
Model-Independent Design of Knowledge Graphs —
Lessons Learnt From Complex Financial Graphs∗

Luigi Bellomarini
Banca d’Italia

Andrea Gentili
Banca d’Italia

Eleonora Laurenza
Banca d’Italia

Emanuel Sallinger
TU Wien and University of Oxford

ABSTRACT

We propose a model-independent design framework for Knowl-
edge Graphs (KGs), capitalizing on our experience in KGs and
model management for the roll out of a very large and complex
financial KG for the Central Bank of Italy.

KGs have recently garnered increasing attention from industry
and are currently exploited in a variety of applications. Many of
the common notions of KG share the presence of an extensional
component, typically implemented as a graph database storing
the enterprise data, and an intensional component, to derive new
implicit knowledge in the form of new nodes and new edges.

Our framework, KGModel, is based on a meta-level approach,
where the data engineer designs the extensional and the inten-
sional components of the KG—the graph schema and the reason-
ing rules, respectively—at meta-level. Then, in a model-driven
fashion, such high-level specification is translated into schema
definitions and reasoning rules that can be deployed into the tar-
get database systems and state-of-the-art reasoners. Our frame-
work offers a model-independent visual modeling language, a
logic-based language for the intensional component, and a set of
new complementary software tools for the translation of meta-
level specifications for the target systems. We present the details
of KGModel, illustrate the software tools we implemented and
show the suitability of the framework for real-world scenarios.

1 INTRODUCTION

While many different notions of Knowledge Graphs (KGs) are
offered in the literature [36], the presence of an extensional com-
ponent—often modeled as a property graph [3]—and an inten-
sional component, materialized or inferred through a reasoning
process, clearly emerges, as captured by recent definitions [12]. In-
tuitively, the extensional component of a KG can be thought of as
a graph-based representation of enterprise data. The intensional
component, on the other hand, is the specification, for example
in the form of reasoning rules, of derived knowledge (e.g., new
nodes, edges, attributes thereof), originating from the applica-
tion of potentially complex domain knowledge to the extensional
component, in the so-called reasoning process [12].

In Economic and Financial applications, Knowledge Graphs
(KGs) are rapidly gaining importance as reference tools to en-
able knowledge- and data-driven innovation, commonly shared
under many names including FinTech, RegTech, SupTech, and In-
surTech [6, 11, 14, 15, 22, 23, 26, 40, 47, 48, 51]. Underlying all
of these areas, there is the need for a detailed representation of
complex domains of interest, often characterized by the presence
of many interconnected entities, as well as dynamic inference
∗The views and opinions expressed in this paper are those of the authors and do
not necessarily reflect the official policy or position of the Bank of Italy.

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

capabilities, to generate derived knowledge and insights that are
not immediately available from the enterprise data.

This paper originates from our industrial experience in the
design and roll out of Knowledge Graphs for the Central Bank
of Italy, specifically dedicated to economic and financial applica-
tions. Ours is not an isolated context: thousands of medium and
large companies are currently investing in building their enter-
prise or application-specific KGs and exploiting them to make
better business decisions, thanks to their reasoning capabilities.

Challenges. In the construction of such systems, fundamental,
recurring questions are always met: how do I understand, design,
and communicate how a complex domain (such as the financial
one) looks like? How do I eventually structure the KG so that it
mirrors the enterprise view of the domain? How can I be sure
that the conceptual specification corresponds to the one of the
real KG to be deployed? How do I cope with different target
systems? How do I express complex business behaviour at high
level and cope with heterogeneity of the systems?

We rationalize these questions as the growing need for a de-
sign methodology for Knowledge Graphs. Such a methodology
should guide the data engineer from a conceptual, high-level, and
possibly visual representation of the reality to a production-ready
KGs. Following the undisputed success of the Entity-Relationship
model in the relational world, to be broadly and successfully
adopted, a KG design methodology should be easy to grasp, so to
help domain understanding and facilitate communication among
the stakeholders, and, at the same time, should provide concep-
tual models that are inherently mappable into the underlying
logic data models, to be deployed into the target systems in pro-
duction environments.
Specifically, we individuate the following distinguishing desi-
derata of a KG design methodology.
• Conceptual ergonomics. The methodology should provide con-
ceptual data models, enabling a simple, non-technical, high-
level, and possibly visual representation of the domain.
• Model independence. The methodology should be applicable
regardless of the specific technical implementation, that is, it
should be possible to deploy the extensional component into
any Graph Database Management System, relational, triple-
store system, etc., and it should be possible to express the inten-
sional components in a form that is independent of the query
languages of the target systems.
• Model awareness. The possibility to adopt a more or less com-
pelling graph schema is essential to capture real-world con-
straints, sustain the development of simple client applications,
and ease data manageability [21]. The extensional component
should conform to a graph schema and the language for the
intensional component should refer to the schema constructs.
• Expressive, efficient, and ergonomic intensional components. In-
tensional components should be first-class citizens in KG design
and should be specified with a reasoning language that is at the
same time graph ergonomic and expressive enough to handle

Industrial & Application Paper

Series ISSN: 2367-2005 524 10.48786/edbt.2022.46

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.46

KGs. Along the lines of popular regular path query languages
such as XPath, XQuery, SPARQL, Neo4J Cypher, etc. reflecting
the UC2RPQs literature stream [49], the use of navigational
expressions in the language should be seamless and intuitively
supported by the syntax.
A good yardstick for the language expressive power is Dat-
alog [24], which captures PTIME with a mild form of nega-
tion [27]. The language should be then at least expressive as
recursive Datalog, possibly with a form of negation. Derived
components should be the result of ontological reasoning pro-
cesses. Reasoning to the extent of tractable description logic
should be feasible (e.g., DL-Lite𝑅). In other terms, the language
should be expressive enough to cover any SPARQL query over
RDF datasets, under the entailment regime of OWL 2 QL [33].
• Model drivenness. From a high-level conceptual representation
of the domain given by the data engineer, the graph schema for
the target system and the executable specification of intensional
components should derive as a direct consequence, along the
lines of model-driven engineering [30].

Related Work. To the best of our knowledge, in the literature
there is no comprehensive methodology for KG design and none
of the existing approaches satisfies the illustrated desiderata.

The most comprehensive proposals for property graphs schema
languages [21] do offer visual modeling metaphors, but are specif-
ically thought for graphs—therefore are model dependent—while
for KGs a more general support for the storage of the exten-
sional component is required. Moreover, they do not foresee any
intensional component.

Model independence and to some extent model drivenness
have been successfully achieved in the model management com-
munity [18], with proposals for model-independent schema and
data translation frameworks such asModelGen andMIDST [5, 7]
by Atzeni et al. where, along the lines of the original observation
by Hull and King [37] on the existence of a common ground
for data model semantics, a generic super-model is proposed,
which contains constructs to capture any other data model; trans-
lations between models are then expressed via Datalog rules,
operating within the super-model itself in a model-independent
fashion. Yet, the intensional component is out of ModelGen and
MIDST’s scope, and these frameworks do not specifically focus
on graph-based models but see the relational model as a primary
representation, nor do they incorporate any design methodolo-
gies. However, as we shall see, we extend and adapt some ideas
from MIDST for our purposes. Later adaptations of Atzeni’s ap-
proach that aim at model-driven and system-independent graph
database design [50] are also not applicable for KGs, since they
only support graph-based models, do not consider the intensional
component and offer a visual metaphor based on a performance-
oriented translation of the Entity-Relationship model, which we
consider overly low level for our non-technical users.

In the semantic web community, the study of ontology engi-
neering was pioneered almost a decade ago [19, 35]. This research
line has flourished, with the proposal of pattern-based design
techniques (e.g., [2, 20]), as reflected by the rise of dedicated
venues and discussion forums [38]. Visualization methodologies
(e.g., [25]) have also been developed, in parallel. Our contribution
is orthogonal to this line of research, in the sense that the large
body of patterns that have been developed for ontology design is
of high practical utility for KG design and we do encourage de-
signers to get familiar with and adopt them. However, out of the
large body of literature in this area, we could not individuate any

methodology able to satisfy all the desiderata, as none of the ap-
proaches is either at conceptual level or RDF/OWL-independent,
nor does it offer support for a large set of target systems.
Contribution. Our main contributions are:
• We propose KGModel, a model-independent framework for
Knowledge Graphs design, comprising a methodology and a set
of support tools.
• KGModel adopts a new KG-oriented version of the MIDST
super-model, composed of super-constructs to represent the
schemas of the extensional component.
• KGModel is augmented with reasoning programs expressed in
MetaLog, a new variant of the Vadalog language for KGs [16],
that we propose for the intensional component.
• Our super-model is intimately connected to a visual design
methodology, in such a way that the data engineer can design
the schemas at a conceptual level.
• Our tools then allow schemas and MetaLog programs to be
enforced and executed, respectively, within the target systems,
thanks to translation mechanisms.
• We show KGModel in action by sharing our experience in
designing financial KGs.

In the next section we present more details of our industrial
setting, a general description of KGModel with an overview of
the contributions, and a description of the organization of the
subsequent sections.

2 OVERVIEW

2.1 The Industrial Setting

The company KG of the Central Bank of Italy is enabling multi-
ple AI-enhanced applications in the economics and supervision
realms. The imminent soar of different KGs designed and used
by several organizational units of the Bank, as well as more and
more complex extensional and intensional components mirroring
sophisticated regulatory frameworks, solicit the introduction of a
design framework for data engineers, adhering to the illustrated
desiderata and, more generally, sustaining a uniform structuring
of the enterprise KGs. Let us now introduce the extensional and
the intensional component of the KG at hand.
Extensional Component. The source for the enterprise data
of the KG is provided by the Italian Chambers of Commerce
and contains several features for each company such as legal
name, address, incorporation date, legal form, shareholders and
so on. Shareholders are either individuals or legal persons, which
are typically companies. For persons, we find all the associated
register data such as first name, surname, date and place of birth,
sex, and so on. For companies, the source data also provide an
extensive set of register features. Detailed shareholding structure
is also available. For each shareholder, the KG holds the share
amount, the kind of legal right associated to it (ownership, bare
ownership and so on). All our entities and their associations are
time dependent.

