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ABSTRACT
The conundrum of quantifying pairwise similarity based on

network topology arises in many graph mining applications,

e.g., community detection. RoleSim is an arresting similarity mea-

sure that recursively defines similarity between entities as the

average similarity of the maximum weight matching between

their neighbours. Nonetheless, the existing algorithm [4] to com-

pute RoleSim similarity is expensive due to many duplicate com-

putations over different pairs of nodes. In this paper, we pro-

pose a novel efficient algorithm, RoleSim+, which accelerates

the computation of RoleSim without loss of accuracy. To avoid

duplicate computations, unlike RoleSim that computes the max-

imum weight matching for each pair of nodes independently

from scratch, RoleSim+ employs a novel method that resorts to

a Steiner tree to find an optimised topological sorting, aiming

at maximising the reuse of the previously computed maximum

matching information, progressively. Our experimental evalua-

tions on various real datasets validate the superiority of RoleSim+

at a decent speedup without any compromise of exactness.

1 INTRODUCTION
An overarching task in graph mining is to evaluate pairwise

similarity between nodes using the link structure of a network.

This technique, also known as link analysis, has been very popu-

lar in a myriad of real applications, e.g., collaborative filtering,
community detection, and query rewriting. In contrast to the

content-based similarity that focuses on the text attributes of the

objects, link-based similarity hinges on the link structure of the

graph. Amid piles of existing link-based models [2, 9, 12, 13, 21],

RoleSim, conceptualised by Jin et al. [3], has surfaced as an at-

tractive one on account of its concise and intuitive philosophy

that “two objects are assessed as similar if their in-neighbors

are automorphically similar”. Similar to SimRank measure [2],

RoleSim can recursively capture multi-hop neighbouring infor-

mation of two nodes. However, RoleSim, as its name indicates, is

superior to SimRank for identifying nodes with similar roles. This

is because, unlike SimRank similarity s(a,b) that is defined as

the average value of all the pairwise similarities of node a’s and
b’s in-neighbors, RoleSim similarity s(a,b) considers the average
value of only the maximum weight matching of a’s and b’s in-
neighbors. As a result, despite no connected paths between nodes,

RoleSim can assess the nodes as similar if their roles are similar.

Hence, RoleSim has many applications in, e.g., co-authorship
analysis [14], and social network de-anonymization [10].

However, the computational time of RoleSim is still undesir-

able due to duplicate computations, as shown in Example 1.1.

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the 
25th International Conference on Extending Database Technology (EDBT), 29th 
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org. 
Distribution of this paper is permitted under the terms of the Creative Commons 
license CC-by-nc-nd 4.0.

a b c

d e f g

h i

Id︷ ︸︸ ︷
a b c h i

Ie





b
c
d
h
i

0.2 0.462 0.462 0.2 0.2
0.2 0.462 0.532 0.2 0.2
0.2 0.308 0.350 0.2 0.2
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2

If︷ ︸︸ ︷
a b c e h i

Ie





b
c
d
h
i

0.2 0.462 0.462 0.308 0.2 0.2
0.2 0.462 0.532 0.35 0.2 0.2
0.2 0.308 0.35 0.455 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2

s(e, d)

s(e, f ) added

to Me,f

removed

from Me,f

Figure 1: Duplicate Computations in s(e,d) & s(e, f )

Example 1.1. Consider a web graph G in Figure 1, where each

edge is a hyperlink. Given decay factor β = 0.8, we want to

evaluate RoleSim similarities s(e,d) and s(e, f ) in G.
For any node x inG , let Ix be the in-neighbor set of node x in

G, and |Ix | the cardinality of Ix . For in-neighbor sets Ix and Iy ,
letM(Ix , Iy ) be the maximumweight matching from the pairwise

RoleSim similarities over x ’s and y’s in-neighbor grid Ix × Iy .
The existing RoleSim algorithm [4] computes s(e,d) and s(e, f )

in three steps: First, it finds the maximum weight matching

M(Ie , Id ) (resp.M(Ie , If )) from the similarities of the in-neighbor

grid Ie × Id (resp. Ie × If ), as colored in the five orange cells.

