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ABSTRACT
In this paper we introduce an architecture based on bidirectional
recurrent neural networks to detect errors in databases. The ex-

perimental results with 6 different datasets demonstrate that our

approach outperforms state-of-the-art error detection systems

when considering the average of the F1-scores over all datasets.

Moreover, our approach achieves a lower standard deviation than

existing work, which shows that our system is more robust. Fi-

nally, our approach does not require additional data augmentation
techniques to achieve high F1-scores.

1 INTRODUCTION
The amount of data is growing exponentially since it is collected

by many different stakeholders such as people, companies and

machines at many different locations across the globe – but also

with varying degrees of quality. When data scientists want to

analyze data, they often have to clean it first, which typically

takes the most time of the whole data science pipeline [3]. Hence,

finding ways of cleaning datasets (semi-)automatically with mini-

mal user involvement is an important aspect for many companies

and data science projects. However, due to the heterogeneity of

different datasets and the different ways of how data is collected

and stored, data cleaning in practice is a hard problem.

The cleaning part can be split into two steps, first to detect
errors and second to repair errors, i.e. to find the ground truth.

Errors are values which deviate in the dirty dataset from the clean

dataset (see highlighted values in Table 1) and can be categorized

as missing value (’NaN’), value/syntactic error (’80,000’, ’Romr’,

’12’, ’BER’, ’850’), integrity constraint violation (’75000’) and data
duplication.

Table 1: Overview of a dirty and the corresponding clean
dataset (A=Age, Sal=Salary).

A Sal ZIP City A Sal ZIP City
21 80,000 8000 NaN 21 80000 8000 Zurich

45 98000 00100 Romr 45 98000 00100 Rome

30 92000 75000 Paris 30 92000 75000 Paris

12 99000 BER Berlin 42 99000 10115 Berlin

26 850 75000 Vienna 26 85000 1010 Vienna

The focus of this work is on error detection. While related

work have used different error detection strategies [1, 2, 4, 6–

9, 11], there is ample room for improvement. In our approach

we use bidirectional recurrent neural networks [12] (RNN), which
have received little attention for solving this kind of challenge.

Our approach generates a model which tries to find the best

parameter settings during learning the content of the data. For
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training the system, we need labelled data. To reduce the effort

for the user to provide labels for the training data, we use only 20

tuples – similar to the state-of-the-art approaches. For selecting

the data, we developed a novel algorithm to choose a diverse

trainset, which gives our system the best impact and thus the

most information content for learning error patterns in the data.

This paper has the following contributions:

• We introduce our end-to-end system architecture for error

detection based on bidirectional two-stacked RNNs.
• The experimental results demonstrate that our approach

shows a higher average F1-score and lower standard de-

viation than state-of-the-art error detection systems on 6

benchmark datasets, which demonstrates that our system

is more robust than existing work.

2 SYSTEM ARCHITECTURE
2.1 System in Action
A typical data science pipeline that applies our error detection

algorithm looks as follows: The user gives our system a dataset

and chooses the number of tuples for training. The system is

responsible for the data preparation step and uses our novel label

sampling algorithm DiverSet to find the tuples with the most

information content for the neural network architecture to learn.

Afterwards, the user has to label the chosen tuples with either

’0’ (correct) or ’1’ (wrong) to produce the trainset. Finally, the

system uses the trainset to learn which data points of the tuples

are correct or wrong. The involvement of the user is only in the

phase of labelling the data.

We now describe the two different recurrent neural network

(RNN) architectures that we use for error detection.

2.2 Two-Stacked Bidirectional RNN
(TSB-RNN)

As the first model we use a two-stacked bidirectional RNN, which
has 64 units and as activation function the hyperbolic tangent (see

top left part of Figure 1). The orange parts refer to the stacking

level 𝑎1 and the yellow parts to the stacking level 𝑎2. Moreover,

our architecture uses a bidirectional RNN, which means that in

addition to the forward layer (highlighted in light blue), we also

have a backward layer (highlighted in dark blue).

