
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2021, No. 1, pp. 109–136. DOI:10.46586/tches.v2021.i1.109-136

The design of scalar AES Instruction Set
Extensions for RISC-V

Ben Marshall1, G. Richard Newell2, Dan Page1, Markku-Juhani O. Saarinen3

and Claire Wolf4

1 Department of Computer Science, University of Bristol
{ben.marshall,daniel.page}@bristol.ac.uk

2 Microchip Technology Inc., USA
richard.newell@microchip.com

3 PQShield, UK
mjos@pqshield.com

4 Symbiotic EDA
claire@symbioticeda.com

Abstract. Secure, efficient execution of AES is an essential requirement on most
computing platforms. Dedicated Instruction Set Extensions (ISEs) are often included
for this purpose. RISC-V is a (relatively) new ISA that lacks such a standardised
ISE. We survey the state-of-the-art industrial and academic ISEs for AES, implement
and evaluate five different ISEs, one of which is novel. We recommend separate ISEs
for 32 and 64-bit base architectures, with measured performance improvements for
an AES-128 block encryption of 4× and 10× with a hardware cost of 1.1K and 8.2K
gates respectively, when compared to a software-only implementation based on use
of T-tables. We also explore how the proposed standard bit-manipulation extension
to RISC-V can be harnessed for efficient implementation of AES-GCM. Our work
supports the ongoing RISC-V cryptography extension standardisation process.
Keywords: ISE, AES, RISC-V

1 Introduction
Implementing the Advanced Encryption Standard (AES). Compared to more general
workloads, cryptographic algorithms like AES present a significant implementation chal-
lenge. They involve computationally intensive and specialised functionality, are used in a
wide range of contexts, and form a central target in a complex attack surface. The demand
for efficiency (however measured) is an example of this challenge in two ways. First,
cryptography often represents an enabling technology vs. a feature and is often viewed
as an overhead from a user’s perspective. Addressing this is complicated by constraints
associated with the context, e.g., a demand for high-volume, low-latency, high-throughput,
low-footprint, and/or low-power implementations. Second, although efficiency is a goal in
itself, it also acts as an enabler for security. This is because one should not compromise
security to meet efficiency requirements. Hence, a more efficient implementation leaves
greater margin to deliver countermeasures against an attack.

AES is an interesting case-study wrt. secure, efficient implementation. For example,
per the request for candidates announcement,1 the AES process was instrumental in
popularising a model in which both “security” (e.g., resilience against cryptanalytic attack)
and “algorithm and implementation characteristics” form important quality metrics for the

1https://www.govinfo.gov/content/pkg/FR-1997-09-12/pdf/97-24214.pdf

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-07-15 Accepted: 2020-09-15 Published: 2020-12-03

https://doi.org/10.46586/tches.v2021.i1.109-136
mailto:ben.marshall@bristol.ac.uk,daniel.page@bristol.ac.uk
mailto:richard.newell@microchip.com
mailto:mjos@pqshield.com
mailto:claire@symbioticeda.com
https://www.govinfo.gov/content/pkg/FR-1997-09-12/pdf/97-24214.pdf
http://creativecommons.org/licenses/by/4.0/

110 The design of scalar AES Instruction Set Extensions for RISC-V

design, in order to facilitate techniques for higher quality implementations of it. Additionally,
the design and implementations of AES are long-lived. The importance of AES has led
to special emphasis on related research and development effort before, during, and, most
significantly, after the AES process. The 20+ years since standardisation have forced an
evolution of implementation techniques, to match changes in the technology and attack
landscape. For example, [NBB+01, Section 3.6] covers implementation (e.g., side-channel)
attacks: this field has become richer, and the associated threat more dangerous during
said period.

Support via Instruction Set Extensions (ISEs). A large number of implementation styles
often exist for a given cryptographic algorithm. Techniques can be algorithm-agnostic
or algorithm-specific, and based on the use of hardware only, software only, or a hybrid
approach using ISEs [GB11, BGM09, RI16]. For the ISE case, the aim is to identify
through benchmarking, instances of algorithm-specific functionality which are inefficiently
represented in the base ISA. Said functions are then implemented in hardware, and exposed
to the programmer via one or more new instructions.

ISEs are an effective option for both high-end, performance-oriented and low-end,
constrained platforms. They are particularly effective for the latter where resource
constraints are tightest. For example, an ISE can be smaller and faster than a pure
software implementation, and more efficient in terms of performance gain per additional
logic gate than a hardware-only option.

Abstractly, an ISE design constitutes an interface to domain-specific functionality
through the addition of instructions to a base ISA. As a fundamental and long-lived com-
puter systems interface, the design and extension of an ISA demands careful consideration
(cf. [Gue09, Section 4]) and the production of a concrete ISE design is not trivial. It must
deliver a quantified improvement to the workload in question and consider numerous design
goals including but not limited to:

• Limiting the number and complexity of changes and interactions with the parent ISA.
• Avoiding the addition of too many instructions, or requiring large additional hardware

modules to implement: this will damage commercial adoption.
• Adhering to the design constraints and philosophies of the base ISA.
• Maximising the utility of the additional functionality, i.e., favour general-purpose over

special-purpose functionality. Special-purpose functions can be justified in terms of how
frequently the workload is required. For example, though an AES ISE might only be
useful for AES, a webserver might execute AES millions of times per day.

The x86 architecture provides many examples of ISE design, having been extended nu-
merous times by Intel and AMD. Various generations of non-cryptographic Multi-Media
eXtensions (MMX), Streaming SIMD Extensions (SSE), and Advanced Vector Exten-
sions (AVX) support numerical algorithms via vector (or SIMD) vs. scalar computation.
Likewise, the cryptographic Advanced Encryption Standard New Instructions (AES-
NI) [Gue09, DGvK19] ISE supports AES: it significantly improves latency and throughput
(see, e.g., [FHLdO18]), and represents a useful case-study in the design goals above. It
adds just 6 additional (vs. 1500+ total) instructions, reduces overhead by sharing the pre-
existing XMM register file, and facilitates compatibility via the CPUID [X8618a, Chapter 20]
feature identification mechanism. It is also (sometimes unexpectedly) useful beyond AES:
the Grøstl hash function [GKM+11] uses the S-box, and the YAES [BV14] authenticated
encryption scheme uses a full round. It can even be used to accelerate the Chinese SM4
block cipher.2

2https://github.com/mjosaarinen/sm4ni

https://github.com/mjosaarinen/sm4ni

B. Marshall and G. R. Newell and D. Page and M.-J. O. Saarinen and C. Wolf 111

RISC-V. RISC-V is a (relatively) new ISA, with academic origins [AP14, Wat16]. Unlike
x86 or ARMv8-A, RISC-V is a free-to-use open standard, managed by RISC-V International.
The base ISA is extremely simple, consisting of only 50 instructions, and adopts strongly
RISC-oriented design principles. RISC-V is also highly modular, having been designed to
be extended. The general-purpose base ISA can (optionally) be supplemented using sets of
special-purpose, standard or non-standard extensions to support additional functionality
(e.g., floating-point, via the standard F [RV:19a, Section 11] and D [RV:19a, Section 12]
extension), or satisfy specific optimisation goals (e.g., code density, via the standard
C [RV:19a, Section 16] extension). RISC-V International delegates the development of
extensions to a dedicated task group. The Cryptographic Extensions Task Group3 provides
some specific context for this paper, through their remit to develop scalar and vector
extensions to support cryptography.

RISC-V uses 32 registers, denoted GPR[i] for 0 ≤ i < 32: GPR[0] is fixed to 0, whereas
GPR[1] to GPR[31] are general-purpose. XLEN is used to denote the width of each GPR[i],
and hence the base ISA. We focus on extending the RV32I [RV:19a, Section 2] and
RV64I [RV:19a, Section 5], integer RISC-V base ISA and therefore focus on systems where
XLEN = 32 or XLEN = 64.

Remit and organisation. In the context of an on-going effort to standardise crypto-
graphic ISEs for RISC-V, this paper investigates support for AES. In specific terms, our
contributions are as follows:
1. In Section 2 we capture some background, including a limited Systematisation of

Knowledge (SoK) for AES ISEs.
2. In Section 3 we implement and evaluate five different ISEs for AES on two different

RISC-V CPU cores. We explore existing ISE designs, and introduce what is, to the best
of our knowledge, a novel ISE design in Section 3.5 that uses a quadrant-packed state
representation.

3. In Section 4 we evaluate how the proposed standard bit-manipulation extension [RV:19a,
Section 21] to RISC-V can be used to efficiently implement AES-GCM.

On the one hand, RISC-V represents an excellent target for such work: the ISA is
extensible by design and its open nature makes exploration of extensions easier through
the availability of (often open-source) implementations. Increased commercial deployment
of such implementations suggests that work on RISC-V is timely and potentially of high
impact. On the other hand, RISC-V also presents unique challenges vs. previous work.
For example, RISC-V could in fact be viewed as three related base ISAs, RV32I [RV:19a,
Section 2], RV64I [RV:19a, Section 5], and RV128I [RV:19a, Section 6], that each support
a different word size: designing ISEs that are applicable (or scale) across these options is
a complicating factor. We hope this work supports RISC-V in becoming the first widely
implemented ISA to support AES acceleration across all implementation profiles, from
embedded IoT devices to application and server class processors.

2 Background

2.1 AES specification
Syntax. As a block cipher, AES defines two algorithms

Enc : {0, 1}8·4·Nk × {0, 1}8·4·Nb → {0, 1}8·4·Nb

Dec : {0, 1}8·4·Nk × {0, 1}8·4·Nb → {0, 1}8·4·Nb

3https://lists.riscv.org/g/tech-crypto-ext

https://lists.riscv.org/g/tech-crypto-ext

112 The design of scalar AES Instruction Set Extensions for RISC-V

such that m = Dec(k, c = Enc(k, m)). That is, given a plaintext m and cipher key k, Enc
encrypts m under k; given the same k, Dec will invert Enc and so the same m can be
recovered from the associated ciphertext c. In addition, it defines an algorithm KeyExp
that expands [FIP01, Section 5.2] the cipher key into a sequence of round keys then used
by Enc or Dec; where appropriate, we use

Enc-KeyExp : {0, 1}8·4·Nk → {0, 1}(8·4·Nb)×(Nr+1)

Dec-KeyExp : {0, 1}8·4·Nk → {0, 1}(8·4·Nb)×(Nr+1)

to denote said algorithm as specialised to suit Enc and Dec respectively.

Parameterisation. An AES parameter set [FIP01, Figure 4] is a triple (Nk, Nb, Nr)
where Nk dictates the number of 32-bit words in k, Nb dictates the number of 32-bit
words in m or c (i.e., a block), and Nr dictates the number of rounds. The standard AES
parameter sets are

AES-128 7→ (4, 4, 10)
AES-192 7→ (6, 4, 12)
AES-256 7→ (8, 4, 14)

such that the number of bits in a plaintext (resp. ciphertext) block is fixed to 8·4·Nb = 128.
From here on, we focus wlog. on encryption using AES-128 (other parameter sets are
catered for naturally, and decryption with minor differences) so use the terms AES and
AES-128 synonymously.

Design. The mathematics underpinning AES are described in [FIP01, Section 4]. In
particular, it can be defined in terms of operations in the finite field F28 constructed
as F2[x]/(x8 + x4 + x3 + x + 1). A hexadecimal short-hand [FIP01, Section 3.2] is used
to represent field literals, e.g., 13 7→ 13(16) ≡ 00010011(2) 7→ x4 + x + 1. Field
addition, multiplication, and division are denoted by ⊕, ⊗, and � respectively, with the
multiplication-by-x operation [FIP01, Section 4.2.1] denoted xtime. Elements of F28 are
collected into (4× 4)-element state and round key matrices; the i-th row and j-th column
of such a matrix relating to round r is denoted s

(r)
i,j and rk

(r)
i,j respectively, with super-

and/or subscripts omitted whenever irrelevant.
AES is an iterative block cipher, based on a substitution-permutation network. This

means encryption using AES can be described [FIP01, Section 5.2] as follows: 1) the
input plaintext is pre-whitened to yield s(0) = m ⊕ rk(0) = m ⊕ k, 2) each r-th round,
for 1 ≤ r ≤ Nr, demands computation of s(r+1) = P-layer(S-layer(s(r)))⊕ rk(r), and
therefore use of round key rk(r), 3) the output ciphertext is c = s(Nr). Note that an
alternative round definition, namely s(r+1) = P-layer(S-layer(s(r)⊕rk(r))) , is plausible:
this shifts the pre-whitening step before 2) into an analogous post-whitening step after 2)
to yield an equivalent result. At a low(er) level, the computation of each round is specified
via four round functions (each of which has an inverse, to support decryption):

• SubBytes [FIP01, Section 5.1.1] operates element-wise, computing s
(r+1)
i,j = S-box(s(r)

i,j)
via application of the S-box: given an element x, this component can be described as

S-Box :
{

F28 → F28

x 7→ f(g(x))

where g is an inversion, and f is a specially selected affine transformation. Where
appropriate, we overload SubBytes by allowing it to denote application of the S-box to
any collection, e.g., a row, column, or, more generally, a sequence, of elements.