Then, we add up scores on eachmatchingM(Ie , Id ) (resp.M(Ie , If ))
from scratch, yielding the total weight ω(Ie , Id ) (resp. ω(Ie , If )):

ω(Ie , Id ) = s(b,b) + s(c, c) + s(h,a) + s(i,h) + s(d, i)

= 0.462 + 0.532 + 0.2 + 0.2 + 0.2 = 1.594 (1a)

ω(Ie , If ) = s(b,b) + s(c, c) + s(h,a) + s(i,h) + s(d, e)

= 0.462 + 0.532 + 0.2 + 0.2 + 0.455 = 1.849 (1b)

By RoleSim definition [4], s(e,d) and s(e, f ) are computed:

s(e,d) = β ×
ω(Ie ,Id )

max{ |Ie |, |Id | }
+ (1 − β) = 0.8 × 1.594

5
+ 0.2 = 0.455

s(e, f ) = β ×
ω(Ie ,If )

max{ |Ie |, |If | }
+ (1 − β) = 0.8 × 1.849

6
+ 0.2 = 0.447

During the above process, we perceive that, in Eqs.(1a) and

(1b), there are duplicate computations for ω(Ie , Id ) and ω(Ie , If )
(underlined parts). If the result of the weight ω(Ie , Id ) in Eq.(1a)

is cached and reused later for ω(Ie , If ) computation in Eq.(1b):

ω(Ie , If ) = ω(Ie , Id )−s(d, i)+s(d, e) = 1.594−0.2+0.455 = 1.849,

then a vast amount of time can be saved for s(e, f ) search. □

Example 1.1 implies that, when each pair of RoleSim similarity

is computed from scratch, such “shared-nothing” algorithms are

inefficient due to many repetitive calculations. However, there is

no regularity in the overlap of neighboring nodes on a real graph,

calling for efficient sharing strategies for fast RoleSim search.

Contributions. Our main contributions are as follows:
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• We first devise an efficient computation sharing strategy,

which resorts to a Steiner tree to find an optimised topo-

logical sorting, aiming at maximising the reuse of the pre-

viously computed maximum matching information progres-

sively. (Section 3.1)

• Based on our sharing strategy, we next propose a fast algo-

rithm, RoleSim+, to compute RoleSim similarities efficiently,

unlike the existing algorithm [4] that computes the maximum

matching for each pair of nodes independently from scratch.

(Section 3.2)

• We conduct experiments on real datasets to validate that our

proposed RoleSim+ is consistently faster than the best-known

competitor without any loss of accuracy. (Section 4)

Related Work. Recent years have witnessed a growing interest

in RoleSim-like similarity search [3, 4, 10, 14–20]. Jin et al. [3, 4]
devised an Iceberg algorithm, which prunes unpromising pairs to

identify nodes with the most interesting connections, thus reduc-

ing computational overheads for RoleSim search. Shao et al. [10]
proposed α-RoleSim++, which discards tiny iterative similarities

below a user-specified threshold. However, these approaches are

approximate, which compromises a little accuracy for speedups.

In comparison, we provide novel accurate and efficient meth-

ods that leverage a Steiner tree to find an optimised topological

sorting for maximising the reuse of the previously computed

maximum weight matching, which enables a decent speed-up

without loss of exactness. Our method can also be incorporated

to Iceberg [4] and α-RoleSim++ [10] to further speed up their

similarity search algorithms.

There has also been a host of work on variations of RoleSim,

e.g.,MatchSim [7], CentSim [6], RoleSim++ [10], and RoleSim* [14].

MatchSim [7] is a RoleSim-like model that adopts a different ini-

tialisation approach, but may not guarantee automorphic equiv-

alence. CentSim [6] is another role-based similarity measure

that compares the centrality values of vertices. It exploits the

weighted average of PageRank, degree and closeness centrality to

define similarity. RoleSim++ [10] encodes the maximum match-

ing of both in- and out-neighbors into similarity values, whose

search quality is higher than RoleSim for de-anonymisation of

social networks. Recently, RoleSim* [14], an enhanced version

of RoleSim, is proposed, which combines the merits of both Sim-

Rank and RoleSim. Its similarities can well capture not only the

automorphic equivalence of two nodes, but also other neigh-

boring similarities outside the automorphically equivalent sets

which are overlooked by RoleSim. However, the main focuses of

these studies are on search quality.

