
Voyager: Data Discovery and Integration for Data Science

Alex Bogatu†‡, Norman W. Paton†, Mark Douthwaite‡, André Freitas†r

†The University of Manchester, UK, ‡Peak AI Ltd., rIdiap Research Institute, Switzerland
{alex.bogatu,norman.paton,andre.freitas}@manchester.ac.uk

mark.douthwaite@peak.ai

ABSTRACT
Data discovery and integration have grown to become two impor-
tant research �elds in both academic and commercial domains,
mainly fueled by the ever increasing availability of datasets that
are stored by organisations without their conceptual meaning
or relationships being explicitly known. These tasks can be car-
ried out in di�erent settings and for di�erent purposes; here we
focus on the collection of tasks performed by data scientists to
acquire the knowledge needed when deciding what analyses to
perform on client data. In this paper, we focus on support for
three processes often encountered in practice by data scientists:
data identi�cation, data understanding and relationship discov-
ery. We describe our practical experience with each of these
processes and the means by which we assist data scientists in
performing them. We have been informed by real–life use–cases
in identifying the tasks carried out routinely by data scientists at
Peak AI. The paper reports the design decisions made in the de-
velopment of a system to support data discovery and integration,
and reports on an evaluation that investigates both usability and
task e�ciency.

1 INTRODUCTION
As data analysis algorithms evolve, the need for tools and meth-
ods that reduce the complexity of data management becomes
increasingly important. Organisations that have data science at
their operational core often �nd themselves past the point where
their data repositories can be conceptually modelled automat-
ically. This has prompted organisations to build in-house data
lifecycle management solutions to maintain a cohesive order
among all their data resources, e.g., Data Hub [14], Amundsen
[2], Metacat [29], etc. However, many such solutions play the
role of pre-existing data expertise broadcasters, i.e., existing data
knowledge is centralized and shared with other data stakehold-
ers. This means that new data still has to be manually curated
when it is imported into the system, be it a storage or a metadata
management system.

At Peak AI, many data science activities are characterized by
frequent interactions with new datasets - most commonly in tab-
ular format. As new tables are imported into internal systems for
analysis and dissemination, the productivity of the data discovery
and data understanding process becomes a central focal point,
and existing metadata management systems are of limited help
when the data is new. In practice, data scientists are involved
in a mixture of data discovery (e.g., [5, 18, 32]) and data inte-
gration (e.g., [16, 39]) tasks. Speci�cally, given a new collection
of tables, a data scientist commonly starts by identifying the
ones that are relevant for the intended analysis - often through

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, ISBN 978-3-89318-085-7 on OpenProceedings.org. Distribution
of this paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

search processes, i.e., data discovery, and continues to pro�ling,
cleaning and merging them, i.e., data integration. The goal of this
process is for the user to also become aware of the data’s con-
ceptual model, of its schemata and of the existing relationships
between di�erent data artefacts, e.g., tables. This knowledge will
be necessary every time data scientists write structured queries
or programs that consume that data.

Although both data discovery and data integration are well
recognised research areas, in this paper we describe our expe-
rience with their practical blending in a common real-world
scenario: data scientists having to interact with new, previously
unseen, tabular datasets. Our objective is to make the data jour-
ney from ingestion to analysis more productive and, ultimately, to
assist data scientists in querying new data using structured queries
or programs e�ciently.

In doing so, inspired by practical experience, we see the chal-
lenge as stemming from the divergence between the information
needs dictated by the task at hand and the data representation for-
mat [20].What are the concepts to be included in the analysis? How
are these represented in the data repository (what tables/columns)?
How do the datasets that share the same concepts relate? In this
paper, we address these questions through three activities carried
out by data scientists: conceptual data identi�cation, contextual
data understanding and data relationship discovery. We discuss
each of these branches and propose Voyager, a system designed
for and evaluated with data scientists. Concretely, our main con-
tributions in this paper are:

• The identi�cation and formalisation of data identi�cation,
data understanding and relationship discovery as tasks
that are regular precursors to analysis for data scientists.

• A system, called Voyager, which is the result of applying
recent data discovery research advances[5] to real-world
use cases at Peak AI.

• A usability study of the said system with data scientists
from Peak AI that investigates Voyager in relation to both
usability and task e�ciency

The remainder of the paper is structured as follows. Relevant
related works are discussed next, in Section 2, together with
commercial or open source systems. Then, in Section 3, we de�ne
conceptual data identi�cation, contextual data understanding
and data relationship discovery, and present a real–world case
study to support our proposed de�nitions. Section 4 describes our
proposed system, Voyager, that is evaluated using a methodology
presented in Section 5 and with results reported in Section 6.

2 RELATEDWORK
Data discovery is not yet an area with stable and well de�ned
constituents, but results have been reported relating to search,
navigation and metadata management that can certainly con-
tribute to the development of data discovery systems. In relation
to dataset search [9], keyword search can be supported either

Industrial & Application Paper

Series ISSN: 2367-2005 537 10.48786/edbt.2022.47

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.47

over the underlying data directly [25], or building on annota-
tions [6]. Of particular relevance to this paper, is index–based
dataset similarity search that allows for �nding datasets that are
related to a given query dataset, as in Aurum [18], Table Union
Search [32] and D3L [5]. Typically, such proposals index individ-
ual columns using one or several sketches that capture column
features, and then a search algorithm combines the evidence from
the indexes over the di�erent columns to rank the most similar
datasets. Such searches may consider the relationships between
datasets (e.g., [5, 43]), but there is a wider requirement, having
identi�ed datasets of relevance, to support navigation between
them, e.g., Seeping Semantics [19], [31].

In contrast with data discovery, data integration [16, 39] is, a
well established research area with many associated sub–areas.
Of particular interest for this paper is the work on data pro�ling
[1, 33] and functional and inclusion dependencies discovery [36,
37, 41]. While we make use of data pro�ling concepts to retrieve
data summary statistics in Voyager, we do not use traditional
inclusion dependencies discovery algorithms. Instead, we rely
on e�cient search indexes, such as locality sensitive hashing
(LSH) [4, 23], for approximating such dependencies and join
paths (e.g., [15]) due to the potential scale of and inconsistencies
in the data. Beyond that, Voyager merely aims to equip data
scientists with the data knowledge that enables them to perform
further integration, e.g., schema mapping [27, 28], rather than
actually execute data integration processes.

The above techniques for discovering and connecting data
sets can also be seen as part of a data catalog solution, and there
is recent work on modelling [17] and inferring [42] metadata
for sources with lean initial representations. Such models and
inferred properties can be useful for populating catalogs, for
which there have been proposals in the research literature (e.g.,
Ground [26], Constance [24]) and in products (e.g., Amundsen
[2], LinkedIn’s Data Hub [14], Uber’s Databook [13], Airbnb’s
Dataportal [12], Net�ix’s Metacat [29]).

In this paper, we present a proposal that supports the early
stages of data discovery and integration, including search, pro�l-
ing, navigation and catalogue population, speci�cally focused on
exploratory analysis of data collections. In this regard, our ob-
jectives are similar to those of RONIN [34], which also provides
an early example of how to combine recent results on similarity
search and relationship inference to provide interactive dataset
discovery. In this paper, we complement the work in RONIN,
with di�erent emphases in relation to search and relationship
discovery, giving rise to a rather di�erent user experience. In addi-
tion, we provide a comprehensive usability evaluation with users
from industry, to explore both how di�erent features are received
and the impact of the di�erent capabilities on the e�ciency of
discovery and integration tasks.

