
Implementing Linear Bandits in Off-the-Shelf SQLite
Radu Ciucanu, Marta Soare, Sihem Amer-Yahia

{fname.lname}@univ-grenoble-alpes.fr
Univ. Grenoble Alpes, CNRS LIG

ABSTRACT
The linear multi-armed bandit is a reinforcement learning model
that is largely used for sequential decision making in applications
such as online advertising and recommender systems. We show
that LinUCB, a well-known cumulative reward maximization
algorithm for linear bandits, can be implemented in off-the-shelf
SQLite. Additionally, our empirical study shows that, when deal-
ing with small bandit data, our SQLite implementation is faster
than an implementation in off-the-shelf Python. We believe that
our findings open the door for many promising research direc-
tions on the topic of in-DBMS federated learning because (i) in
the federated learning paradigm, many data owners contribute
to the same learning task while locally storing their small data,
and (ii) SQLite is a DBMS embedded in billions of devices, hence
being able to implement federated learning on top of SQLite is
of great practical interest.

1 INTRODUCTION
With the advent of machine learning (ML) and artificial intelli-
gence (AI), and their use in a wide range of applications, there is
also a growing interest within the database (DB) community to
study what AI can do for DB and what DB can do for AI [14]. Re-
garding what DB can do for AI, there exists an important line of
research on implementing linear algebra in the DBMS [16], which
typically tackles the challenges of managing a large database.

In contrast, we focus here on a setting where we deal with im-
plementing ML algorithms in an embedded DBMS, which deals
with relatively small data. We are motivated by the emerging
federated learning paradigm [11], where multiple data owners
contribute to the same learning task, while keeping their small
data stored locally and protected against privacy leaks. As men-
tioned in a state-of-the-art federated learning survey [11]: “While
numerous frameworks exist for data center training, the options
for training models on resource constrained devices are fairly lim-
ited. Machine Learning models and training procedures are typ-
ically authored in a high level language such as Python [...] An
ideal on-device runtime would have the following characteristics:
Lightweight, Performant, Expressive [...] To our best knowledge no
solution exists yet that satisfies these requirements, and we expect
the limited ability to run ML training on end user devices to be-
come a hindrance to adoption of federated technologies.” Given the
growing popularity of federated learning, we are interested in
implementing ML algorithms in SQLite, which is1 “the most used
database engine in the world [...] built into all mobile phones and
most computers [...] bundled inside countless other applications that
people use every day”. To the best of our knowledge, our work is
the first that tackles the problem of implementing ML algorithms
in SQLite and in embedded DBMS in general.

1https://www.sqlite.org/index.html

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Within this research line, we focus on the reinforcement learn-
ing paradigm [19], in particular on the linear multi-armed bandits
model [13, Ch. 19], largely used for sequential decision making
in applications such as online advertising and recommender sys-
tems. We show it is possible to implement LinUCB, a well-known
cumulative reward maximization algorithm for linear bandits, in
off-the-shelf SQLite. We introduce the linear bandit model and
the LinUCB algorithm in Section 2. Then, in Section 3, we out-
line our solutions for overcoming the challenges of the in-DBMS
implementation of LinUCB, with no modifications to the DBMS,
nor to the algorithm. Moreover, in Section 4, we present a pre-
liminary empirical study comparing the clock time of our SQLite
implementation to that of an implementation in off-the-shelf
Python (using NumPy). Our in-DBMS LinUCB implementation
with off-the-shelf SQLite is faster when dealing with datasets
with few samples. In practice, such small datasets may be stored
independently by several data owners, as motivated by federated
learning settings. Finally, in Section 5 we discuss promising re-
search directions for developing in-DBMS implementations of
further federated reinforcement learning algorithms and settings.

2 PRIMER ON LINEAR BANDITS
The stochastic multi-armed bandit [13] is a sequential learning
framework, which consists of a repeated interaction between a
learner and the environment. The learner is given a set of choices
(arms) with unknown associated rewards and a limited number
of allowed interactions with the environment (budget). With the
goal of maximizing the sum of the observed rewards, the learner
sequentially chooses an arm and the environment responds with
a stochastic reward corresponding to the chosen arm.