If we see the extensional component as a simple shareholding
graph—where nodes are shareholders and edges denote owned
shares—such graph consists of 11.97M nodes and 14.18M edges.
There are 11.96M Strongly Connected Components (SCC), com-
posed on average of one node, and more than 1.3M Weakly Con-
nected Components (WCC), composed on average of 9 nodes.
The largest SCC has 1.9k nodes, while the largest WCC has more
than six million nodes. The average in-degree of each node is
≈ 3.12, the out-degree ≈ 1.78 and the average clustering coefficient
is ≈ 0.0086, the maximum in-degree of a node is more than 16.9k

525

Figure 1: The KGModel modeling stack.

and the maximum out-degree is more than 5.1k nodes. As far as
the topology is concerned, the graph exhibits a scale-free net-
work structure, as common in the financial domain [10, 41, 45]:
the degree distribution follows a power-law, with several nodes
in the network acting as hubs.
Intensional Component. Many relationships are implicit and
derive from the application of articulated regulatory frameworks
to enterprise data. In the Central Bank of Italy KG, an interesting
case is the control link [32] between companies, which represents
the possibility of one company to exert decision power on others
and depends on the financial network structure in a complex
way; another one is integrated ownership [43], which measures
the total shares owned by a shareholder, directly and indirectly
throughout the whole graph; finally close links [42], where the Eu-
ropean Central Bank specifies peculiar forms of financial conflict
of interest between graph entities involved in the issuance and
use as collateral of asset-backed securities. Intensional compo-
nents are also used to capture relevant phenomena for analysis
purposes, such as company groups, virtual concepts denoting
a center of interest, shared among many firms, or partnerships
between shareholders sharing the assets of some firm.

2.2 The KGModel Framework

Along the lines of MIDST and as commonly done in popular meta-
modeling standards like MOF [46], KGModel adopts a layered
approach to data representation, summarized in Figure 1.
The meta-level approach. KGModel is organized into three
stacks of representations:model, schema, and instance, where each
level contains a set of constructs that specialize (or are specialized
by) the constructs of the level above (below). The instance stack
instantiates the schema stack, which instantiates the model.

In themodel stack, we adopt the idea of a super-model grouping
the super-constructs that can be used to define differentKnowledge
Graph models, that are all specializations of the super-model.
Possible models used to represent KGs are the different versions
of property graphs [3] (PG) such as the models of Neo4J PG,
Amazon Neptune, OrientDB or even non-graph-like models that
are frequently used to serialize graphs, such as the relational data
model, plain CSV files, and so on. Let us discuss our model stack.
- At the highest level we have a meta-model, which contains
the foundational meta-constructs, namely, MM_Entity (an ab-
stract entity of the domain), MM_Link (a connection between
entities), as well as their properties.

- The super-model contains super-constructs that specialize those
of the meta-model and subsumes, i.e., generalizes, any possi-
ble KG model. Examples of super-constructs are SM_Node,
SM_Edge, representing the general notions of node and edge,
respectively, SM_Attribute for their attributes, and so on.

- The various models comprise constructs that specialize the
super-constructs for a specific use. Example of PG constructs
are Node, Relationship, and Label, instantiating SM_Node,
SM_Relationship, and SM_Type, respectively.

In the schema stack, schemas capture the type of specific nodes,
edges and properties of a given domain of interest, in the same
sense that a relational database schema is an instance of the re-
lational model. For example, a graph schema is the one of the
companies, with its business entities such as people, shares, lo-
cations, and so on. As the super-model generalizes every model,
a schema can be expressed in either a model-dependent way, as
an instance of a model, or in a model-independent way, as an in-
stance of the super-model, in which case we call it super-schema.
A super-schema 𝑆1 can be cast into a schema 𝑆2 of a model 𝑀
by a specific set of translation rules, namely, mappings, which
apply the needed simplifications, when the case eliminating con-
structs of the super-model that are not supported by the specific
target model, and finally instantiate the super-constructs into
𝑀 constructs, accordingly. KGModel stores super-schemas and
schemas into graph dictionaries, associated to the super-model
and to each of the models, respectively. We define the mappings
as sets of MetaLog rules. MetaLog is our new variant of the
Vadalog language [16] for graphs. Vadalog extends Datalog
with existential quantification and other useful features, while
introducing mild syntactic restrictions to guarantee decidabil-
ity and tractability of the reasoning task. Vadalog reasoning
programs can be processed by the Vadalog System, a state-of-
the-art reasoner, able to read ground data from heterogeneous
data sources. MetaLog inherits the Vadalog (and thus Datalog)
semantics and expressive power, enriching its syntax with the
possibility to use pattern-matching graph exploration primitives.
It is model independent, as it operates at meta-level, expressive
and efficient enough to support ontological reasoning, model
aware and ergonomic, since incorporates syntactic elements to
closely exploit schema information.

The instance stack concretely represents the extensional com-

ponent of the KG, i.e., both the ground data and those derived
by materializing the intensional component (Section 6). The ex-
tensional component can be represented as either instance of the
super-schema (super-components) or of the schema (components).

The design methodology. With KGModel, we offer the data
engineer a model-driven design approach to KGs. The data engi-
neer is provided with a conceptual visualmodeling language,
named Graph Schema Language (GSL) to design a graph schema
as a super-schema. A GSL diagram defines an instance of the
super-model, with visual graphemes denoting instances of the
super-constructs. She also specifies the intensional component
(possibly comprising further schema constraints) in MetaLog,
with reasoning programs acting on the super-model constructs.

In order to deploy the designed schemas into the target sys-
tems, KGModel translates the super-schemas provided by the
engineer into instances of the target models by applying the
translation mappings. Schemas then contain all the information
needed to be deployed and enforced, with different methods,
depending on the target systems: for relational systems, for in-
stance, they can be rendered as DDL statements, which include
the respective constraints such as keys, foreign keys, domain
constraints, and so on; for RDF stores, schemas can be rendered
as RDF-S (RDF Schema) documents, to be validated by dedicated
tools; for schema-less systems, like graph databases, schemas can
be enforced with ad-hoc methodologies [21].

The data engineer also specifies the intensional component

of the KG in MetaLog at super-model level. It is then translated
into Vadalog and applied in a system-independent fashion.

The software modules. To support the explained methodology,
our framework incorporates the following tools:

526

Figure 2: The Meta-model.

- Graph Dictionaries. A set of graph databases to store the
instances of the super-model and of the models.

- (KGSE) Knowledge Graph Schema Environment. A tool
to graphically design GSL schemas and store them into the
super-model dictionary.

- (MTV) MetaLog to Vadalog Translator. A compiler to
generate Vadalog programs from MetaLog code.

- (SSST) Super-Schema to Schema Translator. A module that
takes as input a super-schema 𝑆 , a super-model-level intensional
component Σ expressed as a set of MetaLog rules, a MetaLog
mappingM(𝑀) for the translation of a super-schema into a
schema of the target model𝑀 , and generates: (i) the instance
𝑆 ′ of𝑀 , that is, the desired target schema; (ii) a new version of
the intensional component that can be applied to 𝑆 ′ instances.
SSST uses MTV to compile and run MetaLog.

2.3 Organization of the Paper

In Section 3 we describe the meta-model, the super-model, and
our visual design methodology. In Section 4 we introduce the
MetaLog language. Section 5 shows how different models for
KGs can be represented in our framework. A focus on the inten-
sional component is introduced in Section 6. Our industrial case
is pursued throughout all the sections, showing the conceptual
design of the KG of the Bank of Italy, the applied MetaLog code,
the generation of the model-level representations, important
portions of the intensional component, respectively. Section 7
concludes the paper.

3 THE META-LEVEL APPROACH

As we have pointed out in the overview, the starting point of our
approach is a model-generic representation of schemas, which
we call super-schemas. To do that, we define models as sets of
constructs, each specializing a super-construct of a general super-
model. The super-constructs, in turn, specialize a small set of
foundational meta-constructs. KGModel then features a visual
modeling language to define super-schemas.

3.1 A Look Form Above: theMeta-model
At the highest level of our model representation stack, we find the
meta-model, comprising the basic building blocks of any semantic
data model: entities, links between them, and their properties.
Figure 2 visualizes it as a PG: nodes are denoted by labeled circles,
edges by labeled arrows with cardinality indication (like in UML),
and node and edge attributes with the lollipop notation.1

Each meta-construct is identified by a unique internal Ob-
ject Identifier (OID). MM_Entities are abstract named domain
objects. MM_Properties have a name and a type. MM_Links
express relationships 𝐴→ 𝐵 between entities.

The meta-model lays the foundations for the visual represen-
tation of super-schemas. We do that by introducing an instance
rendering function Γ𝑀 , a bijection that specifies how to visualize
the instances of a model𝑀 . For the meta-model, the rendering
function ΓMM : CMM →V maps an instance 𝑐 ∈ CMM of a meta-
construct (CMM is the set of all possible meta-construct instances)

1We will use the PascalCase convention for entity names, UPPER_CASE for links
and camelCase for propeties in all the stack of KGModel.

Super-construct Attributes Grapheme

SM_Node isIntensional = false,
name from SM_Type

SM_Node isIntensional = true,
name from SM_Type

SM_Edge
isIntensional = false, name from
SM_Type, c1min , c1max , c2min ,
c2max from isOpt and isFun

SM_Edge
isIntensional = true, name from
SM_Type, c1min , c1max , c2min ,
c2max from isOpt and isFun

SM_Type name
SM_HAS_NODE_PROPERTY
SM_HAS_EDGE_PROPERTY

SM_FROM
SM_TO

SM_Attribute isOpt = false, isId = false
SM_Attribute isOpt = true, isId = false
SM_Attribute isOpt = false, isId = true

SM_HAS_NODE_PROPERTY isIntensional = false
SM_HAS_EDGE_PROPERTY isIntensional = true

SM_Generalization isTotal = true, isDisjoint = true

SM_Generalization isTotal = false, isDisjoint = true

SM_Generalization isTotal = true, isDisjoint = false

SM_Generalization isTotal = false, isDisjoint = false
SM_PARENT
SM_CHILD

Figure 3: The super-model dictionary and the tabular rep-

resentation of the rendering function ΓSM for its instances.

into a grapheme (an elementary graphic item) 𝑔 ∈ V , whereV ,
is the alphabet of graphemes. For example, entity instances are
represented as name-labeled nodes, properties with the named
lollipop notation; links are represented as name-labeled edges.

3.2 The Designer Level: the Super-model
The super-model provides the data engineer with a collection of
model-independent conceptual elements: the super-constructs.
Then, along the lines of model-driven software design [28], we
encourage the data engineer to craft the extensional component
of the KG by performing a domain-based decomposition of the
reality. She should single out the core concepts of the domain
at hand. For each concept, then she should individuate the most
“semantically adequate” super-construct and instantiate it to cap-
ture the domain object. In so doing, she assembles instances of
super-constructs, building a super-schema.

The semantic adequacy refers to the semantic category a real-
world object belongs to. When designing a relational database
with the Entity-Relationship model, for instance, the data engi-
neer wonders whether a concept is an entity or an attribute based
on its independent dignity and existence in the domain; she tries
to distinguish entities from relationships, based on their occur-
rence contexts, and so on. Similar considerations are applied in
every conceptual model to the extent that the design techniques
develop the engineer’s sensitivity to seizing the meaning of the
conceptual model constructs and mapping real-world concepts
into them. In this sense, a design methodology is tightly coupled

527

with the semantics of the constructs. In KGModel, we take this
consideration to a higher level and suggest that the data engineer
work with super-model constructs and design super-schemas.
We shall see in Section 5, how the super-schemas are finally cast
into schemas, once a target model is selected.

