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Abstract. Automated methods have become crucial components when searching
for distinguishers against symmetric-key cryptographic primitives. While MILP
and SAT solvers are among the most popular tools to model ciphers and perform
cryptanalysis, other methods with different performance profiles are appearing. In
this article, we explore the use of Constraint Programming (CP) for differential
cryptanalysis on the Ascon authenticated encryption family (first choice of the
CAESAR lightweight applications portfolio and current finalist of the NIST LWC
competition) and its internal permutation. We first present a search methodology for
finding differential characteristics for Ascon with CP, which can easily find the best
differential characteristics already reported by the Ascon designers. This shows the
capability of CP in generating easily good differential results compared to dedicated
search heuristics. Based on our tool, we also parametrize the search strategies in CP
to generate other differential characteristics with the goal of forming limited-birthday
distinguishers for 4, 5, 6 and 7 rounds and rectangle attacks for 4 and 5 rounds of the
Ascon internal permutation. We propose a categorization of the distinguishers into
black-box and non-black-box to better differentiate them as they are often useful in
different contexts. We also obtained limited-birthday distinguishers which represent
currently the best known distinguishers for 4, 5 and 6 rounds under the category of
non-black-box distinguishers. Leveraging again our tool, we have generated forgery
attacks against both reduced-rounds Ascon-128 and Ascon-128a, improving over
the best reported results at the time of writing. Finally, using the best differential
characteristic we have found for 2 rounds, we could also improve a recent attack on
round-reduced Ascon-Hash.
Keywords: Differential Cryptanalysis · ASCON · Constraint Programming · Rectangle
Attacks · Limited-birthday · Forgery

1 Introduction
With the increasing need for a cryptographic primitive providing both encryption and
authentication, so-called authenticated encryption (AE), as well as the rise of lightweight
cryptography (cryptography for devices with important constraints with regards to area,
energy/power consumption, latency, etc.), the National Institute of Standards and Tech-
nology (NIST) decided to start a new cryptographic competition in 2019 for lightweight
authenticated encryption [oST21]. This standardization effort saw the submission of 57
candidates and Ascon [DEMS21b] (also first choice for the “lightweight applications” final
portfolio of the CAESAR competition [CAE19]) is currently one of the finalists of the
competition. As a potential primitive to be used as a standard and in order to provide a
good comparison of the relative security provided by the finalists, it is important to have
a wide range of cryptanalysis conducted.

As more cipher designs along with different block cipher modes are being published,
cryptanalysts’ playing field could only increase, giving them more areas to explore and
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probe. Differential cryptanalysis [BS90, BS91], one of the oldest forms of statistical
cryptanalysis in modern cryptography, has developed and spawned many other more
advanced variants such as higher-order differential cryptanalysis [Lai94] and boomerang
attacks [Wag99]. The set of distinguishing properties is also getting more diverse, with
attackers scrutinizing for example zero-sum [AM,BCC11], subspace [LMS+15] or limited-
birthday [GP10, IPS13,JNP13] properties.

As the playing field grew larger, the cryptanalysts’ toolbox grew bigger too, dedi-
cated heuristic search algorithms and automated tools such as MILP/MIP [MWGP11],
SAT [MP13] and CP [GMS16] are being employed to find differential/linear characteristics
as well as other patterns in cryptographic primitives. Recently, machine learning and in
particular neural networks seem to show some ability in finding statistical patterns in
cipher queries [Goh19]. While one can count a very large number of works using MILP in
cryptanalysis, articles employing CP for heuristic methods remain relatively scarce. With
CP focusing on solving combinatorial problems using logical inferences, it deserves perhaps
more attention in cryptanalytic applications.

Our contributions. In this article, we focus our attention on the differential cryptanalysis
of the Ascon permutation. We propose four contributions.

First, we present a methodology that uses CP to automatically find good differential
characteristics for Ascon. We show that we can replicate the designers’ results in [DEMS19],
which were produced with a complex dedicated heuristic algorithm. The advantage of using
CP not only allows us to efficiently model the permutation, it also taps into the rich number
of search strategies provided by different solvers. Our method is quite generic and can be
applied to other ciphers with minor tweaking. Other than having the ability to choose
from a wide variety of solvers, another advantage is that it can be easily parameterized to
find differential characteristics with specific properties that we might want to enforce. For
example, in our case, we use CP to find specific differential characteristics to be used in
limited-birthday distinguishers.

Secondly, for better categorization, we propose to split the distinguishers into two types:
black-box and non-black-box distinguishers which separates the distinguishers into those
that can attack keyed permutations and those that can attack unkeyed permutations. We
then use the differential characteristics found by CP to construct black-box/non-black-box
limited-birthday distinguishers and rectangle distinguishers for the Ascon permutation.
We notably present distinguishers for the Ascon permutation reduced to 4, 5, 6 and 7
rounds. All of our results are summarized in Table 1.

Thirdly, again using a specific parametrization of our CP tool, we find differential
characteristics that allow us to obtain improvements for forgery attacks on reduced Ascon-
128 and Ascon-128a compared to the state-of-the-art (see Table 1).

Lastly, using a similar strategy as in [ZDW19] and a new differential characteristic
with a higher probability, we could improve the attacks on Ascon-Hash (Ascon-Hasha)
reduced to 2 rounds (see Table 1).

Our work does not threaten the security of Ascon but gives a better understanding of
the resistance of this candidate with regards to differential cryptanalysis-based attacks.
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Table 1: Summary of results on permutation and attacks on reduced-round Ascon-128,
Ascon-128a and Ascon-Hash (Ascon-Hasha). Complexities are expressed in number
of primitive calls. BB and NBB represent black-box and non-black-box distinguishers.
Note that Ascon-128, Ascon-128a, Ascon-Hash and Ascon-Hasha use 6, 8, 12 and
8 rounds of permutation in the iteration phase respectively. All of the primitives use 12
rounds for the initialization and finalization (if applicable). For generic complexity on
zero-sum distinguishers, refer to Section 4.5 for more detail.

Distinguishers

# rounds Type BB NBB Comp. Generic Comp. Ref.(log2) (log2)

4

Diff.-Linear X 2 — [DEMS15]
Rectangle X 15.57 320 This paper
Integral X 5 — [RHSS21]

Differential X 108 320 [DEMS21b]
Linear X 101 320 [DEMS15]

Limited-birthday X 8 ≥ 204.81 This paper
Rectangle X 9.57 320 This paper
Zero-sum X 5 9.41 [DEMS15]

Limited-birthday X 1 119 This paper

5

Rectangle X 79.57 320 This paper
Integral X 16 — [RHSS21]

Differential X 191 320 [DEMS21b]
Linear X 189 320 [DEMS15]

Limited-birthday X 65 ≥ 160.23 This paper
Truncated Diff. X 108 — [Tez16]

Rectangle X 44.57 320 This paper
Zero-sum X 10 10.7 [DEMS15]

Limited-birthday X 1 75.01 This paper

6
Integral X 31 — [RHSS21]
Zero-sum X 10 10.7 [DEMS15]

Limited-birthday X 2 ≥ 15.18 This paper

7
Integral X 60 — [RHSS21]
Zero-sum X 18 18.00 [Tod15]

Limited-birthday X 34 ≥ 37.14 This paper

Forgeries

Primitive # Rounds Target Scenario Type Complexity Ref.(log2)

Ascon-128

3/12 Finalization Nonce-respecting Differential 34 [DEMS15]
Finalization Nonce-respecting Differential 32.76 This paper

4/12
Finalization Nonce-respecting Differential 102 [DEMS15]
Finalization Nonce-respecting Differential 96.61 This paper
Finalization Nonce-misuse Cube tester 9 [LZWW17]

5/12 Finalization Nonce-misuse Cube tester 17 [LZWW17]
6/12 Finalization Nonce-misuse Cube tester 33 [LZWW17]

Ascon-128a 3/12 Iteration Nonce-respecting Differential 117 This paper
Finalization Nonce-respecting Differential 20 This paper

Collision attacks

Primitive # rounds Complexity Ref.(log2)
Ascon-Hash (Ascon-Hasha) 2/12 (2/8) 103 This paper
Ascon-Hash (Ascon-Hasha) 2/12 (2/8) 125 [ZDW19]
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Outline. In Section 2, we briefly describe Ascon and some notations that will be used
throughout the paper. In Section 3, we recall the first relevant works that inspired us
to select CP as our preferred automated tool and the way to employ CP to find good
differential characteristics. We then explain our choice of CP solver and how we model
Ascon permutation to find differential characteristics. In Section 4, we explain how
one can build limited-birthday distinguishers and rectangle distinguishers for the Ascon
permutation using characteristics from our CP tools. In Section 5, we use our CP tool to
generate special differential characteristics for forgery attacks on reduced-round Ascon-128
and Ascon-128a. In Section 6, we use a differential characteristic generated to improve
the attack on reduced-round Ascon-Hash (Ascon-Hasha). Lastly, we draw conclusions
and identify future works in Section 7.

2 Preliminaries

2.1 Differential cryptanalysis
Differential cryptanalysis was first proposed by Eli Biham and Adi Shamir in 1991 to
tackle DES-like cryptosystem [BS90,BS91]. It is a form of chosen-plaintext attack where
the attacker gets to query multiple pairs of plaintexts with a certain input difference and
aims to observe a certain output difference. To measure whether an attack is feasible or
more generally its complexity cost, one needs to evaluate the probability of the differential
or the differential characteristics. Let f : 2m → 2n be a vectorial Boolean function from m
bits to n bits. Then, the differential probability from an input difference ∆in to an output
difference ∆out is given by

P(∆in → ∆out) = #{x|f(x)⊕ f(x⊕∆in) = ∆out}
2m

In the case of a cryptographic primitive using a Substitution box, or Sbox, one important
tool in differential cryptanalysis is the Difference Distribution Table (DDT). This helps to
record the probabilities P(∆in → ∆out) in a table format for all possible ∆in and ∆out. In
the case of searching for differential characteristics, we can refer to the DDT to look for
possible (good) differential transitions through the Sboxes.