In the linear stochastic multi-armed bandit setting, the input set
of arms is a fixed subset of R𝑑 , revealed to the learner at the be-
ginning of the game. When pulling an arm, the learner observes a
noisy reward whose expected value is the inner product between
the chosen arm and an unknown parameter characterizing the
underlying linear function (common to all arms).

Stochastic linear bandits can be used to model online recom-
mendation: the arms are the objects that might be recommended
and a reward is the user’s response to a recommendation e.g., the
click through rate or the rating associated to the recommendation.
The recommender wants to maximize the sum of rewards, thus it
needs to predict which object is more likely to be of interest for
a certain user. The unknown parameter of the reward function
is the user preference, more precisely the weights that the user
gives to each of the 𝑑 features in assessing an item.

In cumulative reward maximization algorithms, the learner
faces the exploration-exploitation dilemma: at each round, decide
whether to explore arms with more uncertain associated values,
or exploit the information already acquired by selecting the arm
with the seemingly largest value. Algorithms based on computing
upper confidence bounds (UCB) on arm values are commonly
used for cumulative reward maximization strategies [3, 4]. UCB-
like algorithms guide the exploration-exploitation trade-off by
updating, after each new observed reward, a score for each arm,
given by the upper confidence bound of the estimated arm value.

Short Paper

Series ISSN: 2367-2005 388 10.48786/edbt.2022.27

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.27

Input: Budget 𝑁 and 𝐾 arms 𝑥1, 𝑥2, . . . , 𝑥𝐾 in R𝑑

Constants: Regularizer 𝛾 > 0; confidence parameter 𝛿 > 0;
noise parameter 𝑅 > 0; 𝑆 > 0 such that | |𝜃 | |2 ≤ 𝑆 ; 𝐿 > 0 such
that ∀ 𝑖 ∈ ⟦𝐾⟧, | |𝑥𝑖 | |2 ≤ 𝐿
Unknown environment: Expected arm values; the learner
has access only to the output of reward function pull(xi)
Output: Sum of observed rewards for all arms

/ Initialization: Randomly pull an arm and initialize variables /
1 𝑟 ← pull(xi) / Random reward (scalar) for arm 𝑥𝑖 /
2 𝑠 ← 𝑟 / Sum of rewards of all arms (scalar) /
3 𝐴← 𝛾𝐼𝑑 + 𝑥𝑖𝑥⊤𝑖 / (𝑑 × 𝑑) matrix /
4 𝑏 ← 𝑟𝑥𝑖 / (𝑑 × 1) vector /
/ Exploration-Exploitation: At each round, pull an arm /
5 for 1 ≤ 𝑡 < 𝑁

6 𝜃 ← 𝐴−1𝑏 / Regularized least-squares estimate of 𝜃 /

7 𝜔 ← 𝑅

√
𝑑 · log(1+𝑡𝐿

2/𝛾
𝛿
) +𝛾

1
2 · 𝑆 / Exploration term /

/ For each arm 𝑖 , based on current 𝜃 , compute 𝐵𝑖 , an UCB of
⟨𝑥𝑖 , 𝜃⟩. First term for exploitation, second for exploration /
8 for 1 ≤ 𝑖 ≤ 𝐾
9 𝐵𝑖 ← ⟨𝑥𝑖 , 𝜃⟩ + 𝜔 | |𝑥𝑖 | |𝐴−1
10 𝑥𝑚 ← argmax𝑖∈⟦𝐾⟧ 𝐵𝑖 / Ties broken at random /

11 𝑟 ← pull(xm) / Pull arm 𝑥𝑚 /
12 𝑠 ← 𝑠 + 𝑟
13 𝐴← 𝐴 + 𝑥𝑚𝑥⊤𝑚
14 𝑏 ← 𝑏 + 𝑟𝑥𝑚
15 return 𝑠 / Return sum of observed rewards for all arms /

Figure 1: LinUCB Algorithm [1].