As our framework targets graph-based applications, we pro-
pose a set of super-constructs that see PGs as first-class citizens.
However, they are at the same time sufficiently general to capture
many other target data models, as proven by the straightforward
correspondences to other relational-based super-models [8].

Figure 3 renders our super-model dictionary, whose constructs
are instances of the meta-model, by applying ΓMM. To allow the
data engineer to visually create instances of the super-model
in design diagrams, we introduce the rendering function ΓSM :
CSM → V , that is detailed in tabular form in the Figure. The
Graph Schema Language is the visual language for KG design
diagrams originating from the application of ΓSM and it includes
specific notation to use the super-constructs; for example, we
mark a partial disjoint generalization with a single-headed thick
solid black arrow. While most of the super-construct have an
explicit notation, there are some others which do not have it, like
SM_HAS_CHILD; these super-constructs are marked with a gray
background in the table.
Designing with the Super-constructs. We provide the core
design guidelines by describing the KGModel super-constructs.
- SM_Node is the general notion of entity. It should be used to
represent any relevant domain object that is characterized by
its own identity, SM_Type, and set of distinguishing properties.
An SM_Node always has one single identifier, composed of a
set of identifying attributes.

- SM_Edge represents a binary aggregation of two SM_Nodes.
It should be used to capture the existence of a relationship
between domain concepts. Cardinalities are encoded as follows:
isFun1 (resp. isFun2) is true if right (left) maximum cardinality
is 1, it is 𝑁 , otherwise; isOpt1 (resp. isOpt2) is true if right
(left) minimum cardinality is 0, it is 1, otherwise. Note that,
unlike SM_Nodes, as SM_Edges have one single SM_Type,
super-schemas are simple graphs by construction.

- SM_Attribute models an attribute of a node or edge. It should
be used for any relevant domain object that does not have its
own identity, but is part of a more general concept. It can be
optional (isOpt) or mandatory, identifying (isId) or not.

- SM_AttributeModifier, marked in italic in the figure, is a
proxy for attribute modifiers that are generally used to enrich
an attribute with additional information, such as formatting or
domain constraints; each modifier has a corresponding super-
construct which holds specific information. For example, the
SM_UniqeAttributeModifier prescribes that an attribute
has a unique value among nodes with the same SM_Type, or the
SM_EnumAttributeModifier lists all the values an attribute
may have. As a whole, KGModel defines many more modifiers,
which help the data engineer to explicitly model business con-
straints. We will not focus on this super-construct in the rest
of the paper, for space reasons.

- SM_Generalization should be used to capture the usual no-
tion of specialization-abstraction relationship existing between
entities, SM_Nodes in this case. It can be further characterized
as total if every instance of the parent is also an instance of
a child (non-total otherwise), disjoint if the instances of the
parent are instances of a single child (non-disjoint otherwise).
Other super-constructs are the ones specializing MM_Link:

SM_HAS_NODE_TYPE, SM_HAS_EDGE_TYPE, SM_PARENT,

Figure 4: A portion of the Bank of Italy KG designed with

KGModel methodology.

SM_CHILD, SM_FROM, SM_TO, SM_HAS_PROPERTY, and SM-
_HAS_MODIFIER. Their use is straightforward, as they connect
the respective SM_Node specializations.

3.3 A View on the Central Bank of Italy KG

We used KGModel for the conceptual design of our KG, culmi-
nating in the construction of a GSL diagram. A simplified but
representative portion of such diagram, which we generally refer
to as the “Company KG”, is shown in Figure 4.

Throughout the conceptual design work, we could appreci-
ate how the existence of a technology-independent super-model
dictionary guides the designer through her modeling activity,
offering a toolkit of lenses to capture real-world objects, under-
stand their characteristics and relationships, and communicate
the design choices with stakeholders. Let us try to narratively
simulate a fragment of such a modeling journey.

The domain of the Company KG revolves around the notions
of physical persons, i.e., individuals, or legal persons, which are
entities capable of performing some actions like owning proper-
ties. Even if these two entities share some features like the way
in which they interact with the world (e.g., they can buy or sell
stocks of a company), they are different since they have different
attributes (e.g., an individual has a gender, while a legal person
has a legal nature, and so on).
«I will capture the structure by introducing distinct SM_Nodes

for persons, i.e., PhysicalPerson and LegalPerson, characterized
by a distinct set of SM_Attributes. As for the attributes, Phys-
icalPersons are identified by a unique fiscalCode and have a
gender and a name; the birthDate is not always present in data,
and as such it is optional; LegalPersons are as well identified by
their fiscalCode, have a businessName and a legalNature and
may have a website.»

Physical persons and legal persons can have their place for res-
idence. They can hold stakes in a company shareholding capital.
Moreover, both have a fiscal code, which uniquely identifies them
in the national system. The fact that physical and legal persons
share common traits and nevertheless have their specificities,
suggests that they are two specializations of a generic actor.
«I will introduce a SM_Generalization, where a Person gen-

eralizes and collects the common features of PhysicalPerson and
LegalPerson. As every person can be in exactly one of those two
categories, the generalization will be disjoint and total.»

Let us focus on the residence. When available, the address is
typically complex and composed of multiple parts (e.g. street,

528

street number, city, postal code). In the future, it can be enriched
with further elements, such as the GPS coordinates.

«Though tempting, modeling the address as an optional Per-
son attribute is not a valid choice, which may lead to increased
complexity: the address is an autonomous business entity, it has
many details, is likely to change in the future and be enriched. I will
introduce a Place SM_Node, modeling the address as an identifier
and storing each part of it as an SM_Attribute.»

The ownership structure of shareholding capital is available
only for some specific legal persons, i.e., businesses. Moreover,
some of these businesses are public companies whose capital is
listed in stock exchanges. Other entities have different forms of
legal nature for which shareholding capital does not make sense;
at the same time, the analysts are interested in legal persons that
are expression of the public sector in the economic system, such
as territorial entities.

«I will introduce a further SM_Generalization by specializing
the LegalPerson into a Business SM_Node, gathering sharehold-
ing capital features, and a NonBusiness SM_Node, with specific
isGovernmental SM_Attribute. As a legal person can be in ex-
actly one of those two categories, the generalization will be disjoint
and total. I will add one more specialization of Business by cre-
ating a child PublicListedCompany SM_Node hosting specific
information about the stock exchange features. As a business can
be publicly listed or not, the generalization will not be total.»

Our data show that a person can withhold stakes in a company
capital, and there are cases in which multiple distinct persons
may have different rights upon the same portion of company cap-
ital (e.g., multiple owners of a single share or complex property
structures like usufruct, in which bare owner and usufructuary
have different rights on the property). Nevertheless, data analysis
constantly requires insight about standard ownership.

«While property would be elegantly described by a simple OWNS
SM_Edge connecting the owning Person to the owned Business,
this would not allow for multiple Persons holding a single stake
in the company. Hence, I will introduce a Share SM_Node (which
represents a portion of the business capital) and the HOLDS-BE-
LONGS_TO SM_Edges decoupling owner-owned SM_Nodes so that
multiple Persons can HOLD a Share each with a specific right and
percentage. To ease the life of the analyst, I will introduce an in-
tensional OWNS SM_Edge that compactly represents only property
rights, hence connecting the same owner/owned SM_Nodes. I will
introduce as well a numberOfStakeholders intensional property
into Business SM_Node to make it available for analysis.»

Our analysts are interested in understanding whether the own-
ership of a business can end up in holding, directly or indirectly,
the majority of its stakes, thus controlling it.

«I will introduce an intensional CONTROLS SM_Edge connect-
ing the controlling Person to the controlled Business.»

A share is characterized by a percentage indication of its pro-
portion to capital total; when the capital is traded as stocks, the
information of the number of stocks is available as well.
«Having specific characteristics, I will model stock shares as a

specialization of Share SM_Node, namely StockShare. As a share
can be a stock share or not, the generalization will not be total.»

While people and companies are clearly distinct notions in the
domain, they are likely to participate in the same relationships,
such as ownership or control ties which they can exert on other
companies, or playing a role e.g., on the board of directors. Thus,
there is a form of graph homogeneity, which we would like to
pursue, where relevant entities (be they individuals or companies)
are linked by shareholding relationships. At the same time only

individuals belong to families and can represent businesses, and
only businesses have a capital held by shareholders or participate
in business events such as mergers.

«I will leverage generalization and model relationships only be-
tween the topmost nodes in the generalization hierarchy which are
involved in them. Hence, I will identify the following relationships:
HOLDS, OWNS, CONTROLS, HAS_ROLE, RESIDES, that can be
exerted by any Person; REPRESENTS that can be exerted only by
PhysicalPerson nodes; PARTICIPATES, that can only be exerted by
Businesses. As the participation in shareholding capital can only
be exerted on entities having shareholdingCapital, the OWNS,
CONTROLS, BELONGS_TO SM_Edges will be inbound to Business
SM_Nodes; finally, a Person can have a role in NonBusinesses
and Businesses, but not in PhysicalPersons, so the HAS_ROLE
SM_Edge will be inbound to LegalPerson SM_Node.»

Particularly relevant research objectives related to the use of
our KG are based on the connections between shareholders, for
instance family relationships.
«Since these connections can be individuated by specific rea-

soning tasks, I will add an intensional IS_RELATED_TO SM_Edge
connecting two individuals, i.e., connecting the PhysicalPerson
SM_Node to itself in the super-schema. In turn, each PhysicalPer-
son has an intensional BELONGS_TO_FAMILY SM_Edge connect-
ing it to a Family SM_Node. Since a family can hold a business, it
has an intensional FAMILY_OWNS SM_Edge to Businesses.»

Finally, a data source reports information about company
events like merger & acquisitions or splits; these events hap-
pen on a date and may generally involve multiple businesses, e.g.,
the acquirer and the acquired.
«As these events involve only companies, the topmost entity in

the generalization to which to refer is the Business SM_Node. I
will add a new BusinessEvent SM_Node, characterized by type
and date SM_Attributes, in which each business can participate
through a PARTICIPATES SM_Edge with a specific role.»

4 THE METALOG LANGUAGE

We now introduce MetaLog, the language we propose and use in
KGModel. To strike a balance between the ergonomicity of regu-
lar path queries and the expressive power of modern ontological
reasoning formalisms, MetaLog combinesWarded Datalog±, a
logic language at the core of Vadalog that proved to be of high
industrial applicability, and graph pattern matching.