2 PRELIMINARIES
Given a digraph G = (V , E) with a node set V and an edge set E,
the RoleSim similarity s(a,b) between nodes a and b is defined as

s(a, b) = β×ω (Ia ,Ib )
max{|Ia |, |Ib |}

+ (1 − β ) with ω(Ia , Ib ) =
∑

(x ,y)∈M (Ia ,Ib )
s(x , y) (2)

where β ∈ (0, 1) is a decay factor, andM(Ia, Ib ) is the maximum

weight matching of a bipartite graph B = (Ia ∪ Ib , Ia × Ib , s(∗, ∗)).
Each edge (x,y) in B connecting node x ∈ Ia and node y ∈ Ib
has an associated weight s(x,y), whose value is the RoleSim

similarity between nodes x and y inG . ω(Ia, Ib ) is the sum of the

edge weights (i.e., RoleSim scores) over the matching M(Ia, Ib )
in B.

To compute s(a,b), Jin et al. [3] proposed the following itera-

tive approach: Initially, s0(a,b) = 1 (∀a,b). At (k + 1)-th iteration,

sk+1(a,b) =
β×ωk (Ia ,Ib )
max{ |Ia |, |Ib | }

+ (1 − β) with ωk (Ia, Ib ) =
∑

(x ,y)∈Mk (Ia ,Ib )
sk (x,y) (3)

W =

Pruning Rule 1
(# = 14)

Pruning Rule 2
(# = 5)

Pruning Rule 3
(# = 5)

Root︷ ︸︸ ︷ Terminal Nodes︷ ︸︸ ︷ Steiner Nodes︷ ︸︸ ︷
∅ Ib Ic Id Ie If Ig N1 N2 N3 N4

∅ ∞ 3 3 5 5 6 1 2 2 4 2

Ib ∞ ∞ 2 4 ∞ 5 ∞ ∞ ∞ ∞ ∞
Ic ∞ 2 ∞ 4 4 5 ∞ ∞ ∞ 3 ∞
Id ∞ ∞ ∞ ∞ 2 1 ∞ ∞ ∞ ∞ ∞
Ie ∞ ∞ ∞ 2 ∞ 3 ∞ ∞ ∞ ∞ ∞
If ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Ig ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
N1 ∞ 1 1 5 5 6 ∞ ∞ 2 4 2

N2 ∞ 3 1 3 3 4 ∞ 2 ∞ 2 2

N3 ∞ ∞ ∞ 1 1 2 ∞ ∞ ∞ ∞ ∞
N4 ∞ 1 3 3 5 4 ∞ 2 2 4 ∞

Figure 2: Transitional Cost MatrixW
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Figure 3: Steiner Tree T

where sk+1(a,b) is the (k+1)-th iterative similarity, andMk (Ia, Ib )
is themaximumweight matching of Bk = (Ia∪Ib , Ia×Ib , sk (∗, ∗)).
It was shown in [4] that sk (a,b) converges to s(a,b) as k → ∞.

The time complexity of the iterative method is O(K |V |2d3) on G
with |V | nodes for K iterations, where d is the average degree.

3 PROPOSED SOLUTION
3.1 Computation Sharing Strategy
We first find an optimised topological sorting that can efficiently

reuse the previously computed maximum matching information.

Our first step is to construct a cost transition graph G =
(V , E ,W ) from G. The vertex set of G is V = {∅} ∪ I ∪ I(2)

,

where I is a collection of non-empty in-neighbor sets Ix of each

node x in G, and I(2)
is a collection of the intersections of any

2 sets in I. For any two sets X and Y in V , if |X | ≤ |Y |, then
there is an edge X → Y in E associated with the weightW (X ,Y )
defined as follows:

W (X ,Y ) =

{
|X | + |Y | − 2 |X ∩ Y |, if X 1 Y and |X | ≤ min{2 |X ∩ Y |, |Y | }

|Y | − |X |, if X ⊆ Y
∞, otherwise

(4)

Intuitively,W (X ,Y ) is the transitional cost from X to Y , i.e., the
number of operations required to generate Y from X , where
each operation refers to adding/removing an element to/from

X . For example, if X = {a,b, c,h, i} and Y = {b, c,d,h, i}, then
W (X ,Y ) = |X | + |Y | − 2|X ∩ Y | = 5 + 5 − 2 × 4 = 2, meaning

that 2 operations are needed to generate Y from X , i.e., Y =
X − {a} ∪ {i}. It is worth noting thatW (X ,Y ) actually reflects

howmany elements ofX can be reused to generateY . The smaller

the value ofW (X ,Y ), the larger the overlap between X and Y .
In an extreme case whenW (X ,Y ) = 0, X can be fully reused

to generate Y (due to X = Y ).W (X ,Y ) = ∞ means that edge

X → Y is not added to E since theW (X ,Y ) operations required
to get Y from X via Eq.(4) is more costly than the |Y | operations
to generate Y from scratch (∅).