3 CONCEPTS AND DEFINITIONS
There is no broad consensus in the �eld of data science as to
what is involved in discovering data and making it available for
analysis. In Peak AI, where analysis takes place on customer
data using an in-house platform, a starting point involves up-
loading raw data into an online environment or data repository
for future analysis. In practice, coming to terms with the data
then involves writing one or more structured queries or a data
manipulation program in some programming language, such as
Python, R or SQL, with the purpose of identifying the concepts
represented in the data, their representation particularities and

inter–relationships. This can be seen as an example of the vocab-
ulary problem of databases [22] where users’ information needs
and intents need to be mapped to concepts represented in the
data. These concepts refer to di�erent computational resources
and structures, such as database schema elements, queries, pa-
rameters, �le names and data formats, among others [20].

We denote the knowledge necessary for mapping concepts
and intents to a collection of data tables as K . We consider K as
a prerequisite for de�ning a collection of functions, each repre-
sented in practice by some structured query over the available
tables. Then, the task at hand can be viewed as the process of
acquiring K necessary in order to de�ne the data queries.

More formally, given a collection of raw tablesT = {)1, . . .)=},
the requirement is to acquire knowledgeK about the data so as to
produce a collection of viewsV = {+1, . . .+<} over T . Each+8 2
V is the product of some function or structured query de�ned
by some combination of relational operations, e.g., projection,
selection, union, join, over one or more tables in T . +8 is then
either stored for future analysis or becomes the subject of a data
wrangling [21] and/or a data analysis pipeline.

Given T , in order to obtain a view+8 , a data scientist often has
to identify, clean and merge tables from T . K can therefore be
represented by a triple of data knowledge components, viz., data
identi�cation (I), data understanding (U) and data relationships
discovery (R):

• I is useful for having a conceptual and structural knowledge
about data, e.g., table and column names, what concepts they
represent, how are these concepts organised in tables, etc. In
practice, I could be acquired by searching and navigating tables
in T .

• U is useful for cleaning and transforming data. This is often
relative to an analytical task/context, e.g., identify summary
statistics of certain columns, value distributions, and data clean-
ing needs, such as missing value ratios, duplicate values, etc.
In practice, U could be achieved through data pro�ling of indi-
vidual tables in T .

• R is useful in merging tables by having knowledge about their
inter–relationships, e.g., primary key - foreign key (PK/FK)
relationships, key candidates, join paths, etc. In practice, R
could be achieved by consulting an entity/relationship (ER)
diagram of tables in T .

Although data scientists may have to carry out additional
processes, e.g., data transformation from di�erent data models
to tables, I, U and R have been identi�ed in our experience as
the main contributors to the learning curve of becoming familiar
with new data.

Note that we do not aim to o�er a recipe for performing data
cleaning or integration but rather to facilitate such processes by
assisting data scientists in becoming knowledgeable about the
data at hand. Such knowledge often resides in a data scientist’s
mind and is often acquired over multiple interactions with the
data. Our aim is to streamline this acquisition of K that can then
be shared with other users by centralizing it into a metadata
management tool. In this context, our proposed system can be
seen as an extension to existing data cataloging tools, such as
the ones mentioned in Section 2.

538

Figure 1: Use-case entity–relationship diagram with inter–table
relationships that are often missing in practice.

3.1 Case Study
In this section, we employ a real–world–inspired1 use–case to
better exemplify and de�ne conceptual data identi�cation (I), con-
textual data understanding (U) and data relationship discovery
(R).

Consider the diagram from Figure 1 where we depict a subset
of tables similar to the ones used by data scientists at Peak AI to
perform demand forecasting and price optimization for a clothing
retailer. We changed the names of the schema elements in Figure
1 to make their semantics self–explanatory. However, this is may
not be the case in practice. We observe the following:
(1) The exempli�ed tables are often part of a much larger col-

lection of tens/hundreds of tables originating from sources
outside the control of data scientists and, therefore, with their
table and column semantics unknown.

(2) The information stored in such tables is updated at regular in-
tervals, e.g., daily, weekly. However, the new records have to
be matched against the prescriptive schema of the already on-
boarded data. Moreover, similarly to the initial records, they
can be riddled with missing values, inconsistent formatting,
outliers and duplicates.

(3) The primary key/foreign key (PK/FK) relationships illustrated
in Figure 1 are often unknown in practice. This happens, for
example, when the information originates from data ware-
house systems that do not enforce integrity constraints for
relational data or from simple �le systems. Furthermore, the
tables are not always joinable on their primary keys , e.g.,
Items and Purchase order.

3.2 Conceptual data identi�cation
Observation (1) from above brings forward the need for mapping
the data consumer’s intents, often materialised as queries, and
the concepts represented in data. There is no quantitative study
measuring the dependency between schema size and the e�ort
necessary to understand or even query a dataset [20]. However,
together with data scientists at Peak AI, we have identi�ed that
this need for conceptually identifying what is stored in a new
client data collection is a major step that can often take hours or
even days, depending on the input size.

More speci�cally, given a collection of tables T = {)1, . . .)=},
e.g., the ones in Figure 1, and an analytical objective, e.g., price
optimization, conceptual data identi�cation refers to the recogni-
tion of data elements (i.e., tables and attributes) that can be the
subject of the intended or future analysis, e.g., attribute current
1This use–case is modeled after a real-world scenario at Peak AI. We cannot use
the real use–case because of data and business privacy restrictions.

price from Items, attributes vat selling price and vat retail price
from Transactions, etc.

We note that, in the example above, tables Items and Transac-
tions are the subjects of a direct mapping to the analytical intent
because they contain explicit price information. Often however,
an indirect mapping is also necessary. With respect to Figure 1,
examples include tables such as Promotion or Sales invoice that
can contribute to and in�uence the price analysis. All these tables
have to be merged and queried for the intended analytical task.
In this paper, we describe how we leverage data search to identify
both types of datasets relevant for the given analysis.

3.3 Contextual data understanding
Observation (2) from above emphasizes the need for a deeper
understanding of data, beyond conceptual awareness. In practice,
data science is often preceded by a statistical exploratory analysis
of tables of interest, e.g., analyzing value distributions, data types,
duplicates ratios, missing value ratios, etc.. At Peak AI, many
such tasks are dataset agnostic and, therefore, can be automated.

Continuing with the exempli�cation based on Figure 1, cus-
tomer information from tables such as Customer or Orders is cru-
cial for analysing buying patterns. Therefore, the data scientists
have to assess the availability of such data, e.g., missing values,
outliers, and even perform a preliminary statistical analysis, e.g.,
distributions, summary statistics, to determine the potential for
value extraction from the data. In this paper, we describe how
we leverage automatic data pro�ling to e�ciently deliver such
data understanding to data scientists.

3.4 Data relationship discovery
Observation (3) from above is a manifestation of one of the major
obstructions we identi�ed in the productivity of data integration
processes: missing integrity constraints between tables. New in-
coming datasets often originate from storage systems that are
not under expert administration and, therefore, their formal in-
terrelationships, e.g., inclusion dependencies, PK/FK, etc., are not
explicitly known.

In Figure 1, the highlighted inter–table relationships are often
missing in practice. However, they are crucial for e�cient query-
ing of multiple tables and for the creation of the uni�ed views.
With respect to relationship discovery, in this paper, we propose
a method to e�ciently approximate an entity–relationship dia-
gram to uplift the e�ciency of query writing by data scientists.

4 THE VOYAGER SYSTEM
At Peak AI, together with data scientists, we have identi�ed data
discovery and integration as a suitable focal point for accelerating
the delivery of data science results. We are, therefore, proposing
in this section a system called Voyager, built on top of indexing–
based data discovery [5] and focused on delivering the knowledge
K from Section 3 to data scientists.

Speci�cally, we guided the development of Voyager by the
following design principles:
(1) Integration: one system for all of data identi�cation, data

understanding and data relationship discovery.
(2) Automation: automate the major data derivation processes,

to increase data preparation e�ciency and productivity.
(3) Scalability: read the data once and extract all relevant infor-

mation for recurrent tasks, i.e., one–o� data scanning.
(4) Accessibility: focus on easy adoption by data scientists and

minimise their learning curve.