Example 4.1. The following MetaLog program expresses com-
pany control. This notion is an essential ingredient for the inten-
sional component of the Bank of Italy KG: control edges pinpoint
when a company can exert decision power on another one.
A business 𝑥 controls a business 𝑦, if: (i) 𝑥 directly owns more than
50% of 𝑦; or, (ii) 𝑥 controls a set of companies that jointly (i.e., sum-
ming the share amounts), and possibly together with 𝑥 , own more
than 50% of 𝑦.

(𝑥 : Business) → ∃𝑐 (𝑥) [𝑐 : CONTROLS] (𝑥) (1)
(𝑥 : Business) [: CONTROLS] (𝑧 : Business)
[: OWNS; percentage : 𝑤] (𝑦 : Business),

𝑣 = sum(𝑤, ⟨𝑧⟩), 𝑣 > 0.5→ ∃𝑐 (𝑥) [𝑐 : CONTROLS] (𝑦) (2)

Every company 𝑥 controls itself (1), and (2), whenever 𝑥 controls
a set of companies 𝑧 such that the sum of their shares𝑤 over one
single company 𝑦 is more than 50%, then 𝑥 controls 𝑦. ■

529

In terms of expressive power, MetaLog is the union of all pro-
grams in Non-Recursive Warded Datalog± extended with transi-
tive closure of binary relations, and all the Vadalog programs.
To introduce the language, we recall the foundations of logic
reasoning with Vadalog [13], the standard notion of property
graph [3], and finally present MetaLog syntax and semantics.
Relational Foundations and Vadalog. Let C, N, and V be
disjoint countably infinite sets of constants, (labeled) nulls and
(regular) variables, respectively. A (relational) schema S is a finite
set of relation symbols (or predicates) with associated arity. A
term is either a constant or variable. An atom over S is an ex-
pression of the form 𝑅(𝑣), where 𝑅 ∈ S is of arity 𝑛 > 0 and 𝑣
is an 𝑛-tuple of terms. A (database) instance over S associates to
each relation symbol in S a relation of the respective arity over
the domain of constants and nulls. The members of relations are
called tuples. By some abuse of notations, we sometimes use the
terms tuple and fact interchangeably.

A rule is a first-order sentence of the form ∀𝑥∀𝑦 (𝝋 (𝑥,𝑦) →
∃𝑧 𝝍 (𝑥, 𝑧)), where 𝝋 (the body) and 𝝍 (the head) are conjunctions
of atoms with constants and variables. We typically omit univer-
sal quantifiers and replace ∧ with comma for conjunctions of
atoms. A program Σ is then defined as a set of rules.

The semantics of (a set of) existential rules can be intuitively
explained as follows: for each fact 𝜑 (𝑡, 𝑡 ′) of an instance 𝐷 , then
there exists a tuple 𝑡 ′′ of constants and fresh labeled nulls such
that the facts 𝜓 (𝑡, 𝑡 ′′) are also in 𝐼 . The semantics is more for-
mally defined via chase-based procedures [1]. The chase alters 𝐷
by adding new facts, possibly with fresh labeled nulls for existen-
tially quantified variables, until Σ(𝐷) satisfies all the existential
rules of Σ. It is well-known that in the presence of general re-
cursion and existential quantification, the reasoning task, which
intuitively amounts to answering queries over Σ(𝐷), is unde-
cidable [34]. Wardedness poses syntactical restrictions on the
interplay of existential quantification and recursion, so that the
reasoning task remains decidable and PTIME in data complexity,
i.e., when the program is fixed and the data are made to vary.

Example 4.2. In Vadalog, company control can be encoded with
the following existential rules.

Company(𝑥) → CONTROLS(𝑥, 𝑥) (1)
CONTROLS(𝑥, 𝑧),Own(𝑧,𝑦,𝑤),

𝑣 = sum(𝑤, ⟨𝑧⟩), 𝑣 > 0.5→ CONTROLS(𝑥,𝑦) (2)

Property Graphs. A (regular) Property Graph (PG) is a tuple of
the form 𝐺 = (𝑁, 𝐸, 𝜇, 𝜆, 𝜎), where: 𝑁 is a finite set of nodes; 𝐸
(disjoint from 𝑁) is a finite set of edges; the incidence function 𝜇 :
𝐸 → 𝑁𝑛 is a total function that associates each edge in 𝐸 with an
𝑛-tuple of nodes from𝑁 (n=2, for our goals); the labelling function
𝜆 : (𝑁 ∪ 𝐸) → L is a partial function that associates nodes/edges
with a label from a set L; the function 𝜎 : (𝑁 ∪ 𝐸) × P→ V is a
partial function that associates nodes/edges with properties from
P to a value from C for each property.
MetaLog. Let C, N, and V be disjoint countably infinite sets of
constants, (labeled) nulls and (regular) variables, respectively, and
𝐺 = (𝑁, 𝐸, 𝜇, 𝜆, 𝜎) be a property graph. A MetaLog program is a
set Σ of existential rules 𝝋 (𝑥,𝑦) → ∃𝑧 𝝍 (𝑥, 𝑧), where 𝑥 , 𝑦, and 𝑧
are tuples of variables, 𝝋 is a conjunction of PG node atoms, path
patterns, conditions, and expressions and 𝝍 is a conjunction of PG
node atoms and path patterns.
• A PG atom can have two forms: (𝑥 : 𝐿; 𝐾) (PG node atom), or
[𝑥 : 𝐿; 𝐾] (PG edge atom), where 𝑥 ∈ V is the atom identifier,
𝐿 ∈ L is a label, 𝐾 is a tuple of named terms 𝐴𝑖 : 𝑥𝑖 , where
𝐴𝑖 ∈ names(𝐾) are attribute names in P and 𝑥𝑖 ∈ values(𝐾)

are variables of V or constants of C. The atom identifier and the
named variables can be omitted if the anonymous binding is in-
tended. An example of PG atom is (𝑥 : PhysicalPerson; name :
𝑛, gender : “male”), which selects all the PhysicalPerson la-
beled nodes 𝑥 having male gender and binds their name to the
variable 𝑛. An example of PG edge atom is [𝑜 : HOLDS; right :
“ownership”, percentage : 𝑠], which selects all the ownership
rights, binding the share amount to the variable 𝑠 .
• An expression is an assignment of the form 𝑧𝑖 = 𝑓 (𝑥,𝑦), where
𝑧𝑖 ∈ 𝑧, and 𝑓 is a generic function, which may be tuple-level
(e.g., an algebraic operation, a string operation, and so on) or
multi-tuple (e.g., an aggregation), where the standard strati-
fied semantics is assumed [39]. For instance 𝑡 = sum(𝑤, ⟨𝑦⟩)
aggregates𝑤 over 𝑦 and returns 𝑡 .
• A condition is a Boolean expression over a variable in 𝑥 or 𝑦,
for example: right=“ownership” and percentage<0.3.
• Let A be the alphabet of elements 𝜌 corresponding to PG edge
atoms. An expression 𝑥𝜌𝑦 denotes the existence of a binary
relation between the nodes selected by the PG atoms 𝑥 and
𝑦, and by the PG edge atom 𝜌 . Let us introduce the inverse
operator −: 𝜌− denotes the inverse binary relation, i.e., if 𝜌 is
𝑝 , then 𝜌− is 𝑝− and if 𝜌− is 𝑝 , then 𝜌 is 𝑝−. A path pattern is
expressed by means of regular expressions 𝑅 over the alphabet
A. A path pattern 𝑥𝑅𝑦 individuates all the pairs of nodes ⟨𝑥,𝑦⟩
connected by a semi-path that conforms to the regular language
𝐿(𝑅) defined by 𝑅. A semi-path from 𝑥 to 𝑦 is a sequence of the
form (𝑛1, 𝑒1, 𝑛2, 𝑒2, . . . , 𝑒𝑞, 𝑛𝑞+1), where 𝑞 ≥ 0, 𝑛1 = 𝑥 , 𝑛𝑞+1 = 𝑦,
and for each (𝑛𝑖 , 𝑒𝑖 , 𝑛𝑖+1), we have that either 𝜇 (𝑒𝑖) = ⟨𝑛𝑖 , 𝑛𝑖+1⟩
or 𝜇 (𝑒𝑖) = ⟨𝑛𝑖+1, 𝑛𝑖 ⟩. A semi-path defined by an expression 𝑅
conforms to a path pattern if 𝑒1, . . . , 𝑒𝑞 ∈ 𝐿(𝑅).

The semantics of MetaLog descends from the Vadalog one in
the natural way. For each fact of𝜑 (𝑡, 𝑡 ′) of𝐺 , that is, a conjunction
of paths of 𝐺 , there exists a tuple 𝑡 ′′ of constants from C and
fresh labeled nulls fromN, such that the paths𝜓 (𝑡, 𝑡 ′′) are also in
𝐺 . Given a set Σ of MetaLog rules, the chase alters 𝐺 by adding
new paths, until Σ(𝐺) satisfies all of them.

To guarantee decidability and tractability of the reasoning task
we require that: the transitive closure of relations in path patterns,
via the Kleene star operator, is allowed only if the program Σ is non-
recursive, i.e., the dependency graph of rules is acyclic. If Σ does
not include the transitive closure, then it can be reduced into a
warded program and therefore the reasoning task is decidable and
PTIME; if Σ includes the transitive closure, as it is non-recursive,
it can be reduced into a Piecewise Linear Datalog± [17], a subset
of Warded Datalog±.

MetaLog features syntactic elements to natively refer to nodes
and edges. As in KGModel the super-model is stored in a graph
dictionary, then MetaLog can be used to operate on it.

Example 4.3. In a super-schema, we link all the pairs of SM_No-
des that are in descendant-ancestor relationship, at any level.

(𝑥 : SM_Node) ([: SM_CHILD]− · [: SM_PARENT])∗
(𝑦 : SM_Node) → ∃𝑤 (𝑥) [𝑤 : DESCFROM] (𝑦)

A more complex regular expression is used instead of recursion. The
dot (·) notation represents concatenation in regular expressions. ■

MetaLog and Vadalog. The MTV component of KGModel
performs a MetaLog to Vadalog translation, enabling its execu-
tion. For each rule, the translation consists in replacing the PG
atoms with relational atoms, as used in Vadalog. We have three
phases: (1) the input PG instance 𝐺 is translated into a database
instance 𝐷 ; (2) the PG node atoms of the MetaLog rules are

530

mapped into relational atoms; (3) the path patterns are resolved.
The translation of conditions and expressions is straightforward.