2.2 A brief description of the Ascon family [DEMS21a]
Overview. The Ascon family of authenticated encryption schemes uses a sponge duplex
construction with a key, k, of length 128 bits. In the ongoing NIST lightweight cryptography
competition, the designers recommended two instances of the family, namely Ascon-128
and Ascon-128a. The main differences between the two are that Ascon-128 has 64-bit
data block which is also known as the rate part, with b = 6 rounds of a permutation p (see
Figure 1) whereas Ascon-128a has a 128-bit data block, with b = 8 rounds of permutation
p. In both instances, the state and the tag sizes are 320 bits and 128 bits respectively. The
number of permutation rounds for initialization and finalization is a = 12. In Figure 1, we
show the encryption operation of the Ascon design.

Permutation. The permutation, p, has three sub-functions, namely: the addition of
constants (pC), the substitution layer (pS) and the linear diffusion layer (pL). Since we
are focusing on differential cryptanalysis in this paper, the effects from pC can be ignored
for most parts. The internal state can be visualized as a (5 × 64)-bit array with the
rate part at row 0 and rows 0 & 1 for Ascon-128 and Ascon-128a respectively. The
function pS applies 64 identical parallel 5-bit Sboxes on each column of the array. pL
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Figure 1: Encryption in Ascon.

occurs independently in each row; viewing the rth row as a 64-bit word, wi, each word
being replaced by the XOR of three rotated values of the word:

w0 ← w0 ⊕ (w0 ≫ 19)⊕ (w0 ≫ 28)
w1 ← w1 ⊕ (w1 ≫ 61)⊕ (w1 ≫ 39)
w2 ← w2 ⊕ (w2 ≫ 1)⊕ (w2 ≫ 6)
w3 ← w3 ⊕ (w3 ≫ 10)⊕ (w3 ≫ 17)
w4 ← w4 ⊕ (w4 ≫ 7)⊕ (w4 ≫ 41)

The Algebraic Normal Form (ANF) of the Sbox, is given by

y0 = x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x1x2 ⊕ x1x4

y1 = x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3

y2 = x1 ⊕ x2 ⊕ x4 ⊕ x3x4 ⊕ 1
y3 = x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x0x3 ⊕ x0x4

y4 = x1 ⊕ x3 ⊕ x4 ⊕ x0x1 ⊕ x1x4

Note that in this paper, we will start the round count from 0. Thus, the “first” round
refers to the 0th round. The 0th (63rd) Sbox refers to the 5 MSB (LSB) from each word in
that round. The ith Sbox from round n will be referred as Sn

i . The bit at round n, row r
and column c will be represented as sn

r,c. We refer to [DEMS19] for more information on
the Ascon authenticated encryption (AE) scheme.

3 Using CP to find differential characteristics
3.1 Existing heuristics to find linear characteristics
In [DEM15], the authors created a heuristic tool to find linear characteristics, mainly
with applications to many candidates of the CAESAR competition, including the Ascon
permutation. We provide a brief summary of the guess-and-determine search algorithm:

1. Choose a partial characteristic as a starting point. This may come from some other
algorithms or the cryptanalyst’s intuition.

2. Choose a guessable item X ′ and fix it to be a valid guess x′ based on the search
strategy, where X ′ can be a single bit or an Sbox. Then, based on the guess x′,
propagate through X ′ neighboring bits through various rounds. This may fix some
other bits in the process or it may lead to a contradiction which indicates that x′
cannot be chosen at this point as it will lead to an impossible transition.

3. If fixing X ′ = x′ does not cause a contradiction, continue to choose another guessable
item depending on the search strategy.
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4. If fixing X ′ = x′ causes a contradiction, we switch to another valid guess for X ′. If
no valid guess is available for X ′, backtrack to the item we guessed before X ′ and
choose another valid guess for it.

5. If all the bits are fixed in the end, a linear characteristic is obtained, else the
characteristic at the starting point is invalid.

Depending on the search strategy, the algorithm can be restarted after several runs. While
this tool is used to find linear characteristics, this guess-and-determine framework can be
used for finding different characteristics as well. We find this algorithm to be very similar
to the inner workings of the heuristics that most CP solvers employ. Thus, we decided to
use CP to simulate this type of dedicated heuristic tool.

3.2 A brief introduction to CP
Constraint programming (CP) is a declarative framework, in which the programmer
describes the problem and leaves the resolution to a solver. The problem is described
in terms of variables on given domains, which are given values by the solver during the
resolution. These variables are linked together by constraints, which correspond to rules
the solver must follow. Finally, an objective function to be maximized or minimized
can be defined, otherwise, it can also be a satisfaction problem, finding all possible
solutions. Cryptanalysis problems, such as the search for differential characteristics, are
easily modeled with variables representing the characteristic itself, constraints enforcing
the propagation rules and an objective function maximizing the overall probability. Other
declarative frameworks, such as MILP [SHW+14] and SMT [AK18] are frequently used for
similar problems. While there is currently no definitive consensus on which framework is
the fastest [SGL+17], for the purpose of this work we will focus on CP. One particular
advantage of CP that we rely heavily on is its support for table constraints: Let x, y, z be
3 variables, and T be a list of allowed values for x, y, z, then Table([x, y, z], T ) enforces the
constraint that the triplet, x, y, z can only take up one of the values listed in T . This is
particularly useful to represent non-linear transitions. Furthermore, CP modeling languages
such as MiniZinc allow for a fine-grained definition of search heuristics, which have a
great impact on the resolution speed. These heuristics are composed of variable selection
heuristics, defining the order in which the variables are considered by the solver, and value
selection heuristics, defining which value to try first for the variables. For cryptanalysis
problems, a logical choice for value selection is to start with 0, since characteristics with
high probability tend to have low numbers of active positions.

The first application of CP to the search of differential characteristics was [GMS16],
where the authors use CP to find optimal related-key differential characteristics on the AES
cipher faster than previous works. The authors exhibited a 4-round related-key differential
characteristic that was better than the one previously thought to be optimal. The search
is decomposed into two parts, following the method applied in previous work: in a first
step, the word variables are abstracted to bits (1 for a non-zero word, 0 otherwise), and a
solver is used to find truncated characteristics with a minimal number of active Sboxes.
These characteristics are then checked in a second step, where a solver attempts to assign
non-zero byte values to the positions of the active words found in step 1. Solutions that
pass step 1, but not step 2, are referred to as inconsistent. The model contains a more
advanced constraints on linear incompatibilities in step 1, effectively filtering out most of
the inconsistent solutions. In [GLMS18], the authors showed that the resolution speed for
this problem could sometimes be improved by decomposing step 1 into independent sub-
problems, defined by the repartition of the active Sboxes per round. Finally, in [GLMS20],
the same authors proposed an extended model, with more advanced filtering of inconsistent
solutions in step 1 by exploiting the linear parts of the key schedule.
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3.3 CP modeling
Most of the research on CP models for differential characteristics focus on word-oriented
block ciphers, rather than ciphers with a bit-oriented linear layer such as Ascon. While
the general modeling techniques we used are rather straightforward and derived from
techniques used for word-based ciphers, tackling the large state size of Ascon is challenging.

As mentioned in Section 3.1, we find the strategies used in the guess-and-determine
algorithm to be very similar to that of CP. Thus, in order to automate the process, we
decided to model the search for differential characteristics in Ascon permutation into a CP
problem. Then we use CP solvers to find good differential characteristics. The advantages
of doing so are clear: a cipher can be very easily modeled (saving cryptanalyst’s time and
reducing the risk of having incorrect results), we can tap into the vast number of strategies
given by various CP solvers. The language we chose for modelling was MiniZinc [NSB+07].
We have run our program with various solvers, including Chuffed [CSS+], OR-tools [PF],
choco [PFL16] and Gecode [STL19]. Since our problem has a large search space, the
solvers cannot finish searching the entire space in practical time. Thus, the efficiency of
the solver is crucial. The efficiency of a solver in solving a problem varies depending on
the model and problem. Eventually, we decided to go with Chuffed as it returns the best
results faster than the other solvers for some of the test cases we had. We note that in this
section, we did not obtain better differential characteristics than what the Ascon designers
found, but we propose a new and easier method for finding a differential characteristic for
the Ascon permutation. In the following paragraphs, we will explain our model of Ascon
in CP. To encourage the research into CP methods, we have provided our codes (including
the model) at https://git.io/J0AM9.

During the development of our models, we experimented with several modeling choices
that did not result in better performances. Some of our previous choices include using a
combination of the Ascon and its inverse permutation as well as representing the DDT
using table constraints with all integers. However, these models have some issues. Firstly,
p−1

L has much higher diffusion capabilities than pL, causing each constraint to involve more
variables and therefore more branches in the search tree. Next, since MiniZinc does not
support bitwise operations such as rotations and XOR on integer variables, we have to
convert between the integers and their binary representation when we have to deal with
pL. This slows down the search process. Thus, the choice of using a binary representation
for all operations is preferred, despite the large state required as we do not have to convert
between integer and its binary representation. The only exception is the probabilities for
the Sbox representation. Since we do not need to use them for any binary operations, we
retain them in integer form.

Objective function. We consider probability variables prn,i representing the negative
base 2 logarithm of the transition probability through the Sbox for all round n and Sbox
position i. Our objective function is therefore

Minimize
∑
n,i

prn,i.

State. In round n of Ascon permutation, we have two 2D arrays to represent the state
before-substitution (BSn) and after-substitution (ASn) respectively. The pS layer occurs
from BSn to ASn and the pL layer is performed from ASn to BSn+1.

pS computation. We represent the DDT of the Sbox as a list of valid tuples, with
dimension of 317× 11, with each row containing a possible Sbox transition (∆x → ∆y)
where P(∆x → ∆y) > 0. We represent ∆x and ∆y in their binary form, and the probability
as a negative log2: x[0..4],y[0..4],-log2(P(∆x → ∆y). We then enforce the Sbox

https://git.io/J0AM9
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transitions using a table constraint, for all rounds n and Sbox position i (where BSn,i and
ASn,i are 5-bit arrays):

Table([BSn,i||ASn,i||prn,i], DDT)

For instance, the differential transition, 3→ 1 has a probability of 2−3 and thus will
be represented as a row in the DDT as [0,0,0,1,1,0,0,0,0,1,3].

pL computation. In the linear layer, we simply introduce a function, rRot and a predicate
xor4. Note that in this description, a word refers to a single row in the Ascon state, i.e.
a 1D array with 64 bits. rRot takes in a word w and an integer rot_value and returns w
rotated by rot_value to the right. xor4 takes in 4 words w0,w1,w2,op and checks if the
sum of w0[i],w1[i],w2[i],op[i] is 0, 2 or 4 for all i ∈ {0..63}. This ensures that the
output word op = w0 ⊕ w1 ⊕ w2. Next, we can simply apply the function and predicate as
per the operations described for pL in Section 2.2. As a concrete example, the permutation
for the first row is represented as such:

constraint forall (n in 0..N-1) ( let {
array[0..63] of var 0..1:w0 = rRot(array1d(0..63,

[AS[n,0,c]|c in 0..63]),19),
array[0..63] of var 0..1:w1 = rRot(array1d(0..63,

[AS[n,0,c]|c in 0..63]),28),
array[0..63] of var 0..1:w2 = array1d(0..63,[AS[n,0,c]|c in 0..63]),
array[0..63] of var 0..1:op = array1d(0..63,[BS[n+1,0,c]|c in 0..63]) }
in xor4(w0, w1, w2, op) );

3.4 Search strategy and additional constraints
We would like to highlight that the search strategy is extremely crucial in reducing the
number of steps taken per branch. By selecting a good condition as a branch, we can
eliminate paths that may not lead to good characteristics quicker, thereby resulting in a
more efficient search progression. Most of the solvers support various search strategies and
in this paper, we are focusing on the search strategy we used for the solver Chuffed.