539

Figure 2: Voyager’s interconnected backend processes and data
structures: table pro�les, LSH indexes, relationship graph.

Table 1: Table & column pro�le information

Pro�ling info Description
Cardinality Table cardinality
Arity Table arity

Key candidate The column with the highest
likelihood of being a key.

Data type One of categorical, boolean, integer,
numeric, date/time, for each column.

Summary stats.
Summary statistics for each column,
such as counts, unique and missing ratios,
min, avg., etc.

Histogram Count histogram for numerical columns.

Frequent values The top-k most frequent values
for categorical columns.

MinHash[7] A hash code for each categorical and
integer columns used during indexing.

The result is a system with its main processes and data struc-
tures illustrated in Figure 2. Voyager has components for three
main exploratory tasks, viz., data pro�ling, data indexing and
relationship graph building, leveraging three types of metadata,
each stored in a specialised data structure. These tasks collec-
tively address the design principles mentioned above, as we now
describe.

4.1 Data pro�ling
Although data pro�ling is an established research area (e.g., [33]),
in this paper we limit the reach of pro�ling to only examining
the data from an existing information source (e.g., a database)
and collecting descriptive statistics and informative summaries
about individual data items (e.g., tables, columns).

In our experience, we have observed that this type of pro�ling
is performed for most analytical tasks early on. Often, pro�ling
is done by programs and scripts written by data scientists that
extract metadata of interest for the current task, e.g., using pro-
�ling libraries such as the pandas_profiling Python library [35].
We have identi�ed several pro�ling statistics that are often useful
for understanding new data, and we mention the most important
ones in Table 1.

While most of the items in Table 1 are self–explanatory, of
particular interest are Key candidate and MinHash. The former
identi�es a column as being a key candidate in a pro�led table
following a heuristic approach inspired by the idea of subject
attributes introduced in [40]. However, a subject attribute is often

Table 2: Key score factors

3 ratio of distinct values 2 [0, 1]
< ratio of missing values 2 [0, 1]
B skewness measure normalized to 2 [0, 1]
8 column ordinal index normalized to 2 [0, 1]

restricted to categorical columns, i.e., the entity the dataset is
about. Since we use the identi�ed key candidates in join path
approximation, described in Section 4.3, we also consider integer
columns. Speci�cally, we score each column’s key candidacy
using the following heuristic:

:B2>A4 = 3 ⇥ (1 �<) ⇥ (1 � B) ⇥ (1 � 8) (1)
where Table 2 describes the individual factors. Intuitively, a col-
umn is more likely to be a key candidate if most of its values
are unique and not missing, its count histogram, when data is
numeric, is not left or right skewed and the column is positioned
to the left of the table.

With respect to MinHash, we obtain it using a special hash
function with the same name and characterised by outputs with
high probability of collision for similar inputs. [7]. It has been
proposed for e�cient approximate similarity search and, there-
fore, we are using it during similarity indexing, as described later
in Section 4.2.

We use pro�ling to deliver data understanding. We do so ef-
�ciently, by automating the extraction of pro�ling information
such as those exempli�ed in Table 1. Therefore, data pro�ling
contributes to the automation principle mentioned before, since
new incoming data is presented to data scientists with pro�ling
information already extracted. This information is stored per
table in JSON �les that act as backend data for subsequent tasks.
Therefore, table pro�les contribute to the scalability principle as
well, by acting as data summaries that prevent a re-scanning of
the data by the other processes, as we describe next.

4.2 Data indexing
By data indexing we refer to the process of grouping data columns
from di�erent tables based on multiple levels of similarity with
the purpose of identifying tables and columns with values drawn
from the same domain.

The motivation for data indexing lies in the need for e�cient
data search and relationship discovery, as we describe in Sec-
tion 3.4. In Voyager, data indexing is inspired by the ⇡3! data
discovery system [5] and in transferring the ideas advanced by
⇡3! in practice we rely on three types of evidence for column
similarity: names (N), values (V), and domain distributions (D).
From column names we derive @–grams, meaning that each name
is split into its @-grams of prede�ned size. From the value sets of
categorical columns we derive tokens meaning that each value
of a column is split into its set of word components that is then
unioned with all other word sets of the same column. From the
value sets of numerical columns we derive domain distributions
in the form of histograms of all column values, already computed
by the pro�ler. We thus cover both categorical and numerical
data and gather �ne–grained similarity evidence for the former,
accounting for cases where columns may have names or values
that denote the same entity but are represented di�erently.

Let 2 and 2 0 be columns with extents [[2]] and [[2 0]], respec-
tively. Similarly to ⇡3!, we capture name and value similarity

540

Algorithm 1 Index construction
Input: A collection ⇠ of column names with associated pro�les
(28 , % (28)).
Output: Indexes �N, �V, �D
1: function C�����I������
2: �N new LSH(); �V new LSH(); �D new LSH();
3: for all (28 , % (28)) 2 ⇠ do
4: & (28) get_qgrams(28)
5: �N .8=B4AC (MinHash(& (28)))
6: if dtype(28) 8B =D<4A82 then
7: � (28) get_histogram(% (28))
8: �D .8=B4AC (RandomProjections(� (28)))
9: else
10: "� (28) get_minhash(% (28))
11: �V .8=B4AC ("� (28))
12: end if
13: end for
14: return (�N, �V, �D)
15: end function

using Locality Sensitive Hashing (LSH) indexing [4, 23] over
@–gram sets and token sets, respectively. In other words, the
similarity between the names of 2 and 2 0 will be given by the
Jaccard similarity of their @-gram sets. The similarity between the
values of 2 and 2 0 will be given by the Jaccard similarity between
[[2]] and [[2 0]], modelled using the token sets of each column to
account for inconsistent representations. We use MinHash [7]
as the hashing function underlying LSH: a hash function charac-
terised by outputs with high probability of collision for inputs
with high Jaccard similarity.

With respect to domain distribution, we propose a new LSH–
based similarity estimation method, as the one proposed in ⇡3!
does not apply when all columns of a table are numeric or when
the key candidate is numeric. Speci�cally, for numerical columns,
we create a new LSH index that groups together columns with
similar value distributions represented as histograms. This time,
the underlying hash function of the LSH index is random projec-
tions [10]: a hash function characterised by outputs with high
probability of collision for inputs with high Cosine similarity.
So the similarity between the domain distributions of 2 and 2 0,
when they are numeric, is given by the Cosine similarity between
their value histograms seen as numerical vectors. The overall
data indexing procedure of Voyager is shown in Algorithm 1.

In Algorithm 1, functions get_histogram and get_minhash
retrieve a column’s histogram and MinHash from the pro�le of
the parent table. Therefore, C�����I������ does not need to
access the original data, as per Voyager’s scalability principle.

4.2.1 Data search. The output triple of C�����I������ pro-
vides the backend data structures for the data search functionality
o�ered by Voyager and used to underpin data identi�cation. We
describe the motivation of data search with respect to the use
case from Figure 1 where a data scientist, needs to identify the
concepts represented in the tables. In particular, a data scientist
looking for the tables/columns with product sales information
needs to identify table Sales invoice as being relevant but also
Orders and Transactions. Voyager o�ers such functionality by
implementing a combined search strategy, described in Figure 3,
that uses all three indexes, while abstracting from the user the
complexity of querying each LSH index.

Figure 3: Voyager’s combined search strategy.

Returning to the product sales example, consider the search
keyword set {sales}. As per Figure 3, initially �N will return
result columns such as Sales invoices.sales order id, Orders.sales
type. This result set will be forwarded to �V and �D, subject to the
forwarded column data type. In our example, the value distribu-
tion of Sales invoices.sales order id will be used to query �D and
the result, {Orders.order number} will be unioned with the initial
result from �N and presented to the user.