• ShiftRows [FIP01, Section 5.1.2] operates row-wise, rotating each i-th row of s(r) by
i elements to form the associated row of s(r+1), i.e., s

(r+1)
i,j = s

(r)
i,j+i (mod Nb). Where

B. Marshall and G. R. Newell and D. Page and M.-J. O. Saarinen and C. Wolf 113

appropriate, we use ShiftRow to denote the operation applied to a single row within
ShiftRows.

• MixColumns [FIP01, Section 5.1.3] operates column-wise, multiplying each j-th column
of s(r) with a constant MDS matrix to form the associated column of s(r+1). Where
appropriate, we use MixColumn to denote the operation applied to a single column within
MixColumns, i.e., multiplication of a 4-element column vector by the constant MDS
matrix.

• AddRoundKey [FIP01, Section 5.1.4] operates element-wise, computing s
(r+1)
i,j = s

(r)
i,j ⊕

rk
(r)
i,j and thereby mixing a round key into the state.

Note that S-layer = SubBytes, and

P-layer =
{

MixColumns ◦ ShiftRows in rounds 1 ≤ r < Nr
ShiftRows in round Nr

i.e., the last, Nr-th round differs from the initial Nr − 1 rounds. As such, a round
as defined above is constructed via AddRoundKey ◦ MixColumns ◦ ShiftRows ◦ SubBytes
or AddRoundKey ◦ ShiftRows ◦ SubBytes respectively, where, because ShiftRows and
SubBytes commute, the order they are applied in can be selected to suit.

2.2 AES implementation
2.2.1 Representation

A field element in F28 can be represented by an 8-bit byte, where the i-th bit of x for
0 ≤ i < 8 represents the i-th polynomial coefficient.

Beyond this, the state and round key matrices can be represented in several ways. The
most direct option would be termed array-based (or unpacked): the matrix is represented
as a 16-element array of 8-bit bytes, each representing field elements. We use R to refer
to the register width of a target platform. For RISC-V, R = XLEN where we consider
XLEN ∈ 32, 64. Where R ≥ 32, an entire row or column of the AES state matrix can be
packed into each register: we term these “row-packed” and “column-packed” representations
respectively. Where R ≥ 128, it is plausible to pack an entire AES state matrix into a
single register: we term this a “fully-packed” representation.

2.2.2 Hardware-only implementations

In a hardware-only implementation, execution of AES is performed by a dedicated hardware
module (e.g., a memory-mapped co-processor). A large design space exists for hardware
implementations of AES. Gaj and Chodowiec [GC00, Section 3.3] give an overview, detailing
iterative, combinatorial (unrolled), and pipelined architectures. Similarly, [PMDW04,
GB05, GC09] survey concrete implementations on a variety of fabrics including FPGAs
and ASICs.

Although hardware-only designs are not our focus, the associated techniques can guide
ISE-related design choices. First, they guide the ISE interface. For example, some ISEs can
be characterised as offering an interface to hardware constituting one round (i.e., aligned
with an iterative hardware implementation). Second, they guide the ISE implementation.
For example, a significant body of work focuses on efficient hardware implementation of
the S-box: [Can05, BP12, RMTA18].

2.2.3 Software-only implementations

In a software-only implementation, execution of AES and the associated application
program is performed by a general-purpose processor core, using only instructions in the

114 The design of scalar AES Instruction Set Extensions for RISC-V

base ISA. Since we only consider use of the RISC-V scalar base ISA, we exclude work on
the use of vector-like extensions [Ham09].

Software-only techniques are important because many ISEs are evaluated against
baseline ISA implementations. Work such as that of Bernstein and Schwabe [BS08],
Osvik et al. [OBSC10], and Schwabe and Stoffelen [SS16] present and compare multiple
techniques across a range of platforms, but, for completeness, we present a (limited) survey
in what follows.

Compute-oriented. A compute-oriented implementation of AES favours online computa-
tion, thus reducing memory footprint at the cost of increased latency. Following [DR02,
Section 4.1], for example, the idea is to simply 1) adopt an array-packed representation
of state and round key matrices, then 2) construct a round implementation by following
the algorithmic description of each round function in a direct manner. Addition in F28

can be implemented with a base ISA XOR instruction. Base ISA support is rarely present
for multiplication and inversion in F28 however. Hence it is common to pre-compute the
S-box and/or xtime functions. This requires pre-computation and storage of a 256 B
look-up table per function, but significantly reduces execution latency.

On platforms where R = 32, Bertoni et al. [BBF+02] improve execution latency by
exploiting the wider data-path. They adopt a row-packed representation of state and
round key matrices, implementing ShiftRows using native rotation instructions to act on
the packed rows. MixColumns is implemented using the SIMD Within A Register (SWAR)
paradigm: applying xtime across a packed row in parallel.

Table-oriented. A table-oriented implementation of AES favours offline pre-computation,
reducing latency but increasing the memory footprint. The main example of this technique
is the so-called T-tables [DR02, Section 4.2] method. This involves adopting a column-
packed representation of state and round key matrices and pre-computing MixColumn ◦
SubBytes using the tables

T0[x] =


02(16) ⊗ S-box(x)
01(16) ⊗ S-box(x)
01(16) ⊗ S-box(x)
03(16) ⊗ S-box(x)

 T1[x] =


03(16) ⊗ S-box(x)
02(16) ⊗ S-box(x)
01(16) ⊗ S-box(x)
01(16) ⊗ S-box(x)



T2[x] =


01(16) ⊗ S-box(x)
03(16) ⊗ S-box(x)
02(16) ⊗ S-box(x)
01(16) ⊗ S-box(x)

 T3[x] =


01(16) ⊗ S-box(x)
01(16) ⊗ S-box(x)
03(16) ⊗ S-box(x)
02(16) ⊗ S-box(x)


for x ∈ F28 , then computing each j-th column of s(r+1) as

T0[s(r)
i,j+i (mod Nb)]⊕ T1[s(r)

i,j+i (mod Nb)]⊕ T2[s(r)
i,j+i (mod Nb)]⊕ T3[s(r)

i,j+i (mod Nb)]

where extraction of elements caters for ShiftRows, then XOR’ing the j-th column of rk(r)

to cater for AddRoundKey.
As such, each round becomes a sequence of look-ups into Ti, plus XORs to combine

their result. Doing so demands pre-computation and storage of a 256 · 4 B = 1 kB look-up
table per Ti. The overhead related to extraction of each element from packed columns
representing s(r) (to form look-table offsets) can be significant: Fiskiran and Lee [FL01]
analyse the impact of different addressing modes on this issue, with Stoffelen [Sto19,
Section 3.1] concluding that RISC-V is ill-equipped to reduce said overhead, due to the
provision of a sparse set of addressing modes. Further, in systems with data caches, T-table
based implementations are susceptible to timing attacks [Ber05].

B. Marshall and G. R. Newell and D. Page and M.-J. O. Saarinen and C. Wolf 115

Bit-sliced. The term bit-slicing is an implementation technique due to Biham [Bih97],
which constitutes
1. a non-standard representation of data where each R-bit word x is transformed into x̂,

i.e., R slices, say x̂[i] for 0 ≤ i < R, where x̂[i]j = xi for some j, and
2. a non-standard implementation of operation: each operation f used as r = f(x) must be

transformed into a “software circuit” f̂ , i.e., a sequence of Boolean instructions acting
on the slices st. r̂ = f̂(x̂).

Bit-slicing introduces some overhead related to conversion of x into x̂ and r̂ into r, plus
the (relative) inefficiency of f̂ vs. f wrt. latency and footprint. However, if each slice is
itself an R-bit word, then it is possible to compute R instances of f̂ in parallel on suitably
packed x̂. A common analogy is that of transforming the R-bit, 1-way scalar processor into
a 1-bit, R-way SIMD processor, thus giving (or recouping) up to a R-fold improvement in
latency.

As evidenced by [MN07, K0̈8] and [KS09], the application of bit-slicing to AES can be
very effective; Stoffelen [Sto19, Section 3.1] specifically investigates this fact within the
context of RISC-V.

2.3 Existing AES ISEs
Here, we survey AES-related ISE designs split into 1) industry-specified ISEs, which are
standard extensions, and 2) academia-specified ISEs, which are non-standard extensions,
wrt. a given base ISA. Each ISE is classified as either workload-specific, if it is only useful
for AES, or workload-agnostic, if it is useful for AES and other workloads. Note that
we exclude work where an ISE for another workload can be applied to AES but was not
designed for AES (see, e.g., Tillich and Großschädl [TG04] who apply an ISE intended for
ECC to AES).

2.3.1 Standard, industry-specified ISEs

Intel introduced support for AES in x86 per [X8618a, Section 12.13]. Instructions use
a destructive 2-address (1 source, 1 source/destination) or non-destructive 3-address (2
source, 1 destination) format depending on the variant (e.g., XMM- vs. AVX-based), and
operate on data housed in the pre-existing vector register file, implying R = 128. AES is
implemented by 1) adopting a fully-packed representation of state and round key matrices,
then 2) using AESENC [X8618b, Page 3-54] to construct a round implementation as

AESENC 7→ AddRoundKey ◦ MixColumns ◦ SubBytes ◦ ShiftRows

IBM introduced support for AES in POWER per [POW18, Section 6.11.1]. Instructions
use a non-destructive 3-register (2 source, 1 destination) format, and operate on data
housed in the pre-existing vector register file, implying R = 128. AES is implemented by
1) adopting a fully-packed representation of state and round key matrices, then 2) using
vcipher [POW18, Page 304] to construct a round implementation as

vcipher 7→ AddRoundKey ◦ MixColumns ◦ ShiftRows ◦ SubBytes

ARM introduced support for AES in ARMv8-A per [ARM20, Section A2.3]. Instructions
use a destructive 2-address (1 source, 1 source/destination) format, and operate on data
housed in the pre-existing vector register file, implying R = 128. AES is implemented
by 1) adopting a fully-packed representation of state and round key matrices, then 2)
using AESE [ARM20, Section C7.2.8] and AESMC [ARM20, Section C7.2.10] to construct
a round implementation as

AESMC ◦ AESE 7→ MixColumns ◦ (SubBytes ◦ ShiftRows ◦ AddRoundKey),

116 The design of scalar AES Instruction Set Extensions for RISC-V

Oracle introduced support for AES in SPARC per [SPA16, Sections 7.3+7.4]. Instructions
use a non-destructive 4-address (3 source, 1 destination) format, and operate on data housed
in the pre-existing general-purpose register file, implying R = 64. AES is implemented by
1) using a column-packed representation of state and round key matrices, then 2) using
AES_EROUND01 [SPA16, Page 109] and AES_EROUND23 [SPA16, Page 109] to construct a
round implementation as

(AES_EROUND01; AES_EROUND23) 7→ AddRoundKey ◦ MixColumns ◦ ShiftRows ◦ SubBytes

in two steps: the first step processes columns 0 and 1 via AES_EROUND01 whereas the
second step processes columns 2 and 3 via AES_EROUND23.

2.3.2 Non-standard, academia-specified ISEs

Burke et al. [BMA00] propose a workload-agnostic ISE based on workload characterisation
for the DEC Alpha architecture [C+14]. Per [BMA00], pertinent examples for AES include
a) ROL and ROR, which perform left- and right-rotate, and b) SBOX, which extracts elements
to form look-up table offsets. In one configuration, the resulting memory accesses are
supported by a set of special-purpose “S-box caches”.

Fiskiran and Lee [FL05] propose a workload-agnostic ISE that employs a so-called
Parallel Table Lookup Module (PTLU) for a “RISC like” instruction set. For AES, this
accelerates implementations based on T-tables by affording an addressing mode that
a) integrates extraction of elements to form look-up table offsets, and b) performs the
associated table look-ups in parallel, supported by a dedicated scratch-pad memory.

