
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2021, No. 4, pp. 587–617. DOI:10.46586/tches.v2021.i4.587-617

Yoroi: Updatable Whitebox Cryptography
Yuji Koike1 and Takanori Isobe1,2,3

1 University of Hyogo, Hyogo, Japan
yuji03k.u3016@gmail.com

2 PRESTO, Japan Science and Technology Agency, Tokyo, Japan
3 National Institute of Information and Communications Technology, Japan

takanori.isobe@ai.u-hyogo.ac.jp

Abstract.
Whitebox cryptography aims to provide security in the whitebox setting where the
adversary has unlimited access to the implementation and its environment. In order
to ensure security in the whitebox setting, it should prevent key extraction attacks
and code-lifting attacks, in which the adversary steals the original cryptographic
implementation instead of the key, and utilizes it as a big key. Although recent
published ciphers such as SPACE, SPNbox, and Whiteblock successfully achieve
security against the key extraction attacks, they only provide mitigation of code-
lifting attack by the so-called space hardness and incompressibility properties of
the underlying tables as the space-hard/incompressible table might be eventually
stolen by continuous leakage. The complete prevention of such attacks may need
to periodically update the secret key. However, that entails high costs and might
introduce an additional vulnerability into the system due to the necessity for the re-
encryption of all data by the updated key. In this paper, we introduce a new property,
denominated longevity, for whitebox cryptography. This property enhances security
against code-lifting attacks with continuous leakage by updating incompressible tables
instead of the secret key. We propose a family of new whitebox-secure block ciphers
Yoroi that has the longevity property in addition to the space hardness. By updating
its implementation periodically, Yoroi provides constant security against code-lifting
attacks without key updating. Moreover, the performance of Yoroi is competitive
with existing ciphers implementations in the blackbox and whitebox context.
Keywords: Whitebox cryptography, block cipher space hardness, imcompressibility

1 Introduction
1.1 Existing Whitebox Ciphers and Their Applications
Whitebox cryptography aims to protect cryptographic implementations in software under
circumstances where adversaries have unlimited access to the environments for their
implementation. This situation is called the whitebox setting, where adversaries are
assumed to have control over the execution environment and are allowed to observe and
modify internal values of the cryptographic algorithm. This setting is quite different from
the standard setting called the blackbox setting where the adversaries can only observe
the input and output of the cryptographic algorithm. With the whitebox adversarial
capabilities, she mainly tries to mount key extraction attacks, decomposition attacks, and
code-lifting attack. In the key extraction attacks, she tries to extract the secret key from
the whitebox implementation. In the decomposition attacks, she tries to find a smaller
implementation which maintains the exact same functionality than the original one, and in
code-lifting attacks, she uses the original cryptographic implementation as a large effective

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-04-15 Accepted: 2021-06-15 Published: 2021-08-11

https://doi.org/10.46586/tches.v2021.i4.587-617
mailto:yuji03k.u3016@gmail.com
mailto:takanori.isobe@ai.u-hyogo.ac.jp
http://creativecommons.org/licenses/by/4.0/

588 Yoroi: Updatable Whitebox Cryptography

secret key for encryption and decryption on a different device. The security goal for
whitebox cryptography is mainly to ensure security against these attacks.

Whitebox ciphers, or precisely speaking, the implementations of DES and AES in the
whitebox context, were first introduced by Chow et al. [CEJvO02a, CEJvO02b] in 2002.
Their method was to represent algorithms of DES and AES in the form of continual lookups
in the tables which are created by the secret key and components of cryptographic operation
(i.e. DES or AES). After these pioneering works, several derived whitebox implementations
were proposed. However all of them, up to date, were broken by key extraction and
decomposition attacks [BHMT16, BBIJ17, DFLM18, BU18, RW19, BRVW19, GPRW20,
GRW20].

On the other hand, recent published ciphers take another approach [BI15, BIT16,
CCD+17, FKKM16, CCD+17, KLLM20]: they are table-based block ciphers dedicated to
the whitebox implementation whose table is constructed from a well-understood standard
block cipher (AES for example) by constraining the plaintext and truncating the ciphertext.
By this approach, security against key extraction and decomposition attacks in the whitebox
setting is reduced to the well studied problem of key recovery for block ciphers in the
standard black-box setting. To mitigate code-lifting, a security notion called space hardness
was introduced [BI15]. It quantifies security against code-lifting attacks by the amount
of code that needs to be extracted from an implementation by a whitebox adversary to
maintain its functionality with a certain probability. The ciphers having these properties
are called space-hard ciphers. This notion is similar to incompressibility [DLPR13] and
weak white-box security [BBK14].

There exist several applications of whitebox cryptography. In addition to typical
applications such as Digital Rights Management (DRM) and Host Card Emulation (HCE),
the leakage-resilient system is a promising application as discussed in [BIT16] and [BKR16].
One of the major problems in the current computer system is memory corruption such as
Heartbleed vulnerability [DLK+14] or malware which undetectably stays in a system and
extracts data such as a secret key from it. Considering a large table of space-hard ciphers
as a big key [BKR16, BD17], it ensures that even if the adversary successfully steals a
part of the big key (e.g. one-fourth of the big key) along with the encrypted data, it is
computationally difficult to correctly decrypt the encrypted data with high probability.
Thus, it can restrain the damage of data leakage in the system. However, when considering
the continuous leakage, it causes several problems such as re-encryption problem.

1.2 Our Contribution
In this paper, we introduce the new property longevity to solve the re-encryption problem
for exiting space-hard ciphers. This property ensures that the update of the implementation
can increase the space hardness without key rotation, i.e. enhance security against code-
lifting attacks while keeping the functionality of the cipher.

Longevity: Our idea to achieve longevity is to add an encryption operation of a small-scale
block cipher EKi to an output of space-hard table T , and in order to keep the same
functionality, the corresponding inverse function DKi is added to the input for the
table in the next round (See Fig. 1). We treat them including new input/output
tables as a new table. When updating the implementations, we update only the
secret keys Ki for EKi

and DKi
of a small block cipher and do not change the secret

key of the original space-hard tables T . This approach enables us to add new space
hardness by updated tables of EKi and DKi while keeping the functionality of the
encryption function.

Instantiation: We propose a new family of whitebox-secure block ciphers Yoroi that has the

Yuji Koike and Takanori Isobe 589

Figure 1: Updating Tables for Longevity

longevity property on the top of the space hardness. Yoroi employs the SPN structure
as it can provide sufficient security in a smaller number of rounds. In whitebox
implementations, the encryption and decryption algorithm of small-scale variants of
block ciphers of AES [CMR05] or PRESENT [Lea10] are applied before and after
the table lookup as new tables T and T−1 for the longevity property. By updating
its implementation within the proper period, Yoroi provides constant security against
code-lifting attack for the first time. Moreover, even with the new property, the
performance of Yoroi is very competitive with existing ciphers implementations in
the black-box and whitebox context.

1.3 Organization
In Section 2, we explore actual applications for space-hard ciphers and discuss a new
property which is vital in some contexts. Then, we discuss the basic approach and design
choice for our construction Yoroi to ensure this property in Section 3. In the following
section, we give the specification of Yoroi and two instantiations of our construction. In
Section 5, we evaluate security of Yoroi in the whitebox setting. We give the security
bound on Yoroi and show the tightness of this security bound by taking actual attacks as
examples. In Section 6, we present the security evaluation in the black-box setting. Based
on the security evaluation in Section 5 and Section 6, we provide the implementation
evaluation of all the instantiations for Yoroi in section 7. In Section 8, we give a concluding
remark on our work.

2 Target Applications
Since the introduction of whitebox cryptography, a series of researches have revealed
that it has the potential for more real-world applications. In this section, we explore
some applications in which whitebox cryptography ciphers, especially space-hard ciphers,
are useful. In particular, we discuss why the properties of space-hard ciphers called
incompressibility/space-hardness are useful and consider their limitations and drawbacks
in the real-world setting. Based on that, we discuss the required property in some contexts
for space-hard ciphers.

2.1 DRM
Whitebox cryptography originally aimed to provide security of cryptographic key against
the adversary in the whitebox context. The original application of whitebox cryptography
in their mind was Digital Rights Management (DRM) software so that it can prevent
illegal distribution of encrypted digital contents such as music or ebooks along with the

590 Yoroi: Updatable Whitebox Cryptography

cryptographic key. In order to prevent illegal distribution, whitebox ciphers are required
to ensure security against key extraction attacks and code-lifting attacks.

Recent published ciphers [BI15, BIT16, CCD+17, FKKM16, CCD+17, KLLM20]
successfully prevent key extraction from the implementation by utilizing the table based on
the inputs and outputs of symmetric primitive. The property of incompressibility/space-
hardness ensures that if the program is compressed or if fragments of the program are
removed, the program loses its functionality, which means that it is difficult to successfully
perform a cryptographic operation on arbitrary data with only a part of the program.
Thus, as discussed in [BABM20], incompressibility/space-hardness could be useful in the
situation where the incompressible large program is delivered via memory hard disc while
re-distribution of it through the Internet might be difficult. For instance, if the program
size is incompressible and very large e.g. 30 GB, it might be difficult for an adversary to
re-distribute it online [DLPR13, BI15, FKKM16, BABM20]. Although it can compromise
on encryption performance, we believe incompressible large table increase difficulty of
redistribution and thus security level.

However, in terms of security against the code-lifting attacks, they just mitigate the
impact of such attacks and it is difficult to ensure security against them. More precisely,
since the algorithms of these ciphers are based on the table lookups in the whitebox
implementation, by repeating the encryption/decryption of data in the environments where
the adversary has full access, she can eventually obtain all the information about the table.
Thus, by gradually sending the obtained information to the internet, the adversary can
eventually mount code-lifting attacks.

2.2 Software Replacements of HSM/TPM for HCE and IoT
HSM (Hardware Secure Module) and TPM (Trusted Platform Module) allow secure
cryptographic operations by creating a secure and isolated memory area for the operation
and storage of the secret keys for it. This memory area is inaccessible by anyone, and
in order to conduct a cryptographic operation, the user has to send the data to operate
on the HSM or TPM through the API. Hence, even if the adversary which is typically
malware procures unauthorized access to the device, she can not exfiltrate the secret key
from HSM or TPM.

However, some devices cannot support such hardware-secure modules due to the
constraint of hardware resources, limitation of user environments, and application
requirements by IoT devices and Host Card Emulation. In this case, a space-hard
cipher [BI15, BIT16, CCD+17, FKKM16, KLLM20], which is a class of whitebox-secure
ciphers, can be a software replacement of HSM and TPM.