Initial experiments using naive search strategy1 were insufficient to obtain good charac-
teristics within a reasonable time (compared to the characteristics found by the designers),
so we focused our effort on finding search strategies that permit the solver to find good
results. We have also tried to start the search by prioritizing the array prn,i first followed
by the values of BSn,i and ASn,i. However, the improvements obtained are still not as
good as desired.

The best search strategy we have come up with followed closely with the intuition of
how the best characteristic should look like: in general, the best differential characteristics
are constructed with just a few active Sboxes in the middle rounds and spread to more
active Sboxes at the front and back of the characteristic, we would like our solver to search
in that similar fashion. Thus, we would limit the number of active Sboxes in the middle
rounds and start our search from the middle round. However, one consideration to take
note of would be that the inverse linear layer of the Ascon permutation has more diffusion
as compared to that of the forward direction, causing the number of active Sboxes to
increase significantly more in the backward direction compared to the forward direction
when comparing the same extension in the total number of rounds. As such, for 4, 5 and 6
rounds of the Ascon permutation, we configure our solver to start the search at round
2. Then, we also limit the number of active Sboxes at round 1. This ensures the middle
round has a small number of active Sboxes and the backward direction does not explode in

1Chuffed has a naive based strategy that relies on activity-based search
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terms of number of active Sboxes in round 1. Next, after searching at round 2 and fixing
the Sboxes, our configuration will force the solver to search for active Sboxes at round
1, 0, 3 in that order. We do this by adding additional constraints which retrieve the number
of active Sboxes at each round. Once a characteristic has been found, the probability is
evaluated for the maximum. To ensure that we have randomization and so as to favor
high probability characteristics, the variable selection is set to random_order and value
selection is set to indomain_min (this ensures that we try out the inactive Sboxes first).
In addition to that, we also restart the search after every 10000 nodes. Concretely, our
search strategy for 4 rounds is as follows:

search_ann = seq_search([
int_search(row(sboxes,2), random_order, indomain_min, complete),
int_search(row(sboxes,1), random_order, indomain_min, complete),
int_search(row(sboxes,0), random_order, indomain_min, complete),
int_search(row(sboxes,3), random_order, indomain_min, complete),
int_search(array1d(prn,i), occurrence, indomain_min, complete)]);

where sboxes is an array showing the positions of active sboxes and occurrence helps to
find the variable with the smallest domain. To come up with a generic framework and
reduce the search space, we use a method similar to that of [GLMS18]. We can generalize
the method for finding differential characteristics using CP as a two-step process:

1. Using just a single linear layer, we find all possible active Sbox transitions (up to
symmetry) that lead to k active Sboxes after one round. We fix the 63rd Sbox to be
active to eliminate most of the symmetry by rotation.

2. Using the full N round permutation model, force round n and n + 1 to have the
transition in Step 1.

Of course, the above method could only work efficiently if Step 1 does not lead to an
explosion in the number of characteristics. Thus, k has to be experimentally tested to
ensure feasibility depending on the cipher.

3.5 CP results
To find differential characteristics for the Ascon permutation, in Step 1 of the method
described in Section 3.4, we set k = 2, 3 and 4 and let it run for all possible transitions;
in Step 2 we tried out for 4, 5, 6 rounds. For Step 1, we can exhaust the total number of
possible transitions: we have the total number of possible transitions at 9, 155, 1776 for
k = 2, 3, 4 respectively. For Step 2, we run the program with a time limit of 1.5 hours for
each possible transition respectively. Note that every possible transition is independent
and thus, they can be run in parallel. The best characteristics obtained can be found in
Table 2. Note that while we did not find better differential characteristics than what was
reported by the designers for rounds 4 and 5, this shows that by using CP, we can achieve
similar results to dedicated heuristic algorithms.

Throughout the rest of this paper, we use variations of this base model to search
differential characteristics with specific properties, by including additional constraints.
These constraints include, for instance, restrictions on the first row for the forgery scenario.
When such modifications are included, they will be described in their corresponding section.

4 Ascon permutation distinguishers
To distinguish a specific permutation P over a random permutation R, we aim to obtain
an algorithm that can detect a certain property with a higher probability for P (or its
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Table 2: The best probabilities obtained using CP with various number of rounds N and
the number k of active Sboxes at round 2. The probabilities are given in their − log2 value.

N
k 2 3 4

4 141 107 127
5 209 190 198
6 > 320 305 > 320

inverse) that an adversary could achieve with a black-box access to R (which we call a
“distinguisher” D for P). The difference in probability is also known as the advantage i.e.

Adv(D) = |Pr[D(P)]− Pr[D(R)]|

Theoretically, a distinguisher will work as long as Adv(D) > 0. However, for practical
reasons (some constant factors not being exactly taken into account), we would like to
have the advantage to be higher than a certain threshold value.

4.1 Distinguishers for unkeyed permutation and keyed permutation
We first propose a categorization for distinguishers. The motivation for doing so comes
from the difference between an unkeyed and keyed permutation. In the case of the former,
such as for hash functions or under the known-key and chosen-key model, we can treat the
cryptographic primitive as a non-black-box: one is allowed to conceive distinguishers that
start-in-the-middle, and then propagate forward and backward in an inside-out fashion,
utilizing the degrees of freedom to reduce as much as possible the computational complexity.
In the case of a keyed permutation, the attacker has to treat the primitive as a black-
box: starting the analysis either from the first or the last round. In most symmetric-key
ciphers, the key is applied before the nonlinear operation, thus making it difficult to utilize
any degree of freedom to reduce the cost. Consequently, comparing these two types of
distinguishers under the umbrella term “distinguishers” is not exactly fair as they are
often useful in different contexts and most of the non-black-box have a much lower cost
compared to black-box distinguishers.

4.2 Obtaining constraints from a differential characteristic
Constraints from pS. To utilize the degrees of freedom, we have to first locate what
are the constraints/equations. Since the only non-linear operation is the substitution
layer, all of the constraints lie within the active Sboxes in the various rounds. These
equations can be obtained by observing how the differences interact with the AND gates
in these Sboxes. For illustration purposes, we propose first an example. Let ∆in and
∆out be the input and output differences of a Sbox respectively. Since the AND gates
are the only non-linear ones, we can propagate the ∆in and ∆out until we obtain the
required difference at the input and output of the AND gates. We will use the input
difference ∆in = 0x6 and output difference ∆out = 0x1 as an example and it is shown in
Figure 2. To describe in detail, we label the AND gates in a vertical order in Figure 2,
the top AND gate being AND0 and the bottom-most AND gate being AND4. For each
AND gate, we call the input with the NOT gate as inp1 and the other to be inp2. Since
P(∆in = 0x6 → ∆out = 0x1) = 2−4, we will expect 4 independent equations. Based
on the inputs and output of an AND gate, linear constraints with respect to the input
bits can be obtained. For instance, AND1 has an active output bit difference which
requires the inactive input bit, inp11, to be equal to 1. Thus, we can deduce a constraint
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x1 ⊕ 1 = 1. For AND0, there are no active input bits which means there is no constraint
here. For AND3, we will need the inputs inp13 and inp23 to have alternate signs. Thus,
inp13 ⊕ inp23 = 1 =⇒ (x3 ⊕ 1)⊕ (x3 ⊕ x4) = 1 =⇒ x4 = 0. Working out the remaining
2 AND gates, we will get the remaining 2 independent equations.

0 = ∆x0

0 = ∆x1
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Figure 2: Ascon Sbox with the propagation of ∆in = 0x6 and ∆out = 0x1

Propagating constraints through pS and pL. Unlike a black-box distinguisher, a non-
black-box distinguisher may start anywhere in the middle. Thus, we have to pick a
particular round (including those in the middle) to spend our degrees of freedom. As the
constraints are in different rounds (depending on where are the active Sboxes), we need to
propagate the constraints to that particular round before spending our degrees of freedom.
Note that we also must ensure that the set of constraints we chose to spend represents
an independent set too. As constraints may not necessarily be linear after propagating
through an Sbox, we have to simplify the computations. For these non-linear constraints,
we propose two methods to resolve them. For constraints involving the same Sbox, we can
spend all 5 bits to fix the entire Sbox; this basically fixes the input/output value such that
the expected difference transition is indeed enforced. Another method is that when we
propagate constraints through the Sboxes, we only keep the linear constraints. For the
linear layer, we can simply apply the changes according to pL.