Biham et al. [BAK98, Page 232] propose (in theory) and Grabher et al. [GGP08]
explore (in practice) a workload-agnostic ISE that supports bit-sliced implementations
for their custom CRISP (“RISC like”) architecture. The ISE allows computation using
configurable 4-input, 2-output Boolean functions, vs. fixed 2-input, 1-output alternatives
such as NOT, AND, OR, and XOR. Sequences of native Boolean instructions, which
dominate bit-sliced implementations, can thereby be “compressed” into use of the ISE.
Doing so improves both latency and footprint. [GGP08, Section 4] details the application
to AES.

Nadehara et al. [NIK04] propose a workload-specific ISE that could be described as
“hardware-assisted T-tables”: observing that ∀x, i 6= j, Ti[x] is a rotation of Tj [x], they
support on-the-fly computation (vs. via look-up) of T-table entries. The ISE constitutes a
single instruction AESENC 7→ Ti, supported by a dedicated hardware module (see [NIK04,
Figure 6]). Instances of AESENC 1) extract an input element from a packed input column 2)
use the input to compute an output element equivalent to a look-up from the T-table, and
3) store the output element into a packed output column. This approach was reapplied by
Saarinen [Saa20] within the context of RISC-V.

Tillich et al. [TGS05] propose a workload-specific ISE that could be described as
“hardware-assisted S-box” for the SPARC V8 architecture. The ISE constitutes a single
instruction sbox 7→ SubBytes, supported by a dedicated hardware module (see [TGS05,
Figure 1]). Instances of sbox 1) extract an input element from a packed input row or
column, 2) use the input to compute an output element equivalent to a look-up from the
S-box, and 3) insert the output element into a packed output row or column. Using insert
vs. overwrite semantics allows ShiftRows to be computed for free.

Bertoni et al. [BBFR06] propose a workload-specific ISE that could be described as
“hardware-assisted round functions”. The ISE includes 1) zero-overhead rotation (similar
to ARM), and 2) byte- and word-oriented variants of SMix 7→ MixColumn ◦ SubBytes.

Tillich and Großschädl [TG06] propose a workload-specific ISE that could be described
as “hardware-assisted round functions” for the SPARC V8 architecture. The ISE includes
byte- and word-oriented variants of sbox[4][s|r] 7→ SubBytes and mixcol[4][s] 7→

B. Marshall and G. R. Newell and D. Page and M.-J. O. Saarinen and C. Wolf 117

MixColumn; per [TG06, Section 4.3], the most efficient variant allows a zero-overhead
implementation of ShiftRows to be realised.

2.4 Security
While the security of AES against a cryptanalytic attack is defined by the design, and so
is out of scope, implementation attacks are of central importance. An implementation
attack focuses on the concrete instance of a construct rather than the abstract specification.
Countermeasures against such attacks must therefore be considered alongside implemen-
tations they relate to. Since AES is an important target, a significant body of literature
exists around implementation attacks on it, including both active (e.g., fault injection) or
passive (i.e., side-channel monitoring) attack techniques. The latter can be sub-divided
into those dependent on analogue (power-based [MOP07]) or discrete (time-based [KQ99])
leakage.

Use of ISEs can provide some inherent protection against certain attacks. For exam-
ple, ISEs typically yield constant time execution, preventing some classes of timing or
micro-architectural attack techniques (see [Sze19, Section 4] and [GYCH18, Section 4]).
Unfortunately, use of ISEs also presents some unique challenges. For example, Saab et al.
[SRH16] discuss power-based attacks on AES-NI; concluding that naive use of AES-NI
yields exploitable information leakage. Mitigation of such leakage demands the ISE address
instances where the leakage stems from “inside” the ISE, and work with appropriate
countermeasures (e.g., hiding [MOP07, Chapter 7] or masking [MOP07, Chapter 10]).
Tillich et al. [THM07] consider this problem to an extent, including an ISE-based option in
their investigation of hardened AES implementations. However, the challenge of developing
suitable ISEs is under-studied in general.

3 Exploring AES ISEs for RISC-V
Section 2.3 outlined a range of ISE designs, demonstrating a large design space of options
that we could consider. To narrow the design space into those we do consider, we use the
requirements outlined below:

Requirement 1. The ISE must support 1) AES encryption and decryption, and 2) all
parameter sets, i.e., AES-128, AES-192, and AES-256. Support for auxiliary operations,
e.g., key schedule, is an advantage but not a requirement.

Requirement 2. The ISE must align with the wider RISC-V design principles. This
means it should favour simple building-block operations, and use instruction encodings
with at most 2 source registers and 1 destination register. This avoids the cost of a
general-purpose register file with more than 2 read ports or 1 write port.

Requirement 3. The ISE must use the RISC-V general-purpose scalar register file to
store operands and results, rather than any vector register file. This requirement excludes
the majority of standard ISEs outlined in Section 2.3.

Requirement 4. The ISE must not introduce special-purpose architectural state, nor rely
on special-purpose micro-architectural state (e.g., caches or scratch-pad memory).

Requirement 5. The ISE must enable data-oblivious execution of AES, preventing timing
attacks based on execution latency (e.g., stemming from accesses to a pre-computed S-box).

Requirement 6. The ISE must be efficient, in terms of improvement in execution latency
per area required: this balances the value in both metrics vs. an exclusive preference for
one or the other. Efficiency wrt. auxiliary metrics, e.g., memory footprint or instruction
encoding points, is an advantage but not a requirement.

118 The design of scalar AES Instruction Set Extensions for RISC-V

Overall, the requirements combine to intentionally target the ISE at low(er)-end, resource-
constrained (e.g., embedded) platforms. We view such a focus as reasonable, because
existing work on adding cryptographic support to the standard vector extension [RV:19a,
Section 21] already caters for high(er)-end alternatives.

We arrive at five ISE variants using the requirements, the description of which is split
into an intuitive description in the following Sections and a technical description (e.g., a
list of instructions and their semantics) in an associated Appendix.

3.1 Variant 1 (V1): SubBytes + MixColumn + explicit ShiftRows

By reproducing [TG06, Section 4.2], V1 assumes XLEN = 32 and adopts a column-packed
representation of state and round key matrices. As detailed in Figure 2, V1 adds 4
instructions (2 for encryption, 2 for decryption). For example, saes.v1.encs applies
SubBytes to elements in a packed column, and saes.v1.encm applies MixColumn to a
packed column; the instruction format for saes.v1.encs and saes.v1.encm specifies 1
source and 1 destination register. Since saes.v1.encs requires 4 applications of the S-box,
a trade-off between latency and area is possible st. n physical S-box instances are (re)used
in 4/n cycles (e.g., 1 instance in 4 cycles, or 4 instances in 1 cycle).

Figure 7 demonstrates that use of V1 to implement AES encryption requires 47 in-
structions per round: 4 lw instructions to load the round key, 4 xor instructions to apply
AddRoundKey, 4 saes.v1.encs instructions to apply SubBytes, 31 instructions to apply
ShiftRows, and 4 saes.v1.encm instructions to apply MixColumns.

3.2 Variant 2 (V2): SubBytes + MixColumn + implicit ShiftRows

By reproducing [TG06, Section 4.3], V2 assumes XLEN = 32 and adopts a column-packed
representation of state and round key matrices. As detailed in Figure 3, V2 adds 4
instructions (2 for encryption, 2 for decryption). For example, saes.v2.encs applies
SubBytes to elements in a packed column, and saes.v2.encm applies MixColumn to a
packed column; the instruction format for saes.v2.encs and saes.v2.encm specifies
2 source and 1 destination register. V2 improves V1 by applying ShiftRows implicitly:
this is possible by careful indexing of elements in source and destination columns during
application of SubBytes and MixColumns, and also permits saes.v2.encs to be used
within the key schedule. The same trade-off is possible as in V1, whereby n physical S-box
instances are (re)used in 4/n cycles (e.g., 1 instance in 4 cycles, or 4 instances in 1 cycle).

Figure 8 demonstrates that use of V2 to implement AES encryption requires 16 in-
structions per round: 4 lw instructions to load the round key, 4 xor instructions to apply
AddRoundKey, 4 saes.v1.encs instructions to apply SubBytes, and 4 saes.v1.encm in-
structions to apply MixColumns. In the Nr-th round, which omits MixColumns, ShiftRows
must be applied explicitly using an additional 12 instructions.

3.3 Variant 3 (V3): hardware-assisted T-tables
V3 is based on [NIK04, BBFR06, Saa20]; it assumes XLEN = 32 and adopts a column-
packed representation of state and round key matrices.

As detailed in Figure 4, V3 adds 4 instructions (2 for encryption, 2 for decryption). The
basic idea is to support an implementation strategy aligned with use of T-tables [DR02,
Section 4.2], but compute entries in hardware vs. storing the look-up entries in memory.
For example, saes.v3.encsm extracts an element from a packed column, applies SubBytes
to the element, expands the element into a packed column, applies MixColumn, then
applies AddRoundKey. The inclusion of AddRoundKey follows [Saa20], which improves
on [NIK04, BBFR06]; as a result of this, the instruction format for saes.v3.encsm
specifies 2 source and 1 destination register. The requirement for 1 application of the

B. Marshall and G. R. Newell and D. Page and M.-J. O. Saarinen and C. Wolf 119

S-box allows for a more efficient functional unit than V1 or V2, for example, either wrt.
latency or area.

Figure 9 demonstrates that use of V3 to implement AES encryption requires 20 in-
structions per round: 4 lw instructions to load the round key, and 16 saes.v3.encsm
instructions to apply SubBytes, ShiftRows, MixColumns, and AddRoundKey. In the Nr-th
round, which omits MixColumns, saes.v3.encsm is replaced by saes.v3.encs.

3.4 Variant 4 (V4): 64-bit data-path
V4 requires XLEN = 64 and adopts a double column-packed representation of state and
round key matrices, i.e., two columns (or 8 elements) are packed into a 64-bit word. It is
similar in principle to the SPARC [SPA16, Page 109] ISE, but improves on it by adhering
to the 2 source and 1 destination register format. By sourcing two 64-bit registers, and
writing a single 64-bit register, a single instruction can accept all of the current round
state as input and produce half of the next round state as output.

SPARC [SPA16, Page 109] adds 9 instructions (4 for encryption, 4 for decryption, and
1 auxiliary). For example, AES_EROUND01 and AES_EROUND23 produce columns 0 and 1
and columns 2 and 3 respectively. Each instruction sources 3 64-bit registers, and writes a
single 64-bit register. As shown in Figure 5, V4 improves this by adding only 7 instructions
(2 for encryption, 2 for decryption, and 3 auxiliary). This is realised by utilising the
Equivalent Inverse Cipher representation detailed in [FIP01, Section 5.3.5]. This enables
all of the round transformations to be applied in the same order for both encryption and
decryption. The AddRoundKey step can then lifted out of the round function instructions
(where otherwise it would appear in the middle of the decryption round), and implemented
using a base ISA xor instruction. The round key then no longer needs to be an input to
the instruction, meaning it only needs 2 source register operands. We then note that the
nature of ShiftRows means we do not need separate instructions to compute the next
values of columns (0,1) or columns (2,3) as the SPARC instructions do. Instead, we can
simply reverse the order of the source register operands, and get the same effect. This is
detailed in Figure 5, and an example round function is shown in Figure 10.

For example, saes.v4.encsm rd, rA, rB applies SubBytes, ShiftRow, and MixColumn
to elements in a packed column and produces the next round values for packed columns
(0,1). Executing saes.v4.encsm rd, rB, rA, with no change in values of rA or rB, will
produce the next round state values for packed columns (2, 3).

Figure 10 demonstrates that use of V4 to implement AES encryption requires 6 in-
structions per round: 2 ld instructions to load the round key, 2 xor instructions to
apply AddRoundKey, 2 saes.v4.encsm instructions to apply SubBytes, ShiftRows, and
MixColumns. In the Nr-th round, which omits MixColumns, saes.v4.encsm is replaced
by saes.v4.encs. Note that use of the Equivalent Inverse Cipher representation necessi-
tates inclusion of the saes.v4.imix instruction, in order to efficiently imply the inverse
MixColumn step to words of the Key-Schedule.

3.5 Variant 5 (V5): quadrant-packed
V5 assumes XLEN = 32 and adopts a novel, quadrant-packed representation of state and
round key matrices as shown in Figure 1. This means that each quadrant of the standard
4×4 byte AES state representation is packed into a single 32-bit register word. This allows
either two complete rows (to perform ShiftRows) or two complete columns (to perform
MixColumns) of the state can be accessed by accessing two quadrants. Based on this, such
a representation can 1) afford advantages of both row- and column-packed alternatives,
and 2) allow an instruction format that meets the 2 source and 1 destination register
address constraint of a RISC-V pipeline. However, it also requires conversion of any input
and output data between quadrant-packed and standard column-packed representation.