For example, as discussed by Alpirez Bock et al. [BBF+20], in the scenario of mobile
payment applications or HCE where hardware-secure modules are not considered, an
adversary who exists in the user’s phone (e.g. in the form of malware) might attempt to
extract the decryption key and use it for recovering transaction credentials. In addition,
the adversary might attempt to simply copy the entire application and run it on a phone
of their choice, communicating with a payment terminal of their choice. Thus, mobile
payment applications also need protection against code-lifting attacks.

In this context, the security properties of incompressibility/space-hardness are crucial,
because they make it hard or even impossible to construct the same functionality in
other devices. Even in the situation where the malware stealthily stays and insidiously
steals data in the system, typically the data would be gradually leaked and the amount of
leaked data would be limited [ADW10]. This assumption is reasonable, as previous works
practically demonstrate only limited leakage of credentials. For instance, the adversary
tries to steal credentials by mounting memory attacks [HSH+08] to obtain the key stored
in RAM, microwave attacks to steal from a smart-card, or power attacks. All of them can
expose only partial credentials [ADW10]. These security properties intuitively ensure the

Yuji Koike and Takanori Isobe 591

minimum data size needed to realize cryptographic functionality with a certain probability.
As a result, due to these properties and the aforementioned assumption [ADW10], the
adversary can construct functionality only with a limited probability. Without these
properties, the minimum data size for the functionality could be decreased, making it
easier or even possible to construct the exact same functionality with a higher probability
or probability of 1. Thus, a large amount of leakage (e.g. 20MB for payment terminal with
limited GSM bandwidth) is required to copy the functionality, and it increases detection
of an attack due to unusually high data transmission. In addition, if the total amount of
daily transactions to the outside is estimated or measured in target applications, table
leakage can be bounded by it because table leakage never exceeds it. A problem with
the incompressibility/space-hardness approach is that regarding security against code-
lifting attacks, they only provide mitigation for them. More precisely, since malware
possibly staying in a device is the adversary we seek to protect against, by continuously
and gradually stealing and sending out the table data to the external network, she can
eventually mount a code-lifting attack. To prevent this attack, it requires the update
of tables which are the secret keys in the whitebox context, but it could need a lot of
computational cost to encrypt data with the new key again.

Besides, there exists a big difference in the key update between the dedicated hardware
and the system employing a space-hard cipher. When updating the secret key, it is
necessary to re-encrypt the data which is stored in the server, i.e. decrypt the ciphertext
with the old key and encrypt it with the new key again. While dedicated hardware can
update the secret key and re-encrypt data just within the secure memory area, a system
with a whitebox cipher does not have such an area. Thus, the problem for this system
is that during the re-encryption of data (i.e. specifically, right after the decryption of
the ciphertext with the old key and before the encryption of the decrypted data with a
new key), it is prone to the exfiltration of data loaded on the memory by the snapshot
adversary [NKW15]. Recently, a new security notion of application (hardware) binding is
proposed for DRM and mobile payments [BABM20].

2.3 Leakage Resilient System
A promising application is a leakage resilient system employing whitebox cryptography.
As discussed in [BIT16] and [BKR16], one of the major problems in the current computer
system is memory corruption such as Heartbleed vulnerability [DLK+14] or malware which
undetectably stays in a system and extracts data such as a secret key from it. Bellare
et al. [BKR16, BD17] show that instead of strengthening the system security in order to
protect from malware which sends out data, making the cryptographic key so big that
they can not easily exfiltrate the key is another approach. This property is also called big
key encryption. In this context, a space-hard cipher is also promising, as it employs a large
table as the incompressible cryptographic key in the whitebox setting [BIT16].

Specifically, the space-hard ciphers have a security property called space hardness
which is also known as incompressibility [DLPR13] and weak white-box security [BBK14].
In this paper, we utilize the definition of space hardness [BIT16]. The definition of space
hardness is given in the following.

Definition 1 ((M,Z)-space hardness [BI15]). Block cipher EK is an (M,Z)-space hard
cipher if it is computationally difficult to encrypt (decrypt) randomly chosen plaintext
(ciphertext) with the probability of more than 2−Z in the situation where the adversary is
given code (table) size of less than M .

Space hardness aims at quantitatively measuring security against code-lifting attacks (i.e.
big key stealing) by showing the relationship between the amount of stolen incompressible
table data and the corresponding security level. For example, (T/4, 128)-space hard
cipher EK ensures that even if the adversary obtains one fourth of T , she can not

592 Yoroi: Updatable Whitebox Cryptography

Monitoring

Data TrafficStored Data

(Encrypted)

Big Key
Data + Partial Key Stolen Data

(Encrypted)

Partial Key

AdversaryServer

Figure 2: Leakage Resillient System with Whitebox Cipher and Network Monitoring

correctly decrypt the randomly drawn ciphertext with the probability of more than
2−128, where T is the code size (table size) of block cipher EK , and recent published
ciphers [BI15, BIT16, CCD+17, FKKM16, KLLM20] provide (T/4, 128)-space hardness
or a similar level of it.

Suppose that a system carries out a cryptographic operation on accessible memory by
authorized users to encrypt data by a space-hard cipher and store it in the server. The
encryption by a space-hard cipher can provide a sufficient level of security against snapshot
adversary [NKW15], who has only access to information about the content loaded on the
memory of the server at a certain moment, by monitoring the size of stolen data to outside
of the network, and updating the secret key when the amount of stolen data exceeds a
certain point, e.g. 1/4 of data size for the total table, as shown in Fig. 2.

The drawback of this leakage resilient system is a periodic key updating after the leakage
of T/4 data to keep security. It causes the re-encryption of all stored data. Obviously, it
is an expensive computational cost in real-world applications. In addition, it might have
a security risk such that during the re-encryption of data, it is possible for the snapshot
adversary [NKW15] to read the plaintext loaded in the memory.

2.4 Required Property for Whitebox Cryptography
As the applications indicate, updating the table (i.e. secret key for the underlying cipher)
might prevent a code-lifting attack relying on continuous leakage. However, that entails
the re-encryption of data. This could be an expensive cost or even vulnerability in some
contexts.

To address this issue, we introduce the new property called longevity as a resistance
of cryptographic functions against continuous data leakage which leads to code-lifting
attacks. In this context, the adversarial model we assume is that the adversary can specify
a leakage function of bounded length. The function is then evaluated in the environment
where the incompressible program is located, and the adversary obtains the results. The
adversary then tries to perform decryption operations using the bounded leakage which is
the results obtained from the leakage function. The adversary does not have encryption
and decryption oracles. Note that throughout this paper, we discuss security against
code-lifting attacks based on this model.
Within the model above, we now define Z-longevity, where Z denotes an upper bound on
the number of leaked bits per phase.

Definition 2 ((Z)-longevity). Cryptographic function has (Z)-longevity if it is
computationally difficult to encrypt (decrypt) randomly-chosen plaintext (ciphertext) with
probability of more than 2−Z in the situation where the functionality remains constant,
and code (table) is continuously leaked to the adversary.

A space-hard cipher with this property persistently guarantees constant security of a
cryptographic function against code-lifting attacks while keeping the same functionality,

Yuji Koike and Takanori Isobe 593

which means it can consequently avoid the re-encryption of stored data. Thus, in the
case of a continuous leakage, even after the leakage of (T/4) data, by properly updating
incompressible tables, the probability that a randomly-drawn plaintext can be correctly
computed can be constant, e.g. 2−128 in the case of (128)-longevity.
Remark. When evaluating (Z)-longevity of a new construction, some parameters, such
as how much data is leaked and how often the leakage itself happens, should be considered
so that the parameters can represent the continuous leakage which is mentioned in our
definition. However, we do not include these parameters in our definition, because we
believe these parameters heavily depend on an application where whitebox cipher is
deployed, not on the cipher itself. So, in the evaluation of (Z)-longevity it is important to
consider these parameters.

3 Our Approach for Longevity
In this section, we first give a basic idea about how to ensure the property of longevity, i.e.
update space hardness without updating the secret key of the underlying cipher. After
that, we show our fundamental construction that has longevity on the top of space-hard
property.

3.1 How to Update Tables while Keeping the Functionality
Our idea to add longevity into space-hard ciphers which are based on the incompressible
table T is to apply encryption operation of small-scale block cipher EKi to the output of
the incompressible table T when updating the tables as shown in Fig. 1. We treat them as
new tables. Intuitively, this enables adding a new source of the space hardness into the
implementation.

Here, in order to keep the original functionality, we have to apply the corresponding
inverse table (i.e. inverse function) DKi

to the input for the table in the next round (See
Fig. 1). We repeatedly apply incompressible table EKi

and its inverse function DKi
to

outputs and inputs of all tables, respectively.
When updating the implementations, we update the secret key Ki for these small

block ciphers EKi
and DKi

and do not change the secret key of the underlying ciphers
for the original table. Thus, it can keep the same functionality even after updating the
implementation.

3.2 Our Design: SPN with Partial MDS Layer
As an underlying structure, we choose a substitution-permutation network (SPN) structure
as is the case with SPNbox [BIT16], because it can offer sufficient security in a smaller
number of rounds than a Feistel structure. Following the design of SPNbox [BIT16], each
Sbox is realized by a small block cipher which is represented as tables in the whitebox
implementation. Also, we use an MDS matrix in linear layers to achieve a full diffusion in
the small number of rounds.

However, if this MDS layer takes the whole outputs from each table lookup, it is
impossible to ensure the same functionality after updating EKi , because the corresponding
decryption function DKi

in the next rounds cannot be constructed due to the matrix
operation between these two tables. Although it could be possible if the encryption
function has a homomorphic property, its performance is obviously unacceptable in our
target applications.

To address this issue, we employ an SPN with the partial MDS layer. In our structure,
an output of tables T is divided into two parts. The MDS layer takes one part, and the

594 Yoroi: Updatable Whitebox Cryptography

function EKi
takes the other part as their inputs. The output from MDS layer is a direct

and partial input for the S layer in the next rounds as shown in Fig. 3
Interestingly, this construction provides the same functionality after updating its tables

and achieves the 2 round full diffusion property as well as the SPN layer with the MDS
matrix assuming T has the full diffusion property.

Figure 3: Underlying Construction: SPN with partial MDS layer

4 Specification of Yoroi
Yoroi, which is an n-bit block cipher with a k-bit secret key, employs an SPN with the
partial MDS layer. The state in r-th round Xr is expressed as ` (= n/nin) elements of
nin bits, i.e., Xr = {xr

0, x
r
1, ..., x

r
`−1}, xr

i ∈ {0, 1}nin for 1 ≤ r ≤ R, where R is the number
of total rounds of Yoroi. Each element xr

i (1 ≤ r ≤ R, 0 ≤ i ≤ ` − 1) is represented as
(msbm(xr

i) ‖ lsbt(xr
i)) where m+ t = nin, msbm and lsbt denote the most significant m

bits and the least significant t bits of the element respectively, and ‖ denotes concatenation.
In this section, we will explain the specification of Yoroi in blackbox and whitebox

implementations, respectively. Note that these functionality are the same, however, for
the whitebox implementation, the small scale block ciphers EK and its inverse functions
DK are added to achieve the property of longevity as discussed in Section 3.