As input the model receives the datasets X_train and X_test,

where every character is encoded as a sequence of numbers. For

instance, in Figure 1, the input is the character string ’e3’ repre-

sented as a sequence of numbers (7,9,0,0). First, in the embedding

layer the system transforms the sequence of numbers into an

embedding vector. The output of our model is a concatenation

of the output from the forward path (dim 64) and the backward

path (dim 64). In addition, we use a fully connected layer with

dimension 32 and ReLu for activation. At the end there is a batch

normalization [5] to standardize the input to the softmax. It re-

duce the generalization error and is a regularization technique.
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Figure 1: Overview of our bidirectional RNN architecture for error detection. Top part: TSB-RNN=Two-Stacked Bidirectional
RNN. Bottom part: ETSB-RNN = Enriched Two-Stacked Bidirectional RNN.

Finally, the model has to decide if the sequence of characters

has the value ’0’ (correct) or ’1’ (wrong). For this last step the

model uses a fully connected layer with a softmax.

2.3 Enriched Two-Stacked Bidirectional RNN
(ETSB-RNN)

Our second architecture ETSB-RNN is an enriched version of

TSB-RNN. In particular, we additionally provide the attribute
information X_train_attribute and X_test_attribute as a second

input. The attribute information tells the neural network that,

for instance, the encoding of the character sequence ’e3’ refers to

attribute with the name attr2 (see in the left lower part of Figure

1).

As an additional layer the model uses an embedding layer

and a two-stacked bidirectional RNN which has 8 units and as

activation function the hyperbolic tangent. Moreover, there is

a fully connected layer with dimension 64 and the activation

function ReLu. We concatenate the output of these two new

layers with the output of the previous two-stacked bidirectional

RNNs. Afterwards we again use the two fully connected layers

and the batch normalization described in TSB-RNN.

2.4 Optimal Training Data Selection
Finally, we introduce a novel label sampling Algorithm 1, whose

goal is to select a diverse trainset. The intuition is to select tuples

with values that have not been seen previously and thus increase

the information content of our trainset. If we selected tuples

randomly, we could get observations which have the same values

in the attributes and the system would have less information to

learn from.

In case two candidate tuples contain the same number of

unseen attribute values, the tuple with the highest number of

empty attribute values is chosen. Our hypothesis is that empty

values give us more information for the system to learn – because

if there are empty values in other attributes, we can learn if they

should be empty or not. In case all candidate tuples have the

same number of unseen attributes and empty attribute values,

the tuples are chosen randomly. After the selection the user has

to provide a label if the attributes in the tuples are correct or

wrong.

3 EXPERIMENTS
In this section we evaluate our two different architectures and

measure how well they can detect errors in 6 commonly-used

benchmark datasets that were also used by the state-of-the-art

error detection systems, e.g. from Raha [8] and Rotom [10]. To

enable the reproducibility of our experiments, we share our code

on Github
1
.

1
https://github.com/holzesev/E_TSB-RNN
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Algorithm 1 DiverSet

Input: 𝑛_𝑜𝑏𝑠 -> number of tuples (IDs) for training

𝑑𝑠 -> dataset with all data

Output: 𝐼𝐷_𝑡𝑟𝑎𝑖𝑛 -> IDs of tuples which are used for the trainset (size:

𝑛_𝑜𝑏𝑠)

1: function DiverSet(𝑛_𝑜𝑏𝑠,𝑑𝑠)

2: 𝑑𝑠_𝑟𝑒𝑠𝑡 ← 𝑑𝑠

3: 𝐼𝐷_𝑡𝑟𝑎𝑖𝑛 ← []
4: for i=1 to n_obs do
5: #𝑢𝑛𝑠𝑒𝑒𝑛𝐴𝑡𝑡𝑟 ← count(𝑑𝑠_𝑟𝑒𝑠𝑡 ) .groupby(′𝐼𝐷′)
6: #𝑒𝑚𝑝𝑡𝑦 ← sum(𝑑𝑠_𝑟𝑒𝑠𝑡 [′𝑒𝑚𝑝𝑡𝑦′]) .groupby(′𝐼𝐷′)
7: // candidateID contains ID, #unseen and #empty attributes

8: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐼𝐷 ← (𝐼𝐷, #𝑢𝑛𝑠𝑒𝑒𝑛𝐴𝑡𝑡𝑟, #𝑒𝑚𝑝𝑡𝑦)
9: // Find candidate with highest number of unseen attributes

10: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐼𝐷1← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐼𝐷.max(#𝑢𝑛𝑠𝑒𝑒𝑛𝐴𝑡𝑡𝑟 )
11: // Find candidate with highest number of empty attributes