4.3 Limited-birthday distinguishers for the Ascon permutation
Limited-birthday distinguishers were first introduced in [GP10] to obtain a distinguisher
under the known-key setting for 8-round-reduced AES-128 as well as 8-round-reduced
Grøstl-256. Formally, this distinguisher is built upon the limited-birthday problem (the
attacker is limited in his ability to apply the birthday search): given a l-bit permutation F ,
and Din, Dout ⊆ Fl

2, we would like to generate a pair of inputs (x, x′) where x⊕ x′ ∈ Din

will lead to an output pair (F (x), F (x′)) such that F (x) ⊕ F (x′) ∈ Dout. For an ideal
permutation F , the best complexity for obtaining a right pair is given by [IPS13]:

C(|Din|, |Dout|) = max
{

min
{√

2l+1

|Din|
,

√
2l+1

|Dout|

}
,

2l+1

|Din||Dout|

}
(1)

Black-box limited-birthday distinguisher. To obtain the black-box limited-birthday dis-
tinguisher, we simply take a differential characteristic and allow the single unique output
difference to spread for one more round with probability 1 (i.e. we allow all the possible
differential transitions for all the active Sboxes in the last round). By doing so, we have
|Din| = 1 and |Dout| to depend on the specific characteristic. On the other hand, we have
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to ensure that the resulting cost of the distinguisher is lower than that of the generic
complexity, using Equation 1. We recall that for black-box distinguisher, will not use
degrees of freedom to reduce the computational complexity. Thus, the best distinguisher
will be the one built upon the characteristic with the highest probability. Using CP, with
the search for active Sboxes from round 0, we have obtained a differential characteristic
over 3 rounds with a probability of 2−40 (Table 13). After allowing the output difference
to spread freely for one more round, we obtained a 4-round limited-birthday distinguisher
with |Dout| = 2115. The generic computational cost for generating a pair with a similar
structure is 2102.5 primitive calls. For the 4-round differential characteristic, we are unable
to use the best known characteristic of 2107 as the corresponding generic complexity is
lower than that (when allowing the output difference to develop freely after one round).
Thus, we decided to search for one within the set of results we have obtained from Section 3
and we managed to find another characteristic (LB4.1) with a probability 2−109, while the
corresponding generic complexity is 2230 primitive calls. Note that since we are dealing
with a permutation, we have also searched with the inverse function (i.e. keeping |Dout| = 1
and spread backward). LB4.1 can be found in Appendix B. Unfortunately, we are unable
to get black-box limited-birthday distinguishers for a higher number of rounds due to the
low probabilities of the differential characteristics.

Non-black-box limited-birthday distinguisher. When one is allowed to start from the
middle, the attack complexity will significantly be reduced, being lower than the generic one.
In Figure 3, we provide a pictorial view of how we build our non-black-box limited-birthday
distinguishers. We first consider a differential characteristic on N rounds and then we allow
the input and output differences of the differential characteristic to spread backward (over
b = 1 rounds) and forward (over f = 1 rounds) with probability 1 respectively (similar
to what was conducted in [DGPW12]). In this case, Din and Dout will represent the sets
of possible differences at the start and the end after the spreading of the differences. A
suitable differential characteristic has therefore two requirements. Firstly, it should not
have a high number of active Sboxes at the start, or else the backward diffusion may result
in a large set of Din. Secondly, we would like our active Sboxes to cluster at a single round
(or neighboring rounds) so that we are able to use fewer bits on the constraints. Suppose
we choose to spend the degrees of freedom at the nth round, the constraints at round
n′ 6= n will require more than one bit to control. The number of bits required increases as
|n− n′| increases. While Ascon’s designers have provided good differential characteristics
in [DEMS19], they might not the best for constructing limited-birthday distinguishers.
The designers of Ascon gave a 4-round and 5-round differential paths that have a high
number of active Sboxes at the first and last round, which increases the average number of
bits required to fix a constraint. Thus, to maximize the number of constraints to control,
during the search for characteristics using CP, we choose to remove the idea of starting
from the middle, but instead to just start the search at round 0 instead. This allows
the search to fix the smallest number of active Sboxes at round 0, which usually implies
that there are more active Sboxes at the end of the characteristic. The characteristic
using this search method usually satisfies the criteria we want. We obtained 2, 3, 4 and
5-round differential characteristics that can be found in Appendix B. To differentiate these
characteristics from the best ones, we will call them LBn where n is the number of rounds.
For each of these differential characteristics, we extend forward and backward by one round
with probability 1 (allowing the differences to spread freely), to form limited-birthday
distinguishers for 4, 5, 6 and 7 rounds.

Choosing the bit/Sbox to fix the constraint. As mentioned previously, we have to
propagate some of the constraints to a particular chosen round, n∗. As we propagate
constraints through pS and pL, the number of bits at n∗ influencing the constraints increases.
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After obtaining the differential characteristic, we exhaust all possible positions and found
out that choosing to spend the degrees of freedom at round n− 3

2 for a n-round differential
characteristic results in the best distinguisher. That is, if P = pL ◦ pS ◦ pAC ◦ pL ◦ P ′,
the position is at the end of P ′. Since we need to ensure the constraints are independent,
also we need a strategy to choose a sequence of what constraints to be fixed first. In our
case, since n∗ = N − 3

2 , we follow a general way to compute. First, we fix the entire Sbox
for those constraints at round n∗ − 1

2 . Next, we list the remaining constraints in a list,
prioritized based on the round number (we favor n∗ + 1

2 over round < n∗ − 1
2 ) followed by

the number of linear bits or Sboxes that we are still free to change. In Appendix A, we
show an example to illustrate this strategy.

Computing the advantage over an ideal permutation. After spreading the differential
characteristic forward and backward, we can evaluate the size of Din and Dout and thus,
compute the generic complexity using Equation 1. We can compare it to that of the
limited-birthday distinguisher: 2d/P(differential characteristic), where d is the number of
independent constraints that we have fixed. Details of the distinguishers’ parameters and
generic complexities are summarized in Table 3.

Table 3: Parameters of the limited-birthday distinguishers for Ascon permutation (320
bits).

Trail # Rounds |Din| |Dout| Comp. Generic comp.
(log2) (log2) (log2) (log2)

LB2 4 169.98 32 1 119.02
non LB3 5 169.98 115 2 75.51

black-box LB4 6 169.98 175 9 73
LB5 7 213.42 180 53 70.5

black-box LB3 4 0 115 40 206
LB4.1 5 0 91 109 230

Din Dout

Round 0

pAC pS pL

Round 1

pAC pS pL . . .

Round n− 2

pAC pS pL

Round n− 1

pAC pS pL

b
rounds

f
rounds

SP

Figure 3: An illustration of how we construct our non-black-box limited-birthday: after
obtaining a differential characteristic, we allow it to spread backward and forward by
b and f rounds respectively with probability 1. SP indicates the starting point of our
limited-birthday distinguisher.

Improved limited-birthday distinguishers. As the gap of the limited-birthday distin-
guishers and their respective generic complexity is large, we can explore the possibility of
spreading the differences forward by 2 rounds (i.e.f = 2). However, the computational
cost required to accurately calculate the all the possible differences is high. Thus, we
decided to find a lower bound by estimating the number of impossible differences (an
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upper bound on |Dout|). In order to do so, we keep track of the bits that are inactive. For
example, with the input difference of 0x04, the possible Sbox output differences are 0x06,
0x0e, 0x16 and 0x1e. Thus, the active bit positions can be located by the OR operation,
OR(0x06, 0x0e, 0x16, 0x1e) = 0x1e. In other words, the LSB is definitely inactive. In the
next pS , we can compute the impossible differences. For example, given the active bit
positions 0x1c, the possible input differences are 0x04, 0x08, 0x0c, 0x10, 0x14, 0x18, 0x1c.
According to the DDT, the output differences 0x00, 0x02, 0x11 and 013 are impossible for
any of those input differences. Changing the operation of XOR to OR in pL can simulate
the spread of active bits for the linear layer. Using this technique, we can improve most of
the limited-birthday distinguishers. Some of the characteristics we previously used are no
longer the best characteristic for this particular technique and thus, we did a search for
one within the set of results we have from Section 3. The summary of the results can be
found in Table 4 and the characteristics can be found in Appendix B.

Table 4: Parameters of the improved limited-birthday distinguishers on the Ascon
permutation (320 bits).

Trail # Rounds |Din| |Dout| Comp. Generic comp.
(log2) (log2) (log2) (log2)

non LB2 5 169.98 116.19 1 75.51

black-box LB3 6 169.98 ≤ 290.64 2 ≥ 15.18
LB4.2 7 213.42 ≤ 246.72 34 ≥ 37.14

black-box LB2 4 0 ≤ 116.19 8 ≥ 204.81
LB3.1 5 0 ≤ 160.77 65 ≥ 160.23

4.4 Rectangle distinguishers for the Ascon permutation
Boomerang distinguishers [Wag99] can be seen as a variant of the differential distinguisher.
The idea is to use two short differential characteristics instead of a single long one to cover
the rounds of a function. Let E be a l-bit permutation and suppose it can be broken
down into two independent parts E = E1 ◦ E0. Now, suppose again that there exists a
differential characteristic for E0, TE0 (upper characteristic) with difference propagation
α→ β with a probability of p, and a characteristic for E1, TE1 (lower characteristic) with
difference propagation γ → δ with a probability of q. Assuming that pq � 2−l/2, then the
following algorithm can distinguish E from a random permutation:

1. Generate (pq)−2 unique plaintext pairs (P0, P1) such that P1 = P0 ⊕ α.
2. For each plaintext pair (P0, P1), compute C0 = E(P0) and C1 = E(P1)
3. Compute C2 = C0 ⊕ δ and C3 = C1 ⊕ δ
4. Ask for the decryption of C2 and C3, i.e. P2 = E−1(C2) and P3 = E−1(C3)
5. If P2 ⊕ P3 = α, return “E”
6. If all pq−2 pairs do not satisfy P2 ⊕ P3 = α, return “random”

Assuming that the characteristics TE0 and TE1 are independent, the boomerang attack
will succeed with a probability of (pq)2. Rectangle attack [BDK01] is an improvement
over the original boomerang attack. Instead of using just a single characteristic for E0,
one can use multiple characteristics that all start with a difference of α but that end with
different output differences. Similarly, for E1, we use characteristics that have different
input differences but with a single output difference δ. The probability evaluation is usually
more complicated as there are many characteristics involved. For characteristics that are
not computationally verifiable, probability estimation can still be done experimentally by
only considering the last few rounds of the upper characteristic and the first few rounds of
the lower characteristic.
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Construction of black-box rectangle distinguishers for the Ascon permutation. To
create rectangle distinguishers for the Ascon permutation, we use LB3. For the upper
characteristic, we use the first 2 rounds of LB3≪31 (left rotation of LB3 by 31 bit positions)
and for the lower characteristic, we just use LB3 as it is. Together, they form a 5-round
rectangle distinguisher for the Ascon permutation. For completeness, we give the entire
characteristic in Table 25 in Appendix E. To verify the compatibility of the characteristics
as well as to get a better probability estimation, we experimentally verified a shortened
sub-characteristic: from the start of the upper characteristic to the second round of the
lower characteristic. After searching for 1000 right quartets, the average number of quartets
tested was 12177 ≈ 213.57. Thus, we estimate that the 5-round boomerang distinguisher
has a complexity of 4 · 213.57 · 232·2 = 279.57 primitive calls. Note that this also means that
we have a rectangle distinguisher on 4 rounds with 4 · 213.57 = 215.57 primitive calls. The
reason for the rotation value is simple: since a differential characteristic for the Ascon
permutation can be rotated without affecting the probability of the characteristic, we have
up to 64 different possible combinations to form our upper and lower characteristic. We
exhausted all the possibilities experimentally and took the best among them with regards
to their respective probability.