As in a recent bandit textbook [13, Ch. 19], we use LinUCB as
a generic name for UCB applied to stochastic linear bandits and
we specifically rely on the algorithm of Abbasi-Yadkori et al. [1]
in the case where the set of arms is fixed. In LinUCB (Figure 1),
the arm scores are based on a regularized least-squares estimate
of the unknown parameter of the linear reward function. At the
next round, the arm with the largest updated score is pulled. We
rely on the following notations:

• 𝐾 is the number of arms; ⟦𝐾⟧ is the set {1, 2, . . . , 𝐾}.
• 𝑁 is the budget = the number of observed rewards.
• 𝑑 is the dimension of each vector: arms 𝑥1, . . . , 𝑥𝐾 and
unknown parameter 𝜃 .
• 𝑥𝑖 (for 𝑖 ∈ ⟦𝐾⟧) is an arm = a (𝑑 × 1) vector; we assume
that all arms are pairwise distinct.
• 𝜃 is a (𝑑 × 1) vector (unknown to the learner) that is the
parameter of the linear reward function.
• ||𝑣 | |2 is the 2-norm of a R𝑑 vector 𝑣 .
• ||𝑣 | |𝐴 =

√
𝑣⊤𝐴𝑣 is the weighted 2-norm of a R𝑑 vector 𝑣 ,

where 𝐴 is a (𝑑 × 𝑑) positive definite matrix.
• ⟨𝑥𝑖 , 𝜃⟩ (for 𝑖 ∈ ⟦𝐾⟧) is a scalar (unknown to the learner)
defining the expected reward value of arm 𝑥𝑖 , computed
as the dot product of vectors 𝑥𝑖 and 𝜃 .
• pull(xi) is a function that returns a noisy reward ⟨𝑥𝑖 , 𝜃⟩+𝜂,
where the noise𝜂 is e.g., drawn uniformly from the interval
[−𝑅, 𝑅].

3 IMPLEMENTATION CHALLENGES
With a focus on the LinUCB algorithm introduced in Section 2,
our first goal was to identify which of the needed computations
can be easily done with existing techniques, and look for simple
yet efficient SQL implementations for the others. In the rest of
the section, we present the main ideas of our implementation.
The most interesting technical parts are (i) the use of Sherman-
Morrison formula [17] for computing the inverse of a matrix
updated under certain constraints that are satisfied in LinUCB,
and (ii) encoding the exploration-exploitation iterations of Lin-
UCB using recursive views. The SQL code is available online2.

3.1 Basic Data Structures and Computations
We store the set of arms as a matrix 𝑥 , where each line 𝑖 is the arm
𝑥𝑖 . To encode matrices and basic computations, we use a standard
technique [16] i.e., a matrix 𝑥 is a SQL table with 3 columns (row
id, column id, value). Encoding a vector (e.g., 𝜃) is similar, the
difference is that we need only one id. A common computation in
LinUCB is matrix multiplication and we use a standard technique
to encode it in SQL using a natural join, followed by group by
and aggregation with sum on multiplication results. For example,
the matrix multiplication result of two matrices m(a,b,m_ab)
and n(b,c,n_bc) is:

select a, c, sum(m_ab * n_bc)
from m natural join n
group by a, c

Similar techniques work for other simple matrix computations
needed by LinUCB: matrix-vector multiplication, inner (aka dot)
product, or outer product.

3.2 Matrix Inverse
The trickiest matrix operation from LinUCB is matrix inverse,
which is needed to update 𝜃 based on𝐴−1 (line 6 in Figure 1). The
challenge of implementing matrix inverses in-DBMS has been
already acknowledged in the literature [16]. To the best of our
knowledge, there does not exist yet an efficient technique that
allows matrix inverse in-DBMS without using foreign function
interfaces to other programming languages [16]. However, we
observe that the matrix 𝐴 that has to be inverted in LinUCB
has a particular shape, in the sense that it is always updated by
summing up with the outer product of a vector with itself i.e.,
𝐴← 𝐴 + 𝑥𝑚𝑥⊤𝑚 (line 13 in Figure 1). An existing technique from
the AI/ML community [12, 21], but not yet used in the context of
in-DBMS computations, rewrites the computation of an inverse
of an updated matrix using basic operations (matrix difference
and multiplication) on the inverse of the original matrix and the
vectors used to update it. More precisely, the Sherman-Morrison
formula3 [17] is