Our second step is to find a Steiner tree T from G , which will

produce an optimised topological sorting for efficient computa-

tion sharing to generate all sets in I with minimum transitional

costs. Precisely, given a weighted graph G (V , E ,W ) with a root

{∅} and a subsetI of V (where each set inI is called a terminal),
our goal is to find a minimum cost arborescence T that connects

the root {∅} to each terminal in I. The remaining vertices in

V − I − {∅} that are used to construct the Steiner tree T are

called Steiner vertices.
Intuitively, each path in T from {∅} to any terminal in I

implies a topological sorting for efficient computation sharing.

Each edge X
w
→Y in T means that Y can be generated from X

through onlyw operations. This indicates that the generation of

Y does not have to start from scratch by adding |Y | elements to∅
since part of the elements of X can be reused to generate Y with
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onlyw operations being required, wherew =W (X ,Y ) (< |Y |) is
defined by Eq.(4).

Example 3.1 (Computation sharing using Steiner Tree). Recall
G in Figure 1. Our computational sharing method follows 3 steps:

First, we build a transitional graph G (V , E ,W ) with V =

{∅}∪I∪I(2)
.I = {Ib , Ic , Id , Ie , If , Iд}, where Ib = {a,д,h}, Ic =

{b,д,h}, Id = {a,b, c,h, i}, Ie = {b, c,d,h, i}, If = {a,b, c, e,h, i},

Iд = { f }; and I(2) = {N1,N2,N3,N4}, where N1 = {д,h}, N2 =

{b,h}, N3 = {b, c,h, i}, N4 = {a,h}. For instance, N1 is the inter-

section of Ib and Ic .
Using Eq.(4), we can obtain the transitional cost matrixW of

G , as shown in Figure 2. Each cell inW , whose value is not ‘∞’,

corresponds to a directed edge in E . For instance, ‘2’ indexed at

row ‘Ib ’ and column ‘Ic ’ corresponds to a directed edge Ib → Ic
in E with a weight of 2.

Next, we find a Steiner tree T (with the root {∅} and termi-

nals I) that spans G , as depicted in Figure 3. Each edge in T
corresponds to a weight colored in an orange cell ofW . The sum

of all edge weights in T (2+ 1+ 1+ 1+ 3+ 1+ 1+ 1 = 11) is the

minimum cost.

Particularly, each path inT from the root {∅} to any terminal

in I implies a topological sorting describing how shared com-

puting works. For example, paths ∅ 2

→N1

1

→ Ib and ∅ 2

→N1

1

→ Ic
in T indicate that N1 is the common part that is created from

scratch only once, and can be reused twice for getting both termi-

nals Ib and Ic . Thus, the total cost of our method for generating

Ib and Ic is 4 (= 2 + 1 + 1). □

Shared MaximumWeight Matching. The topological sorting
in T implies an efficient order of incrementally finding a series

of maximum weight matchings, as shown in Theorem 3.2:

Theorem 3.2. Each edge X
w
→Y in the Steiner tree T indicates

that, for any subsetZ of nodes inG , the maximumweight matching
M(Z ,Y ) and its maximumweightω(Z ,Y ) :=

∑
(z,y)∈M (Z ,Y ) s(z,y)

in bipartite graph B1 = (Z ∪Y ,Z ×Y , s(∗, ∗)) can be incrementally
obtained from the maximum weight matching M(Z ,X ) and its
maximum weight ω(Z ,X ) in B2 = (Z ∪ X ,Z × X , s(∗, ∗)), using
only O(wl2) time, where l = max{|X |, |Y |, |Z |}, w (< l) is edge
weight.