120 The design of scalar AES Instruction Set Extensions for RISC-V

Although such conversion is amortised by Nr rounds of computation, it still represents an
overhead vs. other variants.

As detailed in Figure 6, V5 adds 7 instructions (3 for encryption, 3 for decryption, and
1 auxiliary). Taking encryption as an example, we define two instructions to perform the
ShiftRows and SubBytes steps. saes.v5.esrsub.lo performs ShiftRows and SubBytes
on the two bottom quadrants, and saes.v5.esrsub.hi does the same for the two top
quadrants. The two instructions are necessary to account for the different rotation
amounts applied to the top and bottom rows as part of ShiftRows. A single instruction
saes.v5.emix applies the MixColumns transformation to two columns. The instruction
can source two entire column owing to the quadrant packed representation, but can only
write a single quadrant back. Hence, two executions of the same instruction are needed to
apply the entire MixColumns step to each two quadrants.

Figure 11 demonstrates that use of V5 to implement AES encryption requires 16
instructions per round: 4 lw instructions to load the round key, 4 xor instructions to apply
AddRoundKey, 4 saes.v5.esrsub.[lo|hi] instructions to apply SubBytes and ShiftRows,
and 4 saes.v5.emix instructions to apply MixColumns. Note that conversion into (resp.
from) quadrant-packed representation requires a further 12 instructions; this can be reduced
to 4 pack[h] instructions using the standard bit-manipulation extension [RV:19a, Section
17].
V5 instructions may be implemented with between 1 and 4 SBox instances, with a

corresponding tradeoff between area and latency. As with V1 and V2 however, additional
storage elements are required if fewer than 4 SBoxes are instanced in order to store
intermediate results. The auxiliary saes.v5.sub instruction is used during the Key-
Schedule, and can act simply as an interface to the SBoxes already required by the round
instructions.

3.6 Implementation
The evaluation of each ISE considers two different RISC-V compliant base micro-architectures,
which constitute two different host cores:
• The SCARV4 core supports the RV32IMC instruction set, i.e., the 32-bit [RV:19a,

Section 2] base integer ISA plus standard Multiplication [RV:19a, Section 7] and
Compressed [RV:19a, Section 16] extensions. Per the block diagram shown in Figure 12,
the core executes instructions using a 5-stage, in-order pipeline. No branch prediction
is supported. There are two memory interfaces for instruction fetch and data memory
accesses. No instruction or data caches are supported. The core implements various
performance counters, and elements of the RISC-V Privileged Resource Architecture
(PRA) [RV:19b, Chapter 3] related to exception and interrupt handling.

• The Rocket [AAB+16] core executes instructions using a 5-stage, in-order pipeline which
is highly configurable. We take advantage of this, considering two variants whose exact
configuration is outlined in Figure 13 and Figure 14: the variants represent single 32-bit
and 64-bit cores respectively, and so support the RV32IMC (resp. RV64IMC) instruction
set, i.e., the 32-bit [RV:19a, Section 2] (resp. 64-bit [RV:19a, Section 5]) base integer
ISA plus standard Multiplication [RV:19a, Section 7] and Compressed [RV:19a, Section
16] extensions. Each variant is configured to support an instruction cache, a data cache,
and a branch prediction mechanism, but no floating-point support.

To support each ISE, two modifications were made to each host core: the instruction
decoder was modified to support operand selection and an AES Functional Unit (AES-FU)
was added to support execution of ISE instructions. The SCARV core integrates the
AES-FU directly into the pipeline, while the Rocket core accesses the AES-FU via the

4https://github.com/scarv/scarv

https://github.com/scarv/scarv

B. Marshall and G. R. Newell and D. Page and M.-J. O. Saarinen and C. Wolf 121

s
(r)
0,0 s

(r)
0,1 s

(r)
0,2 s

(r)
0,3

s
(r)
1,0 s

(r)
1,1 s

(r)
1,2 s

(r)
1,3

s
(r)
2,0 s

(r)
2,1 s

(r)
2,2 s

(r)
2,3

s
(r)
3,0 s

(r)
3,1 s

(r)
3,2 s

(r)
3,3





s
(r)
0,0

s
(r)
1,0

s
(r)
0,1

s
(r)
1,1





s
(r)
0,2

s
(r)
1,2

s
(r)
0,3

s
(r)
1,3





s
(r)
2,0

s
(r)
3,0

s
(r)
2,1

s
(r)
3,1





s
(r)
2,2

s
(r)
3,2

s
(r)
2,3

s
(r)
3,3




7→s(r) =

Figure 1: An illustration of quadrant-packed representation (left), as applied to a state
matrix (right).

1 saes.v1.encs rd , rs1 : v1. SubBytes (rd , rs1 , fwd =1)
2 saes.v1.decs rd , rs1 : v1. SubBytes (rd , rs1 , fwd =0)
3 saes.v1.encm rd , rs1 : v1. MixColumn (rd , rs1 , fwd =1)
4 saes.v1.decm rd , rs1 : v1. MixColumn (rd , rs1 , fwd =0)
5
6 v1. SubByte (rd , rs1 , fwd):
7 rd .8[i] = AESSBox [rs1 .8[i]] if fwd else AESInbSBox [rs1 .8[i]] for i =0..3
8
9 v1. MixColumn (rd , rs1 , fwd):

10 for i =0..3:
11 tmp .32 = ROTL32 (rs1 .32 , 8*i)
12 rd .8[i] = AESMixColumn (tmp .32) if fwd else AESInvMixColumn (tmp .32)

Figure 2: Instruction mnemonics, and their mapping onto pseudo-code functions, for V1.

1 saes.v2.encs rd , rs1 , rs2 : v2. SubBytes (rd , rs1 , rs2 , fwd =1)
2 saes.v2.decs rd , rs1 , rs2 : v2. SubBytes (rd , rs1 , rs2 , fwd =0)
3 saes.v2.encm rd , rs1 , rs2 : v2. MixColumns (rd , rs1 , rs2 , fwd =1)
4 saes.v2.decm rd , rs1 , rs2 : v2. MixColumns (rd , rs1 , rs2 , fwd =0)
5
6 v2. SubBytes (rd , rs1 , rs2 , fwd):
7 t1 .32 = {rs1 .8[0] , rs2 .8[1] , rs1 .8[2] , rs2 .8[3]}
8 rd .8[i]= AESSBox [t1 .8[i]] if fwd else AESInvSBox [t1 .8[i]] for i =0..3
9

10 v2. MixColumns (rd , rs1 , rs2 , fwd):
11 t1 .32 = {rs1 .8[0] , rs1 .8[1] , rs2 .8[2] , rs2 .8[3]}
12 for i =0..3:
13 tmp .32 = ROTL32 (rs1 .32 , 8*i)
14 rd .8[i]= AESMixColumn (tmp .32) if fwd else AESInvMixColumn (tmp .32)

Figure 3: Instruction mnemonics, and their mapping onto pseudo-code functions, for V2.

1 saes.v3.encs rd , rs1 , rs2 , bs : v3.Proc(rd , rs1 , rs2 , bs , fwd =1, mix =0)
2 saes.v3. encsm rd , rs1 , rs2 , bs : v3.Proc(rd , rs1 , rs2 , bs , fwd =1, mix =1)
3 saes.v3.decs rd , rs1 , rs2 , bs : v3.Proc(rd , rs1 , rs2 , bs , fwd =0, mix =0)
4 saes.v3. decsm rd , rs1 , rs2 , bs : v3.Proc(rd , rs1 , rs2 , bs , fwd =0, mix =1)
5
6 v3.Proc(rd , rs1 , rs2 , bs , fwd , mix):
7 x = AESSBox [rs2 .8[bs]] if fwd else AESInvSBox [rs2 .8[bs]]
8 if mix and fwd: t1 .32 = { GFMUL (x, 3), x , x ,GFMUL (x, 2)}
9 elif mix and !fwd: t1 .32 = { GFMUL (x ,11) , GFMUL (x ,13) , GFMUL (x ,9) , GFMUL (x ,14)}

10 else : t1 .32 = {0, 0, 0, x}
11 rd .32 = ROTL32 (t1 .32 , 8* bs) ^ rs1

Figure 4: Instruction mnemonics, and their mapping onto pseudo-code functions, for V3.

122 The design of scalar AES Instruction Set Extensions for RISC-V

1 saes.v4.ks1 rd rs1 rcon : v4.ks1(rd , rs1 , rcon)
2 saes.v4.ks2 rd rs1 rs2 : v4.ks2(rd , rs1 , rs2)
3 saes.v4.imix rd rs1 : v4. InvMix (rd , rs1)
4 saes.v4. encsm rd rs1 rs2 : v4.Enc(rd , rs1 , rs2 , mix =1)
5 saes.v4.encs rd rs1 rs2 : v4.Enc(rd , rs1 , rs2 , mix =0)
6 saes.v4. decsm rd rs1 rs2 : v4.Dec(rd , rs1 , rs2 , mix =1)
7 saes.v4.decs rd rs1 rs2 : v4.Dec(rd , rs1 , rs2 , mix =0)
8
9 v4.ks1(rd , rs1 , enc_rcon): // KeySchedule : SubBytes , Rotate , Round Const

10 temp .32 = rs1 .32[1]
11 rcon = 0x0
12 if(enc_rcon != 0xA):
13 temp .32 = ROTR32 (temp .32 , 8)
14 rcon = RoundConstants .8[enc_rcon]
15 temp .8[i] = AESSBox [temp .8[i]] for i =0..3
16 temp .8[0] = temp .8[0] ^ rcon
17 rd .64 = {temp .32 , temp .32}
18
19 v4.ks2(rd , rs1 , rs2): // KeySchedule : XOR
20 rd .32[0] = rs1 .32[1] ^ rs2 .32[0]
21 rd .32[1] = rs1 .32[1] ^ rs2 .32[0] ^ rs2 .32[1]
22
23 v4.Enc(rd , rs1 , rs2 , mix): // SubBytes , ShiftRows , MixColumns
24 t1 .128 = ShiftRows ({rs2 , rs1 })
25 t2 .64 = t1 .64[0]
26 t3 .8[i] = AESSBox [t2 .8[i]] for i =0..7
27 rd .32[i] = AESMixColumn (t3 .32[i]) if mix else t3 .32[i] for i =0..1
28
29 v4.Dec(rd , rs1 , rs2 , mix , hi): // InvSubBytes , InvShiftRows , InvMixColumns
30 t1 .128 = InvShiftRows (rs2 || rs1)
31 t2 .64 = t1 .64[0]
32 t3 .8[i] = AESInvSBox [t2 .8[i]] for i =0..7
33 rd .32[i] = AESInvMixColumn (t3 .32[i]) if mix else t3 .32[i] for i =0..1
34
35 v4. InvMix (rd , rs1): // Inverse MixColumns
36 rd .32[i] = AESInvMixColumn (rs1 .32[i]) for i =0..1

Figure 5: Instruction mnemonics, and their mapping onto pseudo-code functions, for V4.

