13: Maximum probability of boomerang characteristics for the underlying PRPs in
Gleeok-256. The entry x in the table corresponds to the probability 2−x.

(a) Probability for Branch1/Branch2

rE1

rE0 2 3 4

2 9 26 64
3 21 42 80?
4 57 80? 105?

(b) Probability for Branch3

rE1

rE0 2 3 4

2 9 23 48
3 20 34 62
4 44 60 86

ones. In particular, distinguishers whose probability is more than 2−63.5 and 2−127.5 for
Gleeok-128 and Gleeok-256 respectively, can be modified to mount rectangle attack.

4.6 Meet-in-the-Middle Attacks
In the meet-in-the-middle attack, the adversary needs to determine matching intermediate
states from the plaintexts and the corresponding ciphertexts by making guesses about
the involved round keys. The final XOR operation of Gleeok-128 is composed of three
128-bit states. Hence, to mount a meet-in-the-middle attack on Gleeok-128, the adversary
is required to guess two out of three 128-bit output of the branches which will make the
attack less efficient than the brute force attack. If the strategy involves starting from the
intermediate states (as in [SA09]), in such cases also the adversary is required to guess the
corresponding intermediate 128-bit values of the other two branches.

In similar way, mounting meet-in-the-middle attack on Gleeok-256 is also less efficient
than the brute force attack. Thus, we believe that both Gleeok-128 and Gleeok-256 are
secure against meet-in-the middle attacks.

4.7 Invariant Subspace Attack
In [BCLR17], Beierle et al. demonstrated the possibility of launching an invariant subspace
attack on a block cipher. This attack relies on finding a non-trivial invariant for the
substitution layer. This invariant is required to have two properties: being invariant under
the linear layer matrix L used by the cipher and its linear space should contain all the
differences between the round keys. It is shown for the designs consisting of simple key
scheduling function (like round keys are generated by adding some round constants to the
master key), all the differences between the round keys can be easily computed as the
differences of the round constants and these differences must belong to the linear space of
the invariant. In [BCLR17], the authors calculated WL(D), where D represents the set of
all round constant differences. WL(D) represents the smallest L-invariant subspace that
contains D. For a n-bit block cipher, if the dimension of WL(D) is at least (n− 1) and
the S-box does not have any linear component, then there is no non-trivial invariant on
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the S-box layer. If the dimension of WL(D) is less than (n− 1) (and close to n), then the
existence of any non-trivial invariant can be detected by further analysing the properties
of the S-box layer.

The round keys used in the underlying permutation of both Gleeok-128 and Gleeok-256
is not derived by directly adding some round constants to the master key. Instead a linear
permutation is used to update the round keys. Hence, it can be concluded that the key
scheduling function is not simplistic in nature and the set D can not be constructed in a
straightforward way. Thus, we believe that any non-trivial invariant subspace can not be
found by directly applying the approaches of [BCLR17].

4.8 Slide Attacks
The slide attack was introduced by Biryukov and Wagner [BW99] and exploits block
ciphers with identical round functions. Consider a r-round block cipher E with identical
round function F (i.e., the round keys are also identical), such that E = F ◦ · · · ◦ F = F r.
In this attack, a "slid pair" is constructed, consisting of (P,E(P )) and (P ′, E(P ′)), where
P ′ = F (P ). If F is a weak permutation, there is a high probability that the relation
E(P ′) = F (E(P )) holds. The slide attack can also be mounted if the block cipher utilizes
a key scheduling function instead of identical subkeys. If the key scheduling function has a
periodicity of p, it is possible to combine p rounds as F and mount the slide attack. In
general, it can be concluded that if the cipher is composed of R rounds and R ≤ p, then it
is not possible to mount slide attack.

In the context of analyzing the security of the underlying permutations against the
slide attack, it is necessary to analyze the periodicity of the key scheduling functions. Both
Gleeok-128 and Gleeok-256 employ permutation-based key scheduling functions, which
requires assessing the periodicity of these functions. Of particular interest to us is the
multiplicative order of the linear permutation (as it fixes the periodicity) responsible
for updating the round keys. Upon observation, we found that for all three branches of
Gleeok-128, the multiplicative order of the linear permutation is 32, which is more than
the total number of rounds of these branches. This effectively eliminates the possibility of
mounting a slide attack. In the case of Gleeok-256, the minimum multiplicative order (16) is
observed in Branch 3, which is also more than the total number of rounds in the underlying
permutation. Consequently, any potential for a slide attack is effectively eliminated.

4.9 Security Against Key Recovery Attacks
Key recovery attacks on permutations are typically carried out by leveraging underlying
distinguishers. The attack process involves considering an underlying distinguisher and
then prepending or/and appending a certain number of rounds to make guesses about
the related key bits that satisfy the distinguisher. In the case of both Gleeok-128 and
Gleeok-256, which consist of three branches, the adversary needs to construct three separate
distinguishers for each branch using the same set of plaintexts. Constructing distinguishers
for three different branches simultaneously presents a significant challenge, leading us to
believe that the PRFs are secure against key recovery attacks. Besides, it requires guessing
two outputs of the permutations to perform the backward computation from the output.
This makes attaching a key recovery phase in the last rounds more difficult.