(𝐴 + 𝑢𝑣⊤)−1 = 𝐴−1 − 𝐴
−1𝑢𝑣⊤𝐴−1

1 + 𝑣⊤𝐴−1𝑢
Consequently, in our implementation we decided to store not
the matrix 𝐴, but rather 𝐴−1. We compute the first 𝐴−1 i.e.,
(𝛾𝐼𝑑 + 𝑥𝑖𝑥⊤𝑖)

−1 (line 3 in Figure 1) as part of the preprocessing
and we give the first 𝐴−1 as SQL input to our LinUCB imple-
mentation similarly to how we specify all other algorithm input
and constants (see4 for an example). Then, in the LinUCB main
code2, we use the Sherman-Morrison formula (where both 𝑢 and

2https://raw.githubusercontent.com/radu1/linucb-sqlite/main/linucb.sql
3https://en.wikipedia.org/wiki/Sherman-Morrison_formula
4https://raw.githubusercontent.com/radu1/linucb-sqlite/main/data.sql

389

𝑣 from the formula are 𝑥𝑚) to update𝐴−1 based on standard SQL
encoding of matrix multiplication and difference.

3.3 Simulating Iterations via Recursive Views
We recall (cf. Figure 1) that the budget 𝑁 is spent during one
initialization pull followed by 𝑁 − 1 exploration-exploitation
pulls. Each of the 𝑁 − 1 iterations basically consists of pulling
an arm (that is chosen as the argmax of the UCB score 𝐵𝑖) and
then updating the different variables. To encode the iterations in
SQL, we relied on a recursive view that iteratively inserts 𝑁 − 1
numbers in a table iterations that has a single column:

with recursive
for(time_step) as (

values(0)
union all
select time_step+1
from for
where time_step < (select N

from input)-2)
insert into iterations
select (time_step)
from for;

Moreover, we have a trigger that is activated after each insert in
the table iterations:

create trigger if not exists update_explore_exploit
after insert on iterations

begin
-- pull arm with argmax
insert into status values (

1 + (select max(time_step)
from status), -- t

(select i
from argmax_B_i), -- pulled arm
(select(reward)
from pull natural join argmax_B_i) -- reward

);
-- update A_inv
[...]
-- update b
[...]

end;

The body of the trigger consists of SQL statements that update
the different variables. In particular, for each of the two variables
used to compute 𝜃 (i.e., matrix𝐴−1 and vector 𝑏), we have a table
in our SQL schema, and at each iteration we need the old version
in order to compute the updated one.We created views for pulling
an arm (including for generating random noise), computing 𝜃
and 𝜔 , and for computing arm scores 𝐵𝑖 , as well as the argmax
of these scores. The values of all these views are dynamically
computed based on the different tables and/or other views.

4 EXPERIMENTS
We present a proof-of-concept experimental study, which shows
the feasibility of our LinUCB implementation in off-the-shelf
SQLite. We also identify cases when our implementation is faster
than an implementation of LinUCB in Python.

To reproduce all our experimental findings, we make available
our code and data on a public GitHub repository5.

5https://github.com/radu1/linucb-sqlite

4.1 Competing Implementations
We compare the (clock) time of off-the-shelf single-threaded
implementations of LinUCB in:
• SQLite2, as outlined in Section 3;
• Python6 i.e., a Python implementation of the pseudocode
in Figure 1 using NumPy7 [10] for linear algebra compu-
tations.

We wrote a preprocessing script8 that compiles the linear bandit
data (see Section 4.3) into the formats needed by the two lan-
guages e.g., SQLite4 and Python9. In all reported experiments,
the preprocessing time was in the order of milliseconds for both
languages. The open source SQLite engine that runs our SQLite
code has to be compiled with SQLITE_ENABLE_MATH_FUNCTIONS
option (see our install script10) to be able to use math functions
(e.g., log, sqrt). For a fair comparison, in the Python implemen-
tation we also used the Sherman-Morrison formula to rewrite
the inverse computation of an updated matrix as a sequence of
simpler matrix computations on the original inverse, which is
faster that computing an inverse from scratch. After implement-
ing LinUCB in the two languages, we performed a sanity check
to be sure that both implementations yield the same correct arm
selection strategy (i.e., same sequence of pulled arms), and output
similar cumulative rewards. We did our experiments on a laptop
with CPU Intel Core i7 of 2.80GHz and 16GB of RAM, running
Ubuntu, and we report clock time averaged over 1000 runs.