(1) PG-to-relational mapping. The input PG instance 𝐺 is translated
into a relational database instance 𝐷 as follows.
• 𝐿-labeled nodes 𝑛 ∈ 𝑁 (with 𝐿𝑛 ∈ L) are translated into facts
𝐿(𝑐𝑥 , 𝑐1

𝑓
, 𝑐2

𝑓
, . . . , 𝑐𝑛

𝑓
) of predicate 𝐿, where for each property

𝑓𝑖 ∈ P, we have a constant term 𝑐𝑖
𝑓
of 𝐿 of value 𝜎 (𝑛, 𝑓𝑖). Note

that we assume every node has an internal OID 𝑥 , whose
value 𝑐𝑥 = 𝜎 (𝑛, 𝑥) identifies its facts.
• 𝐿𝑒 -labeled edges 𝑒 ∈ 𝐸, are translated into facts 𝐿𝑒 :
𝐿𝑒 (𝑐𝑥 , 𝑐1

𝑥 , . . . , 𝑐
𝑘
𝑥 , 𝑓1, . . . , 𝑓𝑚), where for each argument 𝑖 of the

function 𝜇, there is a constant 𝑐𝑖𝑥 of 𝐿𝑒 with value 𝜎 (𝑛, 𝑥),
where 𝑛 = 𝜇 (𝑒) [𝑖] and 𝑥 is the identifier of 𝑛, and for each
feature 𝑓𝑖 ∈ P of 𝑒 there is a constant 𝑐𝑖

𝑓
of 𝐿𝑒 with value

𝜎 (𝑒, 𝑓𝑖). We assume the presence of an internal OID 𝑥 , whose
value 𝑐𝑥 = 𝜎 (𝑒, 𝑥) identifies the edge facts.

(2) PG node atoms to atoms translation. PG node atoms of the Meta-
Log program (𝑥 : 𝐿; 𝐾) are translated into 𝐿(𝑥, 𝑥𝑖 , . . . , 𝑥𝑛),
where 𝑥𝑖 ∈ values(𝐾) are constants of C or variables of V.

(3) Resolution of path patterns. After step (2), graph patterns have
the form 𝐿(𝑥, 𝑥1, . . . , 𝑥𝑛) 𝑅𝑥𝑦 𝑀 (𝑦,𝑦1, . . . , 𝑦𝑚), where 𝐿,𝑀 are
predicate names mapping labels in L and 𝑅𝑥𝑦 is a regular ex-
pression overA, that defines paths from 𝑥 to 𝑦. The translation
𝜏 (𝑅𝑥𝑦) of 𝑅𝑥𝑦 is inductively defined as follows:
• 𝑅𝑥𝑦 = [𝑧 : 𝑇 𝐾] ⇒ 𝜏 (𝑅𝑥𝑦) = 𝑇 (𝑧, 𝑥,𝑦, values(𝐾))
• 𝑅𝑥𝑦 = (𝑆𝑥𝑦 |𝑇𝑥𝑦) ⇒ 𝜏 (𝑅𝑥𝑦) = 𝛼 (𝑥,𝑦, 𝑧), where 𝛼 is a new
atom defined by the following new Vadalog rules:
(i) 𝜏 (𝑆𝑥𝑦) → 𝛼 (𝑥,𝑦, 𝑧); (ii) 𝜏 (𝑇𝑥𝑦) → 𝛼 (𝑥,𝑦, 𝑧), where 𝑧 is the
tuple of body variables except 𝑥 and 𝑦.
• 𝑅𝑥𝑦 = 𝑆𝑥𝑞 · 𝑆𝑞𝑚 . . . · 𝑆𝑛𝑣 ·𝑇𝑣𝑦 ⇒ 𝜏 (𝑅𝑥𝑦) = 𝜏 (𝑆𝑥𝑞), . . . , 𝜏 (𝑆𝑣𝑦)
• 𝑅𝑥𝑦 = (𝑆𝑥𝑦)− ⇒ 𝜏 (𝑅𝑥𝑦) = 𝜏 (𝑆𝑦𝑥)
• 𝑅𝑥𝑦 = (𝑆ℎ𝑞)∗ ⇒ 𝜏 (𝑅𝑥𝑦) = 𝛽 (𝑥,𝑦, 𝑧), where 𝛽 is a new atom
defined by the following new Vadalog rules: (i) 𝜏 (𝑆ℎ𝑞) →
𝛽 (ℎ, 𝑞, 𝑧); (ii) 𝛽 (𝑣, ℎ, _), 𝜏 (𝑆ℎ𝑞) → 𝛽 (𝑣, 𝑞, 𝑧), where 𝑧 is the
tuple of variables of vars(𝑆ℎ𝑞) \ {ℎ, 𝑞}.

In Vadalog, the atoms deriving fromMetaLog PG node and edge
atoms are populated from the input sources via automatically
generated annotations of the form @input(atom,query), where
atom is the relational atom name and query is expressed in the
target system language—so, e.g., SQL for relational systems, or
Cypher in Neo4J— and implements the translation step (1).

Example 4.4. What follows is the Vadalog translation of the
MetaLog program in Example 4.3.

SM_Node(𝑥, . . .), 𝛽 (𝑥,𝑦, . . .), SM_Node(𝑦, . . .)
→ ∃𝑤 DESCFROM(𝑤, 𝑥,𝑦) (1)

SM_CHILD(_, 𝑢, 𝑥, . . .), SM_PARENT(_, 𝑢,𝑦, . . .)
→ 𝛽 (𝑥,𝑦, . . .) (2)

𝛽 (𝑣, ℎ, . . .), SM_CHILD(_, 𝑢, ℎ, . . .),
SM_PARENT(_, 𝑢, 𝑞, . . .) → 𝛽 (𝑣, 𝑞, . . .) (3)

@input(SM_Node,“(n:SM_Node) return n”).
@input(SM_PARENT,“(n:SM_Node)-[p:SM_PARENT]->
(g:SM_Generalization) return (p,g,n)”).
@input(SM_CHILD,“(n:SM_Node)<-[c:SM_CHILD]-
(g:SM_Generalization) return (c,g,n)”).

The original rule contains inversion, Kleene star and concatenation
operators. The annotations exemplify Neo4J extraction. ■

Linker SkolemFunctors. Sometimes in KGModelwewill need
an OID generation/retrieval mechanism that is more controlled
than standard null generation. For this purpose, let us intro-
duce a new set of symbols I, having empty intersection with
C, N, and V. A MetaLog rule can be of the form 𝝋 (𝑥,𝑦) →
∃𝑧 ∃𝑘sk(𝑣)𝝍 (𝑥, 𝑧, 𝑘), where one or more existentially quantified
variables 𝑘 are associated to a linker Skolem functor sk, with
the following semantics: whenever the rule is applied, the chase
generates for 𝑘 a fresh value from I. Such value is computed
by applying the functor sk to a tuple of universally quantified
variables 𝑣 ⊆ 𝑥 ∪𝑦. Skolem functions are assumed to be injective,
deterministic and range disjoint, i.e., for every pair of functors
sk𝐴 ≠ sk𝐵 , their images do not overlap.

5 MODEL LEVEL

By crafting a GSL design diagram, the data engineer has specified
the structure of the KG extensional component within a super-
schema. Such object is still at conceptual and super-model level.
To be operated and hence enforced in the target systems, first
the KGSE serializes and stores the visual diagram into the super-
model dictionary. Then, the SSST translates it into a schema of
the target logical model (Section 5.1). The fully specified schema
can be then enforced with well-known techniques depending on
the specific model and technology. This is out of scope for this
paper and we have already referred to some schema validation
techniques in Section 2.

5.1 Super-schema to Schema Translation

Amodel is represented in KGModel by specializing and renaming
a subset of the super-constructs. Figures 5 and 7, for instance,
represent the PG model and the relational model, respectively,
and highlight which super-constructs are used.

The translation of a super-schema 𝑆 , instance of the super-
model, into a schema 𝑆 ′, instance of a target model 𝑀 , is per-
formed as described in Algorithm 1.

Algorithm 1 SSST Schema Translation Algorithm.
Input: super-schema S, target model𝑀 ; Output: schema S′ of𝑀 .
1: M← select candidate mappings to𝑀 from REPO
2: M(𝑀) ← prompt for implementation strategy
3: V(𝑀) ← MTV.translateToVadalog(M(𝑀))
4: 𝑆− ← Reason(𝑆,M(𝑀).Eliminate)
5: 𝑆 ′ ← Reason(𝑆−,M(𝑀) .Copy)

After individuating a set of candidate mappings for 𝑀 from
a rule repository (line 1), the system involves the data engineer
(line 2) who refines the choice on the basis of the desired imple-
mentation strategy for the super-schema. Implementation strate-
gies encode the different modeling choices for the translation
into a given model𝑀 . They can be driven by performance con-
siderations, as typical in the design of NoSQL databases [44]
and logical design of relational databases [9], or reflect differ-
ent tactics to implement conceptual notions of the super-model
with the features offered by the target systems: for PGs, whether
SM_Generalization should be implemented via child-parent
edges or node tagging is an example of different tactics, highly
depending on the target model and system which may allow
multi-tagging or not. Observe that, however, the data engineer is
not responsible for the design of the mappings, and only selects
them from a pre-built library of translations in KGModel.

The mappingM(𝑀) is a MetaLog program implementing
the translation. Our mappings are based on the property that
the super-model contains a superset of the constructs of all the

531

Figure 5: An essential PG model implemented using KG-

Model super-model. Each construct name is suffixed (with

the “:” separator) with the name of the super-construct it

instantiates (e.g., Node: SM_Node).

models, up to renaming.M(𝑀) is structured as two sets of Meta-
Log programs, Eliminate and Copy, capturing the following steps:
(i) it translates 𝑆 into the intermediate super-schema 𝑆−, which is
a clone of 𝑆 where all the super-constructs that are not specialized
by 𝑀 are eliminated by encoding them with different super-
constructs, supported by 𝑀 ; the others are just copied (line 4);
(ii) 𝑆− is downcast into 𝑆 ′, by copying and renaming the super-
constructs that are specialized in 𝑀 (line 5). Steps (i) and (ii)
are implemented by translating all the respective programs into
Vadalog (Section 4), and orderly (i.e., first Eliminate and then
Copy) performing the reasoning tasks in the Vadalog System.

Sections 5.2 and 5.3 now zoom into how a mapping from our
super-model into the PG and relational model can be encoded.

5.2 Super-model to Property Graph Model

Many variants of the most common PG model exist, each with
its own set of features and limitations. We focus here on the
most adopted one, where the constructs are labeled nodes and
edges. Nodes can be taggedwithmultiple labels, and a uniqueness
constraint can be imposed on attributes. Plus, there is no support
for generalizations. We structure the mappingM(𝑀) to PGs into
the following sets of MetaLog programs:2

Eliminate.CopyNodes. SM_Nodes of 𝑆 are copied into new
SM_Nodes of 𝑆−.
Eliminate.CopyUniqueAttributeModifier. Omitted.
Eliminate.CopyEdges. SM_Edges of 𝑆 are copied into new
SM_Edges of 𝑆−.
Eliminate.CopyAttributes. SM_Attributes of 𝑆 are copied
into new SM_Attributes of 𝑆−, and linked to the respective
new SM_Nodes and SM_Edges.
Eliminate.DeleteGeneralizations.
(1) For every SM_Node 𝑛 in 𝑆 involved in a SM_Generaliza-

tion 𝑔, and for every SM_Node 𝑎 that is an ancestor of 𝑛
via 𝑔, the SM_Type of 𝑎 is copied into a new SM_Type of
𝑆− and linked to the new node of 𝑆− corresponding to 𝑛.