Construction of non-black-box rectangle distinguishers. For non-black-box distinguish-
ers, we use the same upper and lower characteristic as the one in the black-box. For the
4-round non-black-box rectangle distinguisher, we choose to start at round 3. This allows
us to control all the 3 × 2 constraints in round 3. We choose not to control the linear
constraint from round 2 as it has the ladder switch effect [BK09] (i.e. probability 1). This
reduces the cost of the distinguisher from 215.57 to 29.57 primitive calls. For the 5-round
non-black-box rectangle distinguisher, we choose to start at round 4. This allows us to
control 32 constraints in round 4 and 3 linear constraints (1 constraint per Sbox) in round
3. This reduces the cost from 279.57 to 244.57 primitive calls. We show a pictorial view of
the starting point for the distinguisher in Figure 4.

4.5 Remarks on zero-sum distinguishers
The zero-sum property was first proposed by Aumasson and Meier in [AM] to construct
a distinguisher for the permutation used in the KECCAK hash function. For a given
permutation F : Fn

2 → Fn
2 , the idea is to create a set of inputs, Z, such that⊕

zi∈Z

zi =
⊕
zi∈Z

F (zi) = 0

There exists a stronger notion of zero-sum distinguisher called the zero-sum partitions
[BC10b]: for a permutation function F : Fn

2 → Fn
2 , we want to find 2n−k disjoint sets,

Z0, Z1, ..., Zn−k ∈ Fn
2 such that

•
⋃

j∈{0...2n−k}
Zj = Fn

2

•
⊕

zi∈Zj

zi =
⊕

zi∈Zj

F (zi) = 0, ∀ j ∈ {0..2n−k}

Zero-sum distinguishers will have a complexity directly linked to the algebraic degree of
F . In [BCC11], a very expensive zero-sum distinguisher on full round KECCAK was given.
Since the algebraic degrees of the Sboxes in KECCAK and Ascon are the same (forward:
2, backward: 3), one can expect a similar cost for a zero-sum distinguisher against Ascon
permutation.

While there is a zero-sum distinguisher proposed on 12-round Ascon permutation
in [DEMS15], we can use the same calculations to get an estimated distinguisher for the
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Upper characteristic Lower characteristic

Round 0

Round 1

Round 2

Round 3

Round 4 32 constraints

SP4

SP5

Figure 4: An illustration of the starting points for non-black-box rectangle distinguisher
for 4 and 5 rounds. The red and blue bars show the rough position of the active Sboxes
for the upper characteristic and lower characteristic respectively. The starting point for
the 4-round distinguisher, (SP4), fixes 6 (linear) constraints for the 3 Sboxes in round 3
while the starting point for the 5-round distinguisher, (SP5), fixes 3 (linear) constraints
for the 3 Sboxes in round 3 and 32 (linear) constraints in round 4.

other numbers of reduced rounds. In fact, using Algorithm 2 in [Tod15], we can see that a
zero-sum partition can be obtained as well by starting in the middle.2

The estimated costs are found in Table 5 for 4, 5, 6 and 7 rounds, which allows us to
have a fair comparison with our distinguishers. The best distinguisher for each number
of rounds is underlined. We have experimentally verified that they do work for their
respective complexities as well.

Single zero-sum distinguishers. While these distinguishers have low complexities, the
advantage over the generic attack is extremely small. The generic complexity is measured
using the XHASH attack [BM97], and further discussed in [WGR18]. We can try to
estimate the cost of finding such a zero-sum for a random permutation. From [WGR18],
the cost can be approximated by M + 2m+ 10, where M is the size of the set of plaintext

2Note that a set with the division property of Dn
2 is equivalent to having a single zero-sum. Thus, by

starting in the middle, the resulting set has the zero-sum property. The construction can be easily adapted
to form zero-sum partitions.
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structure and m is the state size. In other words, the advantage of a zero-sum distinguisher
on a real permutation as compared to a random permutation is 2m + 10. Thus, as the
size of the set increases, the relative advantage of the zero-sum distinguishers diminishes.
When the size of the set is 2k with k ≥ 10 for Ascon, the advantage falls under a factor
of 2.

Zero-sum partition distinguishers. The method used to construct the zero-sum set can
actually construct a zero-sum partition easily (see Proposition 2 of [BC10b]). They
have also provided a generic algorithm for finding a zero-sum partition of size 2k. To
our knowledge, this is the best known algorithm for finding a zero-sum partition and
the complexity is O(2n). However, this does not mean that the algorithm is the best
possible one. This is in contrary to limited-birthday distinguishers where a lower bound is
proven in [IPS13]. Furthermore, the verification for a full zero-sum partition requires the
computation of 2n−k × 2k = 2n inputs as well. This might be overcome with a sampling
of the final partition by the verifier, but it renders the advantage of zero-sum partitions
compared to potential generic attacks quite unclear at the time of writing. Thus, to have
a fair comparison of the generic complexities of zero-sum distinguishers, we are comparing
against the single zero-sum distinguishers in Table 6.

Table 5: Number of bits required to vary in the zero-sum distinguishers using the same
computations as in [DEM15]. “One free round” refers to the technique from Boura et
al. [BC10a] and used in [DEM15] to add one round in the middle of the basic distinguisher.
“Division property” was calculated based on the Algorithm 2 from [Tod15].

No. of rounds 3 4 5 6 7
Basic distinguisher 5 9 10 17 28
One free round 5 10 10 20

Division property 5 10 10 18

4.6 Results on distinguishers
In Table 6, we have listed our limited-birthday and rectangle distinguishers with their
complexities alongside other known distinguishers for the Ascon permutation. We remark
that compared to other non-black-box distinguishers on the same number of rounds of the
Ascon permutation, our limited-birthday distinguishers have the smallest complexity for
4, 5 and 6 rounds. The parameters and generic complexities are given in Table 3. Some
conforming pairs for the limited-birthday distinguishers (except LB3.1) and 4 rounds of
rectangle distinguisher can be found in Appendix C.

5 Forgery attacks on Ascon-128 and Ascon-128a
As Ascon is an AE family, authenticity is one of the key requirements for the schemes to
be secure. In this section, we present some forgery attacks against the (reduced-round)
iteration as well as finalization phases of the AE schemes. We rely again on our new
CP model to search for differential paths with additional constraints for this particular
scenario.

5.1 Additional constraints to the CP model
During the iteration phase, one can only access the rate part of the duplex construction to
get a forgery. For Ascon-128 and Ascon-128a, the rate part refers to the first row of
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Table 6: Summary of distinguishers against the Ascon permutation. The reported
complexities in this table are expressed in terms of the number of primitive calls, which
explains some of the small variations one can observe in some numbers when compared to
the original values.

Black-box distinguishers

# rounds Type Complexity Generic comp. Ref.(log2) (log2)

4

Diff.-Linear 2 — [DEMS15]
Rectangle 15.57 320 This paper
Integral 5 — [RHSS21]

Differential 108 320 [DEMS21b]
Linear 101 — [DEMS15]

Limited-birthday 8 ≥ 204.81 This paper

5

Rectangle 79.57 320 This paper
Integral 16 — [RHSS21]

Differential 191* 320 [DEMS21b]
Linear 189 — [DEMS15]

Limited-birthday 65 160.23 This paper
Truncated Diff. 108 — [Tez16]

6 Integral 31 — [RHSS21]
7 Integral 60 — [RHSS21]

Non-black-box distinguishers

# rounds Type Complexity Generic comp. Ref.(log2) (log2)

4
Rectangle 9.57 320 This paper
Zero-sum 5 9.41** [DEMS15]

Limited-birthday 1 119 This paper

5 Rectangle 44.57 320 This paper
Zero-sum 10 10.7** [DEMS15]

Limited-birthday 1 75.51 This paper

6 Zero-sum 10 10.7** [DEMS15]
Limited-birthday 2 ≥ 15.18 This paper

7 Zero-sum 18 18.00* [Tod15]
Limited-birthday 34 ≥ 37.14 This paper

* We have confirmed with the authors that their 2−193 reported differential path can be optimized
to 2−190 with a better selection of some Sbox differential transitions.
** The generic complexities computed for the zero-sum distinguishers are for the single zero-sum
distinguisher. More explanation can be found in Section 4.5.

the state, and the first and second rows respectively. In our tool, we limit the search to
just a single block of pb and hope to inject a difference in the rate part of the input and
output of that block. To do so, we add the following constraint to our CP model (we use
Ascon-128 as an example):

constraint sum (c in 0..63, r in 1..4) (BS[0,r,c]) = 0;
constraint sum (c in 0..63, r in 1..4) (AS[N,r,c]) = 0;
constraint Xor3(stateend[0,0,0..63],
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stateend[0,4,0..63],statestart[0,0,0..63]);
constraint forall(i in 0..63) (stateend[0,1,i] = statestart[0,0,i]);
constraint forall(i in 0..63) (stateend[0,2,i] = 0);

The first and second constraints ensure that there is no difference in the third to fifth
row for the input and output of the permutation block as we do not have access to the
capacity. The remaining constraints are only for Ascon-128 and they follow Observation
1 from [ZDW19]. In addition to that, we construct a new DDT for the first (resp. last)
round: we can only consider differences that start (resp. end) with 0 or 16 for Ascon-128
(0, 8, 16, 24 for Ascon-128a). As for the search strategy, we decided to not just start the
search at a single particular round only but to try all possible permutations. For instance,
for n = 2, we use 2! strategies: search for active Sboxes in the first round, followed by the
second round. The second one starts the search at the second round, followed by the first.
For n = 3 and 4 we have 3! and 4! strategies. For each instance, we allow it to run for 5
days.