Furthermore, the key scheduling function of Gleeok-128 employs distinct subsets of
bits from the 256-bit master key to initialize K1 and K2 for each of the three branches.
Let’s consider the 256-bit master key as k0|| · · · ||k255. Specifically, for Branch1, Branch2,
and Branch3, K1 utilizes k0|| · · · ||k127, k128|| · · · ||k255, and k64|| · · · ||k191 respectively. Con-
sequently, even if an adversary attempts a key recovery attack based on 32 bits of the
distinguisher, they would need to simultaneously guess a total of 3× 32 = 96 bits. Indeed,
our evaluation finds that the best attack on Gleeok-128 and Gleeok-256 are 5-round integral
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distinguishing attacks for Gleeok-128 and Gleeok-256, rather than key recovery attacks.
As 256/512-bit guessing for Gleeok-128 and Gleeok-256 is required to compute the last
rounds from the ciphertext, respectively, developing a method to effectively incorporate
a key recovery phase utilizing a distinguisher in such a scheme is non-trivial task and
remains an open problem.

4.10 Grover’s Attack
A quantum adversary can leverage Grover’s algorithm [Gro96] to perform an exhaustive
key search using a limited number of plaintext-ciphertext pairs. For Gleeok, this requires
2256/2 = 2128 iterations. As a result, Gleeok offers 128-bit key recovery security against
Grover’s attack. We note that Gleeok specifically provides 128-bit key recovery security
against quantum adversaries restricted to classical online queries only and does not claim
security against quantum adversaries with access to quantum online queries.

4.11 Other Attacks
The security of Gleeok is also analyzed against the yoyo attack [BBD+98], exchange
attack [BR19] and mixture differential attack [Gra18]. Note that, all these attacks are
mounted either on word-oriented ciphers or by using decryption queries. As Gleeok is a
bit-based cipher and does not have a decryption oracle, we can conclude that these attacks
can not be mounted on both variants of Gleeok.

5 Application to Low-latency Authenticated Encryption
An interesting application of Gleeok is authenticated encryption (AE), which simultaneously
achieves confidentiality and authenticity. AE has been one of the central topics in symmetric-
key cryptography. In particular, we aim to design a low-latency AE dedicated to short
inputs based on Gleeok. This could be particularly useful in memory encryption, such
as Intel SGX’s memory encryption engine (MEE) [Gue16b, Gue16a], which encrypts the
main memory of computers to realize a secure program execution using a small physically
protected area inside the CPU (also known as Trusted Execution Environment, TEE).
In typical memory encryption schemes including MEE, the entire memory is divided
into short units (512 bits), and each unit is encrypted by an AE scheme. Note that
the full memory encryption scheme is more complex, it implements what is called an
authentication tree [HJ05] consisting of MACs/hash functions and AES. We focus on AE
dedicated to short, fixed-length inputs that perfectly fit the memory encryption described
above. Another potential application of low-latency AE is the forthcoming Beyond 5G/6G
network as mentioned in Section 1. This feature is expected to realize various applications
needing (near) real-time remote control such as remote surgery and remote car control.
Our study will be useful in designing AEs in these applications as well. For the basics of
nonce-based AE, we refer to e.g. [BN08, Rog04] for the syntax and the security notions.

Mode consideration. OCB [KR11] is a quite efficient, parallelizable AE scheme and
has a low latency if the underlying primitive is, however, it requires an invertible primitive
while Gleeok is not invertible. OTR [Min14] has mostly equivalent features to OCB and it
is inverse-free, however, its 2-round Feistel structure incurs some latency overhead, hence
we consider it is not an ideal solution if latency is the primary goal.

We consider decryption latency to be more critical than encryption latency in many
applications. For example, if we use memory encryption schemes (e.g.) in a TEE,
encryption latency affects the latency of memory write operation, while decryption latency
affects the latency of memory read operation. The latter is much harder to hide than
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the former in general. These observations suggest that the encrypt-then-MAC (EtM)
composition is the best option since decryption and verification of the ciphertext can be
done in parallel. Indeed, Intel SGX’s MEE adopted a variant of AES-GCM– it can be
seen as an optimized variant of EtM – that is tailored to short inputs and is suitable for
low-latency implementation. GCM uses GHASH (a polynomial hash function) for its MAC
part, however it incurs delay due to the structure. MEE’s AE instead adopted a simpler
hashing, which we call inner product (IP) hashing. Concretely, we fix the message length
as a multiple of n (the block size of Gleeok we use). Suppose a positive integer s which
is a factor of n and let w = n/s. IP hashing over GF(2s), which we call IPs, takes a key
K = (K1, . . . ,Kwm) ∈ GF(2s)wm and a message M = (M [1], . . . ,M [m]) ∈ ({0, 1}n)m is
defined as

IPs(K,M) =
∑

i=1,...,m,j=1,...,w
K(i−1)·w+j ·M [i, j],

where multiplications and additions are over GF(2s) and M [i] = (M [i, 1]‖ . . . ‖M [i, w])9.
Each M [i, j] is considered as an element of GF(2s) in the conventional way. The key length
is as long as |M |, hence only practical for short inputs. Note that for fixed-input length,
the length annotation as in GCM is not needed to ensure security.