4.1 Blackbox Implementation
The encryption of a plaintext X0 to a ciphertext XR is accomplished by applying R rounds
of the following round transformation to the plaintext:

XR = A ◦ γR ◦
(
©R−1

i=1
(
θ ◦ σi ◦ γi

))
(X0).

4.1.1 S-layer γi.

The S-layer γi consists of ` key-dependent nin-bit bijective functions, and is applied to
the whole state: in the first round and last round, S1(x) and S3(x) are applied as nin-bit
bijective functions, and for the rest of rounds, S2(x) is applied, respectively:

γi : GF(2nin)` → GF(2nin)`

(x0, . . . , x`−1) → (Sj(x0), . . . , Sj(x`−1))

where j = {1, 3} when i = {1, R} and for the rest of cases (i.e. 2 ≤ i ≤ R − 1), j = 2,
respectively.

4.1.2 Linear layer θ.

The linear layer θ consists of an `× ` MDS matrix over GF(2t), and is applied to the part
of the state. Specifically, the `× ` MDS matrix Mt takes the least significant t bits of each
nin-bit element as inputs. The linear layer θ is defined as follows.

Yuji Koike and Takanori Isobe 595

Figure 4: Algorithm of Yoroi (Blackbox Implementation)

θ : GF(2t)` → GF(2t)`

(lsbt(xr
0), ..., lsbt(xr

`−1)) → (lsbt(xr
0), ..., lsbt(xr

`−1)) ·Mt

4.1.3 Affine layer σi.

σi is an affine layer which adds constant Ci to the state in i-th round:

σ : GF(2nin)` → GF(2nin)`

(x0, . . . , x`−1) → (x0 ⊕ Ci, . . . , x`−1 ⊕ Ci)

where Ci = i for 1 ≤ i ≤ R− 1.
Note that the constant Ci has to be smaller than 2t in order to maintain the same

functionality of blackbox implementation and whitebox implementation.
Fig. 4 illustrates the algorithm of Yoroi in the blackbox context, and the detailed

algorithm is given in the Appendix A.

596 Yoroi: Updatable Whitebox Cryptography

4.1.4 AES layer A.

Following a diffusion method as in previous works [FKKM16, CCD+17], Yoroi employs 10
round AES A with a fixed key KA which is generated independently of the keys used
in S-layers, so that it can eliminate possible cryptographic characteristics. Note that in
Yoroi, AES is employed only in the last round. This approach can reduce security in the
blackbox context to the well-studied problem of key recovery for AES.

4.2 Whitebox Implementation
The main difference of the algorithm of Yoroi in the whitebox implementation from the one
in the blackbox implementation is the application of m-bit EK and DK to the bijective
functions S1(x), S2(x), and S3(x). EK and DK are m-bit encryption and decryption
algorithms of small-variant of block ciphers and takes the most significant m bits of the
element xr

i as an input, respectively. Specifically, we use small variants of AES [CMR05]
or PRESENT [Lea10] as an instantiation of EK and DK .

By alternating EK and DK between the bijective functions, Yoroi in the whitebox
implementation keeps the exact same functionality as the one in the blackbox context. In
Yoroi, there are the following three types of tables T1 and T2,

T1 = EK(msbm(S1(x)))||lsbt(S1(x)),
T2 = EK(msbm(S2(DK(msbm(x))||lsbt(x))))||

lsbt(S2(DK(msbm(x))||lsbt(x))),
T3 = S3(DK(msbm(x))||lsbt(x)).

Yoroi employs T1, T2, and T3 as shown in Fig. 5. These are implemented by tables.
The full algorithm of Yoroi in the whitebox context is given in Appendix A.

4.3 Updating Whitebox Implementation
When updating the whitebox implementation, EK and DK in T1, T2, and T3 are replaced
with new ones, i.e. the key of underlying ciphers of EK and DK is updated. Specifically,
we compute new tables of T1, T2, and T3 with a new key of EK and DK , while original
functions S1, S2, and S3 are unchanged.

For simplicity, let expressions of EK(msbm(S1(x)))||lsbt(S1(x)),
EK(msbm(S2(DK(msbm(x))||lsbt(x))))||lsbt(S2(DK(msbm(x))||lsbt(x))), and
S3(DK(msbm(x))||lsbt(x)) be EK(S1(x)), EK(S2(DK(x))) and S3(DK(x)), respectively.

4.4 Instantiations
For concrete instantiations, we propose two variants with the following specification.

• Yoroi-16 : n = 128, ` = 8, nin = 16, m = 12, t = 4, R = 8, Si(x) : {0, 1}16 → {0, 1}16,

• Yoroi-32 : n = 128, ` = 4, nin = 32, m = 28, t = 4, R = 16, Si(x) : {0, 1}32 →
{0, 1}32.

For Yoroi-16 and Yoroi-32, S1(x), S2(x), and S3(x) are instantiated by 16 and 32-bit
key-dependent Sboxes for SPNbox [BIT16] with different keys, respectively, which are
obtained from the k-bit master key by any generic KDF function.

For the concrete linear diffusion layer θ for Yoroi-16 and Yoroi-32, we employ the 8× 8
and 4× 4 MDS matrixes used in Whirlwind [BNN+10] and Piccolo [SIH+11], respectively.
The irreducible polynomial for these matrixes is x4 + x+ 1.

The size of table Ti (1 ≤ i ≤ 3) is estimated as (2nin × nin) bits. Thus, the actual
size of each table for Yoroi-16 and Yoroi-32 is (216 × 16) and (232 × 32) bits, respectively,

Yuji Koike and Takanori Isobe 597

Figure 5: Algorithm of Yoroi (Whitebox Implementation)

and total table size for Yoroi-16 and Yoroi-32 is 220 × 3 (= (216 × 16) × 3) and 237 × 3
(= (232 × 32)× 3) bits.

5 Whitebox Security
Here, we analyze the security of Yoroi in the whitebox setting. Recall that for the table-base
implementation, tables of T1, T2, and T3 are composed of nin-bit bijective functions of
S1(x), S2(x), and S3(x), and m-bit bijective functions of EK and DK where m < nin.

In the whitebox setting, it should provide sufficient security against the key extraction
attack and code-lifting attack. In Section 5.1 and Section 5.2, we give the security
evaluation against these attacks in the standard setting, i.e. there is no update of
implementation/tables. Then in Section 5.3, we explore the security after the table update
to show how to ensure the longevity for Yoroi.

5.1 Security against Key Extraction
In the whitebox setting, the adversary can observe not only the inputs and outputs of the
cryptographic function, but also its internal values. Hence, she can fully access all entries

598 Yoroi: Updatable Whitebox Cryptography

of the table of T1, T2, and T3, i.e., all pairs of inputs and the corresponding outputs in the
table.

In order to extract the secret key in the whitebox setting, she has to at least recover
the secret key from the underlying cipher for S1(x), S2(x), and S3(x) in the blackbox
setting. Therefore, the security of Yoroi against the key extraction attack in the whitebox
setting is reduced to the key recovery problem for the underlying cipher in the blackbox
setting as with existing space-hard schemes [BI15, BIT16, CCD+17, FKKM16, KLLM20].

As a corollary, if the underlying cipher used to generate the tables T1, T2, and T3
is secure against the key recovery attacks in the blackbox setting, it is computationally
infeasible to extract the secret key from the tables T1, T2, and T3 in the whitebox context.

5.2 Security against Code-Lifting Attack
In this section, we evaluate the difficulty of code-lifting attacks on Yoroi. In this context,
we follow the adversarial model discussed in Section 2.4. Namely, the adversarial goal is to
obtain the functionality of the implementation code and use it in a stand-alone manner. For
instance, the whitebox adversary who controls its execution environment and can see the full
program tries to achieve this goal by stealing the implementation code (ex. by sending out
information the implementation code from the environment and reconstructing the same
functionality as the original code with that stolen information in another environment of her
choice). In order to evaluate security against code-lifting attacks, we will utilize the space
hardness [BI15], which represents the probability that the adversary can reconstruct the
same functionality as the original one with the stolen and limited information. Additionally,
in our analysis, we assume just as in [BI15, BIT16, CCD+17] that the adversary’s memory
contains only secret table entries. Note that our evaluation assumes as a limitation that the
adversary has bounded computational resources, and does not consider chosen-ciphertext
attacks. Regarding the space hardness of Yoroi, we give the following intuitive theorem.

Theorem 1. When S1, S2, S3, EK , and DK are assumed to be pseudorandom functions,
given i, j, and k table entries for the table T1, T2, and T3, respectively, the probability p
that the adversary can correctly encrypt (decrypt) a randomly chosen plaintext (ciphertext)
is upper bounded by

p =
(i

2nin

)`

×
(j

2nin

)`×(R−2)
×

(k

2nin

)`

,

where ` and R denote the number of table lookups in one round and the total round of the
cryptographic algorithm, respectively, and 0 ≤ i, j, k ≤ 2nin .

Proof. Given i, j, and k table entries for the table T1, T2, and T3 respectively, the
probability that each entry for the table T1, T2, and T3 is included in the known entries
can be estimated as i/2nin , j/2nin , and k/2nin , respectively. Hence, the adversary can
derive the correct intermediate value in one round transformation by looking up the known
entries with the probability of (i/2nin)`, (j/2nin)`, or (k/2nin)`, depending on which table
is used in the round transformation. According to the specification in Section 4.2, T1 and
T3 are used for the first and last round in Yoroi, respectively, and for the rest of the rounds
T2 is used. Therefore, the probability p that the adversary can correctly encrypt (decrypt)
a randomly chosen plaintext (ciphertext) is bounded by

p =
(i

2nin

)`

×
(j

2nin

)`×(R−2)
×

(k

2nin

)`

,

2

Recent published ciphers [BI15, BIT16, CCD+17, FKKM16, KLLM20] provide
(T/4, 128)-space hardness, meaning that even if the adversary successfully steals one fourth

Yuji Koike and Takanori Isobe 599

of the entire table, she can not correctly encrypt (decrypt) a randomly drawn plaintext
(ciphertext) with the probability of more than 2−128. According to Theorem 1, Yoroi-16
and Yoroi-32 can also provide (T/4, 128)-space hardness when R = 8, 16, respectively. Note
that our proof is based on the known/chosen space attack model defined in [BIT16], and
if we consider adaptively chosen space attack in [BIT16], the security bound for Yoroi-n
would be (T/4, 128− n)-space hardness as in [CCD+17, FKKM16], where n ∈ {16, 32}.
Moreover, as tables of Yoroi are based on bijective functions, it is actually possible to
construct the same functionality with a slightly smaller size of the whole table by exploiting
the property of bijection functions as discussed in [CCD+17], e.g. 16-bit permutation can
be constructed by 14.56× 216 bits instead of 16× 216 bits. However, the impact arising
from that on the security bound is marginal, so we omit it in the proof above for the sake
of simplicity.