For the iteration phase, we can then simply perform a forgery attack as follows:

1. Generate a message, m = (m0,m1)
2. Ask the oracle for the encryption of m and obtain the corresponding tag T
3. Apply the difference to m0 and m1 to get m′0 and m′1 respectively
4. Ask the oracle for the decryption of (m′0,m′1) with the tag T
5. If the oracle returns ⊥, repeat from Step 1 with a different message

For the finalization phase, we change the formulation of the DDT for the last round.
Since we are only interested in the last two rows of the state (namely rows 3 and 4) as
these are the bits that will contribute to the final tag T . Thus, for each Sbox, we can
combine the probabilities for the differential transitions with the same input difference
and the same output difference truncated to the last two bits. For instance, we have

P(0x4→ 0x6) = 2−2

P(0x4→ 0xe) = 2−2

P(0x4→ 0x16) = 2−2

P(0x4→ 0x1e) = 2−2

These can be combined to a single transition for the last round: P(0x4→ 0b***10) = 1.
We can do the same for the rest of the transition and a new table constraint for it.

The attack on the finalization is then similar to that of the iteration phase:

1. Generate a message, m
2. Ask the oracle for the encryption of m and obtain the corresponding tag T
3. Apply the planned difference to m and T to get m′ and T ′ respectively
4. Ask the oracle for the decryption of m′ with the tag T ′

5. If the oracle returns ⊥, repeat from Step 1 with a different message

The best characteristics obtained using the CP program can be found in Table 7. Some
of these characteristics we will be using for the attacks.

5.2 Differential improvement by combining differential characteristics
Our CP model is searching for differential characteristics, not differentials. Thus, to
improve the probability of the attack, we can combine differential characteristics with
the same input difference and output (truncated) differences to form a differential. To
achieve this, we first find the best differential characteristic using CP with the additional
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Table 7: Probabilities (in − log2) of the best characteristics found with additional
restrictions on the capacity part of Ascon-128 and Ascon-128a.

Primitive Target 2 rds 3 rds 4 rds

Ascon-128 Iteration 156 231 253
Finalization 10 32 100

Ascon-128a Iteration 44 116 199
Finalization 4 19 100

constraints mentioned above. Next, we take the difference of the first and last round
of the best characteristic and add it as a constraint in the model. We also change our
minimization problem to a satisfaction one: we will enumerate all the possible solutions
to our problem. We also add a lower bound to the probability of the characteristics to
prevent an overwhelming number of solutions.

5.3 Results
Ascon-128. For forgery attacks against the finalization of round-reduced Ascon-128,
the summary of the results can be found in Table 8. The characteristics can be found
in Table 23 and Table 24 in Appendix D for 3 and 4 rounds respectively. Note that the
complexities are expressed in terms of primitive calls. The forgeries for both rounds are
using multiple differential characteristics. For each of these characteristics, we have the
same input difference and output (truncated) difference. For instance, in the case of 4
rounds, we have found 4 characteristics with probability 2−100, 4 characteristics with
probability 2−102, 16 characteristics with probability 2−103, etc. We limited the search at
probability ≥ 2−115, obtaining a total probability of 2−95.61. Note that this exceeds the
recommended limit of processed data blocks for a single key. For 3 rounds, we limited our
search at probability ≥ 2−47 and obtained a total probability of 2−31.76. Since in each
message we have to do 1 encryption and 1 decryption call, the complexity contains an
extra factor of 2.

Ascon-128a. For forgery attacks against the permutation in the iteration phase, we
have found a differential characteristic for 3 rounds with a probability of 2−116. Note that
this also exceeds the limit on the number of processed data blocks for a single key. For
finalization, we have a characteristic with a probability of 2−19 for 3 rounds. The results
are summarized in Table 8. The individual characteristics for the iteration and finalization
phase can be found in Table 22 and Table 21 in Appendix D respectively.

6 Improved two-round collision attacks on Ascon-Hash
In [ZDW19], the authors proposed an attack on 2-round Ascon-Hash with a complexity
of 2125. We will describe below, this attack, but using our differential characteristic. In
their attack, they use a differential characteristic that contains differences only in the
first row at start and end. This characteristic has a probability of 2−199. To find this
characteristic, they first found a 1-round differential characteristic that ends with difference
only located in the first row and satisfying certain other conditions. Then, the target
difference algorithm is used to prepend the first round.

Using the best 2-round characteristic we have found (see Table 7), we have 27 active
sboxes with a probability of 2−54 (54 constraints) in the first round and 28 active sboxes
with a probability of 2−102 in the second round. This characteristic can be found in
Table 26 in Appendix F. Using the same techniques used in [ZDW19], we have a 2-round
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Table 8: Forgery attacks against round-reduced Ascon-128 and Ascon-128a.

Primitive # Rounds Target Scenario Type Complexity Ref.
(log2)

Ascon-128

3/12 Finalization Nonce-respecting Differential 34 [DEMS15]
Finalization Nonce-respecting Differential 32.76 This paper

4/12
Finalization Nonce-respecting Differential 102* [DEMS15]
Finalization Nonce-respecting Differential 96.61* This paper
Finalization Nonce-misuse Cube tester 9 [LZWW17]

5/12 Finalization Nonce-misuse Cube tester 17 [LZWW17]

6/12 Finalization Nonce-misuse Cube tester 33 [LZWW17]

Ascon-128a 3/12 Iteration Nonce-respecting Differential 117* This paper
Finalization Nonce-respecting Differential 20 This paper

* Note that these exceeded the limit on the number of processed data blocks for a single key

attack with a complexity of 2103 of hash computations. The results can be found in Table 9
and the attack procedure is as follows:

1. Generate a total of 292 random 2-block messages (M0, M1). Apply the hash function
and retain all the state values.

2. With a probability of 2−54, a state will satisfy the 54 constraints in the first round
of the characteristic. This means that we expect 238 values (M0, M1) to satisfy it.

3. Append another 2×264 1-block messages, M2 and M ′2 = M2⊕∆in to each of the 238

messages and hash them. This results in a total of 264+38 = 2102 pairs of messages.

4. With a probability of 2−102, a pair of messages will satisfy the constraints for the
second round. Thus, we will have, on average, one message pair that satisfies the
output difference ∆out.

5. Apply a random message block M3 and M ′3 = M3 ⊕ ∆out to the message blocks
selected at the end of Step 4 and one directly obtains a collision.

Complexity. The complexity of the attack procedure above is (2×292)+(2×2102) ≈ 2103

hash function calls.

Table 9: Summary of collision attacks against Ascon-Hash (Ascon-Hasha).

Primitive # rounds Complexity Ref.(log2)
Ascon-Hash (Ascon-Hasha) 2/12 (2/8) 103 This paper
Ascon-Hash (Ascon-Hasha) 2/12 (2/8) 125 [ZDW19]

7 Conclusion
In this paper, we have explored the use of CP to model the Ascon permutation and
used it to find good differential characteristics for various attack scenarios. First, we show
that using CP as a generic automated method can perform as well as dedicated heuristic
search methods when it comes to obtaining good differential characteristics. We could
find the same differential characteristics as the ones found by designers with our simple
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framework which incorporates CP. Unlike MILP, CP does not restrict the formulation to
linear inequalities or integers. This makes it relatively easier to formulate a cipher and
CP’s capabilities can be further explored by using various search strategies and solvers
available.

Using our tool and its parameterization capabilities, we can easily find differential
characteristics that are subjected to some other constraints easily. This allows us to find
characteristics to build our distinguishers as well as collision/forgery attacks with just
minimal changes to the tool. Our non-black-box limited-birthday distinguishers for Ascon
permutation outperform other types of distinguishers for 4, 5 and 6 rounds. With additional
constraints added to our Ascon model, we could also find differential characteristics to
be used for forgery setting for both reduced-round Ascon-128 and Ascon-128a. We
emphasize that our results do not endanger the Ascon design, but they allow to better
understand the natural resistance of Ascon against differential cryptanalysis-based attacks.

CP’s prowess in searching for differential characteristics is evident in the case of Ascon.
In future works, we hope to compare and contrast CP solvers with other automated methods
such as MILP/MIP and SAT solvers’ capabilities to find differential characteristics on
various types of ciphers. This can provide designers and cryptanalysts a good starting
point as to what methods to use first in order to find differential characteristics.
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A Example: 5-round non-black-box limited-birthday distin-
guisher

The 5-round limited-birthday distinguisher is built by extending the 3-round differential
characteristic from Table 13 in Appendix B (LB3) forward and backward with probability
1.

Using the technique discussed above, we can obtain the constraints as shown in Table 10.
Note that we use sn

r,c to represent the rth row and cth column state value at round n.
For this distinguisher, we chose to spend our degrees of freedom at round 1.5, that is
after the pS , but before the pL of round 1. For each constraint in round 2, we can spend
a single bit to fix it. For instance, for the equation s2

2,2 = 0, if we apply pL, we have
s1.5

2,1 ⊕ s1.5
2,2 ⊕ s1.5

2,60 = 0 (we ignore the effects of pAC here). We can fix one or more of these
values to ensure the constraint always holds. For the ones in round 1, we will have to
propagate it through pS . To simplify the computation, we simply fix the active Sboxes
values. For instance, we fix the 18th Sbox at round 1, i.e. bits s1.5

0,18, s
1.5
1,18, s

1.5
2,18, s

1.5
3,18, s

1.5
4,18

such that s1
1,18 = 0 and s1

3,18 = s1
4,18 ⊕ 1 are satisfied.