(2) For every SM_Attribute 𝑎 in 𝑆 of an SM_Node 𝑛 in-
volved in a SM_Generalization 𝑔, and for every SM_-
Node 𝑐 that is a child of 𝑛 via 𝑔, then 𝑎 is copied into a new
SM_Attribute of 𝑆− and linked to the new node of 𝑆−
corresponding to 𝑐 .

(3) For every outgoing (resp. incoming) SM_Edge 𝑒 from a
SM_Node 𝑛 involved in a SM_Generalization 𝑔 to a
SM_Node𝑚 in 𝑆 , and for every SM_Node 𝑐 that is a child
of 𝑛 via 𝑔, then 𝑒 is copied into a new SM_Edge of 𝑆− and

2Some programs will be omitted here and in Section 5.3 for space reasons.

linked to the new nodes of 𝑆−, corresponding to 𝑛 and𝑚,
respectively.

(4) For every outgoing (resp. incoming) SM_Edge 𝑒 from a
SM_Node 𝑛 involved in a SM_Generalization 𝑔 to a
SM_Node𝑚 in 𝑆 , and for every SM_Node 𝑐 that is a child
of 𝑛 via𝑔, let 𝑒 ′ be the copy of 𝑒 in 𝑆−. The SM_Attributes
of 𝑒 are copied to 𝑆− and linked to 𝑒 ′.

Copy.StoreNodes. The SM_Nodes of 𝑆− are copied into new
Nodes of 𝑆 ′.
Copy.StoreRelationships. The SM_Edges of 𝑆− are copied
into new Relationships of 𝑆 ′.
Copy.StoreProperties. The SM_Attributes of SM_Nodes
and SM_Edges of 𝑆− are copied into new Properties of 𝑆 ′
and linked to the new Nodes and Relationships.
Copy.StoreUniquePropertyModifiers. All SM_UniqeAt-
tributeModifiers of 𝑆− are copied into new UniqeProper-
tyModifiers of 𝑆 ′ and linked to the new Properties.
We discuss the MetaLog code of some rules of the Elimi-

nate.DeleteGeneralizations program.

Example 5.1. The following MetaLog rule implements Elimi-
nate.DeleteGeneralizations(1).

(𝑛 : SM_Node; schemaOID : 𝑠)
([: SM_CHILD]− · [: SM_PARENT]) ∗ (𝑎 : SM_Node)

[𝑟 : SM_HAS_NODE_TYPE] (𝑡 : SM_Type; name : 𝑤),
𝑠 = 123→ ∃skS (𝑠)𝑠

−∃skH (𝑛,𝑟)ℎ ∃skT (𝑡)𝑙 ∃skN (𝑛)𝑥
(𝑥 : SM_Node; schemaOID : 𝑠−) [ℎ : SM_HAS_NODE_TYPE]

(𝑙 : SM_Type; name : 𝑤)

SM_Generalizations are not copied into the target schema, but the
SM_Nodes of 𝑆− accumulate multiple types, inherited from their
parent nodes, at any level. All the body PG node and edge atoms
have the schemaOID attribute, to select the specific super-schema 𝑆
(123, in this case) we are interested in. We will omit attributes for
the sake of compactness. The target schema identifier 𝑠− is obtained
with a dedicated Skolem functor. ■

We omit the MetaLog code of Eliminate.DeleteGeneralizations(2),
whose logic is similar to that of (1). Instead, we concentrate on
edge inheritance, focusing on the generation of new SM_Edges,
whilst the copy of SM_Attributes is omitted, for space reasons.

Example 5.2. The following MetaLog rule implements Elimi-
nate.DeleteGeneralizations(3) for the inheritance of outgoing edges.

(𝑐 : SM_Node; schemaOID : 𝑠)
([: SM_CHILD]− · [: SM_PARENT])∗

(𝑛 : SM_Node)[𝑟 : SM_FROM]− (𝑒 : SM_Edge) [𝑡 : SM_TO]
(𝑚 : SM_Node), 𝑠 = 123→

∃sk𝐸 (𝑒,𝑐) 𝑓 ∃sk𝑁 (𝑐)𝑥 ∃sk𝑁 (𝑚)𝑧 ∃skFR (𝑟,𝑐)𝑢 ∃skTO (𝑡,𝑐)𝑡
(𝑥 : SM_Node) [𝑢 : SM_FROM]− (𝑓 : SM_Edge)

[𝑡 : SM_TO] (𝑧 : SM_Node)

The rule builds a new SM_Edge connecting SM_Nodes 𝑥 and 𝑧 in
𝑆−, which in 𝑆 correspond to the child node 𝑐 and to the target node
𝑚, respectively. ■

Figure 6 visualizes the portion of the scheme of the Bank of Italy
KG, automatically obtained by translating the super-schema we
have shown in Figure 4 into the PG model at hand.

532

Figure 6: The example super-schema of Figure 4 translated to the PG model.

Figure 7: An essential relational model expressed using

KGModel super-model.

5.3 Super-model to Relational Model

The relational model is a common choice for KG data. Let us see
the translation of super-schemas into relational schemas.

Our super-model representation of the relational model is
summarized in Figure 7. Relations specialize SM_Type. Each
Relation is characterized by a set of Fields, that specialize
SM_Attribute. A Predicate is a construct (SM_Node) that
connects a Relation to its Fields. ForeignKeys (SM_Edges)
constrain a set of Fields of the source relation (referred to via
HAS_SOURCE_FIELDS) to take only values from the identifier
of the target relation. While the relational model inherently sup-
ports many SM_AttributeModifiers, we omit them for space
reasons, as their translation is mechanical and uninteresting.

We present part of the mappingM(𝑀) to the relational model
next. Intuitively, the elimination phase simplifies generalizations
and many-to-many edges into one-to-many edges, which can
be directly converted into relational foreign keys in the copy
phase. For the representation of generalizations in the relational
model many tactics exist, based on data volumes and access sta-
tistics [31]. In the mapping we will adopt the following strategy,
omitting the details: we use a relation for each generalization
member, connecting each child relation to the respective parent
relation via foreign keys.

Eliminate.CopyNodes. SM_Nodes of 𝑆 are copied into new
SM_Nodes of 𝑆−.
Eliminate.CopyTypes. SM_Types of 𝑆 are copied into new
SM_Types of 𝑆−.
Eliminate.CopyNodeAttributes. SM_Attributes of
SM_Nodes in 𝑆 are copied into new SM_Attributes of 𝑆−,
and linked to the respective new SM_Nodes.

Eliminate.CopyOneToManyEdges. Let 𝑒 be a SM_Edge
from a SM_Node 𝑛 to a SM_Node𝑚 in 𝑆 with isFun1 = false
and isFun2 = true (hence, one-to-many), and let 𝑛− and𝑚−
be the SM_Nodes in 𝑆− corresponding to 𝑛 and𝑚.
(1) For every 𝑒 , a new SM_Edge 𝑒− is created and linked to

the respective from/to SM_Nodes 𝑛− and𝑚−.
(2) The SM_Attributes of 𝑒 are copied to 𝑆− and linked to

𝑚−.
The many-to-one edges are eliminated symmetrically. The
one-to-one edges can be handled with a similar approach.
Eliminate.DeleteManyToManyEdges. Let 𝑒 be a SM_Edge
from a SM_Node 𝑛 to a SM_Node𝑚 in 𝑆 with isFun1 = false
and isFun2 = false (hence, many-to-many).
(1) For every 𝑒 , a new SM_Node 𝑝− of 𝑆− is created; the

SM_Type of 𝑒 is copied into a new SM_Type of 𝑆− and
linked to 𝑝−, and the SM_Attributes of 𝑒 are copied to
𝑆− and linked to 𝑝−.

(2) Let 𝑝− and𝑚− be the corresponding SM_Nodes of 𝑒 and
𝑚 in 𝑆−, respectively. For every 𝑒 , a new SM_Edge fk−𝑚
is created in 𝑆− with fixed attributes isOpt1 = 𝑒.isOpt1,
isFun1 = false, isOpt2 = false and isFun2 = false. Then,
fk−𝑚 is linked to 𝑝− creating a SM_FROM link in 𝑆−, and to
𝑚− creating a SM_TO link. Finally, SM_Attributes of𝑚
with isId = true are copied in 𝑆− and linked to fk−𝑚 .

(3) Let 𝑝− and 𝑛− be the corresponding SM_Nodes of 𝑒 and
𝑛 in 𝑆−, respectively. For every 𝑒 , a new SM_Edge fk−𝑛
is created in 𝑆− with fixed attributes isOpt1 = 𝑒.isOpt2,
isFun1 = false, isOpt2 = false and isFun2 = false. Then,
fk−𝑛 is linked to 𝑝− creating a SM_FROM link in 𝑆−, and to
𝑛− creating a SM_TO link. Finally, SM_Attributes of 𝑛
with isId = true are copied in 𝑆− and linked to fk−𝑛 .

Eliminate.DeleteGeneralizations. Omitted.
Copy.StorePredicatesAndRelations. Omitted.
Copy.StoreNodeAttributes. Omitted.
Copy.StoreOneToManyEdges. Let 𝑒− be a SM_Edge from
a SM_Node 𝑛− to a SM_Node 𝑚− in 𝑆−, and let 𝑛′ and 𝑚′
be the new Predicates of 𝑆 ′ corresponding to SM_Nodes
of 𝑆−. Then the 𝑒− are copied into new ForeignKeys fk′

in 𝑆 ′ and linked to the from/to nodes 𝑛′ and 𝑚′; for every
SM_Attribute 𝑎− of 𝑛− with isId = true, 𝑎− is copied in 𝑆 ′
and linked through HAS_SOURCE_FIELD to fk′.

533

The many-to-one edges are eliminated symmetrically. The
one-to-one edges can be handled with a similar approach.

Figure 8 represents the reference KG super-schema illustrated in
Figure 4, translated to the relational model.