5.3 Longevity: Space Hardness After the Table Update
This section shows that Yoroi can provide constant security against code-lifting attacks by
updating the tables within a proper period. First of all, we explore the incompressibility
of Yoroi after the table update and then give the security bound of the space hardness by
taking continuous table updating into consideration.

5.3.1 Incompressibility of Updated Tables.

Let T j be a family of tables T j
1 , T

j
2 , and T

j
3 after j times updating. As the incompressibility

of updated tables T j , we aim to obtain the lower bounds on the data size to be stolen
from T j to copy the full functionality of the encryption/decryption functions.

In our evaluation, we consider the worst case where the adversary has the knowledge
about all the previous tables T i where 0 < i < j − 1. We show that even under such a
strong case, the updated table has a significant incompressible property. It means that
table updating can inject a new source of the space hardness into the implementation. The
lower bound is given in the following Lemma under the assumption where EK , DK , S1,
S2, and S3 are pseudorandom permutations.

Lemma 1. Given all the previous tables of T i (∈ T i
1, T i

2, T i
3) for 0 < i, if EK and DK are

m-bit pseudo random permutations, it is computationally infeasible to find the equivalent
functionality of tables T j (∈ T j

1 , T
j
2 , T

j
3) whose total size is less than (2m ×m)× 2 bits.

To prove lemma 1, we show the proof by contra-position. The contraposition of the lemma 1
is given in the following.

Contraposition 1. Given all the previous tables of T i (∈ T i
1, T i

2, T i
3) for 0 < i, if it is

computationally feasible to find the equivalent functionality of table T j (∈ T j
1 , T

j
2 , T

j
3)

whose total size is less than (2m ×m)× 2 bits, EK and DK are not m-bit pseudo random
permutations.

Proof. In order to compress the tables T j , the adversary at least has to know about how
elements in the tables T j are updated from those in the tables T j−1. In other words,
considering the design of tables T i, she has to collect information about EKj and DKj

whose size is (2m ×m)× 2 bits in total. If it is computationally feasible to compress the
tables T j into smaller equivalent functionality whose size is less than (2m ×m)× 2 bits, it
means that the adversary can guess how some of the values for elements in the tables T j

are changed from those in the tables T j−1 with higher probability than randomly guess
that. This simply indicates that particular outputs of EKj

and DKj
are more predictable

than the others and that demonstrates EKj and DKj are not pseudo random permutations.
2 Note that this proof might be intuitive, as we are not strongly convinced that there is no

600 Yoroi: Updatable Whitebox Cryptography

correlation between EKi
and DKi

which are included in T i, and we heuristically treated
these functions as independent permutations

In order to show the tightness of lemma 1, we consider and describe compression attacks
on each table T j

1 , T
j
2 , and T

j
3 under the assumption that the adversary has the knowledge

about all the previous tables T i where 0 < i < j − 1 in Appendix C D E. This section
actually gives a glimpse at how much data the adversary has to obtain after the table
update to copy the full functionality.

5.3.2 Main Conclusion of Incompressibility of Updated Tables.

These compression attacks on T1, T2, and T3 show that the bound of required data to
copy the functionality of each individual table after table updating in Lemma 1 is tight.
Besides, they show that the table data that the adversary previously obtains does not
affect the lower bound of the updated implementation which lemma 1 provides. It means
that updating tables in this manner can add a new source of space hardness into the
implementation. Hence, we can evaluate the security bound of the updated implementation
against code-lifting attacks by using the security notion of space hardness, without having
to consider the influence of the previously stolen data.

5.3.3 Space Hardness with Updating Tables

In order to evaluate the space hardness on Yoroi after the table update, we introduce the
following theorem.

Theorem 2. Given g, x and h entries for table T j
1 , T

j
2 and T j

3 respectively, the probability
that the adversary can compute a randomly chosen plaintext into a correct ciphertext is
upper bounded by(g × 2nin−m

2nin

)l

×
(x× 2nin−m

2nin

)l×(R−2)
×

(h× 2nin−m

2nin

)l

, (1)

assuming that the adversary does not gain enough table entries for any version of the table
T i

1, T i
2, and T i

3 to successfully encrypt (decrypt) plaintaxt (ciphertext) with the probability
of more than probability of (2), where 0 ≤ i ≤ j − 1, g, h < 2m and x = min(g, h).

Proof. Because of differences in the input (output) size between S1(x) (S2(x), or S3(x))
and EK (or DK), if she obtains one entry of the table T j

1 (or T j
3), she can infer at most

(2nin−m − 1) entries. That is virtually equivalent to the situation where she knows at
most 2nin−m entries just by obtaining one entry of the table. So, given the case where
the adversary steals a part of the table, i.e., g ≤ 2m entries for T j

1 are leaked to her, the
number of total entries that are virtually leaked to her is up to (g × 2nin−m).

When estimating the total entries of a whole table as 2nin , the probability that each
entry for table T j

1 is included in the (g×2nin−m) leaked entries is (g×2nin−m)/2nin . Thus,
the probability that she can derive the correct output by looking up the leaked entries of
the table is (g × 2nin−m)/2nin . Considering the fact that Yoroi uses table T j

1 ` (= n/nin)
times to look up values in one round where n is the block size for Yoroi, the probability
that the adversary can obtain the correct intermediate value by looking up the tables l
times is given as: (g × 2nin−m

2nin

)`

.

Besides, with the same logic, by using h entries for table T j
3 , the probability that the

adversary can compute the correct intermediate value is:(h× 2nin−m

2nin

)`

.

Yuji Koike and Takanori Isobe 601

In order to infer some table entries of T j
2 , the adversary at least has to know about

EKj
and DKj

. Information about EKj
tells her what each output of the table T j−1

2 is
updated to, and that of DKj tells what each index of the table T j−1

2 is updated to, i.e.,
where each updated output is moved to. As mentioned, leakage of one entry leads to
that of 2nin−m entries. Specifically, with the information about transition from EKj−1

to EKj , one leaked entry enables the adversary to infer 2nin−m outputs of table T j
2 and

with that the information about transition from DKj−1 to DKj
each leaked entry possibly

enables her to infer indexes, i.e., positions for 2nin−m outputs in the table T j
2 . Because of

the design of table T2, the adversary has to gain both information about these types of
transition.

In the case of g < h the adversary can possibly gain the indexes for h×2nin−m outputs.
However, she can infer what only g×2nin−m outputs of the table T j−1

2 are updated to. This
means that she can infer only the indexes for (h−g)×2nin−m (= (h×2nin−m)−(g×2nin−m))
outputs and can not know the actual values for them.

In the case of g > h, the adversary can infer g × 2nin−m output values for the
table T j

2 , while she can infer the indexes for only h × 2nin−m outputs. Thus, even
though she can infer infer g × 2nin−m output values, she can not know the indexes for
(g − h)× 2nin−m (= (g × 2nin−m)− (h× 2nin−m)) outputs for the table T j

2
Given the discussion above, the number of table entries (i.e. updated table outputs and

their correct indexes) the adversary can gain is up to x× 2nin−m, where x = min(g, h).
Also with the same logic discussed in table T j

1 and T j
3 , the adversary can obtain the

intermediate value by using leaked information about T j
2 with the probability of up to:

(x× 2nin−m

2nin

)`

.

In order to compute a correct output, the adversary has to obtain a correct intermediate
value in any round. In R rounds, Yoroi uses the table T j

1 and T j
3 for the first and last

round respectively, and for the rest of rounds T j
2 is employed, where R is the total rounds

for Yoroi. Therefore, after R rounds, the adversary can compute the correct output from
the random-drawn input with the probability of

(g × 2nin−m

2nin

)l

×
(x× 2nin−m

2nin

)l×(R−2)
×

(h× 2nin−m

2nin

)l

,

2

For Yoroi-16 and Yoroi-32 where R = 8, 16 respectively, they can ensure that after the
table update, the probability that the adversary successfully encrypts (decrypts) randomly
drawn plaintext (ciphertext) by using the stolen table entries is less than 2−128 until
the number of stolen table entries for each table T j

1 and T j
2 reaches 2m−2, i.e., 210 and

226 entries each for Yoroi-16 and Yoroi-32, respectively. Thus, these variants provide
(T/64, 128)-space hardness as a whole.

Note that the incompressibility property shown in Section 5.3.1 and Section 5.3.2
demonstrates that the space hardness of the current implementation can be evaluated
independently from previously stolen tables. Thus, the space hardness of Yoroi is bounded
by the amount of leaked data in the period during each table updating. In other words, with
the Theorem 2 and incompressibility property, if we update tables before the amount of
leaked data reaches a certain threshold, we can keep the constant space hardness persistently
without changing the master key. We will explain it by exploring the possibility of the
same functionality with different versions of tables and example cases for Yoroi-32.

602 Yoroi: Updatable Whitebox Cryptography

5.4 Possibility of Functionality Replication with Combined Tables of
Different Versions

In the previous section, we discuss space hardness based on the adversary who aims at
code-lifting attacks by using updated tables of a specific version. In other words, we did
not consider the adversary who might attempt to mount code-lifting attack with higher
probability by combining updated tables of several versions (e.g. T j−1 and T j) and using
it to realize the same functionality.

In this case, however, the adversary using the tables of different versions can not even
keep the same functionality. This is because by using tables of T j−1 and T j for example,
data to be processed has to pass through EKj

and DKj−1 (or EKj−1 and DKj
) from the

algorithm viewpoint. This discussion strengthens the statement that the space hardness of
the current implementation can be evaluated independently from previously stolen tables.

5.5 Examples Study
According to Theorem 1, Yoroi-32 has (T/4, 128)-space hardness such that after 1/4 of each
table (T 0

1 , T 0
2 , T 0

3) is stolen by the adversary, the probability that she correctly computes
the encryption or decryption function is bounded by 2−128. However, after that, by a
continuous leakage, the probability increases and eventually reaches the one, i.e. copy of
the full functionality, As discussed before, the update of tables (T 0

1 , T 0
2 , T 0

3) to (T 1
1 , T 1

2 ,
T 1

3) can keep this security level of the space hardness even after T/4 of leakage.