The intuition behind the search strategy from Figure 3 is to
abstract a multi–criteria search behind a simple keyword–based
entry point. In this way, users can attend to columns/tables that
may be relevant for data identi�cation even if they are not a
direct match of the search keywords.

4.2.2 Search results ranking. Themulti–criteria searchmethod
proposed in Figure 3 implies the need for a result ranking mech-
anism. With Voyager, we implement a simple ranking function
that takes into account the index type the results originate from,
the number of columns per table that are similar to the search
keywords, and the similarity of each result column to the query,
as approximated by LSH. Speci�cally, taking into account that
we want each search result item to be a table, given a keywordF ,
the name–score AN) of a candidate table) is given by the average
similarity between the column names in) and F , as approxi-
mated by �N: AN) =

Õ:
8=1 B

N
8 /: , where B

N
8 is the similarity between

column name 28 of) andF . Similarly, the extent–score AV/D) of a
candidate table) is given by the average similarity between the
column extents in) and the extent of 28 - the name–similar col-
umn used as a query for �V or �D - adjusted by the name similarity
of 28 to the original keywordF : AV/D) =

Õ:
8=1 B

N
8 B
V/D
8 /: .

We, therefore, treat name–similarity and extent–similarity
independently and present both rankings to the user. The intu-
ition here is to extend the reach of Voyager’s search mechanism
beyond simple column/table name similarity, while preserving
interpretability of the resulting ranking. Such interpretability
would be lost if, for example, Voyager follows a combined rank-
ing function, similar to the one proposed in ⇡3![5].

Finally, we use data indexing and search to deliver data identi-
�cation. We do so e�ciently by building on LSH and, therefore,
adhering to the scalability principle because LSH is characterised
by linear retrieval times w.r.t. the search space size [30]. More-
over, the indexing process in Voyager is fully automated and,
therefore, addresses the automation principle. With respect to
the search process, Voyager abstracts the complexities of LSH

541

querying behind a simple keyword search process2 and, therefore,
addresses the accessibility principle we aim for.

4.3 Relationship graph creation
Given a collection of tables T , a relationship graph is a data
structure ⌧ := () , ⇢), with the set of vertices) ✓ T and the
set of edges ⇢ := B8<()8 ,)9), given by a similarity relationship
between some column in)8 and some other column in)9 .

The motivation for building a relationship graph is given by
the need for joining tables. We identi�ed this task as a the most
time–consuming steps. This is because incoming tables, such as
the ones illustrated in Figure 1, often originate from data manage-
ment systems that do not enforce primary–keys or integrity con-
straints, e.g., primary-key/foreign-key relationships. Therefore,
their relationships are often unknown. We proceed to approxi-
mate such relationships in the form of candidate join paths, i.e.,
partial and full inclusion dependencies (INDs), (e.g., similar, but
not limited to the ones illustrated in Figure 1). This approximation
is grounded in the notion of similarity, denoted by B8<() above,
between table columns. In de�ning B8<() we build on top of table
pro�les and LSH indexes to identify the set of edges ⇢ as column
extent overlaps. Given two columns 28 and 2 9 , their similarity is
quanti�ed by their value–set overlap measured using the overlap
coe�cient, >E (28 , 2 9) = | [[28]] \ [[2 9]] |/min(| [[28]] |, | [[2 9]] |). We
di�erentiate between two overlap cases, both describing valid
join opportunities:
• Primary join paths (PJPs) are approximated full INDs where
some key candidate from a table)8 fully includes the values of
a column from)9 .

• Secondary join paths (SJPs) are approximated partial INDs
where some key candidate from a table)8 partially includes
the values of a column from)9 .
More formally, the overlap coe�cients of PJPs and SJPs are

de�ned by

>E% � % (28 , 2 9) � 1 � 4 (2a)

>E(� % (28 , 2 9) � C (2b)

where 4 is the PJP overlap tolerance coe�cient, and C is the SJP
overlap threshold. Both are con�gurable parameters �xed in
our experiments to 0.1 and 0.6, respectively. We describe their
intuition next.

4.3.1 Primary Join Paths. PJP relationships are approximated
full INDs that we are using LSH to identify. Alternatively, IND
discovery tools (e.g., [36]) could be used. Such approaches, how-
ever, require clean data, uncommon when working with external
data maintained by non-specialised users. Additionally, the LSH
indexes are already created so PJP discovery is actually a data
search problem controlled by 4 - a tolerance factor we con�g-
ure to take account of the approximate nature of the similarity
estimated by LSH.

4.3.2 Secondary Join Paths. Similarly, SJP relationships are
approximated partial INDs and we are using the same LSH struc-
tures to identify them. Their discovery can also be treated as a
data search problem controlled by C - a minimum overlap value
for two columns to be in a SJP relationship.

2The LSH con�guration parameters, such as MinHash size and number of inner
hash tables, have been empirically �xed to reasonable defaults for a similarity score
of at least 0.7: 256 and 50, respectively.

Algorithm 2 Join Path Discovery
Input: Key candidate set and index �V
Output: Collections of % �%B and (�%B
1: function G��J���P����
2: % �%B {}; (�%B {}

3: for all :28 2 do
4: =486⌘1>DAB �V .lookup(:28)
5: for all = 9 2 =486⌘1>DAB do
6: if ov([[:28]], [[= 9]]) >= 1 � e then
7: % �%B % �%B [{(:28 ,= 9)}
8: else if ov([[:28]], [[= 9]]) >= t then
9: (�%B (�%B [{(:28 ,= 9)}
10: end if
11: end for
12: end for
13: return (% �%B, (�%B)
14: end function

We rely on �V to e�ciently identify the PJP and SJP candidates3
using the procedure from Algorithm 2, where the �V LSH index
is used to e�ciently approximate the overlap coe�cient between
column extents4 (Lines 6 and 8). Speci�cally, given two columns
28 and 2 9 , similarly to Zhu et al. [44], we observe that the overlap
coe�cient >E ([[28]], [[2 9]]) (denoted simply as >E) is positively
correlated with Jaccard similarity 9022 ([[28]], [[2 9]]) (denoted sim-
ply as 9022) and that 9022 can be approximated by counting the
number of buckets 28 and 2 9 share in �V [23]. Thus, we can use
the Jaccard similarity to identify high–overlap candidates in �V.
Then, using the set–theoretic inclusion–exclusion principle, it fol-
lows that >E = 9022⇥(| [[28]] |+ | [[2 9]] |)

1+9022 ⇥
1

<8= (| [[28]] |, | [[2 9]] |)
. With

the extent cardinalities stored in table pro�les at pro�le time and
9022 given by �V, >E becomes straightforward to compute.

Returning to our relationship graph, the set of relationship
graph edges ⇢ = % �%B [(�%B and the set of vertices) is given by
the set union of all tables with columns in some PJP or SJP. We
use the resulting graph ⌧ to deliver data relationship discovery,
materialised as set–value overlap. We do so by building on top
of the existing LSH indexes and, therefore, preserving the adher-
ence to the scalability principle. Automation is addressed as well,
since all major relationship discovery tasks happen automatically,
including updates when necessary, i.e., updated/new tables are
(re)pro�led and re(indexed) automatically, while the relationship
graph is updated in the light of �V’s changes.

4.4 User interaction model
In this paper we introduced a collection of tasks data scientists
have to perform to overcome the semantic gap between their
intents and new incoming data. Therefore, the capabilities of
Voyager have to be immediately accessible to data scientists,
especially since increased productivity is one of the motivating
factors of Voyager. As such, we designed Voyager to be accessible
and expose its backend functionalities through a command line
interface (CLI), while the frontend is accessible as a JupyerLab
[38] extension, as we now describe.