6 INTENSIONAL COMPONENTS AND

TRANSLATIONS

Control edges, which we have defined in Example 4.2, are a
case of derived edges in our Company KG. We aim at striking
a balance between two forces: design ergonomicity and model
independence. To address the former, the data engineer should
be able to write a set Σ of high-level MetaLog rules that specify
the intensional component by combining and creating instances
of constructs of the super-schema and so “speak” the business
language. In fact, Figure 3 shows that dash lines are the adopted
graphemes for such nodes and edges. For the latter, we need to
consider that, at the ground level, the data are stored in a database
instance𝐷 of a schema 𝑆 (of model𝑀), which has been generated
from the super-schema via one mappingM(𝑀), as we have seen
in Section 5. Σ must be applicable to 𝐷 , independently of its
schema 𝑆 and model 𝑀 . Algorithm 2 is the technique we use in
KGModel for the materialization of the intensional component.

Algorithm 2 Intensional Component Materialization Algorithm.
Input: instance 𝐷 of schema S of a model𝑀 , an intensional com-
ponent Σ; Output: materializes the intensional component.
1: M← select candidate mappings to𝑀 from REPO
2: M(𝑀) ← prompt for implementation strategy
3: V(𝑀) ← MTV.translateToVadalog(M(𝑀) .instance)
4: 𝐼 ← Reason(D,V(𝑀)−1) ⊲ Import 𝐷 into the super-model
5: 𝑉 𝐼

Σ ← build high-level input views from super-constructs
instances to construct instances used in Σ

6: 𝑉𝑂
Σ ← build high-level output views from construct in-

stances used in Σ to super-constructs instances
7: V(Σ) ← MTV.translateToVadalog(Σ ∪𝑉 𝐼

Σ ∪𝑉
𝑂
Σ)

8: 𝐼 ′ ← Reason(𝐼 ,V(Σ))
9: 𝐷 ← Reason(𝐼 ′,V(𝑀)) ⊲ Materialize into 𝐷

In broad terms, when requested to materialize the intensional
component of a KG, the SSST tool first loads the instance 𝐷
into the super-components (see Figure 1), composed of special
instance-level constructs of the super-model constructs, which are
the “instance twins” of the super-constructs (lines 1-4). Then, it
generates two sets of rules, 𝑉 𝐼

Σ and 𝑉𝑂
Σ , that provide intensional

definitions, in terms of the instance-level constructs, for the atom
names used in Σ (lines 5-6). Finally, once Σ is applied on the
views (lines 7-8), the obtained facts are materialized back into
𝐷 (line 9) as derived components. The mapping M(𝑀) from
the super-model to 𝑀 is a core element of the process and we
have extensively covered it in Section 5. Here, each mapping
is complemented by an instance-level mappingM(𝑀) .instance,
which symmetrically translates instances of super-schemas into
instances of schemas. Let us start with the constructs.
Instance-level Constructs. We enrich the super-model dictio-
nary to make it directly suitable to store instances of super-
schemas. A portion of it is shown in Figure 9. The model is ex-
tended by introducing for each super-construct C an I_C instance
super-construct, representing the respective instance counterpart.
Each instance super-construct is connected to the respective
super-construct by a SM_References edge. In general, instance
super-constructs only have the implicit OID attributes and in-
stanceOID to denote the specific instance they refer to, except

for I_SM_Attribute, which holds a value attribute, to store the
value of the instantiated SM_Attribute. With the same logic,
the model dictionaries of KGModel are extended with instance
constructs as well. For each supported model, KGModel is able
to load the source instance𝐷𝑆 into the model instance constructs.
The instance 𝐷 we have used in Algorithm 2 denotes 𝐷𝑆 once it
has been loaded into the instance constructs.
Super-schema Instances to Schema Instances Translation.
A super-schema instance is memorized in the super-model by
instantiating the instance-level constructs. With this structure
in place, mappings from super-schema instances to schema in-
stances are straightforward extensions of those we have seen in
Section 5.1, which translate super-schemas into schemas.

Example 6.1. For example, the I_SM_Attribute copy rules for
the PG model is as follows.

(𝑥 : I_SM_Attribute; instanceOID : 𝑖, value : 𝑣)
[: SM_REFERENCES] (𝑎 : SM_Attribute), 𝑖 = 234

→ ∃skP (𝑥)𝑤, ∃skR (𝑥)𝑟, ∃skPI (𝑎)𝑦
(𝑤 : I_M_Property; instanceOID : 𝑖, value : v)

[𝑟 : REFERENCES] (𝑦 : M_Property)
All the I_SM_Attributes of instance 234 are copied into the corre-
sponding Properties. Note that the identifiers for I_M_Property
and M_Property are generated by using linker Skolem functors,
to be able to refer to them in other copy rules, like the one for
I_SM_HAS_NODE_ATTRIBUTE. ■

Instance Loading. Once the source instance𝐷𝑆 has been loaded
into the instance constructs of the target model 𝑀 , we load it
into instance super-constructs: given a translation mapping from
super-schema instances to schema instancesM(𝑀), we trans-
late it into Vadalog (line 3) and compute its inverse V(𝑀)−1,
which reads the data into the super-model. It is well-known that
schema mappings are not necessarily invertible, due to potential
information loss [4]. Here we can leverage an interesting quasi-
invertibility concept from the schema mapping literature [29]. It
is not hard to see that information loss can take place only in
the elimination phase of the translation. Conversely, the copy
phase is invertible by construction. Thus, we simplifyV(𝑀)−1

into (V(𝑀) .copy)−1. Given 𝐷 , by applying such quasi-inverse
mapping, we obtain a super-schema instance 𝐼 (line 4), such that
the application ofV(𝑀) to it returns𝐷 . In fact, the data engineer
has possibly crafted the schema of 𝐷 using super-constructs that
are lost in the elimination and are not recovered by the inverse
mapping. However, quasi-invertibility is enough in our process,
as any potential information loss is never caused by the inversion.
Construction of the Views. Let us now consider the inten-
sional component Σ defined by the rules in Example 4.1 and see
how we support it with the input and output views. The goal is
to allow the execution of Σ, written in terms of model constructs,
on a super-schema instance 𝐼 . The views are automatically gen-
erated by KGModel from a static analysis of Σ. For each body
node (edge), an input-node (edge) view is created; for each head
node (edge), an output-node (edge) view is created. For a given
PG node atom of Σ, an input-view generates the corresponding
facts by reading from I_SM_Node and aggregating all the re-
lated I_SM_Attributes. Likewise, for a given PG edge atom, an
input-view generates the facts by reading from I_SM_Edge and
aggregating all the related I_SM_Attributes. The output views
perform the inverse transformation, de-normalizing higher-level
atoms into the super-schema instance constructs. To make things
more concrete, we show one input view for nodes.

534

Figure 8: The example super-schema of Figure 4 translated to a relational schema.

Figure 9: A portion of the super-model dictionary, ex-

tended with instance-level constructs.

Example 6.2. An input view of𝑉 𝐼
Σ creating facts for the Business

PG node atom in the intensional component of Example 4.1.

(𝑖 : I_SM_Node; instanceOID : 123) [:SM_REFERENCES]
(𝑛 : SM_Node) [: SM_HAS_NODE_TYPE]

(: SM_Type; name : Business),
(𝑖) [:I_SM_HAS_NODE_ATTR] (𝑖𝑎 : I_SM_Attribute; value : 𝑣),
(𝑛) [: SM_HAS_NODE_ATTR] (na: SM_Attribute; name : 𝑛),

(𝑖𝑎) [: 𝑆𝑀_𝑅𝐸𝐹𝐸𝑅𝐸𝑁𝐶𝐸𝑆] (𝑛𝑎),
𝑝 = pack(𝑛, 𝑣) → ∃sk𝐶 (𝑖)𝑐 (𝑐 : Business; ∗𝑝)

For a given instance (123), for every I_SM_Node where the type
for the referenced SM_Node is Business, consider all the attributes
whose names are in SM_Attribute and values in I_SM_Attribute,
and aggregate all the ⟨𝑛, 𝑣⟩ pairs with the multi-tuple expression
using the operator pack; create a new Business 𝑐 , unpacking all the
pairs as terms of PG node atom, as denoted by the ∗ operator. ■

Performance Considerations and Optimizations. As far as
complexity is concerned, the set of applied rules Σ ∪𝑉 𝐼

Σ ∪𝑉
𝑂
Σ is

specified in MetaLog, then translated into Vadalog, for which
the reasoning task has been shown to be in polynomial time.

As for performance, we have seen that the atoms of𝑉 𝐼
Σ provide

the input facts for Σ, and Σ those for 𝑉𝑂
Σ . We can then build the

instance 𝐼 ′ incrementally, in a stratified way, by first applying
𝑉 𝐼
Σ , and materializing the temporary result as a database instance

in a staging area; then, the standard reasoning process can take
place; finally, 𝐼 ′ is stored back into the target system.

There is a clear a trade-off between the needed storage space
(for the instances in the super-model dictionary and the materi-
alized versions of 𝑉 𝐼

Σ and 𝑉𝑂
Σ) and the perceived elapsed time. In

our experience, once 𝑉 𝐼
Σ has been materialized, the system can

process Σ without any overhead and accumulate changes to the
target database. They can be eventually applied to the target data-
base, in a batch fashion, by activating 𝑉𝑂

Σ to flush the instance
constructs. For the KG of the Bank of Italy under consideration
in this work, the overall control intensional component can be
computed in a virtual machine with 16 cores, 128 GB RAM (Intel
Xeon architecture) and HDD storage in ∼160 minutes, whilst
loading and flushing phases require ∼15 minutes in total.

Following existing approaches about runtime schema transla-
tion [5], future optimized versions of our system could delegate
part of the reasoning rules to the underlying database systems,
when convenient. However, this improvement requires care, as
intensional components typically involve the characterizing fea-
tures of ontological reasoning, such as a complex interplay of
recursion and existential quantification, which can be very labo-
rious or even impossible to express in target languages.

7 CONCLUSION

In building their enterprise and application-specific Knowledge
Graphs, companies need to understand, design, communicate,
and deploy complex data-driven systems, where the ground data
is enriched with a large amount of derived knowledge.

With this work, we aim at pushing the boundaries of the use
of KGs in practice and contribute to the delivery of highly en-
gineered systems able to support decision making at its best.
Specifically, capitalizing on our experience with a large finan-
cial KG, this work provides the data engineer with a conceptual,
model-independent, and model-driven framework. From a high-
level conceptual specification of the domain to an actionable
system, KGModel guides the data engineer through the design
journey with a set of principled methodologies and tools, based
on a meta-level representation of conceptual design diagrams
(in the GSL formalism), and a declarative specifications of rea-
soning rules (in MetaLog), which are automatically translated
into workable schemas and executable reasoning programs to be
deployed into the target systems. As we are at the stage of delving
into multiple novel KG projects in the Bank of Italy, we will be
able to evaluate the advantages of KGModel on a wider set of
use cases in terms of design, implementation and verification.

535

REFERENCES

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of
Databases. Addison-Wesley.