12: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐼𝐷2← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐼𝐷1.max(#𝑒𝑚𝑝𝑡𝑦)
13: // Draw random sample in case of multiple candidates

14: 𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝐼𝐷 ← random_sample(1, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐼𝐷2)
15: 𝐼𝐷_𝑡𝑟𝑎𝑖𝑛 ← 𝐼𝐷_𝑡𝑟𝑎𝑖𝑛 ∪ 𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝐼𝐷

16: // Store attributes with seen values

17:

𝑠𝑒𝑒𝑛𝐴𝑡𝑡𝑟 ← unique(𝑑𝑠 [′𝑐𝑜𝑛𝑐𝑎𝑡 ′] .𝑤ℎ𝑒𝑟𝑒 (𝐼𝐷 = 𝐼𝐷_𝑡𝑟𝑎𝑖𝑛))
18: // Remove attributes with seen values

19: 𝑑𝑠_𝑟𝑒𝑠𝑡 ← 𝑑𝑠 [𝑑𝑠 [′𝑐𝑜𝑛𝑐𝑎𝑡 ′] ≠ 𝑠𝑒𝑒𝑛𝐴𝑡𝑡𝑟 ]
20: end for
21: return 𝐼𝐷_𝑡𝑟𝑎𝑖𝑛

22: end function

We validated the models 10 times and used Algorithm 1 (Di-

verSet) for choosing 20 tuples for training. For instance, for the

dataset Beers we got a trainset of size 220, i.e. 20 tuples x 11

attributes, and a testset of size 26,290, i.e. 2,390 tuples x 11 at-

tributes.

The number of epochs was 120. After every epoch we saved

the training weights (with a callback) if the computed loss of

the trainset was less than in the previous epochs. For the loss-

function we used the binary cross-entropy and as the optimizer

RMSprop. We used the testset to measure precision, recall and F1-

score for the best weights. Moreover, we computed the averages

and standard deviations of these measures.

3.1 Comparison
We now compare our experimental results with the state-of-the-

art error detection systems Raha [8]) and Rotom [10]) (see Table

2).

Table 2: F1-Scores of the different models (20 labeled tu-
ples). B = Beers, F = Flights, H = Hospital, M = Movies, R=
Ryan, T = Tax. Our approaches are TSB-RNN and ETSB-
RNN.

Dataset B F H M R T
Raha 0.99 0.81 0.72 0.86 0.79 0.91

Rotom 0.99 n/a 1.00 0.68 0.86 0.97

Rotom+SSL 0.99 n/a 1.00 0.54 0.76 1.00
TSB-RNN 0.96 0.69 0.97 0.87 0.78 0.85

ETSB-RNN 0.98 0.74 0.97 0.88 0.85 0.86

Note that in the original paper, Rotom did not take the dataset

Flights for validation, hence the values of Flights are marked

as n/a. In general we can observe that Raha performs best for

the dataset Flights and is en par with both Rotom versions for

the dataset Beers. Rotom performs best for the dataset Ryan and

is en par with Rotom+SSL for the datasets Beers and Hospital.

Rotom+SSL performs performs best for dataset Tax.

Let us now analyze the results of our approaches. We note

that ETSB-RRN, which also uses the metadata information, out-

performs the simpler model TSB-RNN on all datasets except

Movies. Moreover, ETSB-RNN outperforms Raha on 3 out of 6

datasets. In particular, we got better results for Hospital (+0.25),

for Movies (+0.02) and for Rayyan (+0.06). We achieved similar

results for Beers (-0.01) and Tax (-0.04), only for Flights (-0.07)

we got considerably worse results.

In comparison to Rotom and Rotom+SSL, our model ETSB-

RNN got a better result for Movies (+0.20 / +0.34). For Beers

(-0.01 / -0.01), Hospital (-0.03 / -0.03) and Rayyan (-0.01 / +0.09)

we achieved similar results – only for Tax (-0.11 / -0.13) our

approach performs considerably worse than Rotem+SSL.

In Table 3 we show the average (AVG) and standard deviation

(S.D.) for the error detection systems for all datasets without

Flights (1) and in addition for all datasets including Flights (2).

Note that Rotom did not take the dataset Flights for validation.

When comparing the average F1-score (AVG) without Flights

(1), our approach ETSB-RNN outperforms Raha and Rotom by

(+0.06) and (+0.01), respectively. Also the standard deviation is

smaller for our system, which indicates that our system is more

robust for different datasets. When considering average F1-score

(AVG) with Flights (2), again our approach ETSB-RNN outper-

forms Raha. Also the standard deviation is slightly smaller.