Table 10: Constraints generated by active Sboxes of LB3.
round constraints

0 s0
0,63 = s0

4,63 ⊕ 1 s0
1,63 = s0

2,63 ⊕ 1

1
s1

1,18 = 0 s1
3,18 = s1

4,18 ⊕ 1
s1

1,27 = 0 s1
3,27 = s1

4,27 ⊕ 1
s1

1,63 = 0 s1
3,63 = s1

4,63 ⊕ 1

2

s2
2,2 = 0 s2

3,2 = 1 s2
0,2 = s2

4,2 ⊕ 1
s2

2,15 = 0 s2
3,15 = 1 s2

0,15 = s2
4,15 ⊕ 1

s2
2,18 = 0 s2

3,18 = 1 s2
0,18 = s2

4,18 ⊕ 1
s2

2,24 = 0 s2
3,24 = 1 s2

0,24 = s2
4,24 ⊕ 1

s2
2,27 = 0 s2

3,27 = 1 s2
0,27 = s2

4,27 ⊕ 1
s2

1,37 = 0 s2
3,37 = s2

4,37 ⊕ 1
s2

2,38 = 0 s2
3,38 = 1 s2

0,38 = s2
4,38 ⊕ 1

s2
1,55 = 0 s2

3,55 = s2
4,55 ⊕ 1

s2
2,57 = 0 s2

3,57 = 1 s2
0,57 = s2

4,57 ⊕ 1
s2

2,60 = 0 s2
3,60 = 1 s2

0,60 = s2
4,60 ⊕ 1

s2
2,63 = 1 s2

3,63 = 1
s2

4,63 = 1 s2
0,63 = s2

1,63 ⊕ 1

For the 2 constraints in the 63rd Sbox in round 0, we can substitute them into the
ANF of the Sbox. We obtain the following equations:

y0 = x2 ⊕ x3 ⊕ x4 ⊕ 1 y1 = 0 y2 = x3x4 ⊕ x4

y3 = x3x4 y4 = x3 ⊕ x4

To maintain everything linear (with respect to the output of the Sbox), we only kept
the second equation (y1 = 0) i.e. we have s0.5

1,63 = 0 and ignore the other independent
equation that is nonlinear. Since the backward diffusion is strong in Ascon permutation,
a total of 33 different Sboxes at round 1 are affecting this constraint. Table 11 shows
all the bits/Sboxes involved for a particular constraint. Note that the bits involved for
each constraint as shown are linearly related to the constraint. For instance, changing
the parity of s1.5

0,2 changes the parity of the constraint s2
0,2 = s2

4,2 ⊕ 1. Similarly, for those
represented using Sboxes, changing the rth bit of the input of an Sbox changes the parity
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of the rth bit in the same Sbox as the constraint. The bits that are in red are the bits we
can use to fix the particular constraint. Note that this selection is not necessarily unique.
All in all, we can fix a total of 39 constraints and thus the probability is 2−1, while the
distinguisher complexity is 22 permutation calls.

Table 11: This table shows the bits involved for each constraint in LB3. sn
r,c represents the

rth row and cth column state value at round n. Sn
v represents all the bits in the vth Sbox

at round n. Note that the bits highlighted in red are the bits we use to fix the particular
constraint.

constraint bits involved constraint bits involved

s1
1,18 = 0

S1.5
18

s2
2,2 = 0 s1.5

2,2, s
1.5
2,1, s

1.5
2,60

s1
3,18 = s1

4,18 ⊕ 1 s2
3,2 = 1 s1.5

3,2, s
1.5
3,56, s

1.5
3,49

s1
1,27 = 0

S1.5
27

s2
2,15 = 0 s1.5

2,15, s
1.5
2,14, s

1.5
2,9

s1
3,27 = s1

4,27 ⊕ 1 s2
3,15 = 1 s1.5

3,15, s
1.5
3,5, s

1.5
3,62

s1
1,63 = 0

S1.5
63

s2
2,18 = 0 s1.5

2,18, s
1.5
2,17, s

1.5
2,12

s1
3,63 = s1

4,63 ⊕ 1 s2
3,18 = 1 s1.5

3,18, s
1.5
3,8, s

1.5
3,1

s2
0,2 = s2

4,2 ⊕ 1 s1.5
0,2, s

1.5
0,47, s

1.5
0,38, s

1.5
4,2, s

1.5
4,59, s

1.5
4,25 s2

2,24 = 0 s1.5
2,24, s

1.5
2,23, s

1.5
2,18

s2
0,15 = s2

4,15 ⊕ 1 s1.5
0,15, s

1.5
0,60, s

1.5
0,51, s

1.5
4,15, s

1.5
4,08, s

1.5
4,38 s2

3,24 = 1 s1.5
3,24, s

1.5
3,14, s

1.5
3,7

s2
0,18 = s2

4,18 ⊕ 1 s1.5
0,18, s

1.5
0,63, s

1.5
0,54, s

1.5
4,18, s

1.5
4,11, s

1.5
4,41 s2

2,27 = 0 s1.5
2,27, s

1.5
2,26, s

1.5
2,21

s2
0,24 = s2

4,24 ⊕ 1 s1.5
0,24, s

1.5
0,5, s

1.5
0,60, s

1.5
4,24, s

1.5
4,17, s

1.5
4,47 s2

3,27 = 1 s1.5
3,27, s

1.5
3,17, s

1.5
3,10

s2
0,27 = s2

4,27 ⊕ 1 s1.5
0,27, s

1.5
0,8, s

1.5
0,63, s

1.5
4,27, s

1.5
4,20, s

1.5
4,50 s2

1,37 = 0 s1.5
1,37, s

1.5
1,40, s

1.5
1,62

s2
3,37 = s2

4,37 ⊕ 1 s1.5
3,37, s

1.5
3,27, s

1.5
3,20, s

1.5
4,37, s

1.5
4,30, s

1.5
4,60 s2

2,38 = 0 s1.5
2,38, s

1.5
2,37, s

1.5
2,32

s2
0,38 = s2

4,38 ⊕ 1 s1.5
0,38, s

1.5
0,19, s

1.5
0,10, s

1.5
4,38, s

1.5
4,31, s

1.5
4,61 s2

3,38 = 1 s1.5
3,38, s

1.5
3,28, s

1.5
3,21

s2
3,55 = s2

4,55 ⊕ 1 s1.5
3,55, s

1.5
3,45, s

1.5
3,38, s

1.5
4,55, s

1.5
4,48, s

1.5
4,14 s2

1,55 = 0 s1.5
1,55, s

1.5
1,58, s

1.5
1,16

s2
0,57 = s2

4,57 ⊕ 1 s1.5
0,57, s

1.5
0,38, s

1.5
0,29, s

1.5
4,57, s

1.5
4,50, s

1.5
4,16 s2

2,57 = 0 s1.5
2,57, s

1.5
2,56, s

1.5
2,51

s2
0,60 = s2

4,60 ⊕ 1 s1.5
0,60, s

1.5
0,41, s

1.5
0,32, s

1.5
4,60, s

1.5
4,53, s

1.5
4,19 s2

3,57 = 1 s1.5
3,57, s

1.5
3,47, s

1.5
3,40

s2
0,63 = s2

1,63 ⊕ 1 s1.5
0,63, s

1.5
0,44, s

1.5
0,35, s

1.5
1,63, s

1.5
1,2, s

1.5
1,24 s2

2,60 = 0 s1.5
2,60, s

1.5
2,59, s

1.5
2,54

s2
3,60 = 1 s1.5

3,60, s
1.5
3,50, s

1.5
3,43 s2

2,63 = 1 s1.5
2,63, s

1.5
2,62, s

1.5
2,57

s2
3,63 = 1 s1.5

3,63, s
1.5
3,53, s

1.5
3,46 s2

4,63 = 1 s1.5
4,63, s

1.5
4,56, s

1.5
4,22

s0.5
1,63 = 0

S1.5
63 , S

1.5
62 , S

1.5
61 , S

1.5
60 , S

1.5
59 , S

1.5
55 , S

1.5
52 , S

1.5
50 , S

1.5
49 , S

1.5
47 , S

1.5
44 , S

1.5
42

S1.5
40 , S

1.5
39 , S

1.5
38 , S

1.5
36 , S

1.5
35 , S

1.5
34 , S

1.5
33 , S

1.5
28 , S

1.5
24 , S

1.5
20 , S

1.5
19 , S

1.5
18

S1.5
16 , S

1.5
15 , S

1.5
12 , S

1.5
10 , S

1.5
9 , S1.5

8 , S1.5
6 , S1.5

3 , S1.5
2

Computing the generic cost. We extend LB3 backward and forward with probability 1
for one round (i.e. for each active Sbox, we include all possible differences into the set):

Din = {∆in s.t. DDT(∆in → p−1
L (LB3[0])) > 0}

Dout = {∆out s.t. DDT(LB3[3]→ ∆out) > 0}
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Where LB3[0] and LB3[3] refer to the start of the first round and end of the last round of
LB3 respectively. As an example, we calculate:

|Dout| =(|DDT[0x02, ∗] > 0|)8 · (|DDT[0x04, ∗] > 0|)9 · (|DDT[0x06, ∗] > 0|)10·
(|DDT[0x08, ∗] > 0|) · (|DDT[0x0a, ∗] > 0|)2 · (|DDT[0x0c, ∗] > 0|)·
(|DDT[0x10, ∗] > 0|)2 · (|DDT[0x12, ∗] > 0|) · (|DDT[0x16, ∗] > 0|)·
(|DDT[0x1a, ∗] > 0|)2

= 2115

The generic complexity to generate the same limited-birthday property for a random
permutation is

C(|Din|, |Dout|) = max{min{275.51, 2103}, 236.02} = 275.51

B Limited-birthday distinguishers

Table 12: Differential characteristic LB2. The probability of this characteristic is 2−8.
The breakdown of the probability (in − log2) is [2, 6].

input difference after 1 round after 2 rounds
x0 0000000000000000 0000201000000001 0000000004000101
x1 0000000000000001 0000000000000000 2001209002000049
x2 0000000000000001 0000000000000000 0000000000000000
x3 0000000000000000 0000000000000000 0000000000000000
x4 0000000000000000 0000000000000000 0000000000000000

Table 13: 3-round differential characteristic for 5-round non-black-box limited-birthday
distinguisher (4 round on black-box) on the Ascon permutation. The differential probabil-
ity is 2−40. The breakdown of the probability (in − log2) is [2, 6, 32]. Fixing the state at
the start of round 3, we can achieve the distinguisher with a complexity of 22 permutation
calls.

input difference after 1 round after 2 rounds after 3 rounds
r0 0000000000000000 0000201000000001 0000000004000101 4020100004000180
r1 0000000000000001 0000000000000000 2001209002000049 0008000224000900
r2 0000000000000001 0000000000000000 0000000000000000 9481b45a4308006c
r3 0000000000000000 0000000000000000 0000000000000000 322d30d8b6488148
r4 0000000000000000 0000000000000000 0000000000000000 0000000000000000

Table 14: Differential characteristic LB3.1. The probability of this characteristic is 2−8.
The breakdown of the probability (in − log2) is [47, 12, 6].