1 saes.v5. esrsub .lo rd , rs1 , rs2 : rd = v5. SrSub (rs1 , rs2 , fwd =1, hi =0)
2 saes.v5. esrsub .hi rd , rs1 , rs2 : rd = v5. SrSub (rs1 , rs2 , fwd =1, hi =1)
3 saes.v5. dsrsub .lo rd , rs1 , rs2 : rd = v5. SrSub (rs1 , rs2 , fwd =0, hi =0)
4 saes.v5. dsrsub .hi rd , rs1 , rs2 : rd = v5. SrSub (rs1 , rs2 , fwd =0, hi =1)
5 saes.v5.emix rd , rs1 , rs2 : rd = v5.Mix(rs1 , rs2 , fwd =1)
6 saes.v5.dmix rd , rs1 , rs2 : rd = v5.Mix(rs1 , rs2 , fwd =0)
7 saes.v5.sub rd , rs1 : rd = SubBytes (rs1 .8[i]) for i =0..3
8
9 v5. SrSub (rd , rs1 , rs2 , fwd , hi):

10 if(fwd):
11 if hi: tmp .32 = {rs1 .8[3] , rs2 .8[0] , rs2 .8[1] , rs2 .8[2]}
12 else : tmp .32 = {rs2 .8[3] , rs1 .8[1] , rs1 .8[0] , rs1 .8[2]}
13 tmp .8[i] = AESSBox [tmp .8[i]] for i =0..3
14 else :
15 if hi: tmp .32 = {rs2 .8[3] , rs2 .8[0] , rs1 .8[1] , rs2 .8[2]}
16 else : tmp .32 = {rs1 .8[3] , rs2 .8[1] , rs1 .8[0] , rs1 .8[2]}
17 tmp .8[i] = InvAESSBox [tmp .8[i]] for i =0..3
18 if(hi): rd .32 = {tmp .8[2] , tmp .8[3] , tmp .8[0] , tmp .8[1]}
19 else : rd .32 = {tmp .8[1] , tmp .8[3] , tmp .8[0] , tmp .8[2]}
20
21 v5.mix(rd , rs1 , rs2 , fwd):
22 col0 .32 = {rs1 .8[2] , rs1 .8[3] , rs2 .8[2] , rs2 .8[3]}
23 col1 .32 = {rs1 .8[0] , rs1 .8[1] , rs2 .8[0] , rs2 .8[1]}
24 n0 .8 = AESMixColumn (col0) if fwd else AESInvMixColumn (col0)
25 n1 .8 = AESMixColumn (ROTL32 (col0 ,8)) if fwd else AESInvMixColumn (ROTL32 (col0 ,8))
26 n2 .8 = AESMixColumn (col1) if fwd else AESInvMixColumn (col1)
27 n3 .8 = AESMixColumn (ROTL32 (col1 ,8)) if fwd else AESInvMixColumn (ROTL32 (col1 ,8))
28 rd .32 = {n2 , n3 , n0 , n1}

Figure 6: Instruction mnemonics, and their mapping onto pseudo-code functions, for V5.

B. Marshall and G. R. Newell and D. Page and M.-J. O. Saarinen and C. Wolf 123

Rocket Custom Coprocessor (RoCC) [AAB+16, Section 4] interface. Since Requirement 2
(each instruction uses at most 2 source and 1 destination register) is fulfilled, neither
micro-architecture required further structural alteration. A synthesis-time parameter was
used to switch between different ISEs.

3.7 Evaluation
Hardware. Each ISE variant was integrated into the two host cores described in Section 3.6.
The variants which assume XLEN = 32 (V1, V2, V3, and V5) were evaluated on both the
32-bit SCARV core and the 32-bit Rocket core; the variant which assumes XLEN = 64
(V4) was evaluated on only the 64-bit Rocket core. For V1, V2 and V5 a trade-off between
latency and area exists. Each such case is considered through two optimisation goals:
the (A)rea goal instantiates 1 S-box and has a n-cycle execution latency, whereas the
(L)atency goal instantiates 4 S-boxes and has a 1-cycle execution latency. We focus on
ASIC implementations (rather than FPGA implementations) because this is the more
relevant metric to the industrial (rather than academic) RISC-V community.

Table 1 shows the separated cost of the standalone ISE logic and the combined cost
of the core and integrated ISE. Numbers highlighted in bold are the best result for each
metric. The Baseline rows indicate the metrics for the the unmodified host CPU cores.
We use the open source Yosys [Wol] synthesis tool (v0.9+1706) with default settings to
provide post-synthesis (as opposed to post-layout) circuit area in the form of NAND2 gate
equivalents (ISE Area, Tables 1 and 8) and circuit depths in the form of gate delays (ISE
Latency, Tables 1 and 8). While more abstract than providing exact area and frequency
results for a particular ASIC standard cell library, it is much easier to reproduce5 while
still providing meaningful results. This methodology has also been used for other RISC-V
standard extension proposals, namely the bit-manipulation extension [ris, Section 3.1,
Page 54]. We found that none of the ISEs affected the critical gate delay path of either
the SCARV or Rocket core. These were 97 for the 32-bit SCARV core and 231 and 167 for
the 32 and 64-bit Rocket core respectivley6. Considering each ISE as implemented on the
Rocket core, we note the overhead wrt. area is marginal: this stems from the fact that the
baseline area of Rocket includes the data and instruction caches.

In Table 8 we consider the hardware costs when only encryption instructions are
implemented. This is relevant to systems which only care about certain block cipher modes
of operation, such as Galos/Counter-mode. We discuss this further in Section 4.

Software. We evaluated each ISE variant by implementing the AES-128 Enc, Dec plus
Enc-KeyExp and Dec-KeyExp. We use our own implementation of a non-ISE T-table
based implementation as a baseline. The variants which assume XLEN = 32 (V1, V2, V3,
and V5) used a rolled strategy wrt. loops: V1, V2, and V5 used 1 round per iteration,
whereas V3 used 2 rounds per iteration to avoid needless register move operations. The
variant which assumes XLEN = 64 (V4) used an unrolled strategy. In all cases the state is
naturally aligned,7 meaning any input (resp. output) can be loaded (resp. stored) using 4
lw instructions on a 32-bit core or 2 ld instructions on a 64-bit core.

Table 2 records the memory footprint (i.e., code footprint and static data footprint)
of each software implementation. Again, numbers highlighted in bold are the best
result for each metric. Where an entry for Dec-KeyExp is zero, this implies that
Enc-KeyExp = Dec-KeyExp so there is no overhead. Where an entry for Dec-KeyExp

5Especially for researchers lacking expensive commercial synthesis tools and process design kits.
6We are unable to explain why the gate delay path should be longer for the 32-bit SCARV core than

the 64-bit variant without a deep dive into the micro-architecture. We suspect it is an artifact of the sheer
configurability (rather than optimality) of the Rocket core.

7RISC-V does not mandate support for misaligned loads and stores, so aligning the state this way
ensures the best performance across all cores.

124 The design of scalar AES Instruction Set Extensions for RISC-V

is non-zero, this implies that Enc-KeyExp 6= Dec-KeyExp, and the equivalent inverse
cipher construction [FIP01, Section 5.3.5] is used. This allows Dec-KeyExp to call
Enc-KeyExp, then perform some additional post processing, with the quoted footprint
therefore reflecting the latter only. Table 3 and Table 4 record instruction (i.e., iret)
and cycle counts of each implementation, as executed on the SCARV and Rocket cores
respectively.

Discussion. Table 1 demonstrates that all ISE variants imply a modest area overhead
relative to their host core. For the RV32 Rocket the area overhead of a synthesised Rocket
Tile with caches was less than 1% in all cases. For the SCARV, the area overhead ranged
between 13% (V5 (L)) and 3% (V3). Table 2 shows all ISE variants having similarly small
memory footprints in terms of both instruction code and data. Beyond this, and per
Section 3, the primary metric of interest is efficiency in terms of the latency-area product.
This metric draws on data from Table 1 plus either Table 3 or Table 4 for the SCARV or
Rocket core respectively. We note the small difference in instruction count in some cases
between the cores. This is due to slightly different compiler behaviour at the mesured
function call sites in each core: the Rocket core saves an extra register to the stack. We
deliberately omit the area of the host core from this calculation, as this fixed overhead
dominates the final value and detracts from the comparison between ISEs themselves.

Table 5 captures the results for the Rocket core, although the same conclusion can be
drawn for the SCARV core. Qualitatively, we place more of a weight on Encryption (Enc)
and Decryption (Dec) vs. Encryption Key Expansion (Enc-KeyExp) and Decryption
Key Expansion (Dec-KeyExp), because typically many Enc or Dec operations are
performed per KeyExp.

For a 32-bit core, our conclusion is that V3 is the best option. Despite not being
the fastest (by a small margin), it is the most efficient, and simplest to implement. The
area optimised V2 implementation sometimes comes close in efficiency, but requires a
more complex multi-cycle implementation in this case. We note that V3 has relatively
poor performance for the decryption key schedule. This is because it uses the Equivalent
Inverse Cipher representation, and must first create an encryption orientated key schedule,
before applying the Inverse MixColumns transform to each word in the key schedule. Each
word requires 8 instructions to apply only the Inverse MixColumns transform. We believe
this is reasonable, as one typically performs many block decryptions per key schedule
operation. We also note that for the common AES-GCM usecase, decryption functionality
is not necessary. We discuss this further in Section 4. Compared to past work, our
implementation of V3 is slightly smaller than its original description in [Saa20]: 1149 v.s.
1240 gates. [Saa20] estimates a 5× performance improvement, which is slightly better
than our measured 4× improvement, though this is dependant on relative memory access
latencies. We would expect this improvement to increase in systems which store T-tables
in (relatively) high latency flash memory. V3 performs considerably better than [TGS05],
which achieves only a 2× speedup in the best case. We note that despite needing the
same number of instructions per round as V2 (based on [TGS05]), our V5 design suffers
in terms of performance. This is due to the conversion between quadrant-packed and
column-packed representations.

For a 64-bit core, V4 is the best option, which is somewhat obvious because it specifically
makes use of the wider data-path. It is 10× faster to perform a block encryption than
a baseline T-table implementation targeting a 64-bit base RISC-V architecture. With
reference to Table 4, note that the number of cycles per instruction executed is relatively
high. This fact stems from use of the ROCC interface, in that forwarding of the result
from an ISE instruction (that uses the ROCC) incurs an overhead vs. an ISE instruction;
fine-grained integration of the AES-FU could therefore incrementally improve the results.

We believe it is sensible to standardise different ISEs for the RV32 and RV64 base ISAs.

B. Marshall and G. R. Newell and D. Page and M.-J. O. Saarinen and C. Wolf 125

Table 1: Hardware metrics for each ISE variant with encrypt and decrypt instructions.
Area is measured in NAND2 gate equivalents and latency in gate delays.

ISA Variant ISE ISE SCARV CPU Rocket CPU
/ Goal Area Latency + ISE area + ISE area

RV32IMC Baseline 37325 (1.00×) 3501576 (1.000×)
RV32IMC V1 (L) 3514 18 41746 (1.12×) 3508448 (1.002×)
RV32IMC V1 (A) 2195 21 40171 (1.08×) 3506995 (1.002×)
RV32IMC V2 (L) 3574 19 41132 (1.10×) 3508946 (1.002×)
RV32IMC V2 (A) 1355 21 38777 (1.04×) 3506591 (1.001×)
RV32IMC V3 1149 30 38546 (1.03×) 3506761 (1.001×)
RV32IMC V5 (L) 4172 21 42035 (1.13×) 3510055 (1.002×)
RV32IMC V5 (A) 1726 23 39144 (1.05×) 3507755 (1.002×)
RV64IMC Baseline N/A 3717607 (1.000×)
RV64IMC V4 8226 28 N/A 3733786 (1.004×)

Table 2: Software memory footprint measured in bytes for each ISE variant.
ISA Variant Enc Dec Enc-KeyExp Dec-KeyExp .data

RV32IMC T-table 804 804 154 174 5120
RV32IMC V1 424 424 68 0 10
RV32IMC V2 234 238 68 62 10
RV32IMC V3 290 290 86 64 10
RV32IMC V5 266 278 290 0 10
RV64IMC V4 268 268 168 100 0

Table 3: Execution metrics for each ISE variant on the SCARV core. Note that the 64-bit
V4 is absent, since there is no 64-bit SCARV core.

ISA Variant Enc Dec Enc-KeyExp Dec-KeyExp
/ Goal iret cycles iret cycles iret cycles iret cycles

RV32IMC T-table 938 1016 938 1037 430 515 1711 2307
RV32IMC V1 (L) 512 575 512 576 198 302 204 321
RV32IMC V1 (A) 512 735 512 736 198 342 204 361
RV32IMC V2 (L) 215 274 216 285 198 302 335 615
RV32IMC V2 (A) 215 501 216 522 198 332 335 753
RV32IMC V3 238 291 238 286 219 312 659 1118
RV32IMC V5 (L) 227 294 227 291 332 449 338 468
RV32IMC V5 (A) 227 554 227 532 332 479 338 498

Table 4: Execution metrics for each ISE variant on the Rocket core. Note that the 64-bit
V4 uses the 64-bit Rocket core; all others use the 32-bit Rocket core.

ISA Variant Enc Dec Enc-KeyExp Dec-KeyExp
/ Goal iret cycles iret cycles iret cycles iret cycles

RV32IMC T-table 934 1338 934 1003 430 569 1711 2167
RV32IMC V1 (L) 513 659 513 613 199 268 200 270
RV32IMC V1 (A) 513 791 513 725 199 308 200 310
RV32IMC V2 (L) 216 351 217 354 199 263 336 496
RV32IMC V2 (A) 216 503 217 534 199 293 336 637
RV32IMC V3 239 396 239 410 220 462 660 2420
RV32IMC V5 (L) 228 366 228 322 333 405 334 404
RV32IMC V5 (A) 228 536 228 546 333 438 334 434
RV64IMC T-table 934 1086 934 1015 431 479 1712 1995
RV64IMC V4 76 115 76 133 61 199 131 286

126 The design of scalar AES Instruction Set Extensions for RISC-V

This allows each ISE design to better suit the constraints of each base ISA. In the RV32
case, this acknowledges that such cores will most often appear in resource-constrained,
embedded or IoT class devices. Hence, the most efficient ISE design is appropriate. For
necessarily larger RV64-based designs, it makes sense to take advantage of the wider
data-path, and acknowledge that these are more likely to be application class cores. Hence,
they will place a higher value on performance than area-efficiency.