Longevity. According to Theorem 2, after the table update, Yoroi-32 can ensure
(T/64, 128)-space hardness independently from the previous leakage. Thus, the adversary
cannot decrypt (encrypt) a randomly chosen ciphertext (plaintext) with the probability of
more than 2−128 until the amount of leaked data for (T 1

1 , T 1
2 , T 1

3) reaches T/64. Therefore,
by continuously updating the table before reaching this threshold, i.e., before the leaked
data for the updated table (T 1

1 , T 1
2 , T 1

3) amounts to T/64, Yoroi-32 achieves (128)-longevity
such that the adversary can not successfully encrypt or decrypt with the probability of
more than 2−128 persistently. This gives the new property called longevity to Yoroi-32.

Example. Figure 6 illustrates the security level of space hardness for Yoroi-32 with
table update and that without table update over time, assuming 16 MB of data is leaked
per day for an illustrative purpose. In this case, the amount of leaked data reaches T/4 in
512 days and at this point, the probability that the adversary can successfully encrypt
(decrypt) a randomly chosen data is bounded by 2−128. By updating the table at this point,
Yoroi-32 can stop the increase in the adversarial advantage (i.e success probability that
she can correctly encrypt (decrypt) a randomly drawn data), and as shown in Theorem 2,
the updated implementation of Yoroi-32 provides (T/64, 128)-space hardness. Considering
the leakage of 16MB data on a daily basis, it takes 32 days for the amount of leaked data
for the updated table to reach T/64. Therefore, after the update of the original table,
updating the table every 32 days can constantly ensure that the success probability for
correct computation by the adversary is at most 2−128, namely (128)-longevity.

Remark. If the adversary successfully obtains full information for a certain version
of the tables, this scenario will not work and she no longer would need to gain more
information for the table from that point. Thus, it is important to properly update the
tables at the right moment. Besides, there could be more data leakage or less depending
on the application. So, we set the leakage size to 16MB as an example. In the case where
there is greater leakage amount, it could be a good idea to use tables with a bigger size by
using different bijective functions in S-layers.

Yuji Koike and Takanori Isobe 603

0

100

200

300

400

500

600

700

800

0 700 1400 2100 2800

Without Table Update

With Table Update

512

128

Z

Days

Figure 6: Comparison of (M , Z)-space hardness on Yoroi-32 with table update and that
without table lookup considering the leakage of 16MB data per day

Limitation. Our security model [BI15, BIT16, CCD+17] does not assume the whitebox
adversary who can have access to the blackbox implementations after obtaining a part
of the table from the target device by the code lifting attack, i.e. after code lifting,
the adversary only do the game in which she tries to compute valid ciphertexts given
randomly-chosen plaintexts using the part of tables. Such a stronger adversary might
recover additional table information from not only target device but also blackbox access.
It is an interesting problem to evaluate the rigorous security of the leakage setting.

5.6 How to Update Tables
The table updates will be triggered at some point before the amount of leakage data which
is monitored exceeds this point (i.e. less than T/4 or T/64). By the table updates, all
tables in devices are overwritten by new ones. Note that depending on the applications,
the tables can be updated locally or by communicating with a server which generates and
distributes tables.

Leakage Resilient System: A monitor which observes how much data is leaked so far
tells that the amount of leakage is close to the threshold to another server which
generates and distributes updated tables, which is the trigger for a table update.
After the communication, it distributes the precomputed table to the server, which
we call table update. Note that the server generates another new table right after
the table update to prepare for the another table update. Besides, it is possible to
integrate monitor and server generating and distributing tables into one table to
remove unnecessary communication between them. Figure 7 illustrates the table
update flow. Note that in the case of the leakage resilient system, it is still possible
to locally update the tables.

HCE: Assuming that the total amount of daily transactions to the outside is estimated or
measured in target applications, the upper bound of table leakage can be estimated
because table leakage never exceeds it. Thus, when the upper bound of leakage gets
close to the threshold (i.e. less than T/4 or T/64), tables are replaced with new
tables which are sent from the server. The trigger and method for table updates are
the same as in the leakage resilient system.

In the case of table updates via communication with the server, we assume just as
in [LER+18] that the communication and interaction between server and device are secure.
In addition, the adversary might try to block the communication channel to prevent the
table updates. However, we believe this is out of our scope, because if she blocks the

604 Yoroi: Updatable Whitebox Cryptography

communication and that ends up the failure of updates, it would be easier to detect the
adversary, which is not what cryptography deals with. In the case of local table updates,
we assume blackbox adversary during table updates as in [BU21]. When it comes to
how often the table needs to be updated in practice, we leave it as an open problem. In
addition, we just showed some examples about how to update tables, and we cannot say
for sure that they are recommendations. This is because there could exist better methods
to trigger the update and to update tables depending on the use cases.

Monitoring

Data TrafficStored Data

(Encrypted)

Table
Data + Partial Key Stolen Data

(Encrypted)

Partial Key

AdversaryServer

New Table

Server

New Key

Update Table

Table Update

Figure 7: How to actually update table

5.7 Side Channel and Differential Fault Attacks
Recently, several new side channel attacks have been proposed [GRW20, BHMT16]. As
discussed in [BI15], these attacks exploit the fact that each table depends on only a
fraction of the key, e.g. 8 and 16 bits of the key. A small part of the key is efficiently
extracted using side-channel leakages. On the other hand, any table of Yoroi contains
full 128-bit key information. Thus, even if the adversary can fully obtain any side channel
information (e.g. memory access patterns) for the target key-dependent table, there are
2128 possible candidates for each key value. Thus, these are computationally infeasible
against Yoroi.

Regarding differential fault attacks [SMdH15], the tables of Yoroi compose of small
block ciphers, and the internals of the small block ciphers are inaccessible in the whitebox
setting. Thus, any fault injection attack reduces to a differential attack on a small block
cipher in the blackbox setting. Since the underlying cipher is secure against a differential
attack in the blackbox setting, Yoroi is secure against these attacks.

6 Blackbox Security
We evaluate the general construction of Yoroi, modeling the underlying small block cipher
as pseudorandom permutation. Specifically, we evaluate security of the general construction
of Yoroi, assuming S1, S2, and S3 are independent pseudo random permutations.

6.1 Key Recovery Attacks
In the blackbox setting, the adversary has only access to input and the corresponding
output of a cryptographic algorithm, and she is unable to collect any pairs of inputs and
outputs in the table of S1, S2, and S3. Thus, it is more computationally difficult to mount
key recovery attacks on Yoroi in the blackbox setting than to recover the secret key from
the underlying block cipher.

6.2 Distinguishing attacks
Following the approach in the previous work [FKKM16], Yoroi employs AES at the end of
its algorithm. Therefore, security of Yoroi against distinguishing attacks in the blackbox
context is reduced to that of AES.

Yuji Koike and Takanori Isobe 605

7 Implementation
In this section, we present experimental measurements for Yoroi, SPACE [BI15],
WhiteBlock [FKKM16], SPNbox [BIT16], WEM [CCD+17], and Galaxy [KSHI20] both
in the blackbox setting and the whitebox setting.

We evaluate the implementations of Yoroi and compare the encryption performance
of Yoroi with those of SPACE [BI15], WhiteBlock [FKKM16], SPNbox [BIT16],
WEM [CCD+17], and Galaxy [KSHI20]. The basis of our comparison is the input space
for the table. Specifically, we compare Yoroi-32 with SPACE-32 [BI15], WhiteBlock-
32 [FKKM16], SPNbox-32 [BIT16], and Galaxy-32 [KSHI20], and Yoroi-16 with SPACE-
16 [BI15], WhiteBlock-16 [FKKM16], SPNbox-16 [BIT16], WEM [CCD+17], and Galaxy-
16 [KSHI20], respectively.

We have measured performance for single and parallel encryptions of messages of
2048 bytes and conducted all the performance measurements on a single core with Turbo
Boost disabled and over 100000 repetitions. Regarding single encryption operation,
we show the performance of implementations which encrypt one 128-bit data block
of the message sequentially. Concerning parallel encryption operation, we show the
implementation performance in which multiple data blocks are processed simultaneously.
For each repetition, a new message was used to avoid unnecessary cache locality. We have
taken time measurements from the beginning of the repetition to its ending, and we have
also measured message loading and storing time.

We have conducted all the experiments with a machine which has Intel Xeon-8260
2.40GHz and 256GB DDR4 RAM. The processor on the machine has 32KB L1 data cache
32KB L1 instruction cache, 1MB L2 cache, and 35MB L3 cache, respectively. Moreover, it
supports the AES instruction set [Gue10] and the SSE instructions up to AVX512.

We have employed AES implemented with AES-NI [Gue10] as the underlying block
cipher for SPACE [BI15] and WhiteBlock [FKKM16], and WEM [CCD+17], and use
chacha [Ber08] for Galaxy [KSHI20]. For the small-scale block cipher EK and DK , we
have utilized SmallPresent-3 [Lea10] and SmallPresent-7 [Lea10] for Yoroi-16 and Yoroi-32,
respectively. In particular, we have followed the implementation method for the underlying
cipher of SPNbox and Yoroi in the blackbox context as shown in [BIT16]. Namely, whenever
possible, we have employed AES-NI [Gue10] to implement the underlying cipher. For
the implementation of linear layer θ in Yoroi, we have employed an efficient technique for
constant-time parallel multiplication operation which is illustrated in [BIT16] for SPNbox
and for Yoroi with a slight adjustment. Especially, we have implemented constant-time
multiplication of register %xmm0 by two in the following.
vpcmpgtb CONST, %xmm0, %xmm1
vpslld $1, %xmm0, %xmm0
vpand REDPOLY, %xmm1, %xmm1
vpxor %xmm0, %xmm1, %xmm0

where CONST contains four 32-bit or eight 16-bit copies of value 7x and REDPOLY contains
four 32-bit or eight 16-bit copies of reduction polynomial, i.e. 13x for Yoroi-32 and Yoroi-16,
respectively. We have compiled the source codes with GCC 9.3.0 in O3 optimization level.

The evaluation results in the blackbox setting and whitebox setting are summarized
in Table 1 and Table 2, respectively. They show that Yoroi provides sufficient security
both in the blackbox setting and whitebox setting, and ensures the longevity without the
significant performance loss. Note that we exclude WEM [CCD+17] and Galaxy [KSHI20]
from our comparison in the blackbox setting, as they use Fisher-Yates shuffle and chacha
as underlying ciphers, which is significantly slow in the blackbox implementation.