4.4.1 Backend CLI. Voyager’s backend processes, viz. data
pro�ling, data data indexing, relationship graph creation, are
3We also include integer–valued columns in �V by considering each integer value
as a word/token.
4⇡3! [5] has shown good performance in approximating value set overlaps using
an index such as �V , although the index stores value tokens rather than full values.

542

Table 3: Voyager’s backend CLI commands.

voyager create –help

Usage: voyager create [OPTIONS] COMMAND [ARGS]

Options:
–help : Show this message and exit.

Commands:
profiles : Create a pro�le for all tables in a database.
indexes : Create indexes for all pro�led tables.
graph : Create relationship graph for all pro�led tables.

Figure 4: Voyager’s frontend where the relationship graph and
table pro�les can be accessed from the search interface.

accessible to data scientists as CLI commands that can be used to
create automatic processes, e.g., cron jobs, to add new data into the
table pro�les, LSH indexes, and a relationship graph. Voyager’s
backend is controlled through the three sub–commands from
Table 3. The ARGS are sub–command speci�c and include con�g-
uration parameters, such as MinHash size for profiles, number
of LSH hash tables for indexes, or PJP tolerance coe�cient and
SJP overlap threshold for graph.

4.4.2 Frontend extension. Voyager exposes data pro�les, in-
dexes and the relationship graph through an extension to Jupyter
Notebook [38], one of the main development environments used
by data scientists. Figure 4 illustrates a simple version this fron-
tend that we used for this paper’s experiments. The left most
interface consists of a table browsing component that also acts
as a user interface for consulting the results of the search strat-
egy from Figure 3. The relationship browsing interface from the
middle exposes the relationship graph where PJPs and/or SJPs
can be �ltered out to simplify the view. Graph nodes, i.e., tables,
are labeled with their corresponding table names and can also
be �ltered to avoid a convoluted graph. Thirdly, the right most
table pro�le interface presents pro�ling information, such as the
one from Table 1. This can be accessed either from the browsing
interface or by clicking on a relationship graph node. Using this
three interfaces, users can explore the di�erent tables in a data-
base, their inter–relationships and zoom–in on individual table
pro�les.

Such a design, with decoupled backend and frontend com-
ponents, allows users to con�gure backend processes to create
and keep data structures up to date using the CLI commands.
The results can then be consulted in the user interface so that
users acquire the knowledge K from Section 3 faster than using

Figure 5: Data science experience distribution.

some other data exploration method, as we next describe in our
evaluation.

5 EXPERIMENTAL DESIGN
The main motivating factor for building Voyager is the observed
time costs of data discovery and integration. Data scientists in-
teract with new data often, and overcoming the semantic gap
discussed in Section 3 by identifying, understanding and query-
ing di�erent data components can lead to productivity costs in
the delivery of data analysis results. In this section, we design ex-
periments to evaluate the hypothesis that Voyager facilitates data
identi�cation, data understanding and relationship discovery and,
consequently, increases the productivity of data scientists. We
do so by relying on implementations of the backend processes in
Python 3.7 and of a simple version of the frontend from Figure 4
as a Jupyter Notebook 6.4 extension. We then ask data scientists
to perform six speci�cally designed tasks, as described next.

5.1 Methodology
We evaluate our usability and productivity hypothesis by em-
ploying a three–factor analysis:
(1) We use a general usability measurement framework in the

form of the 10–question System Usability Scale (SUS) question-
naire [3, 8] to measure the subjective assessment of Voyager’s
usability by data scientists.

(2) We compose an additional 9–question questionnaire to anal-
yse the usefulness of Voyager’s individual components, viz.
data pro�les, data indexes, and relationship graph, in acquir-
ing each of data identi�cation, data understanding and rela-
tionship discovery.

(3) We perform a comparative time–analysis between two data
scientist sub–groups with and without the use of Voyager to
assess the time–cost impact of using Voyager.
Our subject pool for Voyager’s evaluation consists of Peak’s 14

data scientists with a balanced data science background between
a few months and 5 years. Figure 5 shows the distribution of the
users experience in data science.

We ask our subjects to perform six analytical tasks over 40
new datasets. To this end, we randomly split the data scientists
pool into two equal groups: groupV , or subjects who use Voy-
ager, and group O, or subjects who use some other method for
exploring the data, e.g., SQL querying, Python scripts, etc.. The
six analytical tasks are given to group V in a Jupyter Notebook
with the Voyager extension installed and with the instruction to
use it for searching and exploring the data and its relationships.
A Jupyter Notebook with the same tasks but without the Voyager

543

Table 4: Generic and concrete usability study tasks.

Task Generic desc. Concrete task

1.
(I) Identify relevant

tables and
columns that store
speci�c concepts.

Which tables contain information
about the number of detached
and semi-detached house sales
between 1995 and 2020 at the
level of local authorities?

2.
(I)

Which tables contain information
about the prices paid for
detached and semi-detached
houses between 1995 and 2020
at the level of local authorities?

3.
(U) Aquire statistical

descriptions of
concepts represented
in the data.

What was the median number
of detached property transactions
across local authorities in 2020?

4.
(U)

What was the highest price paid
for a semi-detached house
across local authorities in 2019 ?

5.
(R)

Identify how relevant
tables relate.

Merge the tables from tasks
1.1 and 1.2 into a uni�ed view.

6.
(I,U,R)

Perform a data
analysis task that
requires data discovery
and integration.

How many terraced properties
have been transacted and
what was their average price
in Manchester between
2018 and 2020 ?

extension is presented to group O. So these users perform the
tasks without the use of Voyager. We measure the time required
to perform the six tasks by each group and perform evaluation
method (3) by cross–analysing the results. Then, we swap the
groups and ask them to perform the tasks again. So group O will
have Voyager access whileV will not. Consequently, each user
has the chance to use Voyager and then answer the question-
naires from evaluation methods (1) and (2).

The six analytical tasks are described in Table 4. They are
based on 40 tables, further discussed in Section 5.2, that are new
to the experiment subjects so data discovery and/or integration
is necessary in order to perform the tasks. Speci�cally, tasks 1
and 2 require data identi�cation - the tables can be identi�ed
using Voyager’s search functionality. Tasks 3 and 4 require data
understanding - the statistics can be extracted from the table pro-
�les. Task 5 requires relationship discovery - the value overlap
relationships can be identi�ed in the relationship graph. Task 6
requires all of data identi�cation, data understanding and rela-
tionship discovery since it implies the need for aggregations over
a join result of multiple tables.

The subjects are required to perform all tasks in order. As
such, the role of tasks 1, 3, and 5 is to elicit the need for di�erent
knowledge when confronted with new datasets and analytical
jobs. The purpose of tasks 2 and 4 is to elicit the contribution
of identi�cation and understanding abilities when performing
repeated actions on the data (i.e., tasks 2 and 4 will be easier once
tasks 1 and 3 have been performed because the user will be more
familiar with the data). Similarly, the purpose of task 6 is to elicit
the ease of performing data analysis once the semantic gap has
been overcome. After group swapping, each subject re–executes
the same tasks on the same data so the semantic gap will be even
narrower. However, we hypothesise that the advantages of using
Voyager will still be recognisable.

Table 5: Number of residential property sales by local au-
thority - sample.

Authority
name

Region
name

Dec
2020

Sep
2020 . . . Dec

1995
Hartlepool North East 39 81 213
Middlesbrough North East 155 288 257
Darlington North East 128 199 215

Table 6: SUS statements.

No. Statement
1. I think that I would like to use Voyager frequently.
2. I found Voyager unnecessarily complex.
3. I thought Voyager was easy to use.

4. I think that I would need the support of a technical person
to be able to use Voyager.

5. I found the various functions in Voyager were well integrated.
6. I thought there was too much inconsistency in Voyager.