Proof. For edge X
w
→Y in T , and any subset Z of nodes in

G, let s(Z ,X ) = {s(z, x) | ∀z ∈ Z and ∀x ∈ X } be the RoleSim

similarity grid with node-pairs over Z × X , and s(Z ,Y ) be the

similarity grid over Z × Y . Since X
w
→Y implies that Y can be

generated from X with onlyw operations, s(Z ,Y ) can be thought

of as the update ofw columns to s(Z ,X ). Thus, given the maxi-

mum weight matchingM(Z ,X ) over the grid s(Z ,X ), the incre-

mental assignment algorithm [8, 11] can be used to determine

the maximum weight matching M(Z ,Y ) over the updated grid

s(Z ,Y ), entailing only O(wl2) time with w =W (X ,Y ) in Eq.(4)

and l = max{|X |, |Y |, |Z |}. □

Example 3.3. Recall G in Figure 1 and its Steiner tree T in

Figure 3. To efficiently compute RoleSim similarities s(e,d) and
s(e, f ) in G, we notice that edge Id → If exists in T , implying

that Id ∪{e} = If . Thus, the maximummatchingM(Ie , If ) and its
weight ω(Ie , If ) can be incrementally computed from M(Ie , Id )

andω(Ie , Id ) using onlyO(l
2) time, where l = max{|Id |, |Ie |, |If |},

through the incremental assignment algorithm [8, 11], unlike

the existing method in Example 1.1 that requires O(l3) to find

M(Ie , If ) andM(Ie , Id ) from scratch. □

Sparsification of G . The transitional cost matrixW generated

by Eq.(4) is rather dense. To sparsify G , we propose 3 pruning

Algorithm 1: TraverseT(T ,X , β, sk (Iv , ∗))
Input :T : Steiner tree, X : vertex in T , β : decay factor, v : query

sk (Iv , ∗): similarities {sk (x , y)}∀(x ,y)∈Iv×V at iteration k
Output :sk+1(v , ∗): RoleSim similarities w.r.t. v at iteration k + 1

1 if X , ∅ then
2 build a bipartite graph Bk := (Iv ∪ X , Iv × X , sk (∗, ∗))
3 Z := T .parent (X )

4 if Z = ∅ then
5 [ωk (Iv , X );Mk (Iv , X )] := MaxWeight(Bk );
6 else
7 [ωk (Iv , X );Mk (Iv , X )] := dynMaxWeight(Bk ,Mk (Iv , Z ));

8 if X ∈ I then
9 set u := node in V whose in-neighbor set is X

10 sk+1(v , u) := β ×
ωk (Iv ,X )

max{|Iv |, |X |}
+ (1 − β );

11 foreach child Y of X in T do
12 TraverseT (T , Y , β , sk (Iv , ∗));
13 return sk+1(v , ∗);

rules to discard unpromising edges from G , prior to getting T .

These prunings are lossless since removing such edges from G
will not affect the result of finding T from G while reducing

the total weight of the retrieving result towards T with the

minimum weight.

Pruning Rule 1. For any two sets X and Y in V , edge X
w
→Y in

G can be pruned ifw ≥ |Y |. □
Pruning Rule 1 indicates that, if the cost of generating Y from

X is no less than |Y |, we will generate Y from scratch (∅), and

prune X → Y in G . For example in Figure 2, N2 → Ib can be

pruned inW , as denoted by a green cross, as |Ib | = 3 ≤W (N2, Ib ).
Pruning Rule 2. For any set Y ∈ I, edge ∅ → Y in G can be

pruned if there exists Z ∈ V s.t.W (Z ,Y ) ≤ |Y |. □
Pruning Rule 2 implies that, if ∃ a node Z ∈ V s.t. the cost

of generating Y from Z is no more than |Y | (i.e., the cost of

generating Y from ∅), then we will not consider to generate Y
from ∅ and prune ∅ → Y . For instance in Figure 2, ∅ → Ib
can be pruned inW , indicated by a blue cross, since ∃Ic ∈ V
s.t.W (Ic , Ib ) = 2 < 3 = |Ib |.