Discussion. Table 1 shows that Yoroi in the blackbox context is competitive with other
existing schemes. In particular, Yoroi-16 in the blackbox context is faster than SPNbox-16

606 Yoroi: Updatable Whitebox Cryptography

Table 1: Evaluation of encryption performance and comparison with existing algorithms
in the blackbox setting where the encryption performance is given in cycle per byte

Algorithm Round R Single Encryption Parallel Encryption
Yoroi-32 16 56.28 16.39
Yoroi-16 8 108.71 36.58
SPNbox-32 [BIT16] 10 35.04 10.45
SPNbox-16 [BIT16] 10 135.86 42.59
WhiteBlock-32 [FKKM16] 34 133.53 70.96
WhiteBlock-16 [FKKM16] 18 81.86 55.37
SPACE-32 [BI15] 128 289.95 124.41
SPACE-16 [BI15] 128 290.15 124.58

Table 2: Evaluation of encryption performance and comparison with existing algorithms
in the whitebox setting where the encryption performance is given in cycle per byte

Algorithm Round R Table size T Single Enc Parallel Enc
Yoroi-32 16 48 GB 803.57 275.98
Yoroi-16 8 384 KB 33.53 12.44
SPN-32 [BIT16] 10 16 GB 474.39 156.01
SPN-16 [BIT16] 10 128 KB 36.68 13.42
WhiteBlock-32 [FKKM16] 34 64 GB 1114.52 334.34
WhiteBlock-16 [FKKM16] 16 2 MB 156.05 39.22
SPACE-32 [BI15] 128 48 GB 2259.92 606.09
SPACE-16 [BI15] 128 896 KB 243.58 59.49
Galaxy-32 [KSHI20] 32 16 GB 767.90 244.85
Galaxy-16 [KSHI20] 20 128 KB 25.63 9.21
WEM [CCD+17] 12 13 MB 232.84 48.29

and SPACE-16 both in single encryption operation and parallel encryption operation. This
is basically because Yoroi-16 has a smaller number of total rounds R than SPNbox-16 and
SPACE-16. The reason why Yoroi-16 is slower in single encryption and faster in parallel
operation than WhiteBlock-16 lies in the difference of underlying cipher and diffusion layer.
Yoroi-16 employs a dedicated small block cipher and 4× 8 MDS layer as an underlying
cipher and its diffusion layer, while WhiteBlock-16 uses AES both for the underlying
cipher and diffusion layer. Above all, WhiteBlock-16 makes 4 calls to full-round AES
as the underlying cipher based on different partial inputs in one round, which enables
independent computation of AES. As a result, WhiteBlock-16 can make the most of the
instruction-level pipeline even in single encryption. On the other hand, due to the design
of a dedicated small block cipher, Yoroi-16 has to make 2 calls of aesenc instruction
with some overhead 32 times sequentially in the situation where there is unavoidable
latency caused by data dependency between aesenc instruction and the overhead. That
prevents the full potential of the instruction-level pipeline, and consequently, in single
encryption, Yoroi-16 is slower than WhiteBlock-16. However, in parallel encryption where
multiple data blocks are processed simultaneously, the latency caused by data dependency
between the instruction in Yoroi-16 is diminished to the minimum. WhiteBlock-16 does not
benefit from parallel encryption more than Yoroi-16, because WhiteBlock already takes full
advantage of parallelism in single encryption. What’s more, 4× 8 MDS layer in Yoroi-16 is
obviously faster than full-round AES used as diffusion in WhiteBlock-16, and Yoroi-16 has
smaller rounds than WhiteBlock-16. Therefore, Yoroi-16 outperforms WhiteBlock-16 in
parallel encryption. Concerning Yoroi-32, it is faster than SPACE-32 and WhiteBlock-32

Yuji Koike and Takanori Isobe 607

and slower than SPNbox-32, mainly because of the number of total rounds.
Table 2 demonstrates that Yoroi in the whitebox context competes with other ciphers

too. Particularly, compared with SPNbox-16, Yoroi-16 is faster because it has smaller
rounds than SPNbox-16. Regarding WhiteBlock-16, SPACE-16, and WEM, they are
slower than Yoroi-16 largely because their tables are so large that they can be loaded in
the L3 cache, while tables of Yoroi-16 may be loaded on the L2 cache. The reason why
Galaxy-16 is faster than Yoroi-16 is the difference in the diffusion layer between these two.
Galaxy-16 uses a simple shuffle layer which costs much less clock cycle than the 4 × 8
MDS layer employed in Yoroi-16. As a result, the encryption performance of Galaxy-16 is
better than that of Yoroi-16, even though the number of table lookups in the algorithm in
Galaxy-16 is larger than that of Yoroi-16. In the comparison with 32-bit variants where
table lookups are the dominant cost for their performance, Yoroi-32 performs quite well.
Specifically, Yoroi-32 performs faster than WhiteBlock-32 and SPACE-32 because the
number of table lookups in Yoroi-32 (i.e. 64 times of table lookups) is smaller than those of
WhiteBlock-32 (68 times)and SPACE-32 (128 times). Moreover, WhiteBlock-32 employs
AES as a diffusion layer which costs much more than 4× 4MDS layer in Yoroi-32, which
leads to an overall performance gap in the encryption performance between Yoroi-32 and
WhiteBlock-32. When it comes to Galaxy-32, it is slightly faster. This is because of the
difference of diffusion layer: simple shuffle operation in Galaxy-32 and 4× 4 MDS layer in
Yoroi-32, while the number of table lookups in the algorithm is the same. Also, note that
Yoroi-16 is deployable on IoT devices such as Raspberry pi whose RAM size is from 512
MB to 8 GB.

8 Conclusion
In this work, we introduced the new property longevity for the whitebox ciphers which is
vital in some cases. This property ensures constant security against code-lifting attacks.
With this property in our mind, we designed a family of whitebox ciphers Yoroi. Not only
does Yoroi provide the same security level both in the blackbox and whitebox settings
with the existing whitebox ciphers, Yoroi ensures longevity by applying a small-scale block
cipher to the incompressible tables used in ciphers with the secret key for the cipher
continuously updated. Moreover, we show that the encryption performance of Yoroi is
competitive with existing ciphers both in the blackbox and whitebox setting.

Acknowledgement
The authors would like to thank Chris Brzuska and the anonymous TCHES reviewers for the
valuable comments and suggestions. Takanori Isobe is supported by JST, PRESTO Grant
Number JPMJPR2031, Grant-in-Aid for Scientific Research (B)(KAKENHI 19H02141)
and SECOM science and technology foundation.

References
[ADW10] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Survey: Leakage resilience

and the bounded retrieval model. In Kaoru Kurosawa, editor, Information
Theoretic Security, pages 1–18, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[BABM20] Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska, and Wil Michiels.
On the security goals of white-box cryptography. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2020(2):327–357, 2020.

608 Yoroi: Updatable Whitebox Cryptography

[BBF+20] Estuardo Alpirez Bock, Chris Brzuska, Marc Fischlin, Christian Janson,
and Wil Michiels. Security reductions for white-box key-storage in mobile
payments. In Shiho Moriai and Huaxiong Wang, editors, Advances in
Cryptology - ASIACRYPT 2020 - 26th International Conference on the
Theory and Application of Cryptology and Information Security, Daejeon,
South Korea, December 7-11, 2020, Proceedings, Part I, volume 12491 of
Lecture Notes in Computer Science, pages 221–252. Springer, 2020.

[BBIJ17] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, and Martin Bjerregaard
Jepsen. Analysis of software countermeasures for whitebox encryption. IACR
Trans. Symmetric Cryptol., 2017(1):307–328, 2017.

[BBK14] Alex Biryukov, Charles Bouillaguet, and Dmitry Khovratovich. Cryp-
tographic schemes based on the asasa structure: black-box, white-box,
and public-key (extended abstract). In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology – ASIACRYPT 2014, pages 63–84, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

[BD17] Mihir Bellare and Wei Dai. Defending Against Key Exfiltration: Efficiency
Improvements for Big-Key Cryptography via Large-Alphabet Subkey
Prediction. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’17, page 923–940, New York, NY, USA,
2017. Association for Computing Machinery.

[Ber08] D.J. Bernstein. ChaCha, A Variant of Salsa20. In Workshop Record of SASC
2008: The State of the Art of Stream Ciphers (2008), 01 2008.

[BHMT16] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen.
Differential computation analysis: Hiding your white-box designs is not
enough. In Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic
Hardware and Embedded Systems - CHES 2016 - 18th International
Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings,
volume 9813 of Lecture Notes in Computer Science, pages 215–236. Springer,
2016.

[BI15] Andrey Bogdanov and Takanori Isobe. White-Box Cryptography Revisited:
Space-Hard Ciphers. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, Denver, CO, USA, October
12-16, 2015, pages 1058–1069, 2015.

[BIT16] Andrey Bogdanov, Takanori Isobe, and Elmar Tischhauser. Towards Practical
Whitebox Cryptography: Optimizing Efficiency and Space Hardness. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology -
ASIACRYPT 2016 - 22nd International Conference on the Theory and
Application of Cryptology and Information Security, Hanoi, Vietnam,
December 4-8, 2016, Proceedings, Part I, volume 10031 of Lecture Notes
in Computer Science, pages 126–158, 2016.

[BKR16] Mihir Bellare, Daniel Kane, and Phillip Rogaway. Big-Key Symmetric
Encryption: Resisting Key Exfiltration. In CRYPTO, pages 373–402. Springer,
2016.

[BNN+10] Paulo S. L. M. Barreto, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen,
and Elmar Tischhauser. Whirlwind: a new cryptographic hash function. Des.
Codes Cryptogr., 56(2-3):141–162, 2010.

Yuji Koike and Takanori Isobe 609

[BRVW19] Andrey Bogdanov, Matthieu Rivain, Philip S. Vejre, and Junwei Wang.
Higher-order DCA against standard side-channel countermeasures. In Ilia
Polian and Marc Stöttinger, editors, Constructive Side-Channel Analysis and
Secure Design - 10th International Workshop, COSADE 2019, Darmstadt,
Germany, April 3-5, 2019, Proceedings, volume 11421 of Lecture Notes in
Computer Science, pages 118–141. Springer, 2019.

[BU18] Alex Biryukov and Aleksei Udovenko. Attacks and countermeasures for white-
box designs. In Thomas Peyrin and Steven D. Galbraith, editors, Advances
in Cryptology - ASIACRYPT 2018 - 24th International Conference on the
Theory and Application of Cryptology and Information Security, Brisbane,
QLD, Australia, December 2-6, 2018, Proceedings, Part II, volume 11273 of
Lecture Notes in Computer Science, pages 373–402. Springer, 2018.

[BU21] Alex Biryukov and Aleksei Udovenko. Dummy shuffling against algebraic
attacks in white-box implementations. Cryptology ePrint Archive, Report
2021/290, 2021. https://eprint.iacr.org/2021/290.

[CCD+17] Jihoon Cho, Kyu Young Choi, Itai Dinur, Orr Dunkelman, Nathan Keller,
Dukjae Moon, and Aviya Veidberg. WEM: A new family of white-box block
ciphers based on the even-mansour construction. In Helena Handschuh,
editor, Topics in Cryptology - CT-RSA 2017 - The Cryptographers’ Track
at the RSA Conference 2017, San Francisco, CA, USA, February 14-17,
2017, Proceedings, volume 10159 of Lecture Notes in Computer Science, pages
293–308. Springer, 2017.