To demonstrate the utility of Gleeok, we follow the approach of MEE. Using Gleeok-128,
we compose the counter (CTR) mode (more precisely, the same as the 96-bit nonce version
of GCTR, the one underlying GCM) and a concatenation of two independent instances
of IPs for s = n/2 = 64 in the EtM composition. Namely first, we perform GCTR
encryption to obtain the ciphertext and apply two IPs functions to the ciphertext and
concatenate two 64-bit outputs to have 128-bit hash value. This value is finally xored with
Gleeok-128(Ke, N‖032) for encryption key Ke and 96-bit nonce N , just in the same manner
as GCM. Keys for CTR and IP hash functions are independent for simplicity, but the latter
can be derived and precomputed from Gleeok-128 using an appropriate domain separation
as with GCM. Let Gleeok-128-IP64 be the resulting nonce-based AE with 128-bit tag. To
be a bit more concrete, for a 96-bit nonce N and a plaintext M , where |M | = mn for a
fixed m, we first compute C = M ⊕GCTR[Gleeok-128Ke ](N,m, 1) (GCTR using Gleeok-128
as the primitive to have mn-bit keystream, using the internal 32-bit counter starting
from 1). The authentication tag is T = (T [1]‖T [2])⊕ GCTR[Gleeok-128Ke

](N, 1, 0), where
T [i] = IPs(Ki

H , C) and the hash key is KH = (K1
H ,K

2
H), each mn bits. The encryption

output is the tuple (C, T ). Considering memory encryption as a primary application, we
do not consider associated data as the nonce can contain required additional information
(e.g. the leaf address of the authentication tree). Not only MEE, the modern memory
encryption schemes such as [TSB18b, SNR+18b] use a fixed 512-bit plaintext (m = 3)
because it fits in the cache line of common CPUs. Thus, supporting this fixed length is
important.

Security. The provable security bound of Gleeok-128-IP64 against nonce-respecting
adversary is quite easy to derive. Observe that IPs for m-block input is 1/2s(-almost)
XOR uniform, namely, IPs(K,X) ⊕ IPs(K,X ′) for any X 6= X ′ is uniformly random
when the key K is random (note that the input length does not affect the bias because
of the key being long as input). This also implies that two parallel applications of IPs
yield a 128-bit universal hash function with 1/22s(-almost) XOR uniformity. Consider
an adversary A against Gleeok-128-IP64 who uses qe encryption queries, qd decryption
queries. The privacy (confidentiality) bound of Gleeok-128-IP64 against A is at most the
(computational) PRF advantage of Gleeok-128 and the authenticity (integrity) bound is
at most qd/22s plus the PRF advantage of Gleeok-128. As 2s = n = 128, Gleeok-128-IP64
has 128-bit security in terms of data complexity. The proof is quite straightforward since
Gleeok-128-IP64 is a generic EtM composition, hence we omit it here. AES-GCM has

9This should be written as IPs,n,m; we assume n and m are fixed and understood from the context.
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64-bit security [IOM12, NOMI15] due to the use of 128-bit block cipher. Hence, we also
double bit security. We stress that ours is dedicated to short inputs, while AES-GCM is a
general-purpose AE.

Section 6 describes our implementations of Gleeok-128-IP64 in detail, its performance
figures, together with a comparison with AES-based counterparts. We also benchmark the
generic-purpose AE variant by replacing AES in AES-GCM by Gleeok-128; see Sect. 6.3.

6 Hardware Synthesis
A low-latency hardware-based PRF circuit exhibits a critical path length that allows
for high clock frequencies which, in turn, guarantee adequate throughput rates. In
integrated circuit technology, the critical path denotes the signal path with the largest
delay and is a function of the circuit depth, the utilised logic gates, and their underlying
physical properties governed by the selected cell library. Naturally, a construction can
exhibit a small critical path and still require several clock cycles for a single computation.
This is a trademark, for example, of lightweight block ciphers such as GIFT [BPP+17],
SKINNY [BJK+16] and Midori [BBI+15] whose low latency round function circuits need
to be invoked in a repeated fashion to compute one encryption. In order to truly achieve
a low latency hardware-oriented cipher, the corresponding circuit needs to execute its
computation in as few clock cycles as possible by means of unrolling the round function,
i.e., by calculating multiple round function invocations in the same clock cycle through
replicating and serially chaining the round functions circuits. This design strategy is at
the core of the PRINCE [BCG+12] block cipher whose circuit offers low latency guarantees
in the fully unrolled setting in which one encryption is executed in a single clock cycle.
This means that the PRINCE circuit is completely combinatorial without any storage
elements in the form of flip-flops that hold the intermediate cipher state. In the PRF
realm, Orthros [BIL+21] is a PRINCE-inspired fully unrolled pseudorandom function that
offered further latency gains through careful choice of the substitution and linear layers as
part of the round function. The circuits presented in this work follow in the lines of both
PRINCE and Orthros.

Modus Operandi. We use the Synopsys Design Compiler to generate netlists of our
designs using the fast experimental NanGate 15 nm and the industry-grade TSMC 28 nm
cell libraries. The exact synthesis options are explained in more detail in the following
sections. The obtained netlist fragments are then analysed for correctness and passed
through a testbench that records the switching activity from which we then derive the
power and energy consumption by means of the Synopsys Power Compiler. Note that the
HDL sources for related schemes such as Orthros are publicly available.10

6.1 PRF Circuits
Of late there have been many unique approaches to construct S-box circuits to minimize
circuit latency [LMMR21, BDD+23]. For example in the SPEEDY family of block ciphers,
the authors correctly argue that the lower the total capacitive load seen by the output of
a gate, the faster the delay of signal transitions through it. As a result by using specific
standard cells from the NanGate libraries, the authors tailor-make the structure of both
the S-box and the linear layer, by including a network of buffers and adopting a topology
that ensures that the capacitive load across the circuit is well-balanced.

However, for the experiments in this work, we used a lookup-table-based approach, in
which the description of the S-box is passed in table form to the synthesizer. This design
choice is due to the following reasons.