4 Using ISEs to implement AES-GCM
The Galois/Counter Mode (GCM) [NIS07] is a block cipher mode of operation which
supports authenticated encryption. AES-GCM refers to an instantiation using AES as
the underlying block cipher, which is the only case mandated by TLS 1.3 [Res18, Section
9.1]; the importance of this construction means GCM and AES are frequently considered
together from an implementation and evaluation perspective. The computational core of
AES-GCM is formed from two components. GCTR [NIS07, Section 6.5] is responsible for
encryption using AES, and GHASH [NIS07, Section 6.4] is responsible for authentication.
Having dealt with efficient implementation of AES and hence GCTR in Section 3, we turn
our attention to GHASH. Rather than further embellish the ISE for AES, we instead
focus on re-use of the proposed standard bit-manipulation extension [RV:19a, Section 17]
(at the time of writing, the draft extension proposal is found in [ris]). This approach is
attractive for two reasons. AES-GCM is a very common construction, but AES is not the
only block cipher which can be used with GCM. Likewise, AES may not always be used
with GCM, so separation of the two constructs from an instruction set point of view is
prudent.

Implementation. GHASH [NIS07, Section 6.4] is a universal hash defined over the finite
field F2128 constructed as F2[x]/(x128 + x7 + x2 + x + 1). Conversion of the input into
the correct endianness can be realised using the grev (or generalised reverse) instruction,
which can reverse the bits in each byte of an input word: 4 (resp. 2) grev instructions
are therefore required on RV32IB (resp. RV64IB). Beyond this, operations in F2128

dominate. Addition in F2128 is equivalent to XOR: thus 4 (resp. 2) xor instructions are
required on RV32IB (resp. RV64IB). Multiplication in F2128 can be split into two steps: a
(128 × 128)-bit polynomial multiplication, followed by a reduction of the 256-bit result
modulo x128 + x7 + x2 + x + 1.

The multiplication step can be realised using pairs of “carry-less” multiplication
instructions clmul and clmulh. These compute the least significant (resp. most-significant)
half of a carry-less product (i.e., product over F2). Pairs of clmul and clmulh should be
scheduled adjacently, allowing capable micro-architectures to fuse them. Use of a school
book approach requires 16 (resp. 4) pairs on RV32IB (resp. RV64IB). Optimisation using
the Karatsuba method requires 9 (resp. 3) such pairs on RV32IB (resp. RV64IB), plus
some additional xor instructions.

The reduction step can be implemented in two ways: a shift-based reduction, made
possible by the low Hamming weight of the primitive polynomial, or a multiplication-based
reduction, analogous to the Montgomery or Barret methods. The most efficient approach
depends on the relative execution latency of clmul[h] vs. xor and s[lr]li. Note that
the entire GHASH operation, including clmul[h], must exhibit data-oblivious execution
latency (e.g., avoid data-dependent optimisations like early-termination) to avoid associated
side-channel attacks (cf. [GOPT09]).

Discussion. Table 6 lists instruction counts for multiplication in F2128 , implemented
using combinations of the base ISA, and approaches for the polynomial multiplication
and reduction steps. Table 7 then models the execution latency (measured in cycles)

B. Marshall and G. R. Newell and D. Page and M.-J. O. Saarinen and C. Wolf 127

Table 5: Comparison of performance/area product. Each value is normalised to the largest
product per column. The RV64IMC row is not normalised as there is no comparison point.

ISA Variant Enc Dec EncKeyExp DecKeyExp
/ Goal iret cycles iret cycles iret cycles iret cycles

RV32IMC V1 (L) 1.00 1.00 1.00 1.00 0.50 0.57 0.51 0.51
RV32IMC V1 (A) 0.62 0.80 0.62 0.80 0.31 0.40 0.32 0.36
RV32IMC V2 (L) 0.43 0.48 0.43 0.50 0.51 0.58 0.85 1.00
RV32IMC V2 (A) 0.16 0.34 0.16 0.35 0.19 0.24 0.32 0.46
RV32IMC V3 0.15 0.17 0.15 0.16 0.18 0.19 0.54 0.58
RV32IMC V5 (L) 0.53 0.61 0.53 0.60 1.00 1.00 1.00 0.89
RV32IMC V5 (A) 0.22 0.47 0.22 0.45 0.41 0.44 0.41 0.39
RV64IMC V4 0.266 0.402 0.266 0.465 0.213 0.696 0.458 1.000

Table 6: Instruction counts for multiplication in F2128 as used by GHASH.
ISA Karatsuba Reduce grev xor s[lr]li clmul clmulh Total

RV32IB no mul 4 36 0 20 20 80
RV32IB no shift 4 56 24 16 16 116
RV32IB yes mul 4 52 0 13 13 82
RV32IB yes shift 4 72 24 9 9 118
RV64IB no mul 2 10 0 6 6 24
RV64IB no shift 2 20 12 4 4 42
RV64IB yes mul 2 14 0 5 5 26
RV64IB yes shift 2 24 12 3 3 44

Table 7: Modelled cycle counts for multiplication in F2128 as used by GHASH.
ISA Karatsuba Reduce 1-cycle 2-cycle 3-cycle 6-cycle

clmul[h] clmul[h] clmul[h] clmul[h]
RV32IB no mul 80 120 160 280
RV32IB no shift 116 148 180 276
RV32IB yes mul 82 108 134 212
RV32IB yes shift 118 136 154 208
RV64IB no mul 24 36 48 84
RV64IB no shift 42 50 58 82
RV64IB yes mul 26 36 46 76
RV64IB yes shift 44 50 56 74

Table 8: Hardware implementation metrics for each ISE variant with only encrypt
instructions implemented. Area is measured in NAND2 gate equivalents and latency in
gate delays.

ISA Variant ISE ISE SCARV CPU Rocket CPU
/ Goal Area Latency + ISE area + ISE area

RV32IMC Baseline 37325 (1.00×) 3501576 (1.000×)
RV32IMC V1 (L) 1605 17 39154 (1.05×) 3506224 (1.001×)
RV32IMC V1 (A) 1038 23 38561 (1.05×) 3505695 (1.001×)
RV32IMC V2 (L) 1611 17 40337 (1.03×) 3506729 (1.001×)
RV32IMC V2 (A) 780 21 38479 (1.08×) 3505910 (1.001×)
RV32IMC V3 630 25 38301 (1.03×) 3506097 (1.001×)
RV32IMC V5 (L) 1852 23 40626 (1.03×) 3507518 (1.001×)
RV32IMC V5 (A) 1048 23 38749 (1.09×) 3506816 (1.001×)
RV64IMC Baseline N/A 3717607 (1.000×)
RV64IMC V4 3790 27 N/A 3728235 (1.003×)

128 The design of scalar AES Instruction Set Extensions for RISC-V

assuming grev, xor, and s[lr]li take 1 cycle. Although the model only considers an
in-order core in line with those used in Section 3 and is focused on execution latency (vs.
other pertinent metrics, such as code footprint), there are two obvious conclusions: if
clmul[h] has 2 (or more) times the latency of xor and s[lr]li, a Karatsuba polynomial
multiplication is preferable. If clmul[h] has 6 (or more) times the latency of xor and
s[lr]li, a shift-based reduction is preferable.

We recommend the carry-less multiply instructions specified in the proposed RISC-
V bit-manipulation extension also be included in the RISC-V cryptography extension.
Implementers would otherwise need to implement (a subset of) the B extension, potentially
adding functionality and cost that is not necessary.

An important consideration for the GCTR component of GCM is that it only requires
the encryption function for a block cipher. Given this, we re-evaluate the hardware costs of
each ISE, assuming that only the encryption instructions are implemented. These results
are shown in Table 8. Compared to the hardware results for encrypt and decrypt being
implemented in Table 1, the area overhead for all ISE variants is approximately halved,
and there is a small reduction in circuit depth. For our recommended variants, V3 and V4,
the area savings when only encryption instructions are implemented are 0.46× and 0.54×
respectively. For very constrained devices which have exact functionality requirements,
we believe that making implementation of the decryption instruction optional could be
beneficial. If these systems do require AES decryption, it could still be implemented in
software, with a performance and code size similar to the baseline implementations in
Table 3 and Table 4.

5 Conclusion
Motivated by ongoing efforts to standardise support for AES in RISC-V, we have imple-
mented and evaluated five ISE designs on two different RISC-V compliant base micro-
architectures. Our conclusion is that 1) V3 is the best option for AES on 32-bit cores, 2)
V4 is the best option for AES on 64-bit cores, and 3) the standard B [RV:19a, Section 17]
extension can combine with either option to support AES-GCM.

Our evaluations of the different ISEs have focused primarily on performance, code size
and hardware cost metrics. Because our work is a departure from historic AES ISEs in
that they are designed to be suitable for small, embedded CPU cores, power and EM
side-channel security will likely be a consideration for implementations of these ISEs. We
consider side-channel secure ISE design to be an open problem, particularly in terms of
making the same code portably side-channel secure across multiple implementations of the
same ISE. Future efforts would be well spent in studying this problem, perhaps looking at
creating custom extensions based on the recommendations here to support side-channel
security.

Acknowledgements
We would like to thank the reviewers for their helpful and constructive comments.

This work was undertaken as part of the ongoing standardisation of RISC-V. We are
grateful to all members of the Cryptographic Extensions Task Group who contributed to
related discussions, particularly Andy Glew and Barry Spinney. The opinions expressed in
this paper are the authors’ alone, not of their respective employers or RISC-V International.
The RISC-V cryptography extension is in the process of being standardised at the time of
writing. The purpose of this work is to support that process.

The first and third authors were supported in part by EPSRC via grant EP/R012288/1,
under the RISE (http://www.ukrise.org) programme and Innovate UK Project 105747.

http://www.ukrise.org

B. Marshall and G. R. Newell and D. Page and M.-J. O. Saarinen and C. Wolf 129

References
[AAB+16] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio,

H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller,
D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas, A. Magyar, H. Mao, M. Moreto,
A. Ou, D.A. Patterson, B. Richards, C. Schmidt, S. Twigg, H. Vo, and
A. Waterman. The rocket chip generator. Technical Report UCB/EECS-
2016-17, EECS Department, University of California, Berkeley, 2016. http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html.

[AP14] K. Asanović and D.A. Patterson. Instruction sets should be free: The case for
RISC-V. Technical Report UCB/EECS-2014-146, 2014. http://www.eecs.
berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html.

[ARM20] ARM. Arm Architecture Reference Manual: Armv8, for Armv8-A architecture
profile, DDI0487F.a edition, 2020. https://static.docs.arm.com/ddi0487/
fa/DDI0487F_a_armv8_arm.pdf.

[BAK98] E. Biham, R. Anderson, and L. Knudsen. Serpent: A new block cipher
proposal. In Fast Software Encryption (FSE), LNCS 1372, pages 222–238.
Springer-Verlag, 1998. https://doi.org/10.1007/3-540-69710-1_15.

[BBF+02] G. Bertoni, L. Breveglieri, P. Fragneto, M. Macchetti, and S. Marchesin.
Efficient software implementation of AES on 32-bit platforms. In Crypto-
graphic Hardware and Embedded Systems (CHES), LNCS 2523, pages 159–171.
Springer-Verlag, 2002. https://doi.org/10.1007/3-540-36400-5_13.

[BBFR06] G. Bertoni, L. Breveglieri, R. Farina, and F. Regazzoni. Speeding up AES by
extending a 32-bit processor instruction set. In Application-Specific Systems,
Architectures and Processors (ASAP), pages 275–282, 2006. https://doi.
org/10.1109/ASAP.2006.62.

[Ber05] D.J. Bernstein. Cache-timing attacks on AES. https://cr.yp.to/
antiforgery/cachetiming-20050414.pdf, 2005.

[BGM09] S. Bartolini, R. Giorgi, and E. Martinelli. Instruction set extensions for
cryptographic applications. In Ç.K. Koç, editor, Cryptographic Engineer-
ing, chapter 9, pages 191–233. Springer, 2009. https://doi.org/10.1007/
978-0-387-71817-0_9.