[CEJvO02a] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. A
White-Box DES Implementation for DRM Applications. In Joan Feigenbaum,
editor, Security and Privacy in Digital Rights Management, ACM CCS-9
Workshop, DRM 2002, Washington, DC, USA, November 18, 2002, Revised
Papers, volume 2696 of Lecture Notes in Computer Science, pages 1–15.
Springer, 2002.

[CEJvO02b] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
White-Box Cryptography and an AES Implementation. In Kaisa Nyberg
and Howard M. Heys, editors, Selected Areas in Cryptography, 9th Annual
International Workshop, SAC 2002, St. John’s, Newfoundland, Canada,
August 15-16, 2002. Revised Papers, volume 2595 of Lecture Notes in
Computer Science, pages 250–270. Springer, 2002.

[CMR05] C. Cid, S. Murphy, and M. J. B. Robshaw. Small Scale Variants of the
AES. In Proceedings of the 12th International Conference on Fast Software
Encryption, FSE’05, page 145–162, Berlin, Heidelberg, 2005. Springer-Verlag.

[DFLM18] Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin, and Brice Minaud.
On recovering affine encodings in white-box implementations. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2018(3):121–149, 2018.

[DLK+14] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman,
Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey,
and J. Alex Halderman. The Matter of Heartbleed. In Proceedings of the 2014
Conference on Internet Measurement Conference, IMC ’14, page 475–488,
New York, NY, USA, 2014. Association for Computing Machinery.

[DLPR13] Cécile Delerablée, Tancrède Lepoint, Pascal Paillier, and Matthieu Rivain.
White-box security notions for symmetric encryption schemes. In Tanja Lange,

https://eprint.iacr.org/2021/290

610 Yoroi: Updatable Whitebox Cryptography

Kristin E. Lauter, and Petr Lisonek, editors, Selected Areas in Cryptography -
SAC 2013 - 20th International Conference, Burnaby, BC, Canada, August 14-
16, 2013, Revised Selected Papers, volume 8282 of Lecture Notes in Computer
Science, pages 247–264. Springer, 2013.

[FKKM16] Pierre-Alain Fouque, Pierre Karpman, Paul Kirchner, and Brice Minaud.
Efficient and Provable White-Box Primitives. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd
International Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings,
Part I, volume 10031 of Lecture Notes in Computer Science, pages 159–188,
2016.

[GPRW20] Louis Goubin, Pascal Paillier, Matthieu Rivain, and Junwei Wang. How to
reveal the secrets of an obscure white-box implementation. J. Cryptogr. Eng.,
10(1):49–66, 2020.

[GRW20] Louis Goubin, Matthieu Rivain, and Junwei Wang. Defeating state-of-the-art
white-box countermeasures with advanced gray-box attacks. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2020(3):454–482, 2020.

[Gue10] Shay Gueron. Intel Advanced Encryption Standard (AES) New Instructions
Set. https://www.intel.com/content/dam/doc/white-paper/advanced-
encryption-standard-new-instructions-set-paper.pdf, 5 2010.

[HSH+08] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum,
and Edward W. Felten. Lest we remember: Cold boot attacks on encryption
keys. In Proceedings of the 17th USENIX Security Symposium, July 28-August
1, 2008, San Jose, CA, USA, pages 45–60, 2008.

[KLLM20] Jihoon Kwon, ByeongHak Lee, Jooyoung Lee, and Dukjae Moon. FPL:
White-Box Secure Block Cipher Using Parallel Table Look-Ups. In Stanislaw
Jarecki, editor, Topics in Cryptology - CT-RSA 2020 - The Cryptographers’
Track at the RSA Conference 2020, San Francisco, CA, USA, February 24-28,
2020, Proceedings, volume 12006 of Lecture Notes in Computer Science, pages
106–128. Springer, 2020.

[KSHI20] Yuji Koike, Kosei Sakamoto, Takuya Hayashi, and Takanori Isobe. Galaxy:
A Family of Stream-Cipher-Based Space-Hard Ciphers. In Joseph K. Liu
and Hui Cui, editors, Information Security and Privacy - 25th Australasian
Conference, ACISP 2020, Perth, WA, Australia, November 30 - December
2, 2020, Proceedings, volume 12248 of Lecture Notes in Computer Science,
pages 142–159. Springer, 2020.

[Lea10] Gregor Leander. Small Scale Variants Of The Block Cipher PRESENT.
Cryptology ePrint Archive, Report 2010/143, 2010. https://eprint.
iacr.org/2010/143.

[LER+18] Russell W. F. Lai, Christoph Egger, Manuel Reinert, Sherman S. M.
Chow, Matteo Maffei, and Dominique Schröder. Simple password-hardened
encryption services. In 27th USENIX Security Symposium (USENIX Security
18), pages 1405–1421, Baltimore, MD, August 2018. USENIX Association.

[NKW15] Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference
Attacks on Property-Preserving Encrypted Databases. In Proceedings of the

https://eprint.iacr.org/2010/143
https://eprint.iacr.org/2010/143

Yuji Koike and Takanori Isobe 611

22nd ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, October 12-16, 2015, pages 644–655, 2015.

[RW19] Matthieu Rivain and Junwei Wang. Analysis and improvement of differential
computation attacks against internally-encoded white-box implementations.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):225–255, 2019.

[SIH+11] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru
Akishita, and Taizo Shirai. Piccolo: An ultra-lightweight blockcipher. In
Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and
Embedded Systems - CHES 2011 - 13th International Workshop, Nara, Japan,
September 28 - October 1, 2011. Proceedings, volume 6917 of Lecture Notes
in Computer Science, pages 342–357. Springer, 2011.

[SMdH15] Eloi Sanfelix, Cristofaro Mune, and Job de Haas. Unboxing the white-box
practical attacks against obfuscated ciphers. Black Hat Europe 2015, 2015.

612 Yoroi: Updatable Whitebox Cryptography

A Algorithm of Yoroi
In this section, we give the full algorithms of Yoroi both in the blackbox and whitebox
setting. Algorithm 1 and algorithm 2 describe Yoroi in the blackbox context and whitebox
context, respectively.

Algorithm 1 Algorithm of Yoroi in the Blackbox Implemetation
X1(= {x1

0, x
1
1, ..., x

1
`−1})⇐ INPUT

i⇐ 1 // initialize (the number of round, counter) to 1
while i ≤ R− 1 do
{xi

0, x
i
1, ..., x

i
`−1} ⇐ γi(xi

0, x
i
1, ..., x

i
`−1)

{xi
0, x

i
1, ..., x

i
`−1} ⇐ σi(xi

0, x
i
1, ..., x

i
`−1)

{lsbt(xi
0), lsbt(xi

1), ..., lsbt(xi
`−1)} ⇐ θ(lsbt(xi

0), lsbt(xi
1), ..., lsbt(xi

`−1))
Xi+1 ⇐ Xi

i⇐ i+ 1
end while// out of loop when i = R
{xi

0, x
i
1, ..., x

i
`−1} ⇐ γi(xi

0, x
i
1, ..., x

i
`−1)

{xi
0, x

i
1, ..., x

i
`−1} ⇐ A(xi

0, x
i
1, ..., x

i
`−1)

OUTPUT ⇐ {xi
0, x

i
1, ..., x

i
`−1}

B Proof of Theorem 1
Proof. Given i, j, and k table entries for the table T1, T2, and T3 respectively, the
probability that each entry for the table T1, T2, and T3 is included in the known entries
can be estimated as i/2nin , j/2nin , and k/2nin , respectively. Hence, the adversary can
derive the correct intermediate value in one round transformation by looking up the known
entries with the probability of (i/2nin)`, (j/2nin)`, or (k/2nin)`, depending on which table
is used in the round transformation. According to the specification in Section 4.2, T1 and
T3 are used for the first and last round in Yoroi, respectively, and for the rest of rounds T2
is used. Therefore, the probability that the adversary can correctly encrypt (decrypt) a
randomly chosen plaintext (ciphertext) is bounded by

Pr. =
(i

2nin

)`

×
(j

2nin

)`×(R−2)
×

(k

2nin

)`

,

2

Yuji Koike and Takanori Isobe 613

Algorithm 2 Algorithm of Yoroi in the Whitebox Context
X1(= {x1

0, x
1
1, ..., x

1
`−1})⇐ INPUT

(i, j)⇐ (1, 0) // initialize (the number of round, counter) to 1 and 0
{xi

0, x
i
1, ..., x

i
`−1} ⇐ γi(xi

0, x
i
1, ..., x

i
`−1)

while j ≤ `− 1 do
msbm(xi

j)⇐ EK(msbm(xi
j))

j = j + 1
end while
{xi

0, x
i
1, ..., x

i
`−1} ⇐ σi(xi

0, x
i
1, ..., x

i
`−1)

{lsbt(xi
0), lsbt(xi

1), ..., lsbt(xi
`−1)} ⇐ θ(lsbt(xi

0), lsbt(xi
1), ..., lsbt(xi

`−1))
Xi+1 ⇐ Xi

(i, j)⇐ (i+ 1, 0)
while i ≤ R− 1 do
while j ≤ `− 1 do
msbm(xi

j)⇐ DK(msbm(xi
j))

j = j + 1
end while
{xi

0, x
i
1, ..., x

i
`−1} ⇐ γi(xi

0, x
i
1, ..., x

i
`−1)

{xi
0, x

i
1, ..., x

i
`−1} ⇐ σi(xi

0, x
i
1, ..., x

i
`−1)

{lsbt(xi
0), lsbt(xi

1), ..., lsbt(xi
`−1)} ⇐ θ(lsbt(xi

0), lsbt(xi
1), ..., lsbt(xi

`−1))
j ⇐ 0
while j ≤ `− 1 do
msbm(xi

j)⇐ EK(msbm(xi
j))

j = j + 1
end while
Xi+1 ⇐ Xi

(i, j)⇐ (i+ 1, 0)
end while// out of loop when i = R
while j ≤ `− 1 do
msbm(xi

j)⇐ DK(msbm(xi
j))

j = j + 1
end while
{xi

0, x
i
1, ..., x

i
`−1} ⇐ γi(xi

0, x
i
1, ..., x

i
`−1)

{xi
0, x

i
1, ..., x

i
`−1} ⇐ A(xi

0, x
i
1, ..., x

i
`−1)

OUTPUT ⇐ {xi
0, x

i
1, ..., x

i
`−1}

C Compression Attack on T1.