[2] Marjan Alirezaie, Karl Hammar, and Eva Blomqvist. 2018. SmartEnv as a
network of ontology patterns. Semantic Web 9, 6 (2018), 903–918.

[3] Renzo Angles. 2018. The Property Graph Database Model. In AMW (CEUR
Workshop Proceedings), Vol. 2100. CEUR-WS.org.

[4] Marcelo Arenas, Jorge Pérez, Juan L. Reutter, and Cristian Riveros. 2009.
Composition and Inversion of Schema Mappings. CoRR abs/0910.3372 (2009).

[5] Paolo Atzeni, Luigi Bellomarini, Francesca Bugiotti, Fabrizio Celli, and Giorgio
Gianforme. 2012. A runtime approach to model-generic translation of schema
and data. In Inf. Syst. 269–287.

[6] Paolo Atzeni, Luigi Bellomarini, Michela Iezzi, Emanuel Sallinger, and Adriano
Vlad. 2020. Weaving Enterprise Knowledge Graphs: The Case of Company
Ownership Graphs. In EDBT. OpenProceedings.org, 555–566.

[7] Paolo Atzeni, Paolo Cappellari, and Philip A. Bernstein. 2005. ModelGen:
Model Independent Schema Translation. In ICDE. IEEE Computer Society,
1111–1112.

[8] Paolo Atzeni, Paolo Cappellari, Riccardo Torlone, Philip A. Bernstein, and
Giorgio Gianforme. 2008. Model-Independent Schema Translation. VLDB
Journal 17 (2008), 1347–1370.

[9] Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, and Riccardo Torlone. 1999.
Database Systems - Concepts, Languages and Architectures. McGraw-Hill.

[10] Albert-László Barabási. 2009. Scale-Free Networks: A Decade and Beyond.
Science 325, 5939 (2009), 412–413.

[11] Luigi Bellomarini, Marco Benedetti, Stefano Ceri, Andrea Gentili, Rosario
Laurendi, Davide Magnanimi, Markus Nissl, and Emanuel Sallinger. 2020. Rea-
soning on Company Takeovers during the COVID-19 Crisis with Knowledge
Graphs. In RuleML+RR.

[12] Luigi Bellomarini, Daniele Fakhoury, Georg Gottlob, and Emanuel Sallinger.
2019. Knowledge Graphs and Enterprise AI: The Promise of an Enabling
Technology. In ICDE. IEEE, 26–37.

[13] Luigi Bellomarini, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger. 2017.
Swift Logic for Big Data and Knowledge Graphs. In IJCAI.

[14] Luigi Bellomarini, Eleonora Laurenza, and Emanuel Sallinger. 2020. Rule-
based Anti-Money Laundering in Financial Intelligence Units: Experience and
Vision. In RuleML+RR (Supplement) (CEUR Workshop Proceedings), Vol. 2644.
CEUR-WS.org, 133–144.

[15] Luigi Bellomarini, Markus Nissl, and Emanuel Sallinger. 2021. Rule-
based Blockchain Knowledge Graphs: Declarative AI for Solving Industrial
Blockchain Challenges. In RuleML+RR (To Appear) (CEUR Workshop Proceed-
ings). CEUR-WS.org.

[16] Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. 2018. The Vadalog
System: Datalog-based Reasoning for Knowledge Graphs. PVLDB 11, 9 (2018).

[17] Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger. 2019.
The Space-Efficient Core of Vadalog. In PODS. ACM, 270–284.

[18] Philip A. Bernstein and Sergey Melnik. 2007. Model management 2.0: manip-
ulating richer mappings. In SIGMOD Conference. ACM, 1–12.

[19] Eva Blomqvist, Karl Hammar, and Valentina Presutti. 2016. Engineering
Ontologies with Patterns - The eXtreme Design Methodology. In Ontology
Engineering with Ontology Design Patterns. Studies on the Semantic Web,
Vol. 25. IOS Press, 23–50.

[20] Eva Blomqvist, Valentina Presutti, Enrico Daga, and Aldo Gangemi. 2010.
Experimenting with eXtreme Design. In EKAW (Lecture Notes in Computer
Science), Vol. 6317. Springer, 120–134.

[21] Angela Bonifati, Peter Furniss, Alastair Green, Russ Harmer, Eugenia Oshurko,
andHannes Voigt. 2019. Schema Validation and Evolution for GraphDatabases.
In ER (Lecture Notes in Computer Science), Vol. 11788. Springer, 448–456.

[22] Mercedes Campi, Marco Duenas, and Giorgio Fagiolo. 2019. How do coun-
tries specialize in food production? A complex-network analysis of the global
agricultural product space. Technical Report. Lab. of Economics and Man-
agement (LEM), Sant’Anna School of Advanced Studies, Pisa, Italy. https:
//EconPapers.repec.org/RePEc:ssa:lemwps:2019/37

[23] Vasco M. Carvalho, Makoto Nirei, Yukiko U. Saito, and Alireza Tahbaz-Salehi.
2016. Supply Chain Disruptions: Evidence from the Great East Japan Earthquake.
Discussion papers ron287. Policy Research Institute, Ministry of Finance Japan.
https://ideas.repec.org/p/mof/wpaper/ron287.html

[24] Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1989. What you always wanted
to know about Datalog (and never dared to ask). TKDE 1, 1 (1989), 146–166.

[25] Anca Chis-Ratiu and Robert Andrei Buchmann. 2018. Design and Implementa-
tion of a Diagrammatic Tool for Creating RDF graphs. In PrOse@PoEM (CEUR
Workshop Proceedings), Vol. 2238. CEUR-WS.org, 37–48.

[26] Andreea Constantin, Tuomas A. Peltonen, and Peter Sarlin. 2018. Network
linkages to predict bank distress. Journal of Financial Stability (2018). https:
//doi.org/10.1016/j.jfs.2016.10.011

[27] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. 2001.
Complexity and expressive power of logic programming. ACM Comput. Surv.
33, 3 (2001), 374–425.

[28] Eric Evans. 2004. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley.

[29] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan. 2008.
Quasi-inverses of schema mappings. ACM Trans. Database Syst. 33, 2 (2008),
11:1–11:52.

[30] Francesca Arcelli Fontana, Hugo Brunelière, Hausi A. Müller, and Claudia
Raibulet. 2020. Guest editors’ introduction to the special issue on Model
Driven Engineering and Reverse Engineering: Research and Practice. J. Syst.
Softw. 159 (2020).

[31] Martin Fowler. 2002. Patterns of Enterprise Application Architecture. Addison-
Wesley Professional.

[32] J Franks and C Mayer. 1995. Trends in business organization: Do participa-
tion and cooperation increase competitiveness? Ownership and control. In H.
Siebertb (Ed), Tubingen: Mohr (1995).

[33] Birte Glimm, Chimezie Ogbuji, S Hawke, I Herman, B Parsia, A Polleres, and A
Seaborne. 2013. SPARQL 1.1 entailment regimes, 2013. W3C Recommendation
21 March 2013.

[34] Georg Gottlob and Andreas Pieris. 2015. Beyond SPARQL under OWL 2 QL
Entailment Regime: Rules to the Rescue. In IJCAI. 2999–3007.

[35] Karl Hammar, Eva Blomqvist, David Carral, Marieke van Erp, Antske Fokkens,
Aldo Gangemi, Willem Robert van Hage, Pascal Hitzler, Krzysztof Janowicz,
Nazifa Karima, Adila Krisnadhi, Tom Narock, Roxane Segers, Monika Solanki,
and Vojtech Svátek. 2016. Collected Research Questions Concerning Ontology
Design Patterns. In Ontology Engineering with Ontology Design Patterns.
Studies on the Semantic Web, Vol. 25. IOS Press, 189–198.

[36] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de
Melo, Claudio Gutiérrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto
Navigli, Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres,
Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen
Staab, and Antoine Zimmermann. 2021. Knowledge Graphs. ACM Comput.
Surv. 54, 4 (2021), 71:1–71:37.

[37] Richard Hull and Roger King. 1987. Semantic Database Modeling: Survey,
Applications, and Research Issues. ACM Comput. Surv. 19, 3 (1987), 201–260.

[38] Krzysztof Janowicz, Adila Alfa Krisnadhi, María Poveda-Villalón, Karl Ham-
mar, and Cogan Shimizu (Eds.). 2019. Proceedings of the 10th Workshop on
Ontology Design and Patterns (WOP 2019) co-located with 18th International
Semantic Web Conference (ISWC 2019), Auckland, New Zealand, October 27,
2019. CEUR Workshop Proceedings, Vol. 2459. CEUR-WS.org.

[39] Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. 1990.
The magic of duplicates and aggregates. In VLDB. 264–277.

[40] C. Piccardi and L. Tajoli. 2018. Complexity, centralization, and fragility in
economic networks. PLoS ONE 13 (2018).

[41] Cesar A. Hidalgo R. and Albert-László Barabási. 2008. Scale-free networks.
Scholarpedia 3, 1 (2008), 1716.

[42] Register of Institutions and Affiliates Data [n.d.]. GUIDELINE (EU) 2018/876
OF THE ECB. https://cutt.ly/8jJQYys.

[43] Andrea Romei, Salvatore Ruggieri, and Franco Turini. 2015. The layered
structure of company share networks. In 2015 IEEE International Conference
on Data Science and Advanced Analytics (DSAA). IEEE, 1–10.

[44] Pramod J. Sadalage and Martin Fowler. 2013. NoSQL distilled: a brief guide to
the emerging world of polyglot persistence. Addison-Wesley.

[45] Frank Schweitzer, Giorgio Fagiolo, Didier Sornette, Alessandro Vespignani
Fernando Vega-Redondo, and Douglas R. White. 2009. Economic Networks:
The New Challenges. Science 325, 1 (2009), 1716.

[46] Wei Tang. 2009. Meta Object Facility. Springer US, Boston, MA, 1722–1723.
https://doi.org/10.1007/978-0-387-39940-9_914

[47] Asena Temizsoy, Giulia Iori, and Gabriel Montes-Rojas. 2017. Network cen-
trality and funding rates in the e-MID interbank market. JFS (2017).

[48] Sonja Tilly and Giacomo Livan. 2021. Macroeconomic forecasting with statis-
tically validated knowledge graphs. CoRR abs/2104.10457 (2021).

[49] Moshe Y. Vardi. 2016. A Theory of Regular Queries. In PODS. ACM, 1–9.
[50] Roberto De Virgilio, Antonio Maccioni, and Riccardo Torlone. 2014. Model-

Driven Design of Graph Databases. In ER (Lecture Notes in Computer Science),
Vol. 8824. Springer, 172–185.

[51] Yucheng Yang, Yue Pang, Guanhua Huang, and Weinan E. 2020. The Knowl-
edge Graph for Macroeconomic Analysis with Alternative Big Data. CoRR
abs/2010.05172 (2020).

536