10https://github.com/subhadeep-banik/orthros.

https://github.com/subhadeep-banik/orthros
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• The LUT-based synthesis approach applied to the 3/4/5-bit S-boxes utilized in
Gleeok already yields convincing speed figures as to construct a latency-competitive
PRF supporting 256-bit keys. The fact that LUT-based synthesis leads to fast
circuits has already been observed and utilized to achieve latency-efficient circuits for
Orthros [BIL+21] and for the small-dimension block cipher BipBip [BDD+23]. Note
that the LUT-based approach does not preclude further optimisations in the same
vein as exemplified for SPEEDY nor does it prove that comparably smaller-width
S-boxes of Gleeok are more suitable in the creation of latency-efficient than wider
S-boxes as the 6-bit component in SPEEDY.11

• Although the SPEEDY approach of designing and synthesizing S-boxes leads to
more optimized fully unrolled encryption circuits, it comes with a drastic power
consumption overhead of factor (10-100x) which we wanted to avoid in the design of
Gleeok.

• The LUT-based approach, as demonstrated with Orthros and BipBip, and the SPEEDY
technique generalize well across a wide range of cell libraries and thus we are optimistic
that the presented synthesis figures in this work translate well to other foundries.

• We compare Gleeok against a wide selection of related fully-unrolled, low-latency
ciphers. As such, a fair comparison can only be established when all schemes are
synthesised in the same manner without gate-level optimisation of one scheme at the
expense of others. LUT-based compilation facilitates this goal.

We remark that our final target is the synthesis of the entire block cipher which involves
simultaneous optimization of multiple iterations of round function modules connected
serially. After extensive experimentation, we have come to the conclusion that more than
the S-box architecture (especially when the size of the S-box is limited to 4-bits), the factor
that most affects the final circuit is the compilation options presented to the synthesizer.
We used 2 compile options:

F1 We compile each S-box separately using the compile_ultra directive and then re-
compile the entire block cipher (again using compile_ultra), asking it not to alter the
individual S-box architecture (usually done by using the set_dont_touch directive).

F2 We compile the entire block cipher architecture using the compile_ultra directive,
without synthesizing any sub-component separately.

We repeated the synthesis for the entire Gleeok-128, Orthros, QARMA-128, Midori-128,
PRINCE circuits for both the LUT and algebraic representations of the S-boxes, using
both compilation options F1, F2. Following the synthesis workflow in Orthros [BIL+21],
we first obtain a circuit with minimal area and then we restrict the latency incrementally
till we obtain the circuit with optimal delay. Fig 3 shows the area/latency trends for both
the NanGate 15 nm and TSMC 28 nm libraries. We observed that irrespective of the
S-box architecture, the data point optimal with respect to latency (L) was likely to be
obtained for option F2 whereas the data point optimal regarding circuit area (A) was
likely to be obtained for option F1 for both the libraries. Figure 3 captures the result for
the Gleeok-128 circuit.

In Table 14 (for the NanGate 15 nm cell library) and in Table 17 (for the TSMC 28 nm
cell library), we compare our fully unrolled combinatorial pseudorandom functions against
related low latency schemes in the literature in order to establish the competitiveness of

11A synthesis approach somewhere halfway between the LUT and SPEEDY techniques consists in
mapping the algebraic S-box expressions directly to a circuit by restricting the choice of logic gates. The
consequence of this are slower circuits compared to the LUT and SPEEDY equivalents as the synthesizing
tool is not able anymore to use the full capabilities of a cell library such as components with high drive
strengths.
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Figure 3: Area/latency comparison of Gleeok-128 with compilation options F1, F2

our designs. Both latency-optimised circuits L (following F2) and area-optimised circuits
A (following F1) are tabulated.

6.2 IP64 Circuits
The number of parallel Gleeok-128 cores in Gleeok-128-IP64 is parameterised by the message
block length and given by m+ 1 alongside two IP64 modules containing each 2 ·m GF(264)
multipliers. These multipliers are implemented as fully combinatorial Karatsuba circuits
that recursively multiply bits over increasingly smaller subfields. At its core, a Karatsuba
multiplier circuit is an array of 2-bit multipliers over GF(22) passed as LUTs to the circuit
compiler. The corresponding 4-bit outputs can then be used to compute multiplications
over GF(24) using only linear XOR gates, which then are used to linearly compute GF(28)
multiplications. Proceeding in this manner, it is possible to obtain multiplication circuits
for any number of bits. The nature of Gleeok-128-IP64 allows for the encryption and
authentication of m 128-bit blocks in a single clock cycle thus precluding the need for any
storage elements. A schematic depiction of such a circuit is shown in Figure 4a. In this
arrangement, the critical path of the circuit comprises both the Gleeok-128 core and the
subsequent IP64 module leading to an elevated latency compared to the bare Gleeok-128
circuit.

However, a potential application for a Gleeok-128-IP64 circuit lies in memory decryption
where latency is a crucial metric. In the decryption setting, the Gleeok-128 cores are
disconnected from the latency-heavy GF(264) multipliers as the ciphertext is directly fed
into the IP64 components. Since Gleeok-128 already ranks as one of the most latency-efficient
schemes, its deployment in Gleeok-128-IP64 leads to a low-latency Decrypt-then-MAC
construction with minimal latency overhead. A schema of the decryption circuit is given
in Figure 4b. In Table 15, we compare Gleeok-128-IP64 to the same scheme only having
replaced the core module with fully unrolled AES-128 and AES-256 circuits for the NanGate
15 cell library (see Table 18, for the TSMC 28 nm measurements). There are a handful
of ways of implementing the AES round function components with respect to different
optimisation criteria. In terms of latency, the most sensible approach lies in the T-table
approach where SubBytes, ShitRows and MixColumns are encoded as 32-bit table look-
ups. This synthesis strategy usually leads to the most latency-efficient circuits at the
expense of silicon area. Hence, we also followed the T-table implementation technique
in the design of the AES-128-IP64 and AES-256-IP64 circuits. As in Section 6.1, we
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Table 14: Area-optimised and latency-optimised synthesis comparison of the investigated
schemes for the NanGate 15 nm cell library at a clock frequency of 10 MHz. The maximum
throughput rate is calculated as Block