7. I would imagine that most people would learn to use
Voyager very quickly.

8. I found Voyager very cumbersome to use.
9. I felt very con�dent using Voyager.

10. I needed to learn a lot of things before I could get going
with Voyager.

5.2 Evaluation dataset
We design our evaluation based on a 40–table data collection
originating from the UK’s O�ce for National Statistics5. The
tables contain information about the number of property trans-
actions and the median price paid for these transactions across
various geographies in England and Wales, on an annual basis,
updated quarterly, between 1995 and 2020. The data is organ-
ised in tables by property types, e.g., detached houses, �ats, etc.,
and administrative levels, e.g., region, city, borough, etc.. Table
5 shows a sample of the information about the number of res-
idential property sales by local authority in the North East of
England.

5.3 Reported measures
The results of each evaluation method from Section 5.1 are quan-
ti�ed using the following measures:

SUS Score: The SUS questionnaire used with evaluationmethod
(1) is composed of the 10 statements from Table 6 that are scored
from 1 to 5, i.e. strong disagreement to strong agreement. Each
odd statement measures a positive judgement, while each even
statement measures a negative judgement. Then, following the
proposal from [8], the SUS score is given by:

2.5 ⇥
266664

’
1810,i odd

(B8 � 1) +
’

1 910,j even
(5 � B 9)

377775
(3)

where B8/9 is the user–given score for statement 8/ 9 . Equation
3 thus normalizes the positive and negative character of the
statements to a [0, 100] score. We report and analyse the scores
in Section 6.1.

Functional usefulness percentages: The questionnaire used with
evaluation method (2) consists of the 9 statements from Table
5https://www.ons.gov.uk/peoplepopulationandcommunity/housing/bulletins/
housepricestatisticsforsmallareas/yearendingdecember2020

544

Table 7: Functional usefulness statements.

No. Statement
1. I found the table pro�les useful for data identi�cation.
2. I found the relationship graph useful for data identi�cation.
3. I found the search functionality useful for data identi�cation.
4. I found the table pro�les useful for data understanding.
5. I found the relationship graph useful for data understanding.
6. I found the search functionality useful for data understanding.
7. I found the table pro�les useful for rel. discovery.
8. I found the relationship graph useful for rel. discovery.
9. I found the search functionality useful for rel. discovery.

Figure 6: System Usability Study score for Voyager show-
ing that 10/14 users rate Voyager’s usability at least Good.

7, scored from 1 to 5. Each statement assesses the usefulness of
one of Voyager’s main functions. In Section 6.2, we report and
analyse the users responses the the nine statements.

Additionally, we asked each data scientist to score from 1 to 5
Voyager’s overall potential for increasing productivity using one
statement: I think that productivity increases when using Voyager,
as opposed to using other data exploration methods.We report and
analyse the responses in Section 6.2.

Task times: For evaluation method (3) we report the times
required by data scientists in groups V and O to perform the
six tasks when each group �rst encounters the data, i.e., before
swapping the two groups. We do not include the after–swap
times in the analysis because, by that point, each subject is already
familiar with some of the tables, i.e., the semantic gap is narrower.
We report and analyse the results for this experiment in Section
6.3.

6 RESULTS
In this section we report the results for each of the three evalua-
tion methods from Section 5.1.

6.1 Evaluation method (1): System Usability
Scale

In this experiment, we evaluate Voyager’s perceived usability
quanti�ed by the SUS score from Equation 3. We include in our
measurement all 14 subjects once they had the chance to use Voy-
ager. The results are reported in Figure 6, including the individual
score values returned by Equation 3 and the corresponding adjec-
tive and grades according to SUS’s alternative scales proposed by
Bangor et al. [3]. While three out of 14 subjects graded Voyager’s
usability with A+ and another two with A, the average SUS score
of 79.67 corresponds to grade A-. This speaks about Voyager’s
potential for being recommended to other data scientists and
used frequently. In fact, 13 subjects agreed or strongly agreed
when speci�cally asked about a more frequent use of Voyager.

Figure 7: Evaluation of Voyager’s main functionalities
w.r.t. data identi�cation showing that 12/14 users agree
with the usefulness of data search.

Conversely, four users graded Voyager’s usability with D or C+.
A closer analysis of the reasons behind these grades suggested
that the respective users considered the three main functions of
Voyager not well integrated and observed inconsistencies in how
these can be accessed. In addition, the two users who graded
the system with D considered Voyager either cumbersome to
use or desired technical support at their �rst use of the tool. We
observe that most of these issues may result from the prototype
nature of Voyager’s interface. A more advanced user interface
design, together with more user training could therefore lead to
an increase in the SUS score.

6.2 Evaluation method (2): Functional
usefulness

In this experiment we specialize our evaluation study in the
direction of usefulness. To this end, we asked the 14 data scientists
to evaluate the usefulness of Voyager’s main functionalities, viz.,
data pro�ling, data searching, and relationship graph creation,
with respect to the three data branches introduced in Section
3, viz., data identi�cation, data understanding, and relationship
discovery.

The motivation for this experiment is our hypothesis that data
identi�cation can be facilitated by Voyager’s indexing & search
functionality, data understanding can be facilitated by Voyager’s
table pro�les and data relationship discovery can be facilitated
by Voyager’s relationship graph.

6.2.1 Data identification. Figure 7 shows that 12 out of 14
subjects have found Voyager’s data search functionality useful
for Tasks 1, 2 and 6 from Table 4. The two users who did not agree
used only the browsing capabilities of Voyager’s interface, illus-
trated in Figure 4, and the table pro�les to identify the intended
tables for the same tasks. This is in line with the 100% agreement
of data pro�ling usefulness illustrated in Figure 7. Moreover, the
relationship graph has also proven useful for identifying data
for more than half of the subjects. This is because the tables and
columns needed to be identi�ed for Tasks 1, 2, 6 are neighbours
in the relationship graph.

6.2.2 Data understanding. Figure 8 shows that 13 out of 14
subjects have found Voyager’s data pro�ling functionality useful
for Tasks 3, 4 and 6 from Table 4. This is because the pro�les
for the corresponding tables either contain the values of the
required statistics (e.g., tasks 3 and 4) or can provide information
to compute them (e.g., task 6). In addition, the relationship graph

545

Figure 8: Evaluation of Voyager’s main functionalities
w.r.t. data understanding showing that 13/14 users agree
with the usefulness of data pro�ling.

Figure 9: Evaluation of Voyager’s main functionalities
w.r.t. relationship discovery showing that all users agree
with the usefulness of the relationship graph.

and data search functionalities have been used by at least half of
the users when trying to understand the data.

6.2.3 Relationship discovery. Figure 9 shows that all 14 sub-
jects have found Voyager’s relationship graph useful for Tasks 5
and 6 from Table 4. This is because the relationship graph empha-
sizes approximated join paths that, as is often the case in practice,
are not explicitly de�ned in our evaluation data collection. Data
scientists can, thus, use the graph paths to identify joining keys.
Additionally, 9 users consider the information from table pro�les
useful for joining dataset. However, in scenarios with more than
a few tables to join, visually analyzing table pro�les to identify
joining keys becomes impractical. Searching for similar tables
in Voyager could also be used to �nd potential joining columns
and at least 8 users have identi�ed this possibility. This can be
done using the value–similar search results to extract tables with
value–sharing columns.

6.2.4 Productivity increase. In addition to the nine statements
about individual functionalities, we asked users to evaluate Voy-
ager’s overall potential for increasing productivity. The results
reported in Figure 10 suggest that the vast majority of subjects,
i.e., 12 out of 14 users, agree with our hypothesis that Voyager
has such a potential. One user was undecided, while one other
user disagreed with our hypothesis. After a closer analysis we
conclude that users who were not convinced by Voyager’s in-
creased productivity potential also wished for more technical
support in using the tool. This suggests that a better clari�cation
of Voyager’s technical concepts and supporting the tool’s initial
adoption could further reveal its productivity growth potential.