Pruning Rule 3. For any set X ∈ I(2)
and Y ∈ V , edge X

w
→Y in

G can be pruned if there exists Z ∈ I(2) s.t.W (Z ,Y ) ≤ w . □
Pruning Rule 3 indicates that, for any two setsX and Z in I(2)

,

if the cost of generating Y from Z is less thanw (i.e., the cost of
generating Y from X ), X → Y will be pruned in G . For example

in Figure 2, edge N2 → Id is pruned inW , denoted as a red cross,

because there exists N3 → Id s.t.W (N3, Id ) = 1 < 3 =W (N2, Id ).

3.2 A Complete Algorithm
TraversingT to Accelerate RoleSimComputation.We first

provide an efficient algorithm to traverse T based on depth-first

search, aiming at speeding up RoleSim computation.

TraverseT starts at the root (∅) of T , and explores as far

as possible along each branch of T before backtracking. If a

visited node X in T is not the root (∅) (line 1), the weighted

bipartite graph Bk over the grid Iv × X will be built first (line

2), and then the maximum weight matching Mk (Iv ,X ) and its

weight ωk (Iv ,X ) over Bk are computed in two different ways,

depending on the parent node Z of X : If Z is the root (∅) of T ,

Mk (Iv ,X ) is computed from scratch in a conventional way using

an O(d3)-time Kuhn-Munkres algorithm (MaxWeight) [1], where
d is the average degree of G; otherwise, a dynamic O(wd2)-time

(withw =W (Z ,X ) ≪ d) maximum weight matching algorithm

(dynMaxWeight) [8, 11] is employed to incrementally compute

Mk (Iv ,X ) andωk (Iv ,X ) from the previously computed matching

Mk (Iv ,Z ) (lines 3–7), thereby achieving a speedup over RoleSim

that computesMk (Iv ,X ) and ωk (Iv ,X ) from scratch. When X is
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Algorithm 2: RoleSim+(G, β,K)
Input : G = (V , E): graph, β : decay factor, K : # of iterations

Output :sK (∗, ∗): RoleSim similarities after K iterations

1 initialise s0(∗, ∗) := 1;

2 I := {Ix , ∅ | x ∈ V }, I(2)
:= {intersections of any 2 sets in I};

3 V := {∅} ∪ I ∪ I(2)
, E := ∅;

4 foreach (X , Y ) ∈ V × V do
5 computeW (X , Y ) according to Eq.(4);

6 ifW (X , Y ) , ∞ & does not violate Pruning Rules 1–3 then
7 add edge (X → Y ) into E ;

8 T := getSteinerTree (G (V , E ,W ));
9 for k := 1, 2, · · · , K do
10 foreach v ∈ V do
11 sk (v , ∗) :=TraverseT (T ,∅, β , sk−1(Iv , ∗));

12 return sK (∗, ∗);

a terminal in T (i.e., ∃ node u in G whose in-neighbor set is X ),

then we compute sk+1(v,u) from ωk (Iv ,X ) (lines 8–10). After

node X is processed, we iterate over its children in T and call

TraverseT (·) recursively (lines 11–12).

ACompleteAlgorithm.Combining TraverseT(·)with all tech-
niques in Section 3.1, Algorithm 2 shows our complete scheme.

Computational Complexity. The time of Algorithm 2 con-

sists of two phases: I) In the Preprocessing phase, it requires

O(|I|d + |I(2) |d) time to get I and I(2)
(line 2), and O(|V |2)

time to obtain a weight matrix W (lines 4–7), where |V | is

the number of nodes in G ; and d is the average degree of G.
Then, it takes O(|E | log |V |) time to get a Steiner tree T from

G . II) In the Iterative Shared Computing phase, for each itera-

tion k and each query v , it entails O(|T∅ |d3 + |TV |d2w) time

to compute sk (v, ∗) by traversing the Steiner tree T (line 11),

where |T∅ | is the number of out-neighhors of ∅ in T , |TV | is

the number of remaining nodes in T , and w is the total mini-

mum weight of T . Based on our analysis in Algorithm 1, the

time for TraverseT(·) is O(
∑
X ∈T∅ d3 +

∑
X ∈TV d2W (Z ,X )) =

O(|T∅ |d3 + |TV |d2w)) per iteration. Combining I) and II), we

get the total time complexity of Algorithm 2, which is bounded

by O(|V |2 + |E | log |V | + K |V |(|T∅ |d3 + |TV |d2w)).