The update from T j−1
1 to T j

1 requires the computation of EKj
(S1(x)) in which all the 2nin

output values for table S1 are updated while inputs of tables do not change. As described
in Section 4, EKj takes the most significant m bits and ignore the least significant (nin−m)
bits of output value vk from S1(x) where 0 ≤ k ≤ 2nin − 1. Hence, 2nin−m different values
of vk are treated as the same value of v′ as inputs of EKj

. Namely, the computation of
EKj

on 2nin−m different outputs from S1(x) produces the outputs whose upper m bits are
exactly the same. This enables the adversary to compress the table and find the smaller
equivalent implementation of T j

1 by the following method which is also described in Fig. 8
in the case where nin = 5 and m = 4.

a) First of all, the adversary obtains information about the changes in the upper m-bit
value of vk for outputs in the same input (i.e. index) of T j−1

1 and T j
1 by comparing

the outputs (the index is “00000” in Fig. 8.)

614 Yoroi: Updatable Whitebox Cryptography

b) Find the same

Transition from to
Output of 0000 0001 � 1111

Output of ? 1101 ... ?

Input 00000 00001 00010 00011 ... 11110 111111

Output 11011 ????0 ????1 11010 ... ????0 ????1

Input 00000 00001 00010 00011 ... 11110 11111

Output 00011 10110 10101 00010 ... 11100 11011

Table

Table

a) Compare outputs in the
same input (index) and
see the difference

c) Guess the value

-bit value for output

Red text: Same value
Blue text: Guessed value

Figure 8: Compression Technique for T1 in the case where nin = 5 and m = 4

b) She finds an output in another index, which is “00011” in Fig. 8, for table T j−1
1 whose

upper m-bit value is exactly the same as the one in the index “00000” of table T j−1
1

which she already knows.

c) In this case, since she knows the transition from an output value in an index “00000”
for table T j−1

1 to that in the same index for table T j
1 , she can correctly guess an

output in the other index “00011” for table T j
1 by using the output in the same index

“00011” for table T j−1
1 and the transition information.

As shown in the above example, once she knows one output of table T j
1 , she can

correctly guess some corresponding outputs of updated table T j
1 . Specifically, if she has the

knowledge about one output of table T j
1 , she can accurately guess (2nin−m − 1) different

outputs of table T j
1 .

Therefore, in order to maintain the same functionality of T j
1 , she needs at least 2m

outputs of table T j
1 . With those information, she can infer (2nin−2m) (= 2m×(2nin−m−1))

different entries.
Now, each entry of the table is nin bits in size. However, only the upper m bits of

value v are updated by applying EKj
to function S1(x) in order to update the table T j−1

1
to T j

1 , and the lower nin −m bits of v are constant. Thus, due to the assumption that the
adversary knows about all the previous tables, she already has the knowledge about the
lower nin −m bit of the value v for every entry she only has to obtain the information
about the upper m bits of nin-bit value v. As a result, the total size which she has to
obtain in order to find the smaller equivalent representation of Yoroi is 2m ×m bits.

D Compression Attack on T3.
In order to update from T j−1

3 to T j
3 , it is necessary to compute S3(DKj

(x)). What this
computation actually does is just to change all the 2nin indexes of table T ′3, and it does
nothing to all the output values for T ′3, where T

′

3 is a table comprising pairs of all the input
and corresponding outputs of S3. In other words, it just permutes all the 2nin entries of
T
′

3. However, since DKj takes the most significant m bits and ignore the 2nin−m bits of
the input for S3, this computation is not a permutation of 2nin table entries, but that of

Yuji Koike and Takanori Isobe 615

-bit value for input (index)

a) Find the same output

Transition from to
Output of 0000 0001 � 1111

Output of ? ? ... 0001

Input 00000 00001 00010 00011 ... 11110 111111

Output ????? ????? 01001 00011 ... ????? ?????

Input 00000 00001 00010 00011 ... 11110 11111

Output 10011 00111 10101 11101 ... 01001 00011

Table

c) Guess the value

Red text: Same value
Blue text: Guessed value

and see the difference
of inputs (indexes)

b) Find the same

Table

Figure 9: Compression Technique for T3 in the case where nin = 5 and m = 4

2m table entries. As a result, the order for each 2nin−m of entries in the tables remains
constant. This gives the possibility for the table compression by the following method
which is also described in Fig. 9.

a) To begin with, the adversary finds the same output from tables T j−1
3 and T j

3 , and gains
the knowledge about a difference of indexes for the output in tables T j−1

3 and T j
3 .

b) She finds some indexes in table T j−1
3 whose upper m-bit value is the same.

c) Since the order for each 2nin−m of entries in T j
3 and the outputs for these entries are

constant, she can guess the outputs for them.

As long as she can accurately guess (2nin−m − 1) different entries of table T j
3 with the

knowledge about one entry of table T j
3 , she does not have to gain these information, which

means she can reduce the amount of information about the table T j
3 to steal so that she

can find the same functionality. As a result, in order to find the same functionality of T j
3 ,

she needs at least 2m entries of table T j
3 , because with those information, she can infer

(2nin − 2m) (= 2m × (2nin−m − 1)) different entries. This compression method implicitly
demonstrates that after the table update, the adversary can find the equivalent function
of updated table T j

3 by using previous table T j−1
3 and collecting information about the

transition from outputs of DKj−1 to those of DKj
whose size is 2m ×m.

E Compression attack on T2.
Compared with compression attacks on tables T1 and T3, it may seem relatively difficult to
compress table T2 merely by compareing T j−1

2 and T j
2 just as we did on tables T1 and T3.

This is because the update from T j−1
2 to T j

2 requires the computation of EK(S2(DK(x))).
Namely, the output values for table S2 are updated by EKj

, and the table entries are
shuffled by DKj

.
However, information about EKj

and DKj
can be collected by mounting compression

attacks on T1 and T3. If the adversary analyzes and compress tables T1 and T3, she can
gain the information about what each output value for table T j−1

2 is updated to and
where each entry of T j−1

2 is moved to. Therefore by using the information about transion

616 Yoroi: Updatable Whitebox Cryptography

from outputs of EKj−1 to those of EKj
and that from outputs of DKj−1 to those of DKj

which are the actual information about EKj and DKj , and the previous table T j−1
2 , the

adversary can realize the same functionality of T j
2 . As a result, if the adversary analyzes

tables T1 and T3, she does not have to gain any information T j
2 at all, which means she

can compress table T j
2 to zero.

F Proof of Theorem 2
Proof. As mentioned, if she obtains one entry of the table T j

1 (or T j
3), she can infer at

most (2nin−m − 1) entries. That is virtually equivalent to the situation where she knows
at most 2nin−m entries just by obtaining one entry of the table. So, given the case where
the adversary steals a part of the table, i.e., g ≤ 2m entries for T j

1 are leaked to her, the
number of total entries that are virtually leaked to her is up to (g × 2nin−m).

When estimating the total entries of a whole table as 2nin , the probability that each
entry for table T j

1 is included in the (g×2nin−m) leaked entries is (g×2nin−m)/2nin . Thus,
the probability that she can derive the correct output by looking up the leaked entries
of table is (g × 2nin−m)/2nin . Considering the fact that Yoroi uses table T j

1 ` (= n/nin)
times to look up values in one round where n is the block size for Yoroi, the probability
that the adversary can obtain the correct intermediate value by looking up the tables l
times is given as: (g × 2nin−m

2nin

)`

.

Besides, with the same logic, by using h entries for table T j
3 , the probability that the

adversary can compute the correct intermediate value is:(h× 2nin−m

2nin

)`

.

In order to infer some table entries of T j
2 , the adversary at least has to know about

EKj
and DKj

. Information about EKj
tells her what each output of the table T j−1

2 is
updated to, and that of DKj tells what each index of the table T j−1

2 is updated to, i.e.,
where each updated output is moved to. As mentioned, leakage of one entry leads to
that of 2nin−m entries. Specifically, with the information about transition from EKj−1

to EKj , one leaked entry enables the adversary to infer 2nin−m outputs of table T j
2 and

with that the information about transition from DKj−1 to DKj each leaked entry possibly
enables her to infer indexes, i.e., positions for 2nin−m outputs in the table T j

2 . Because of
the design of table T2, the adversary has to gain both information about these types of
transition.

In the case of g < h the adversary can possibly gain the indexes for h×2nin−m outputs.
However, she can infer what only g×2nin−m outputs of the table T j−1

2 are updated to. This
means that she can infer only the indexes for (h−g)×2nin−m (= (h×2nin−m)−(g×2nin−m))
outputs and can not know the actual values for them.

In the case of g > h, the adversary can infer g × 2nin−m output values for the
table T j

2 , while she can infer the indexes for only h × 2nin−m outputs. Thus, even
though she can infer infer g × 2nin−m output values, she can not know the indexes for
(g − h)× 2nin−m (= (g × 2nin−m)− (h× 2nin−m)) outputs for the table T j

2
Given the discussion above, the number of table entries (i.e. updated table outputs and

their correct indexes) the adversary can gain is up to x× 2nin−m, where x = min(g, h).
Also with the same logic discussed in table T j

1 and T j
3 , the adversary can obtain the

intermediate value by using leaked information about T j
2 with the probability of up to:

Yuji Koike and Takanori Isobe 617

(x× 2nin−m

2nin

)`

.

In order to compute a correct output, the adversary has to obtain a correct intermediate
value in any round. In R rounds, Yoroi uses the table T j

1 and T j
3 for the first and last

round respectively, and for the rest of rounds T j
2 is employed, where R is the total rounds

for Yoroi. Therefore, after R rounds, the adversary can compute the correct output from
the random-drawn input with the probability of(g × 2nin−m

2nin

)l

×
(x× 2nin−m

2nin

)l×(R−2)
×

(h× 2nin−m

2nin

)l

,

2

	Introduction
	Existing Whitebox Ciphers and Their Applications
	Our Contribution
	Organization

	Target Applications
	DRM
	Software Replacements of HSM/TPM for HCE and IoT
	Leakage Resilient System
	Required Property for Whitebox Cryptography

	Our Approach for Longevity
	How to Update Tables while Keeping the Functionality
	Our Design: SPN with Partial MDS Layer

	Specification of Yoroi
	Blackbox Implementation
	Whitebox Implementation
	Updating Whitebox Implementation
	Instantiations

	Whitebox Security
	Security against Key Extraction
	Security against Code-Lifting Attack
	Longevity: Space Hardness After the Table Update
	Possibility of Functionality Replication with Combined Tables of Different Versions
	Examples Study
	How to Update Tables
	Side Channel and Differential Fault Attacks

	Blackbox Security
	Key Recovery Attacks
	Distinguishing attacks

	Implementation
	Conclusion
	Algorithm of Yoroi
	Proof of Theorem 1
	Compression Attack on T1.
	Compression Attack on T3.
	Compression attack on T2.
	Proof of Theorem 2