Latency where 1
Latency is the maximum clock frequency

permitted by the critical path. For reference, the table also includes round-reduced variants
of Gleeok-128 and Gleeok-256 for size-restricted input sizes.
Scheme Rounds Key/Block Area Latency Max TP Power Energy

Bits/Bits GE ps Gbits/s mW nJ/Block
Gleeok-128 A 12 256/128 46879 488.04 262.27 1.819 0.182
Gleeok-128 L 12 256/128 62784 358.52 357.02 2.519 0.252
Gleeok-128 A 10 256/128 38885 408.89 313.04 1.275 0.128
Gleeok-128 L 10 256/128 49629 298.46 428.87 1.435 0.144
Gleeok-256 A 16 256/256 124493 683.63 374.42 6.700 0.670
Gleeok-256 L 16 256/256 173704 521.43 490.96 8.589 0.859
Gleeok-256 A 12 256/256 93241 514.32 497.74 3.761 0.376
Gleeok-256 L 12 256/256 125342 438.44 583.89 4.521 0.452
Orthros A 12 128/128 30303 505.67 253.13 2.295 0.230
Orthros L 12 128/128 37838 351.55 339.10 2.637 0.264
QARMA-128 A 24 128/128 27564 832.33 153.79 3.689 0.369
QARMA-128 L 24 128/128 45115 640.00 186.27 5.611 0.561
Midori A 20 128/128 25056 856.98 149.36 3.531 0.353
Midori L 20 128/128 35484 603.78 197.44 4.466 0.447
PRINCE A 12 128/64 8321 516.55 123.89 0.633 0.063
PRINCE L 12 128/64 11891 371.62 199.51 0.894 0.089

use synthesis modes F1 and F2 to obtain area-optimised and delay-optimised circuits
respectively for Gleeok-128-IP64. For AES-128-IP64and AES-256-IP64mode F2 achieved
both the most area and delay efficient circuits. We further remark that Gleeok-128-IP64
exhibits a more than twofold latency advantage over the AES-based circuits reaching a
maximum throughput rate of more than 1 Tbit/s for m = 3.

6.3 GCM Circuits
Gleeok-128 can be further be integrated into a GCM algorithm in the context of general-
purpose authenticated encryption where a Gleeok-128 core replaces the AES-128 or AES-256
modules in order to achieve a low-latency variant. The sequential nature of the GHASH
function in GCM stands orthogonal to parallelisation akin to Gleeok-128-IP64 as described
in Section 6.2. Therefore, we opt for a stateful register-based construction that separates
the Gleeok-128 core from the Karatsuba GF(2128) multiplication component by buffering
the ciphertext in a register for one clock cycle. The total latency of this GCM encryption
circuit is then 2 + a+ 2 ·m+ 1 cycles where the first two cycles generate the hash and
tag keys respectively, followed by the processing of a 128-bit associated data blocks and
m 128-bit message blocks that are each processed in two clock cycles. Finally, the tag
is generated in an additional cycle. The corresponding circuit is depicted in Figure 5a.
In the decryption circuit, the Gleeok-128 core and the GHASH function can be executed
concurrently and thus each ciphertext block can be absorbed in one clock cycle giving a
total latency of 2 + a+m+ 1 cycles. The Gleeok-128-GCM decryption circuit is shown
in Figure 5b. The competitiveness of Gleeok-128-GCM is demonstrated in Table 16 for
the NanGate 15 nm cell library and in Table 19 for the TSMC 28 nm cell library, where
we distinguish short and long input. A short input consists of 1 AD block (128 bits) and



R. Anand et. al. 575

C[0]M[0]

b

C[1]M[1]

b

Tag

N||1 N||2

Critical Path

128

64

128

Mul Mul

Mul Mul

∑

64

Mul Mul

Mul Mul

∑

b

b

b

b

64

128

64

||

64

K ◦ π ◦ θ ◦ S

K ◦ π ◦ θ ◦ S
b

b

b

K ◦ π ◦ θ ◦ S

K ◦ π ◦ θ ◦ S

K ◦ π ◦ θ ◦ S
b

b

b

K ◦ π ◦ θ ◦ S

K ◦ π ◦ θ ◦ S

K ◦ π ◦ θ ◦ S
b

b

b

K ◦ π ◦ θ ◦ S

N||0

(a) Encryption

M[0]C[0]

b

M[1]C[1]

b

Tag

N||1 N||2

Critical Path

128

64

128

Mul Mul

Mul Mul

∑

64

Mul Mul

Mul Mul

∑

b

b

b

b

64

128

64

||

64

K ◦ π ◦ θ ◦ S

K ◦ π ◦ θ ◦ S
b

b

b

K ◦ π ◦ θ ◦ S

K ◦ π ◦ θ ◦ S

K ◦ π ◦ θ ◦ S
b

b

b

K ◦ π ◦ θ ◦ S

K ◦ π ◦ θ ◦ S

K ◦ π ◦ θ ◦ S
b

b

b

K ◦ π ◦ θ ◦ S

N||0

b b

(b) Decryption

Figure 4: Gleeok-128-IP64 encryption (a) and decryption (b) circuits for m = 2.