4.2 Input Parameters and Constants
There are three parameters that dominate the computational
complexity of LinUCB: budget 𝑁 , number of arms 𝐾 , and vector
dimension 𝑑 . We report results with 𝑁 ∈ {10, 20, 30, 40}, 𝐾 ∈
{10, 20, 30, 40}, and 𝑑 ∈ {2, 4, 6, 8}. We rely on these numbers
in order to show, for different combinations of parameters cf.
Figure 2, the frontier between cases when SQLite is faster vs
cases when Python is faster. Moreover, as shown in Figure 1,
there are several LinUCB constants, that we fixed as inspired by
other linear bandit papers [1, 5, 20]: 𝛾 = 0.01, 𝛿 = 0.001, 𝑅 = 0.01,
𝑆 = log 𝑡 , and 𝐿 = max | |𝑥𝑖 | |2.

4.3 MovieLens Dataset
A popular motivation of both linear bandits [15] and federated
learning [11] is in the domain of recommendation systems, hence
we naturally relied on the classical MovieLens 100K dataset [9].
We build on a preprocessing result11 [5] that we briefly recall
next. The dataset is a collection of 100K movie ratings on a scale
of 1 to 5, given by 943 users of the MovieLens website on 1682
movies. The collection of ratings is a matrix 𝐹 (943×1682), whose
element (𝑖, 𝑗) is the rating of user 𝑖 on movie 𝑗 if the rating exists,
or 0 otherwise. Since the user-movie matrix 𝐹 is very sparse, it
should be factored using low-rank matrix factorization. To this
purpose, there already exists a Google Colab matrix factorization
code12, whose result is: a user embedding matrix 𝑈 (943 × 𝑑),
where row 𝑖 is the embedding for user i, and a movie embedding
matrix 𝑀 (1682 × 𝑑), where row 𝑗 is the embedding for movie

6https://raw.githubusercontent.com/radu1/linucb-sqlite/main/linucb.py
7https://numpy.org/
8https://raw.githubusercontent.com/radu1/linucb-sqlite/main/prep.py
9https://raw.githubusercontent.com/radu1/linucb-sqlite/main/data.py
10https://github.com/radu1/linucb-sqlite/blob/main/install.sh
11https://github.com/anatole33/LinUCB-secure/tree/master/extract_movie_

lens
12https://github.com/google/eng-edu/blob/main/ml/

recommendation-systems/recommendation-systems.ipynb

390

10 20 30 40
Bugdet N

0.05

0.10

0.15

0.20

0.25

Ti
m

e
(s

ec
on

ds
)

Varying N for fixed K and d
P, K=40, d=4
S, K=40, d=4
P, K=30, d=4
S, K=30, d=4

P, K=20, d=4
S, K=20, d=4
P, K=10, d=4
S, K=10, d=4

10 20 30 40
Number of arms K

0.05

0.10

0.15

0.20

0.25

Ti
m

e
(s

ec
on

ds
)

Varying K for fixed N and d
P, N=40, d=4
S, N=40, d=4
P, N=30, d=4
S, N=30, d=4

P, N=20, d=4
S, N=20, d=4
P, N=10, d=4
S, N=10, d=4

2 4 6 8
Vector dimension d

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ti
m

e
(s

ec
on

ds
)

Varying d for fixed N and K
P, N=30, K=30
S, N=30, K=30
P, N=30, K=10
S, N=30, K=10

P, N=10, K=30
S, N=10, K=30
P, N=10, K=10
S, N=10, K=10

Figure 2: Comparison of LinUCB clock time in off-the-
shelf SQLite (S) vs Python (P).