[Bih97] E. Biham. A fast new DES implementation in software. In Fast Software
Encryption (FSE), LNCS 1267, pages 260–272. Springer-Verlag, 1997. https:
//doi.org/10.1007/BFb0052352.

[BMA00] J. Burke, J. McDonald, and T. Austin. Architectural support for fast
symmetric-key cryptography. In Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 178–189, 2000. https:
//doi.org/10.1145/378993.379238.

[BP12] J. Boyar and R. Peralta. A small depth-16 circuit for the AES S-box. In Infor-
mation Security and Privacy Research (SEC), IFIPAICT 376, pages 287–298.
Springer-Verlag, 2012. https://doi.org/10.1007/978-3-642-30436-1_24.

[BS08] D.J. Bernstein and P. Schwabe. New AES software speed records. In Progress
in Cryptology (INDOCRYPT), LNCS 5365, pages 322–336. Springer-Verlag,
2008. https://doi.org/10.1007/978-3-540-89754-5_25.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
https://static.docs.arm.com/ddi0487/fa/DDI0487F_a_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/fa/DDI0487F_a_armv8_arm.pdf
https://doi.org/10.1007/3-540-69710-1_15
https://doi.org/10.1007/3-540-36400-5_13
https://doi.org/10.1109/ASAP.2006.62
https://doi.org/10.1109/ASAP.2006.62
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://doi.org/10.1007/978-0-387-71817-0_9
https://doi.org/10.1007/978-0-387-71817-0_9
https://doi.org/10.1007/BFb0052352
https://doi.org/10.1007/BFb0052352
https://doi.org/10.1145/378993.379238
https://doi.org/10.1145/378993.379238
https://doi.org/10.1007/978-3-642-30436-1_24
https://doi.org/10.1007/978-3-540-89754-5_25

130 The design of scalar AES Instruction Set Extensions for RISC-V

[BV14] A. Bosselaers and F. Vercauteren. YAES. Technical report, 2014. https:
//competitions.cr.yp.to/round1/yaesv2.pdf.

[C+14] Alpha Architecture Committee et al. Alpha architecture reference manual.
Digital Press, 2014.

[Can05] D. Canright. A very compact S-box for AES. In Cryptographic Hardware
and Embedded Systems (CHES), LNCS 3659, pages 441–455. Springer-Verlag,
2005. https://doi.org/10.1007/11545262_32.

[DGvK19] N. Drucker, S. Gueron, and v. Krasnov. Making AES great again: The
forthcoming vectorized AES instruction. In Information Technology New
Generations (ITNG), AISC 800, pages 37–41. Springer-Verlag, 2019. https:
//doi.org/10.1007/978-3-030-14070-0_6.

[DR02] J. Daemen and V. Rijmen. The Design of Rijndael. Springer, 2002. https:
//doi.org/10.1007/978-3-662-60769-5.

[FHLdO18] A. Faz-Hernandez, J. López, and A.K.D.S. de Oliveira. SoK: A performance
evaluation of cryptographic instruction sets on modern architectures. In ASIA
Public-Key Cryptography Workshop, pages 9–18, 2018. https://doi.org/10.
1145/3197507.3197511.

[FIP01] Advanced Encryption Standard (AES). National Institute of Standards and
Technology (NIST) Federal Information Processing Standard (FIPS) 197, 2001.
http://csrc.nist.gov.

[FL01] A.M. Fiskiran and R.B. Lee. Performance impact of addressing modes on en-
cryption algorithms. In International Conference on Computer Design (ICCD),
pages 542–545, 2001. https://doi.org/10.1109/ICCD.2001.955088.

[FL05] A.M. Fiskiran and R.B. Lee. On-chip lookup tables for fast symmetric-key
encryption. In Application-Specific Systems, Architectures, and Processors
(ASAP), pages 356–363, 2005. https://doi.org/10.1109/ASAP.2005.49.

[GB05] T. Good and M. Benaissa. AES on FPGA from the fastest to the smallest. In
Cryptographic Hardware and Embedded Systems (CHES), LNCS 3659, pages
427–440. Springer-Verlag, 2005. https://doi.org/10.1007/11545262_31.

[GB11] C. Galuzzi and K. Bertels. The instruction-set extension problem: A survey.
ACM Transactions on Reconfigurable Technology and Systems, 4(2):18:1–18:28,
2011. https://doi.org/10.1145/1968502.1968509.

[GC00] K. Gaj and P. Chodowiec. Comparison of the hardware performance of the
AES candidates using reconfigurable hardware. In Third Advanced Encryption
Standard (AES3) Candidate Conference, 2000.

[GC09] K. Gaj and P. Chodowiec. FPGA and ASIC implementations of AES. In Ç.K.
Koç, editor, Cryptographic Engineering, chapter 10, pages 235–294. Springer,
2009. https://doi.org/10.1007/978-0-387-71817-0_10.

[GGP08] P. Grabher, J. Großschädl, and D. Page. Light-weight instruction set extensions
for bit-sliced cryptography. In Cryptographic Hardware and Embedded Systems
(CHES), LNCS 5154, pages 331–345. Springer-Verlag, 2008. https://doi.
org/10.1007/978-3-540-85053-3_21.

https://competitions.cr.yp.to/round1/yaesv2.pdf
https://competitions.cr.yp.to/round1/yaesv2.pdf
https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/978-3-030-14070-0_6
https://doi.org/10.1007/978-3-030-14070-0_6
https://doi.org/10.1007/978-3-662-60769-5
https://doi.org/10.1007/978-3-662-60769-5
https://doi.org/10.1145/3197507.3197511
https://doi.org/10.1145/3197507.3197511
http://csrc.nist.gov
https://doi.org/10.1109/ICCD.2001.955088
https://doi.org/10.1109/ASAP.2005.49
https://doi.org/10.1007/11545262_31
https://doi.org/10.1145/1968502.1968509
https://doi.org/10.1007/978-0-387-71817-0_10
https://doi.org/10.1007/978-3-540-85053-3_21
https://doi.org/10.1007/978-3-540-85053-3_21

B. Marshall and G. R. Newell and D. Page and M.-J. O. Saarinen and C. Wolf 131

[GKM+11] P. Gauravaram, L.R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger,
M. Schläaffer, and S.S. Thomsen. Grøstl – a SHA-3 candidate. Technical
report, 2011.

[GOPT09] J. Großschädl, E. Oswald, D. Page, and M. Tunstall. Side-channel analysis of
cryptographic software via early-terminating multiplications. In Information
Security and Cryptography (ICISC), LNCS 5984, pages 176–192. Springer-
Verlag, 2009. https://doi.org/10.1007/978-3-642-14423-3_13.

[Gue09] S. Gueron. Intel’s new AES instructions for enhanced performance and security.
In Fast Software Encryption (FSE), LNCS 5665, pages 51–66. Springer-Verlag,
2009. https://doi.org/10.1007/978-3-642-03317-9_4.

[GYCH18] Q. Ge, Y. Yarom, D. Cock, and G. Heiser. A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware. Journal
of Cryptographic Engineering (JCEN), 8:1–27, 2018. https://doi.org/10.
1007/s13389-016-0141-6.

[Ham09] M. Hamburg. Accelerating AES with vector permute instructions. In Cryp-
tographic Hardware and Embedded Systems (CHES), pages 18–32. Springer-
Verlag LNCS 5747, 2009. https://doi.org/10.1007/978-3-642-04138-9_
2.

[K0̈8] R. Könighofer. A fast and cache-timing resistant implementation of the AES.
In Topics in Cryptology (CT-RSA), LNCS 4964, pages 187–202. Springer-
Verlag, 2008. https://doi.org/10.1007/978-3-540-79263-5_12.

[KQ99] F. Koeune and J.-J. Quisquater. A timing attack aginst Rijndael. Technical
Report CG-1999/1, 1999.

[KS09] E. Käsper and P. Schwabe. Faster and timing-attack resistant AES-GCM. In
Cryptographic Hardware and Embedded Systems (CHES), LNCS 5747, pages 1–
17. Springer-Verlag, 2009. https://doi.org/10.1007/978-3-642-04138-9_
1.

[MN07] M. Matsui and J. Nakajima. On the power of bitslice implementation on
Intel Core2 processors. In Cryptographic Hardware and Embedded Systems
(CHES), LNCS 4727, pages 121–134. Springer-Verlag, 2007. https://doi.
org/10.1007/978-3-540-74735-2_9.

[MOP07] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing
the Secrets of Smart Cards. Springer, 2007. https://doi.org/10.1007/
978-0-387-38162-6.

[NBB+01] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti, and
E. Roback. Report on the development of the Advanced Encryption Stan-
dard (AES). Journal of Research of the National Institude of Standards and
Technology, 103(3):511–577, 2001. https://tsapps.nist.gov/publication/
get_pdf.cfm?pub_id=151226.

[NIK04] K. Nadehara, M. Ikekawa, and I. Kuroda. Extended instructions for the AES
cryptography and their efficient implementation. In Signal Processing Sys-
tems (SIPS), pages 152–157, 2004. https://doi.org/10.1109/SIPS.2004.
1363041.

[NIS07] Recommendation for block cipher modes of operation: Galois/Counter Mode
(GCM) and GMAC. National Institute of Standards and Technology (NIST)
Special Publication 800-38D, 2007. http://csrc.nist.gov.

https://doi.org/10.1007/978-3-642-14423-3_13
https://doi.org/10.1007/978-3-642-03317-9_4
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/978-3-642-04138-9_2
https://doi.org/10.1007/978-3-642-04138-9_2
https://doi.org/10.1007/978-3-540-79263-5_12
https://doi.org/10.1007/978-3-642-04138-9_1
https://doi.org/10.1007/978-3-642-04138-9_1
https://doi.org/10.1007/978-3-540-74735-2_9
https://doi.org/10.1007/978-3-540-74735-2_9
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=151226
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=151226
https://doi.org/10.1109/SIPS.2004.1363041
https://doi.org/10.1109/SIPS.2004.1363041
http://csrc.nist.gov

132 The design of scalar AES Instruction Set Extensions for RISC-V

[OBSC10] D.A. Osvik, J.W. Bos, D. Stefan, and D. Canright. Fast software AES
encryption. In Fast Software Encryption (FSE), LNCS 6147, pages 75–93.
Springer-Verlag, 2010. https://doi.org/10.1007/978-3-642-13858-4_5.

[PMDW04] N. Pramstaller, S. Mangard, S. Dominikus, and J. Wolkerstorfer. Efficient AES
implementations on ASICs and FPGAs. In Advanced Encryption Standard
(AES), LNCS 3373, pages 98–112. Springer-Verlag, 2004. https://doi.org/
10.1007/11506447_9.

[POW18] Power ISA. Technical Report 2.07 B, IBM, 2018. https://ibm.ent.box.
com/s/jd5w15gz301s5b5dt375mshpq9c3lh4u.

[Res18] E. Rescorla. The Transport Layer Security (TLS) protocol version 1.3. Internet
Engineering Task Force (IETF) Request for Comments (RFC) 8446, 2018.
http://tools.ietf.org/html/rfc8446.

[RI16] F. Regazzoni and P. Ienne. Instruction set extensions for secure applications.
In Design, Automation, and Test in Europe (DATE), pages 1529–1534, 2016.

[ris] RISC-V bit manipulation extension draft proposal. https://github.com/
riscv/riscv-bitmanip/blob/master/bitmanip-draft.pdf.

[RMTA18] A. Reyhani-Masoleh, M. Taha, and D. Ashmawy. Smashing the implementation
records of AES S-box. IACR Transactions on Cryptographic Hardware and
Embedded Systems (TCHES), 2018(2):298–336, 2018. https://doi.org/10.
13154/tches.v2018.i2.298-336.

[RV:19a] The RISC-V instruction set manual. Technical Report Volume I: User-
Level ISA (Version 20190608-Base-Ratified), 2019. http://riscv.org/
specifications/.

[RV:19b] The RISC-V instruction set manual. Technical Report Volume II: Privileged
Architecture (Version 20190608-Priv-MSU-Ratified), 2019. http://riscv.
org/specifications/.

[Saa20] M.-J.O. Saarinen. A lightweight ISA extension for AES and SM4. The first
international workshop on Secure RISC-V (SECRISC-V). To appear., April
2020. https://arxiv.org/abs/2002.07041.

[SPA16] Oracle SPARC architecture 2011. Technical Report D1.0.0,
Oracle Corp., 2016. https://www.oracle.com/technetwork/
server-storage/sun-sparc-enterprise/documentation/
140521-ua2011-d096-p-ext-2306580.pdf.