2 message blocks (256 bits) whereas a long input contains 2 AD blocks (256 bits) and
10000 message blocks (1.28 Mbits). The synthesis modes are identical to the ones used in
Section 6.2.

6.4 Protected Circuits
Implemented in an unprotected manner, fully unrolled, low-latency circuits are susceptible
to the same power analysis attacks that plague related round-based variants with the
added complexity of finding an appropriate scheme for complex algebraic expression
induced by serially chained round function modules. In fact, the efficiency of common
masking techniques that operate in the glitch-extended d-probing model such as Threshold
Implementations (TI) [NRR06] and generic Low-Latency Masking (GLM) schemes [GIB18]
is closely tied to the algebraic degree of the to-be-masked functions. As such, a masking
scheme that adequately protects single-cycle cryptographic circuits has yet to be proposed,
which tethers the focus of research onto masked round-based circuits that compute one
round function in one clock cycle. Note that in this setting, it is not possible to decompose
a round function into simpler components separated by a layer of registers as this would
increase the number cycles required to compute one round function, hence the complete
sharing of the round function has to be achieved in a single stage. This restriction has been
investigated for the PRINCE block cipher in a work by Müller et al. [MMM21] in which
the authors proposed first-order (d = 1) secure TI and GLM circuits. In the following, we
discuss the construction of a single-stage first-order secure Threshold Implementation of
Gleeok.

The basis of a first-order secure TI circuits lies in the splitting of a t-degree Boolean
function F (x0, x1, . . . , xn−1) = y into at least t+ 1 component functions Fi = yi such that
F =

∑t
i=0 Fi. This can be facilitated by sharing each input variables into at least t+ 1

independent shares such that xi =
∑t
j=0 xi,j and then making sure that each component

function Fi is independent of at least one input share e.g., F0 does not take any xi,0 as
input. In the TI terminology, this property is denoted as non-completeness and is usually
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Table 15: Synthesis of 12-round Gleeok-128-IP64, AES-128-IP64, AES-256-IP64 for the
NanGate 15 nm cell library at a clock frequency of 10 MHz for different block sizes.

Scheme Mode Area Latency Max TP Power Energy
GE ps Gbits/s mW nJ/Block

m = 1
Gleeok-128-IP64 A Enc 120654 860.70 148.72 5.875 0.588
Gleeok-128-IP64 A Dec 118263 576.62 221.98 4.297 0.430
Gleeok-128-IP64 L Enc 136072 609.42 210.04 5.512 0.551
Gleeok-128-IP64 L Dec 129126 384.32 333.06 3.836 0.384
AES-128-IP64 A Enc 453637 1959.44 65.33 51.397 5.140
AES-128-IP64 A Dec 446596 1651.62 77.50 41.718 4.172
AES-128-IP64 L Enc 484893 1122.78 114.01 51.433 5.143
AES-128-IP64 L Dec 480609 959.05 133.47 43.146 4.315
AES-256-IP64 A Enc 618012 2387.02 53.62 92.788 9.279
AES-256-IP64 A Dec 610955 2099.59 60.96 70.368 7.037
AES-256-IP64 L Enc 691052 1217.39 105.14 135.906 13.591
AES-256-IP64 L Dec 710846 1157.17 110.61 86.408 8.641

m = 2
Gleeok-128-IP64 A Enc 187700 916.55 279.31 9.709 0.971
Gleeok-128-IP64 A Dec 175439 623.60 410.52 6.825 0.683
Gleeok-128-IP64 L Enc 203957 621.24 412.08 7.920 0.792
Gleeok-128-IP64 L Dec 189012 383.50 667.55 5.425 0.543
AES-128-IP64 A Enc 689252 2064.11 124.03 79.845 7.985
AES-128-IP64 A Dec 680320 1791.72 142.88 63.280 6.328
AES-128-IP64 L Enc 762850 1104.29 231.82 84.268 8.427
AES-128-IP64 L Dec 759303 928.06 275.84 69.512 6.951
AES-256-IP64 A Enc 952222 2460.86 104.03 144.418 14.442
AES-256-IP64 A Dec 941117 2182.20 117.31 121.360 12.136
AES-256-IP64 L Enc 1027892 1443.30 177.37 135.906 13.591
AES-256-IP64 L Dec 1022608 1235.66 207.18 121.119 12.112

m = 3
Gleeok-128-IP64 A Enc 318220 875.79 584.62 32.691 3.269
Gleeok-128-IP64 A Dec 297248 607.67 842.56 23.664 2.366
Gleeok-128-IP64 L Enc 334231 647.21 791.09 12.935 1.294
Gleeok-128-IP64 L Dec 314772 395.22 1295.48 8.958 0.896
AES-128-IP64 A Enc 1161156 2221.98 230.43 131.220 13.122
AES-128-IP64 A Dec 1138181 1864.85 274.55 101.322 10.132
AES-128-IP64 L Enc 1281414 1169.66 437.73 136.981 13.698
AES-128-IP64 L Dec 1268915 936.81 546.54 111.257 11.126
AES-256-IP64 A Enc 1601596 2580.70 198.40 237.932 23.793
AES-256-IP64 A Dec 1577468 2290.58 223.52 203.403 20.340
AES-256-IP64 L Enc 1740494 1393.28 367.48 234.981 23.498
AES-256-IP64 L Dec 1721029 1211.07 422.76 205.772 20.577

straightforward to obtain for both linear and non-linear functions. The real challenge,
however, comes in ensuring that the sharing F0, F1 . . . , Ft is uniform, in other words for
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Figure 5: Gleeok-128-GCM encryption (a) and decryption (b) circuits.