𝑗 . The embeddings are learned such that the product 𝑈𝑀⊤ is a
good approximation of the rating matrix 𝐹 . The (𝑖, 𝑗) entry of
𝑈𝑀⊤ is the dot product of the embeddings of user 𝑖 and movie
𝑗 , computed such that it should be close to the (𝑖, 𝑗) entry of
𝐹 . Then, for every user 𝑖 in matrix 𝑈 , we can use linear bandit
algorithms to recommend movies 𝑗 from matrix 𝑀 . In our ex-
periments, the reported 𝑑 values correspond to choices of 𝑑 in
the aforementioned matrix factorization approach, whereas the
reported 𝐾 arms correspond to choosing the embeddings of the
first 𝐾 movies in the dataset. As unknown environment 𝜃 , we
choose the embedding of the first user i.e., we recommendmovies
and observe rewards based on the unknown intent of the first
user in the dataset.

4.4 Results
We summarize our experimental results in Figure 2, in three
different settings, where in each plot we vary one of the pa-
rameters 𝑁,𝐾,𝑑 and we fix the other two. The first observation
is that the behaviors of SQLite vs Python look linear vs con-
stant, respectively. A second, more interesting observation is that

Python is not always faster than SQLite. Indeed, we intuitively
expected that an implementation in Python using the specialized
linear algebra NumPy library should be always faster than an
ad hoc implementation of linear algebra computations in an off-
the-shelf DBMS engine. The aforementioned observations can be
explained. Python has a constant overhead due to loading NumPy
arrays, after which the increase in clock time correlated to the
increase in parameter size is barely visible. On the other side,
SQLite is very lightweight and particularly fast for small values
of the three parameters, but it is not really optimized for linear
algebra, hence its time increases much more visibly when the
parameter size increases. Small data cases when SQLite is already
better than Python (i.e., all green points under magenta points
in Figure 2) could make sense in practice in federated learning
settings. Hence, the arm vectors 𝑥𝑖 and unknown environment
vector 𝜃 may be distributed among many data owners, each of
them storing small pieces of these vectors directly in the SQLite
DBMS that is embedded in the data owners’ devices.

5 FUTUREWORK
We believe that this paper opens the door for many promising
research directions on the topics of linear algebra in embedded
DBMS and on in-DBMS federated learning in general. Next, we
discuss some interesting directions of future work.

First, we recall that our current SQLite implementation of Lin-
UCB uses off-the-shelf SQLite and no particular optimization. It
may be useful to investigate whether the current implementation
can be improved either by finding more efficient techniques to
encode the LinUCB computations in off-the-shelf SQLite, or by
modifying the SQLite optimizer (that is open source) to tune it
for the computations we need in LinUCB. Moreover, it would be
interesting to see whether our implementation’s techniques can
be generalized to other linear bandit algorithms for cumulative re-
ward maximization [2, 20] or for other optimization criteria [18],
and more in general, to other bandit [13] and reinforcement
learning [19] models. It would also be interesting to compare
in-DBMS implementations as the one presented in this paper
with ML systems e.g., SystemDS.

Our main motivation for implementing ML algorithms in an
embedded DBMS is that such implementations could be useful in
the context of federated learning [11], where multiple data own-
ers store their raw data locally and participate to the learning task
by sharing only limited pieces of data. Such an approach has the
advantage of decreasing system latency by parallelizing computa-
tions between data owners, while also protecting their sensitive
data. In particular, linear bandit algorithms often manipulate
sensitive user data, given their use in online advertising and per-
sonalized recommendations. This raises the additional challenge
of adapting privacy-preserving approaches for bandit algorithms
(including cryptography [5–7] and differential privacy [8]) in
order to design in-DBMS federated protocols that offer a good
trade-off between data protection guarantees, computation time,
and output accuracy.

ACKNOWLEDGMENTS
We thank the anonymous reviewers, whose suggestions helped
us to improve our paper. This work has been partially supported
by MIAI@Grenoble Alpes (ANR-19-P3IA-0003), and two projects
funded by EU Horizon 2020 research and innovation programme
(TAILOR under GA No 952215 and INODE under GA No 863410).

391

REFERENCES
[1] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. 2011. Improved Algorithms for

Linear Stochastic Bandits. In Neural Information Processing Systems (NIPS).
2312–2320.