Table 3: Average F1-score (AVG) and Standard Deviation
(S.D.) for the different models of Table 2. Note: Smaller S.D.
is better.

Name Without Flights (1) With Flights (2)
AVG S.D. AVG S.D.

Raha 0.85 0.08 0.85 0.07

Rotom 0.90 0.10 n/a n/a

Rotom+SSL 0.86 0.17 n/a n/a

TSB-RNN 0.89 0.06 0.85 0.08

ETSB-RNN 0.91 0.05 0.88 0.06

3.2 Learning Analysis
We will now analyze the learning behavior of our best approach

ETSB-RNN in more detail. To show the improvements of the

accuracy over various epochs of our models, we compared the

average train- and test-accuracy (see Figure 2). The results show

that the model performs well and does not suffer from overfitting.

For all datasets our model achieves almost a perfect result for

the train-accuracy. There are also gaps in the curves of the test-

accuracy but these are not critical because the model chooses the

epochs which do not have gaps and learns how to choose the

optimal parameter setting based on the decreasing training loss.

The dataset Flights, which reached theworst F1-score, has a big

gap between the train- and test-accuracy and also the confidence

interval is large. Therefore, our model does not work well for this

dataset. The curve for test-accuracy for Hospital looks almost

perfect, also because the confidence interval is very small. The

datasets Beers, Movies and Rayyan also show a converging test-

accuracy curve and the confidence interval is small. For Tax we

got a curious result. After epoch 30 there are no wave movements
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Figure 2: Comparison of average train- and test-accuracy
(10-times experiment) and the confidence interval for the
different epochs of ETSB-RNN. The green dots shows the
epoch and corresponding train-accuracy with the lowest
train-loss per experiment. The blue triangles show the
corresponding test-accuracy.

in the test-accuracy. In addition, the model chooses the optimal

parameter settings from training close to epoch 120, i.e. the green

dots and blue triangles.

3.3 Error Analysis
We will now perform a more detailed error analysis of our algo-

rithm ETSB-RNN for each of the datasets.

As described previously, the dataset Flights contains duplicate

values due to different information sources for the same flight.

ETSB-RNN reached an average F1-score of 0.81. However, it had

some problems to detect errors due to varying departure and

arrival times of different sources, e.g. flight ’UA-257-JFK-SFO’ of

source ’orbitz’ has a departure time of ’2:46 p.m.’ while the same

flight of source ’flightstats’ has a departure time of ’2:26 p.m.’ The

reason is that the model does not share the information about

the name of the flight (i.e. the IDs to recognize that flights are the

same) and therefore it cannot detect duplicate records. In short,

ETSB-RNN can not identify well functional dependencies between
attributes.

Detecting errors in the Hospital dataset is quite straightfor-

ward because the errors are marked with ’x’ (e.g. ’hexrt fxilure’).

Our approach received an almost perfect result with an average

F1-score of 0.97. These types of errors where single characters are
inserted into the data are easy to detect for our approach.

For the dataset Movies the model ETSB-RNN does not rec-

ognize errors in the attribute Creator. The reason is that some

parts of the values are missing. (i.e. ’Roger Kumble’ instead of

’Choderlos de Laclos, Roger Kumble’). For the attribute Duration

the model ETSB-RNN cannot detect the value ’NaN’ because in

some rows the correct value is ’NaN’ and in others the correct

value is ’96 min’. In short, since our model is based on character

embedding as apposed to word embedding, our approach has
problems in identifying missing words.

The errors of the dataset Rayyan aremostly due to non-recognized
special characters. For the last dataset Tax we achieved a high

standard deviation. Note that between 15 and 20 epochs our sys-

tem reached a good result. However, after 20 epochs our system

seems to overfit and thus does not generalize well.

4 CONCLUSION
We introduced a new way to detect errors in databases using

two-stacked bidirectional recurrent neural networks. We trained

and tested our models with 6 publicly available datasets and com-

pared the results with the state-of-the-art error detection systems

Raha, Rotom and Rotom+SSL. Our approach called Enriched Two-

StackedBidirectional (ETSB-RNN) outperforms state-of-the-art

systems when considering the average of the F1-scores over all

datasets.
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