Table 16: Synthesis comparison of the investigated of the 12-round Gleeok-128-GCM
circuits with AES-based variants for the NanGate 15 nm cell library at a clock frequency
of 10 MHz. Recall that the running time is 3 + a+ 2 ·m cycles and 3 + a+ 1 ·m cycles for
the encryption and decryption circuits respectively with a = 1, m = 2 for short inputs
and a = 2, m = 10000 for long inputs. The maximum throughput is calculated for inputs
with asymptotically large message sizes.
Scheme Mode Area Latency Max TP Power Energy

GE ps Gbits/s mW nJ/Short nJ/Long
Gleeok-128-GCM A Enc 83474 545.35 117.36 1.504 1.203 3008.752
Gleeok-128-GCM A Dec 81764 537.93 237.95 1.480 0.988 1380.740
Gleeok-128-GCM L Enc 99938 456.91 140.07 1.561 1.249 3122.781
Gleeok-128-GCM L Dec 98235 449.61 284.69 1.759 1.055 1759.880
AES-128-GCM A Enc 247315 1380.64 46.35 4.322 3.458 8646.161
AES-128-GCM A Dec 245614 1374.43 93.13 5.012 3.007 5014.506
AES-128-GCM L Enc 272007 953.92 67.09 3.737 2.990 7475.869
AES-128-GCM L Dec 271072 950.42 134.68 4.335 2.601 4337.168
AES-256-GCM A Enc 333330 1871.83 34.19 7.146 5.717 14295.573
AES-256-GCM A Dec 331625 1863.85 68.68 5.877 3.526 5879.939
AES-256-GCM L Enc 376990 1224.13 52.28 6.404 5.123 12811.202
AES-256-GCM L Dec 375286 1215.91 105.27 5.403 3.242 5405.702

each input value x0, x1, . . . xn−1, each output masking y0, y1, . . . yn−1 is equally likely to
occur. Non-completeness usually does not imply uniformity and even with the addition
of correction terms a uniform sharing may not be obtainable for every function without
increasing the number of shares or the introduction of additional randomness.
The crucial functions that require attention regarding their split into non-complete and
uniform components are the three non-linear S-boxes S3, S4 and S5 of Gleeok.
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• S3, S5: Both functions are composed of a cyclic application of the 3-bit Keccak χ
transformation, more specifically

S3(x0, x1, x2) =


x0 + (x1 + 1)x2

x1 + (x2 + 1)x0

x2 + (x0 + 1)x1

S5(x0, x1, x2, x3, x4) =



x0 + (x1 + 1)x2

x1 + (x2 + 1)x3

x2 + (x3 + 1)x4

x3 + (x4 + 1)x0

x4 + (x0 + 1)x1

χ is a quadratic function and thus a Threshold Implementation using 3 shares is in
line theoretically, but practically, only non-uniform non-complete decompositions
appear feasible without injecting fresh randomness. As a remedy, Bilgin et al.
proposed a 4-share circuit in [BDN+14] which we will reuse in our protected Gleeok
implementation.

• S4: Gleeok and Orthros share the same 4-bit S-box of cubic degree composed of the
following individual Boolean functions:

S4(x0, x1, x2, x3) =


x3x1x0 + x3x1 + x2x1x0 + x0

x3x2x1 + x3x2 + x2x1x0 + x2x1 + x1x0

x3x2x1 + x3x2 + x3x1x0 + x3x1 + x3x0 + x2x1 + x2 + x1

x3x2x1 + x3x2x0 + x3x2 + x3 + x2x0 + x2 + 1

Again, similarly to S3 and S5, a four-share decomposition is in line with the TI
methodology, as the algebraic degree of the coordinate function is 3, but appears
unachievable in practice. S4 is in the cubic equivalence class C163 and thus can be
decomposed in into a pair of of 4-bit permutations S4 = S′4 ◦A where A is an affine
transformation using the TI tool developed in [BNN+12] such that

S′4 = 102483D6EBA975FC, A = 01235476BA98EFCD.

S′4 can now be now uniformly shared using the direct sharing approach which, in
turn, results in a non-complete, uniform 5-share Threshold Implementation for S4 as
proven in [BNN+12].

Using the proposed 4-share TI for S3, S5 and the 5-share TI for S5, we can sketch the
circuit as shown in Figure 6. The implementation is straightforward, each branch is
equipped with its own shared state register that feeds the round function which means that
the register size (4 + 4 + 5)n bits is where n ∈ {128, 256} denotes the block size. Note that
each branch of Gleeok has to be masked independently which incurs a total of (3 + 3 + 4)n
bits of initial randomness where n ∈ {128, 256} denotes the block size.