[SRH16] S. Saab, P. Rohatgi, and C. Hampel. Side-channel protections for cryptographic
instruction set extensions. Cryptology ePrint Archive, Report 2016/700, 2016.
https://eprint.iacr.org/2016/700.

[SS16] P. Schwabe and K. Stoffelen. All the AES you need on Cortex-M3 and
M4. In Selected Areas in Cryptography (SAC), LNCS 10532, pages 180–194.
Springer-Verlag, 2016. https://doi.org/10.1007/978-3-319-69453-5_10.

[Sto19] K. Stoffelen. Efficient cryptography on the RISC-V architecture. In Progress
in Cryptology (LATINCRYPT), LNCS 11774, pages 323–340. Springer-Verlag,
2019. https://doi.org/10.1007/978-3-030-30530-7_16.

https://doi.org/10.1007/978-3-642-13858-4_5
https://doi.org/10.1007/11506447_9
https://doi.org/10.1007/11506447_9
https://ibm.ent.box.com/s/jd5w15gz301s5b5dt375mshpq9c3lh4u
https://ibm.ent.box.com/s/jd5w15gz301s5b5dt375mshpq9c3lh4u
http://tools.ietf.org/html/rfc8446
https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-draft.pdf
https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-draft.pdf
https://doi.org/10.13154/tches.v2018.i2.298-336
https://doi.org/10.13154/tches.v2018.i2.298-336
http://riscv.org/specifications/
http://riscv.org/specifications/
http://riscv.org/specifications/
http://riscv.org/specifications/
https://arxiv.org/abs/2002.07041
https://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf
https://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf
https://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf
https://eprint.iacr.org/2016/700
https://doi.org/10.1007/978-3-319-69453-5_10
https://doi.org/10.1007/978-3-030-30530-7_16

B. Marshall and G. R. Newell and D. Page and M.-J. O. Saarinen and C. Wolf 133

[Sze19] J. Szefer. Survey of microarchitectural side and covert channels, attacks,
and defences. Journal of Hardware Systems Security, 3(3):219–234, 2019.
https://doi.org/10.1007/s41635-018-0046-1.

[TG04] S. Tillich and J. Großschädl. Accelerating AES using instruction set extensions
for elliptic curve cryptography. In Computational Science and Its Applications
(ICCSA), LNCS 3481, pages 665–675. Springer-Verlag, 2004.

[TG06] S. Tillich and J. Großschädl. Instruction set extensions for efficient AES
implementation on 32-bit processors. In Cryptographic Hardware and Embedded
Systems (CHES), LNCS 4249, pages 270–284. Springer-Verlag, 2006. https:
//doi.org/10.1007/11894063_22.

[TGS05] S. Tillich, J. Großschädl, and A. Szekely. An instruction set extension for
fast and memory-efficient AES implementation. In Communications and
Multimedia Security (CMS), LNCS 3677, pages 11–21. Springer-Verlag, 2005.
https://doi.org/10.1007/11552055_2.

[THM07] S. Tillich, C. Herbst, and S. Mangard. Protecting AES software implementa-
tions on 32-bit processors against power analysis. In Applied Cryptography
and Network Security (ACNS), LNCS 4521, pages 141–157. Springer-Verlag,
2007. https://doi.org/10.1007/978-3-540-72738-5_10.

[Wat16] A. Waterman. Design of the RISC-V Instruction Set Architecture. PhD thesis,
University of California at Berkeley, 2016. https://escholarship.org/uc/
item/7zj0b3m7.

[Wol] C. Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys.

[X8618a] Intel 64 and IA-32 architectures – software developer’s manual (volume 1:
Basic architecture). Technical Report 325383-067US, Intel Corp., 2018. http:
//software.intel.com/en-us/articles/intel-sdm.

[X8618b] Intel 64 and IA-32 architectures – software developer’s manual (volume 2:
Instruction set reference a-z). Technical Report 325383-067US, Intel Corp.,
2018. http://software.intel.com/en-us/articles/intel-sdm.

https://doi.org/10.1007/s41635-018-0046-1
https://doi.org/10.1007/11894063_22
https://doi.org/10.1007/11894063_22
https://doi.org/10.1007/11552055_2
https://doi.org/10.1007/978-3-540-72738-5_10
https://escholarship.org/uc/item/7zj0b3m7
https://escholarship.org/uc/item/7zj0b3m7
http://www.clifford.at/yosys
http://software.intel.com/en-us/articles/intel-sdm
http://software.intel.com/en-us/articles/intel-sdm
http://software.intel.com/en-us/articles/intel-sdm

134 The design of scalar AES Instruction Set Extensions for RISC-V

A Example AES round function implementations

1 lw a0 , 0(a4) // Load Round Key
2 lw a1 , 4(a4)
3 lw a2 , 8(a4)
4 lw a3 , 12(a4)
5 xor a4 , a4 , a0 // Add Round Key
6 xor a5 , a5 , a1
7 xor a6 , a6 , a2
8 xor a7 , a7 , a3
9 saes.v1.encs a0 , a4 // SubBytes

10 saes.v1.encs a1 , a5
11 saes.v1.encs a2 , a6
12 saes.v1.encs a3 , a7
13 // Shift Rows
14 and a4 , t0 , t6 ; and a5 , t1 , t6
15 and a6 , t2 , t6 ; and a7 , t3 , t6
16 slli t4 , t6 , 0x8 ; and t5 , t0 , t4
17 or a7 , a7 , t5 ; and t5 , t3 , t4
18 or a6 , a6 , t5 ; and t5 , t2 , t4
19 or a5 , a5 , t5 ; and t5 , t1 , t4
20 or a4 , a4 , t5 ; slli t4 , t4 , 0x8
21 and t5 , t2 , t4 ; or a4 , a4 , t5
22 and t5 , t3 , t4 ; or a5 , a5 , t5
23 and t5 , t0 , t4 ; or a6 , a6 , t5
24 and t5 , t1 , t4 ; or a7 , a7 , t5
25 slli t4 , t4 , 0x8 ; and t5 , t3 , t4
26 or a4 , a4 , t5 ; and t5 , t0 , t4
27 or a5 , a5 , t5 ; and t5 , t1 , t4
28 or a6 , a6 , t5 ; and t5 , t2 , t4
29 or a7 , a7 , t5
30 saes.v1.encm t0 , a4 // MixColumns
31 saes.v1.encm t1 , a5
32 saes.v1.encm t2 , a6
33 saes.v1.encm t3 , a7

Figure 7: An AES encryption round implemented using V1.

1 lw a0 , 0(a4) // Load Round Key
2 lw a1 , 4(a4)
3 lw a2 , 8(a4)
4 lw a3 , 12(a4)
5 xor t0 , t0 , a0 // Add Round Key
6 xor t1 , t1 , a1
7 xor t2 , t2 , a2
8 xor t3 , t3 , a3
9 saes.v2.sub.enc a0 , t0 , t1 // SubBytes / ShiftRows

10 saes.v2.sub.enc a1 , t2 , t3
11 saes.v2.sub.enc a2 , t1 , t2
12 saes.v2.sub.enc a3 , t3 , t0
13 saes.v2.mix.enc t0 , a0 , a1 // ShiftRows / MixColumns
14 saes.v2.mix.enc t1 , a2 , a3
15 saes.v2.mix.enc t2 , a1 , a0
16 saes.v2.mix.enc t3 , a3 , a2

Figure 8: An AES encryption round implemented using V2.

B. Marshall and G. R. Newell and D. Page and M.-J. O. Saarinen and C. Wolf 135

1 lw a0 , 16(RK) // Load Round Key
2 lw a1 , 20(RK)
3 lw a2 , 24(RK)
4 lw a3 , 28(RK) // t0 ,t1 ,t2 ,t3 contains current round state .
5 saes.v3. encsm a0 , a0 , t0 , 0 // Next state for column 0.
6 saes.v3. encsm a0 , a0 , t1 , 1 // Current column 0 in t0.
7 saes.v3. encsm a0 , a0 , t2 , 2 // Next column 0 accumulates in a0
8 saes.v3. encsm a0 , a0 , t3 , 3
9 saes.v3. encsm a1 , a1 , t1 , 0 // Next state for column 1.

10 saes.v3. encsm a1 , a1 , t2 , 1
11 saes.v3. encsm a1 , a1 , t3 , 2
12 saes.v3. encsm a1 , a1 , t0 , 3
13 saes.v3. encsm a2 , a2 , t2 , 0 // Next state for column 2.
14 saes.v3. encsm a2 , a2 , t3 , 1
15 saes.v3. encsm a2 , a2 , t0 , 2
16 saes.v3. encsm a2 , a2 , t1 , 3
17 saes.v3. encsm a3 , a3 , t3 , 0 // Next state for column 3.
18 saes.v3. encsm a3 , a3 , t0 , 1
19 saes.v3. encsm a3 , a3 , t1 , 2
20 saes.v3. encsm a3 , a3 , t2 , 3 // a0 ,a1 ,a2 ,a3 contains new round state

Figure 9: An AES encryption round implemented using V3.

1 ld a0 , 0(a4) // Load round key as double words .
2 ld a1 , 8(a4)
3 xor t0 , t0 , a0 // Add round key for 2 columns at a time .
4 xor t1 , t1 , a1
5 aes.v4. encsm t2 , t0 , t1 // Next round state : columns 0, 1
6 aes.v4. encsm t3 , t1 , t0 // columns 2, 3 - Note swapped rs1/ rs2

Figure 10: An AES encryption round implemented using V4.

1 lw a0 , 0(a4) // Load Round Key
2 lw a1 , 4(a4)
3 lw a2 , 8(a4)
4 lw a3 , 12(a4)
5 xor t0 , t0 , a0 // Add Round Key
6 xor t1 , t1 , a1
7 xor t2 , t2 , a2
8 xor t3 , t3 , a3
9 saes.v5. esrsub .lo a0 , t0 , t1 // Quad 0: SubBytes / ShiftRows

10 saes.v5. esrsub .lo a1 , t1 , t0 // Quad 1
11 saes.v5. esrsub .hi a2 , t2 , t3 // Quad 2
12 saes.v5. esrsub .hi a3 , t3 , t2 // Quad 3
13 saes.v5.emix t0 , a0 , a2 // Quad 0: ShiftRows / MixColumns
14 saes.v5.emix t1 , a1 , a3 // Quad 1
15 saes.v5.emix t2 , a2 , a0 // Quad 2
16 saes.v5.emix t3 , a3 , a1 // Quad 3

Figure 11: An AES encryption round implemented using V5.

136 The design of scalar AES Instruction Set Extensions for RISC-V

B Additional technical detail for CPU cores

Figure 12: SCARV core micro-architecture.

1 class AESVanilla32 extends Config (
2 new freechips . rocketchip . subsystem . WithNoMMIOPort ++
3 new freechips . rocketchip . subsystem . WithNoSlavePort ++
4 new freechips . rocketchip . subsystem . WithInclusiveCache ++
5 new freechips . rocketchip . subsystem . WithRV32 ++
6 new freechips . rocketchip . subsystem . WithNExtTopInterrupts (0) ++
7 new freechips . rocketchip . subsystem . WithNBigCores (1) ++
8 new freechips . rocketchip . subsystem . WithoutFPU ++
9 new freechips . rocketchip . system . BaseConfig

10)

Figure 13: 32-bit Rocket core configuration.

1 class AESVanilla64 extends Config (
2 new freechips . rocketchip . subsystem . WithNoMMIOPort ++
3 new freechips . rocketchip . subsystem . WithNoSlavePort ++
4 new freechips . rocketchip . subsystem . WithInclusiveCache ++
5 new freechips . rocketchip . subsystem . WithNExtTopInterrupts (0) ++
6 new freechips . rocketchip . subsystem . WithNBigCores (1) ++
7 new freechips . rocketchip . subsystem . WithoutFPU ++
8 new freechips . rocketchip . system . BaseConfig
9)

Figure 14: 64-bit Rocket core configuration.

	Introduction
	Background
	AES specification
	AES implementation
	Existing AES ISEs
	Security

	Exploring AES ISEs for RISC-V
	Variant 1 (V1): SubBytes + MixColumn + explicit ShiftRows
	Variant 2 (V2): SubBytes + MixColumn + implicit ShiftRows
	Variant 3 (V3): hardware-assisted T-tables
	Variant 4 (V4): 64-bit data-path
	Variant 5 (V5): quadrant-packed
	Implementation
	Evaluation

	Using ISEs to implement AES-GCM
	Conclusion
	Example AES round function implementations
	Additional technical detail for CPU cores