[2] M. Abeille and A. Lazaric. 2017. Linear Thompson Sampling Revisited. In
International Conference on Artificial Intelligence and Statistics (AISTATS). 176–
184.

[3] R. Agrawal. 1995. Sample Mean Based Index Policies with O(log n) Regret for
the Multi-Armed Bandit Problem. Advances in Applied Probability 27, 4 (1995),
pp. 1054–1078.

[4] P. Auer, N. Cesa-Bianchi, and P. Fischer. 2002. Finite-Time Analysis of the
Multiarmed Bandit Problem. Machine Learning 47, 2-3 (2002), 235–256.

[5] R. Ciucanu, A. Delabrouille, P. Lafourcade, and M. Soare. 2020. Secure Cu-
mulative Reward Maximization in Linear Stochastic Bandits. In International
Conference on Provable and Practical Security (ProvSec). 257–277.

[6] R. Ciucanu, P. Lafourcade, M. Lombard-Platet, and M. Soare. 2019. Secure
Best Arm Identification in Multi-Armed Bandits. In International Conference
on Information Security Practice and Experience (ISPEC). 152–171.

[7] R. Ciucanu, P. Lafourcade, M. Lombard-Platet, and M. Soare. 2020. Secure
Outsourcing of Multi-Armed Bandits. In IEEE International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom). 202–209.

[8] A. Dubey and A. Pentland. 2020. Differentially-Private Federated Linear
Bandits. In Neural Information Processing Systems (NeurIPS).

[9] F. M. Harper and J. A. Konstan. 2016. The MovieLens Datasets: History and
Context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4 (2016),
19:1–19:19.

[10] C. Harris and et al. 2020. Array Programming with NumPy. Nature 585, 7825
(2020), 357–362.

[11] P. Kairouz and et al. 2021. Advances and Open Problems in Federated Learning.
Foundations and Trends in Machine Learning 14, 1–2 (2021), 1–210.

[12] B. Kveton, C. Szepesvári, M. Ghavamzadeh, and C. Boutilier. 2019. Perturbed-
History Exploration in Stochastic Linear Bandits. In Conference on Uncer-
tainty in Artificial Intelligence (UAI) (Proceedings of Machine Learning Research,
Vol. 115). 530–540.

[13] T. Lattimore and C. Szepesvári. 2020. Bandit Algorithms. Cambridge University
Press. https://tor-lattimore.com/downloads/book/book.pdf

[14] G. Li, X. Zhou, and L. Cao. 2021. AI Meets Database: AI4DB and DB4AI. In
International Conference on Management of Data (SIGMOD). 2859–2866.

[15] L. Li, W. Chu, J. Langford, and R. E. Schapire. 2010. A Contextual-Bandit
Approach to Personalized News Article Recommendation. In International
Conference on World Wide Web (WWW). 661–670.

[16] S. Luo, Z. J. Gao, M. N. Gubanov, L. L. Perez, and C. M. Jermaine. 2019. Scal-
able Linear Algebra on a Relational Database System. IEEE Transactions on
Knowledge and Data Engineering (TKDE) 31, 7 (2019), 1224–1238.

[17] J. Sherman and W. J. Morrison. 1949. Adjustment of an Inverse Matrix Corre-
sponding to Changes in the Elements of a Given Column or a Given Row of
the Original Matrix. Annals of Mathematical Statistics 20 (1949), 621.

[18] M. Soare, A. Lazaric, and R. Munos. 2014. Best-Arm Identification in Linear
Bandits. In Neural Information Processing Systems (NIPS). 828–836.

[19] R. S. Sutton and A. G. Barto. 2018. Reinforcement Learning: An Introduction
(second ed.). The MIT Press. http://incompleteideas.net/book/the-book-2nd.
html

[20] M. Valko, R. Munos, B. Kveton, and T. Kocák. 2014. Spectral Bandits for Smooth
Graph Functions. In International Conference on Machine Learning (ICML).
46–54.

[21] H. Wang, Q. Wu, and H. Wang. 2017. Factorization Bandits for Interactive
Recommendation. In AAAI Conference on Artificial Intelligence. 2695–2702.

392