7 Conclusion
In this paper, we propose a family of ultra-low latency PRFs and an authenticated
encryption Gleeok providing ultra-low latency while supporting a 256-bit key. Gleeok
provides 256- and 128-bit key recovery security against classical and Grover’s attacks,
respectively. We also propose Gleeok-128-IP64 a nonce-based AE with 128-bit tag. We
provide a comprehensive suite of hardware implementation results that establish the B5G
capabilities of Gleeok-128 and Gleeok-256, Gleeok-128-IP64 as well as Gleeok-128-GCM and
demonstrate their competitiveness against related schemes in the literature.
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Figure 6: Round-based first-order Threshold Implementation circuit of Gleeok where
branch 1 and 2 use a 4-share while branch 3 is protected with 5 shares.
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A Auxiliary Hardware Measurements

Table 17: Area-optimised and latency-optimised synthesis comparison of the investigated
schemes for the TSMC 28 nm cell library at a clock frequency of 10 MHz. The maximum
throughput rate is calculated as Block

Latency where 1
Latency is the maximum clock frequency

permitted by the critical path. For reference, the table also includes round-reduced variants
of Gleeok-128 and Gleeok-256 for size-restricted input sizes.
Scheme Rounds Key/Block Area Latency Max TP Power Energy

Bits/Bits GE ns Gbits/s mW nJ/Block
Gleeok-128 A 12 256/128 44011 2.698 47.44 1.401 0.140
Gleeok-128 L 12 256/128 140088 1.338 95.67 3.792 0.379
Gleeok-128 A 10 256/128 36506 2.236 57.25 0.940 0.094
Gleeok-128 L 10 256/128 109675 1.121 114.18 2.443 0.244
Gleeok-256 A 16 256/256 116924 3.787 67.59 5.001 0.500
Gleeok-256 L 16 256/256 269121 2.185 117.16 11.474 1.147
Gleeok-256 A 12 256/256 87574 2.806 91.23 2.738 0.274
Gleeok-256 L 12 256/256 199066 1.730 147.98 6.146 0.615
Orthros A 12 128/128 27391 2.554 50.12 1.424 0.142
Orthros L 12 128/128 84030 1.328 96.39 4.305 0.431
QARMA-128 A 24 128/128 27894 4.582 27.94 2.525 0.253
QARMA-128 L 24 128/128 87583 2.43 52.78 8.002 0.800
Midori A 20 128/128 23551 4.392 29.14 2.533 0.253
Midori L 20 128/128 90570 2.260 56.64 8.770 0.877
PRINCE A 12 128/64 8233 2.867 22.32 0.377 0.038
PRINCE L 12 128/64 29965 1.394 45.91 1.571 0.157
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Table 18: TSMC 28 nm comparison of 12-round Gleeok-128-IP64 and AES-128-IP64.
Scheme Mode Area Latency Max TP Power Energy

GE ns Gbits/s mW nJ/Block
m = 1

Gleeok-128-IP64 A Enc 123778 4.380 29.22 2.850 0.285
Gleeok-128-IP64 A Dec 123769 2.766 46.27 2.823 0.282
Gleeok-128-IP64 L Enc 304195 1.773 72.19 5.512 0.551
Gleeok-128-IP64 L Dec 310194 1.365 93.77 3.836 0.384
AES-128-IP64 A Enc 433991 10.985 11.652 51.397 5.140
AES-128-IP64 A Dec 428665 9.468 13.519 41.718 4.172
AES-128-IP64 L Enc 502831 4.602 27.814 51.433 5.143
AES-128-IP64 L Dec 500498 3.332 39.445 43.146 4.315

m = 2
Gleeok-128-IP64 A Enc 203762 4.425 57.850 4.702 0.470
Gleeok-128-IP64 A Dec 203760 2.808 91.161 4.675 0.468
Gleeok-128-IP64 L Enc 510660 1.820 140.66 7.920 0.792
Gleeok-128-IP64 L Dec 498742 1.500 170.67 5.425 0.543
AES-128-IP64 A Enc 669112 11.023 23.22 79.845 7.985
AES-128-IP64 A Dec 665587 9.509 26.92 63.280 6.328
AES-128-IP64 L Enc 972300 4.684 54.65 84.268 8.427
AES-128-IP64 L Dec 970197 3.277 78.12 69.512 6.951

m = 3
Gleeok-128-IP64 A Enc 363731 4.496 113.879 15.704 1.570
Gleeok-128-IP64 A Dec 363731 2.880 177.777 14.357 1.436
Gleeok-128-IP64 L Enc 883903 1.881 272.196 12.935 1.294
Gleeok-128-IP64 L Dec 880199 1.450 353.103 8.958 0.896
AES-128-IP64 A Enc 1139425 11.150 45.919 131.220 13.122
AES-128-IP64 A Dec 1098642 9.584 53.422 101.322 10.132
AES-128-IP64 L Enc 1679123 3.804 134.595 136.981 13.698
AES-128-IP64 L Dec 1614014 3.332 153.661 111.257 11.126

Table 19: TSMC 28 nm comparison of 12-round Gleeok-128-GCM and AES-based variants.
Scheme Mode Area Latency Max TP Power Energy

GE ns Gbits/s mW nJ/Short nJ/Long
Gleeok-128-GCM A Enc 76860 3.13 20.43 0.841 0.673 1682.421
Gleeok-128-GCM A Dec 75489 3.09 41.42 0.830 0.498 830.415
Gleeok-128-GCM L Enc 212331 1.97 32.49 2.691 2.152 5383.346
Gleeok-128-GCM L Dec 210827 1.92 66.67 1.759 1.055 1759.880
AES-128-GCM A Enc 231826 6.43 9.95 1.977 1.582 3954.989
AES-128-GCM A Dec 230462 6.39 20.03 2.368 1.421 2369.184
AES-128-GCM L Enc 380316 3.64 17.58 3.644 2.915 7289.822
AES-128-GCM L Dec 378812 3.59 35.65 4.337 2.602 4339.169
AES-256-GCM A Enc 313851 8.75 7.315 3.372 2.698 6745.686
AES-256-GCM A Dec 311851 8.71 14.70 2.787 1.672 2788.394
AES-256-GCM L Enc 561629 4.64 13.79 6.968 5.584 13963.490
AES-256-GCM L Dec 560122 4.60 27.83 5.938 3.563 5940.969
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