Figure 10: Evaluation of Voyager’s productivity potential
showing that 12/14 users agree that use of Voyager can in-
crease productivity.

Figure 11: Timemeasurements between groupV (i.e., Voy-
ager) and group O (i.e., Other) showing time savings when
using Voyager.

6.3 Evaluation method (3): Task times
In this experiment we evaluate our hypothesis that Voyager in-
creases productivity with respect to time. To this end, we report
and cross–analyze the times required for user groupsV and O

to perform the tasks from Table 4.

6.3.1 Overall time analysis. Figure 11 emphasizes the di�er-
ence in the average time measurements between the two user
groups. Each graph bar reports the average group times over the
sums of two task, i.e., we sum the times of two tasks for each
user in the group and report the average of all sums in that group.
More speci�cally, data identi�cation includes times for tasks 1
and 2, data understanding includes times for tasks 3 and 4, and
relationship discovery includes times for tasks 5, 6. Although
task 6 covers all three branches, the most challenging part is
identifying table relationships. Therefore, we include task 6 in
relationship discovery measurements.

The �gure suggests that identifying tables and columns using
Voyager’s browsing or search interface is 52% more e�cient than
using some other exploration method. This di�erence increases
to 67% for extracting summary statistics about identi�ed data ele-
ments. This is because data understanding often involves writing
exploratory queries, e.g., in SQL, and the table pro�les relieve
the users from writing some of these queries.

Discovering table relationships and writing join queries is
32% more e�cient when using Voyager. The improvement is,
therefore, smaller than in the case of data identi�cation and data
understanding because by the time they reach tasks 5 and 6, both
user groups have overcome part of the semantic gap - recall that
users perform the tasks in order. This could also explain why
data understanding tasks turned out more challenging for group
O users than relationship discovery. The 32% improvement also

546

Figure 12: Per–task time measurements between groupV

(i.e., Voyager) and group O (i.e., Other) showing signi�cant
time savings for each task when using Voyager.

suggests that even after users become more familiar with the
data, Voyager can still enhance the data querying process.

Lastly, we performed two–sample t–tests on the time data cor-
responding to each of data identi�cation, data understanding and
relationship discovery. In each case, the two samples are given by
group V’s times and group O’s times, each with 7 samples. The
three tests did not yield statistically signi�cant results. This is
because we have prioritised obtaining results from professional
data scientists, but the consequence of this is that the sample
sizes are quite small. If we consider the results of each of the
tasks together, thus asking if individual (non–speci�c) tasks were
quicker with Voyager than using some other data science existing
techniques (a total of 21 samples in each group) then the di�er-
ences are found to be statistically signi�cant: p–value = 0.035.
This statistical signi�cance has been obtained using a Wilcoxon
Signed-Rank test [11] instead of a t–test. This is because the
latter assumes the samples are normally distributed, a potentially
unreasonable assumption when we include measurements from
all three tasks.

6.3.2 Per–task time analysis. Figure 12 shows a consistent
trend at individual task level with the one previously observed
in Figure 11. For each user group, First task denotes tasks 1,
3, or 5 depending on the branch, i.e., data identi�cation, data
understanding or relationship discovery. Similarly, Second task
denotes tasks 2, 4, or 6. In each case, we report the average over
times recorded for each user in their respective group. Once again,
we include task 6 in the relationship discovery time analysis.

Data identi�cation and data understanding proves up to three
times more e�cient when conducted using Voyager than when
some other data exploration method is used. In the case of both
groups, the second data identi�cation and data understanding
tasks took signi�cantly less time to perform than the correspond-
ing �rst tasks. This pattern emphasizes the importance of over-
coming the data semantic gap, i.e., once the user familiarises with
the data, repetitive tasks become easier to perform.

With respect to relationship discovery, we �rst observe that
the di�erence between the times corresponding to the two groups
is smaller than in the previous two cases. This is because tasks
5 and 6 require users from both groups to write SQL queries.
However, these queries require the pre-identi�cation of joining
keys and the relationship graph assists users from group V in
�nding them.

Task 6 takes longer than task 5 in the case of both groups.
This is because task 5 refers to tables and columns used in the

previous tasks as well, while task 6 uses new tables and columns
that have to be identi�ed �rst.

6.3.3 Summary. Overall, the analysis from this section shows
considerable time–cost reductions when using Voyager. There-
fore, it supports our productivity desideratum and encourages
further development e�orts to address requirements resulted
from our user study described in this evaluation.

7 CONCLUSIONS
Data discovery and integration have been the focus of consider-
able research interest. However, there has been less work reported
that builds on these foundations to provide platforms that address
speci�c data science needs and support putting these concepts
into practice. This paper takes some steps in this direction by
proposing a system that blends elements of data discovery and
data integration to assists data scientists in interacting with new
tabular data. Speci�cally, in this paper, we address the contribu-
tions claimed in the introduction by:

• The introduction and formalisation of data identi�cation,
data understanding and relationship discovery tasks: Our
work is motivated by the requirement within Peak AI to
make e�ective use of customer data for analysis. We have
proposed both indexing techniques and a user interface
that supports these activities in an integrated manner.

• A practical system for supporting data discovery and inte-
gration, called Voyager. In the light of the identi�ed func-
tionalities, and the associated performance requirements,
we have developed techniques for data pro�ling, indexing
and relationship graph creation that follow a collection of
design principles, speci�cally the integration of the activi-
ties in a single environment, the automated derivation of
the required data, the scalable population and use of the
necessary data representations, and the provision of tools
with minimal learning curves.

• A usability study of Voyager with data scientists. We have
evaluated the resulting system with data scientists from
Peak AI, where the data scientists carry out a representa-
tive tasks using their existing techniques or using Voyager.
In particular, we investigated: (i) the subjective usability of
Voyager through a System Usability Scale questionnaire;
(ii) the usefulness of the speci�c components of Voyager
through a questionnaire on the utility of the di�erent
functionalities for speci�c tasks; and (iii) the time taken
to carry out the di�erent data preparation activities with
and without Voyager. This evaluation provided focused,
and in general positive, feedback from experienced data
scientists, which gives evidence that the speci�c function-
alities can be useful and can improve productivity, even
on �rst use of the system.

ACKNOWLEDGMENTS
Research supported by a Knowledge Transfer Partnership involv-
ing The University of Manchester and Peak AI Ltd., funded by
Innovate UK (KTP11540).

REFERENCES
[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2015. Pro�ling rela-

tional data: a survey. VLDB J. 24, 4 (2015), 557–581.
[2] Amundsen — Lyft’s data discovery & metadata engine [n.d.]. https://eng.lyft.

com/amundsen-lyfts-data-discovery-metadata-engine-62d27254fbb9. Ac-
cessed: 2021-09-21.

547

[3] A. Bangor, P.T. Kortum, and J.T. Miller. 2008. An Empirical Evaluation of the
System Usability Scale. International Journal of Human–Computer Interaction
24, 6 (2008), 574–594.

[4] Mayank Bawa, Tyson Condie, and Prasanna Ganesan. 2005. LSH forest: self-
tuning indexes for similarity search. In Proceedings of the 14th international
conference on World Wide Web, WWW. ACM, 651–660.

[5] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Kon-
stantinou. 2020. Dataset Discovery in Data Lakes. In 36th IEEE International
Conference on Data Engineering, ICDE. IEEE, 709–720.

[6] Dan Brickley, Matthew Burgess, and Natasha F. Noy. 2019. Google Dataset
Search: Building a search engine for datasets in an open Web ecosystem. In
The World Wide Web Conference, WWW. ACM, 1365–1375.

[7] A. Broder. 1997. On the Resemblance and Containment of Documents. In
SEQUENCES.

[8] John Brooke. 1996. "SUS-A quick and dirty usability scale." Usability evaluation
in industry. CRC Press.