4 EXPERIMENTS
Experimental Settings. We used real datasets from SNAP [5].

Datasets Abbr |V |2 Pairs |E | Description
CA-GrQc GR 27,478,564 14,496 Arxiv General Relativity Coauthorship

CA-HepTh HT 97,555,129 25,998 Arxiv HEP Theory Collaboration

Bitcoin-α BCA 14,311,089 24,186 Bitcoin Alpha web of trust network

Bitcoin-OTC OTC 34,586,161 35,592 Bitcoin OTC web of trust network

Ego-Facebook FB 16,313,521 88,234 Social circles from Facebook

We implemented the following algorithms in Visual C++.NET.

i) RS+, our fast method in Algorithm 2. ii) RS [4], the best-known
algorithm for iteratively computing RoleSim similarities. All the

algorithms are run on Windows 10 with an Intel Core i7-10700

CPU @ 2.9GHz and 16GB RAM. As previously used in [4], we set

decay factor β = 0.8, and number of iterations K = 5 by default.

Experimental Results We next present our findings.

(1) Time Efficiency. Fig. 4a shows the high computational effi-

ciency of RS+ on five real datasets. We observe that (i) on each

dataset, the total time of RS+ is consistently 1.5x–2.3x faster

than that of RS. This highlights the effectiveness of our approach
that resorts to a Steiner tree to find an optimised topological

sorting for maximising the reuse of the the previously computed

maximum matching. In contrast, RS is a “shared-nothing” al-

gorithm that involves many repetitive calculations to evaluate

each pair of similarity independently from scratch. (ii) When the

density of the graph is growing, the speedup of RS+ relative to
RS is more pronounced. For example, on high-density graphs

(e.g., FB with d = 21.84), RS+ is 2.3x faster than RS, whereas on
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GR 13,182 4,400 29 17,611 41.1
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Figure 4: Experimental Results on Real Datasets

low-density graphs (e.g., HT with d = 2.63), RS+ is 1.5x faster

than RS. This is consistent with our time complexity analysis of

RS+ in Algorithm 2, where each time RS+ visits a non-terminal

node X during T traversal, dynMaxWeight (·) will be invoked

to incrementally compute maximum weight matchingM(∗,X ).

Thus, the time of computingM(∗,X ) can be significantly reduced

from O(d3) to O(d2w) withw =W (∗,X ) ≤ d .

(2) Time per Phase. Fig. 4b depicts the time allocated in each

phase of RS+, i.e., I) Preprocessing, and II) Iterative Shared Com-

puting, on real datasets. We see that, on each dataset, the time

taken in Phase I is always far less than that in Phase II. This

indicates that it is worthwhile sacrificing only a little time in

preprocessing the Steiner tree to achieve a drastic speedup in sub-

sequent iterations. This agrees well with the complexity bound.

(3) Pruning Power. Fig. 4c shows the number of pairs in the

weight matrixW pruned by Pruning Rules 1–3, respectively, on

real datasets. We notice that (i) Pruning Rule 1 is the most power-

ful on all datasets as it can discard a large number of unpromising

pairs with lightweight cost; Rule 2 the second, as expected. (ii)

The last column shows a huge percentage of the pruned pairs

(e.g., 50.8% of pairs pruned on HT) relative to all |V |2 pairs in G ,

highlighting the effectiveness of our pruning approaches.

(4) Accuracy & Exactness. Fig. 4d compares the iterative error

ϵK = ave(x ,y) |sK (x,y) − s(x,y)| of RS+ and RS, respectively,
at each iteration, for each fixed β ∈ {0.4, 0.6, 0.8} on GR. The
trends on other datasets are similar, and are omitted here due to

space limitations. We notice that (i) given β , each K-th iterative

errors of RS+ and RS are exactly the same, showing that our

shared computing methods do not sacrifice any accuracy for

achieving a decent speedup. (ii) Both iterative errors of RS+ and

RS decrease to 0 as K increases, indicating that our RS+ has the
same convergence rate as RS.

5 CONCLUSIONS
We provide an efficient algorithm to accelerate RoleSim computa-

tion without loss of accuracy. First, we leverage a Steiner tree to

find an optimised topological order of nodes for computational

sharing. Next, an efficient algorithm, RoleSim+, is proposed to

speed up RoleSim computation based on Steiner tree traversal.

Our evaluations on real datasets validate the efficiency of RS+.
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