input difference after 1 round after 2 rounds after 3 rounds
r0 32a11104c9b008db 0000201000000001 0000000004000101 4020301004000181
r1 0000000000000001 0000000000000000 0000000000000000 0008000226000909
r2 0000000000000001 0000000000000000 0000000000000000 0000000000000000
r3 32a11104c9b008da 0000201000000001 0000000000000000 0000000000000000
r4 32a11104c9b008da 0000000000000000 0000000000000000 0000000000000000
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Table 15: Differential characteristic LB4. The probability of this characteristic is 2−147.
The breakdown of the probability (in − log2) is [2, 6, 32, 107].

input difference after 1 round after 2 rounds
x0 0000000000000000 0000201000000001 0000000004000101
x1 0000000000000001 0000000000000000 2001209002000049
x2 0000000000000001 0000000000000000 0000000000000000
x3 0000000000000000 0000000000000000 0000000000000000
x4 0000000000000000 0000000000000000 0000000000000000

after 3 rounds after 4 rounds
x0 0020100000000100 162e14c670b19a21
x1 2009241226000948 0012000210000d48
x2 9481b45a4308006c 645f5698151c0c77
x3 322d30d8b6488148 99b7ea6001186aa2
x4 1002000000080008 6648288901610300

Table 16: Differential characteristic LB4.1. The probability of this characteristic is 2−109.
The breakdown of the probability (in − log2) is [58, 12, 9, 30].

input difference after 1 round after 2 rounds
x0 0000000400000000 0000000000000000 0000000000000000
x1 63b6c53b00766181 0000000401020000 0000000000000000
x2 63b6c53b00766181 0000000000000000 0000000000000000
x3 0000000400000000 0000000401020000 0000000400004001
x4 0000000400000000 0000000000000000 0000000000000000

after 3 rounds after 4 rounds
x0 080420140000c041 98100d240cc44291
x1 0000000000000000 283420b1cc948e80
x2 0000000000000000 0000000000000000
x3 0000000000000000 0000000000000000
x4 0000002408804081 0000002408804081
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Table 17: Differential characteristic LB4.2. The probability of this characteristic is 2−141.
The breakdown of the probability (in − log2) is [82, 32, 4, 23].

input difference after 1 round after 2 rounds
x0 fb8e401124ca8085 4020001000000100 2000000000000001
x1 04318d0c40007a10 0020300000000181 0000000000000000
x2 04318d0c40007a10 0020300000000001 0000000000000000
x3 fb8c400120408005 4000001004010000 0000000000000000
x4 fb8c400120408005 0000000004010181 0000000000000000

after 3 rounds after 4 rounds
x0 2000241200000001 0000040204800121
x1 2000000002400008 2401048202000041
x2 0000000000000000 108000000369000c
x3 0000000000000000 0204000002409128
x4 0000000000000000 0000000000000000

Table 18: Differential characteristic LB5. The probability of this characteristic is 2−237.
The breakdown of the probability (in − log2) is [6, 9, 30, 81, 111].

input difference after 1 round after 2 rounds
x0 0000000000020081 0000000000000000 60208402100a0000
x1 0000000000000000 0000000000000000 0000000000000000
x2 0000000000000000 0000000000000000 0000000000000000
x3 0000000000020081 2000800000020000 0000000000000000
x4 0000000000020081 0000000000000000 2040800000120440

after 3 rounds after 4 rounds after 5 rounds
x0 61e8c00a141a0442 644998a100440322 83d466293fa88565
x1 4740141a1058e64a 0000100800482400 0948c84107473492
x2 0000000000184000 44241d484669b184 579146a2e5018394
x3 0000000000000000 e42585812e40b044 c3220c515630a665
x4 61e8c00a141a0442 e5619ca12420a2a4 5041813b7a143040



David Gerault, Thomas Peyrin and Quan Quan Tan 133

C Conforming pairs for distinguishers

Table 19: Conforming pairs for limited-birthday distinguishers.
# Characteristic pair 1 pair 2

LB2

0ec9a62c2c63f2e1 4ced65d55729c68a
79f76978592b5f9a 8c98d0e46b567147
8b7e1c6f36e61951 ad37b7a235df2793
7892d3bc3ff6675f 0cf732cc56f57320
ec501e18515c2b2a 0d5beee4185b1940

LB3

a91800bccb3e1021 ff3eebddd0583072
ae0b695f555f01b6 4f6212c337663f58
6da3c62ed382a546 da8cecd388d99fa6
935d5c6d4457e8a6 9537c62c3718f8df
9ab5e27340f39ef3 1dbf6322518c9aa6

LB4

aa56bfb76c5c2d61 cd7e574e14073399
16f71384e9511df8 a5b0a848ea6c3377
08e3f0011908e3a9 e9accb5d7325cb68
f16e9f3e53623a26 e708cd5f2b2c2859
644bf9d542b58791 436fb2383be7b3e0

LB4.2

71aa37de1c1dd67b 8a2477cf38d756fe
6c370ee346a8dc96 680683ef06a8a686
dd5f2e21b9b4dc62 d96ea32df9b4a672
4397c4c71205ed80 b81b84c632456d85
bd3bea710986ad09 46b7aa7029c62d0c

Table 20: Conforming pairs for 4 rounds of rectangle distinguishers.
pair 1-1 pair 1-2

bf6c940a612235b2 bf6c940a612235b2
9dd38c49d55b7149 9dd38c49555b7149
2ec56c0721ffa7b2 2ec56c07a1ffa7b2
36731ba9da4b939d 36731ba9da4b939d
b2c7651aaf45b4f4 b2c7651aaf45b4f4

pair 2-1 pair 2-2
fb93bc942f3c9bbf fb93bc942f3c9bbf
6eb83e2af39c75d2 6eb83e2a739c75d2
fc14891d4b11709e fc14891dcb11709e
38393fe9df45af24 38393fe9df45af24
2a8d827dcb01dcd0 2a8d827dcb01dcd0
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D Forgery characteristics

Table 21: Differential characteristic to create forgery for round-reduced Ascon-128a
with a 3-round finalization. The differential probability is 2−19. The breakdown of the
probability (in − log2) is [4, 6, 9].

input difference after 1 round after 2 rounds after 3 rounds
r0 0000000000000001 0000000000000000 0000000000000000 ????????????????
r1 0000000000000001 0000000000000000 0000000000000000 ????????????????
r2 0000000000000000 8400000000000001 4010000000000001 ????????????????
r3 0000000000000000 0000000000000000 8461c20000000001 4000240800000000
r4 0000000000000000 0000000000000000 0000000000000000 8769018400c230e0

Table 22: Differential characteristic to create forgery for round-reduced Ascon-128a
with a 3-round permutation. The differential probability is 2−116. The breakdown of the
probability (in − log2) is [8, 44, 64]

input difference after 1 round after 2 rounds after 3 rounds
r0 0040000400001004 0000000000000000 2041800c26009004 f00e0594e37e2707
r1 0000000000000000 0a40000408001024 0210800812052004 2e250895044c9a03
r2 0000000000000000 0000000000000000 0000000000000000 0000000000000000
r3 0000000000000000 0000000000000000 0000000000000000 0000000000000000
r4 0000000000000000 0a40800c0a003024 0614811812052004 0000000000000000

Table 23: Differential characteristic to create forgery for round-reduced Ascon-128
and Ascon-128a with a 3-round finalization. The differential probability is 2−32. The
breakdown of the probability (in − log2) is [2, 16, 14]

input difference after 1 round after 2 rounds after 3 rounds
r0 0000000000000001 0000000000000000 0000000000000000 ????????????????
r1 0000000000000000 0000000002000009 1201000004840000 ????????????????
r2 0000000000000000 0000000000000000 a40000000308000d ????????????????
r3 0000000000000000 0000000000000000 0204000002008108 b76e5b40850d4183
r4 0000000000000000 0200000000800001 0204400000800000 100100408604800a
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Table 24: Differential characteristic to create forgery for round-reduced Ascon-128 with a
4-round finalization. The differential probability is 2−100. The breakdown of the probability
(in − log2) is [2, 14, 50, 34]

input difference after 1 round after 2 rounds
r0 0000000000000001 0000201000000001 0000201004000100
r1 0000000000000000 0000000002000009 2005209002000008
r2 0000000000000000 0000000000000000 a40000000308000d
r3 0000000000000000 0000000000000000 0204000002008108
r4 0000000000000000 0000000000000000 0000000000000000

after 3 rounds after 4 rounds
r0 1208004020008000 ????????????????
r1 0008041024400000 ????????????????
r2 7011b45a4280200b ????????????????
r3 876642c2a5494081 720d846c9c95a340
r4 0206004084098002 c76a026745c07121

E 5-round boomerang characteristic

Table 25: Boomerang characteristic for 5 rounds of the Ascon permutation. The
probability of the boomerang characteristic is 2−96 but the probability of the rectangle
characteristic is 2−85.57. The breakdown of the probability (in − log2) for the upper and
lower characteristics are [2, 6] and [2, 6, 32] respectively

input difference after 1 round after 2 rounds

Upper characteristic

r0 0000000000000000 0201000000001000 0000004000101000
r1 0000000000001000 0000000000000000 1209002000049200
r2 0000000000001000 0000000000000000 0000000000000000
r3 0000000000000000 0000000000000000 0000000000000000
r4 0000000000000000 0000000000000000 0000000000000000

input difference after 1 round after 2 rounds after 3 rounds

Lower characteristic

r0 0000000000000000 0000201000000001 0000000004000101 4020100004000180
r1 0000000000000001 0000000000000000 2001209002000049 0008000224000900
r2 0000000000000001 0000000000000000 0000000000000000 9481b45a4308006c
r3 0000000000000000 0000000000000000 0000000000000000 322d30d8b6488148
r4 0000000000000000 0000000000000000 0000000000000000 0000000000000000
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F 2-round differential characteristic for Ascon-Hash

Table 26: Differential characteristic for 2 rounds of Ascon permutation. The probability
of this characteristic is 2−156. The breakdown of the probability (in − log2) is [54, 102]

input difference after 1 round after 2 rounds
r0 bb450325d90b1581 2201080000011080 baf571d85e1153d7
r1 0000000000000000 2adf0c201225338a 0000000000000000
r2 0000000000000000 0000000000000000 0000000000000000
r3 0000000000000000 0000000100408000 0000000000000000
r4 0000000000000000 2adf0c211265b38a 0000000000000000
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