[9] Adriane Chapman, Elena Simperl, Laura Koesten, George Konstantinidis, Luis-
Daniel Ibáñez, Emilia Kacprzak, and Paul Groth. 2020. Dataset search: a survey.
VLDB J. 29, 1 (2020), 251–272.

[10] M. S. Charikar. 2002. Similarity Estimation Techniques from Rounding Algo-
rithms. In STOC.

[11] William Jay Conover. 1999. Practical nonparametric statistics (3. ed ed.). Wiley.
[12] Data portal, the data centric tool of AirBnB [n.d.]. https://zeenea.com/

data-portal-the-data-centric-tool-of-airbnb/. Accessed: 2021-09-21.
[13] Databook: Turning Big Data into Knowledge with Metadata at Uber [n.d.].

https://eng.uber.com/databook/. Accessed: 2021-09-21.
[14] DataHub: A generalized metadata search & discovery tool [n.d.]. https://

engineering.linkedin.com/blog/2019/data-hub. Accessed: 2021-09-21.
[15] Dong Deng, Albert Kim, Samuel Madden, and Michael Stonebraker. 2017. Silk-

Moth: An E�cient Method for Finding Related Sets with Maximum Matching
Constraints. Proc. VLDB Endow. 10, 10 (2017), 1082–1093.

[16] AnHai Doan, Alon Y. Halevy, and Zachary G. Ives. 2012. Principles of Data
Integration. Morgan Kaufmann.

[17] Rebecca Eichler, Corinna Giebler, Christoph Gröger, Holger Schwarz, and
Bernhard Mitschang. 2021. Modeling metadata in data lakes—A generic model.
Data & Knowledge Engineering 136 (2021), 101931.

[18] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, and Michael Stonebraker. 2018. Aurum: A Data Discovery System. In
34th IEEE International Conference on Data Engineering, ICDE. IEEE Computer
Society, 1001–1012.

[19] Raul Castro Fernandez, Essam Mansour, Abdulhakim Ali Qahtan, Ahmed K.
Elmagarmid, Ihab F. Ilyas, Samuel Madden, Mourad Ouzzani, Michael Stone-
braker, and Nan Tang. 2018. Seeping Semantics: Linking Datasets Using Word
Embeddings for Data Discovery. In 34th IEEE International Conference on Data
Engineering, ICDE. IEEE Computer Society, 989–1000.

[20] A. Freitas. 2015. Schema–agnostic queries over large-schema databases: a dis-
tributional semantics approach. Ph.D. Dissertation. National University of
Ireland, Galway.

[21] Tim Furche, Georg Gottlob, Leonid Libkin, Giorgio Orsi, and Norman W.
Paton. 2016. Data Wrangling for Big Data: Challenges and Opportunities.
In Proceedings of the 19th International Conference on Extending Database
Technology, EDBT. OpenProceedings.org, 473–478.

[22] W. Furnas G, T. K. Landauer, L. M. Gomez, and S. T. Dumais. 1987. The
Vocabulary Problem in Human-System Communication. Commun. ACM 30,
11 (1987), 964–971.

[23] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In VLDB’99, Proceedings of 25th International
Conference on Very Large Data Bases. Morgan Kaufmann, 518–529.

[24] Rihan Hai, Sandra Geisler, and Christoph Quix. 2016. Constance: An Intelli-
gent Data Lake System. In Proceedings of the 2016 International Conference on
Management of Data, SIGMOD. ACM, 2097–2100.

[25] Alon Y. Halevy, Flip Korn, Natalya Fridman Noy, Christopher Olston, Neoklis
Polyzotis, Sudip Roy, and Steven Euijong Whang. 2016. Managing Google’s
data lake: an overview of the Goods system. IEEE Data Eng. Bull. 39, 3 (2016),
5–14.

[26] Joseph M. Hellerstein, Vikram Sreekanti, Joseph E. Gonzalez, James Dalton,
Akon Dey, Sreyashi Nag, Krishna Ramachandran, Sudhanshu Arora, Arka
Bhattacharyya, Shirshanka Das, Mark Donsky, Gabriel Fierro, Chang She, Carl
Steinbach, Venkat Subramanian, and Eric Sun. 2017. Ground: A Data Context
Service. In 8th Biennial Conference on Innovative Data Systems Research, CIDR.
www.cidrdb.org.

[27] Lacramioara Mazilu, Norman W. Paton, Alvaro A. A. Fernandes, and Martin
Koehler. 2022. Schema mapping generation in the wild. Inf. Syst. 104 (2022),
101904.

[28] Giansalvatore Mecca, Paolo Papotti, and Salvatore Raunich. 2012. Core schema
mappings: Scalable core computations in data exchange. Inf. Syst. 37, 7 (2012),
677–711.

[29] Metacat: Making Big Data Discoverable and Mean-
ingful at Net�ix [n.d.]. https://net�ixtechblog.com/
metacat-making-big-data-discoverable-and-meaningful-at-net�ix-56fb36a53520.
Accessed: 2021-09-21.

[30] Renée J. Miller. 2018. Open Data Integration. Proc. VLDB Endow. 11, 12 (2018),
2130–2139.

[31] Fatemeh Nargesian, Ken Q. Pu, Erkang Zhu, Bahar Ghadiri Bashardoost, and
Renée J. Miller. 2020. Organizing Data Lakes for Navigation. In Proceedings
of the 2020 International Conference on Management of Data, SIGMOD. ACM,
1939–1950.

[32] F. Nargesian, E. Zhu, K. Q. Pu, and R. J. Miller. 2018. Table Union Search on
Open Data. Proc. VLDB Endow. 11, 7 (2018), 813–825.

[33] Felix Naumann. 2013. Data pro�ling revisited. SIGMOD Rec. 42, 4 (2013),
40–49.

[34] Paul Ouellette, Aidan Sciortino, Fatemeh Nargesian, Bahar Ghadiri
Bashardoost, Erkang Zhu, Ken Pu, and Renée J. Miller. 2021. RONIN: Data
Lake Exploration. Proc. VLDB Endow. 14, 12 (2021), 2863–2866.

[35] pandas-pro�ling [n.d.]. https://pandas-pro�ling.github.io/pandas-pro�ling.
Accessed: 2021-10-22.

[36] Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener, and
Felix Naumann. 2015. Data Pro�ling with Metanome. Proc. VLDB Endow. 8,
12 (2015), 1860–1863.

[37] Thorsten Papenbrock and Felix Naumann. 2017. Data-driven Schema Nor-
malization. In Proceedings of the 20th International Conference on Extending
Database Technology, EDBT. OpenProceedings.org, 342–353.

[38] Project Jupyter [n.d.]. https://jupyter.org/. Accessed: 2021-11-05.
[39] Michael Stonebraker and Ihab F. Ilyas. 2018. Data Integration: The Current

Status and the Way Forward. IEEE Data Eng. Bull. 41, 2 (2018), 3–9.
[40] Petros Venetis, Alon Y. Halevy, Jayant Madhavan, Marius Pasca, Warren Shen,

Fei Wu, Gengxin Miao, and Chung Wu. 2011. Recovering Semantics of Tables
on the Web. Proc. VLDB Endow. 4, 9 (2011), 528–538.

[41] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M. Procopiuc,
and Divesh Srivastava. 2010. On Multi-Column Foreign Key Discovery. Proc.
VLDB Endow. 3, 1 (2010), 805–814.

[42] Yi Zhang and Zachary G. Ives. 2020. Finding Related Tables in Data Lakes for
Interactive Data Science. In Proceedings of the 2020 International Conference
on Management of Data, SIGMOD. ACM, 1951–1966.

[43] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:
Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In Pro-
ceedings of the 2019 International Conference on Management of Data, SIGMOD.
ACM, 847–864.

[44] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. 2016. LSH
Ensemble: Internet-Scale Domain Search. Proc. VLDB Endow. 9, 12 (2016),
1185–1196.

548

